НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИГИЕНЫ ВОДНОГО ТРАНСПОРТА

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОДЫ ОПРЕДЕЛЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

ВЫПУСК VI

РЕКЛАМБЮРО ММФ Москва — 1971

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИГИЕНЫ ВОДНОГО ТРАНСПОРТА

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОДЫ ОПРЕДЕЛЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

ВЫПУСК VI

Сборник технических условий составлен методической комиссией по промышленно-санитарной химии при проблемной комиссии «Научные основы гигиены труда и профессиональной патологии»

РЕКЛАМБЮРО ММФ Москва — 1971

Редакционная коллегия:

М. Д. Бабина, М. С. Быховская, Ф. Д. Криворучко, Л. С. Чемоданова.

УТВЕРЖДАЮ.
Заместитель
главного санитарного
врача СССР
Д. Лоранский
7 октября 1967 г.
№ 706—67

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОД ОПРЕДЕЛЕНИЯ ЭФИРСУЛЬФОНАТА В ВОЗДУХЕ

Настоящие технические условия распространяются на метод определения содержания эфирсульфоната в воздухе промышленных помещений при санитарном контроле, а также в условиях сельскохозяйственных работ.

I. Общая часть

1. Метод основан на колориметрическом определении окрашенного в желтый цвет соединения, образующегося при взаимодействии эфирсульфоната с орто-голидином в щелочной перекисной среде.

2. Чувствительность определения — 2 мкг эфирсуль-

фоната в анализируемом объеме раствора.

3. Метод специфичен в присутствии хлорорганических соединений: алдрина, гексахлора, гексахлорана, гексахлорбензола, ДДТ, ДДД, дилдрина, диптала, карбина, метоксихлора, тетрахлорнитробензола, хлориндана. Определению мешают ДДВФ (диметилдихлорвинилфосфат) и хлорофос.

4. Предельно допустимая концентрация эфирсуль-

фоната в воздухе — 2 мг/м3.

II. Реактивы и аппаратура

5. Применяемые реактивы и растворы.

Эфирсульфонат. Стандартный раствор эфирсульфоната № 1 готовят следующим образом. Сначала определяют процентное содержание эфирсульфоната. Для этого 0,01 г препарата растворяют в мерной колбе в 100 мл эфира. Для анализа берут 2 мл эфирного раствора. Рас-

творитель удаляют, а сухой остаток подвергают мокрому сожжению смесью серной кислоты с бихроматом калия при температуре 140° С. Образовавшийся в процессе сожжения свободный хлор поглощают смесью растворов иодистого кадмия с крахмалом, в результате чего выделяется эквивалентное количество иода. Выделившийся иод определяют титрометрическим или колориметрическим способами. Необходимые реактивы, а также ход определения хлорорганического препарата описан в «Технических условиях на методы определения вредных веществ в воздухе», вып. IV (М., изд. «Медицина», 1965, стр. 143).

Определяют среднеарифметическое из нескольких результатов и рассчитывают содержание эфирсульфоната

в растворе.

Соответствующим разбавлением эфиром готовят стандартный раствор № 2 с содержанием 10 мкг/мл эфирогольфоната.

Ацетон, ГОСТ 2603—63, перегнанный $t_{\text{кип.}}$ 56,5° С.

Орто-толидин, ГОСТ ТУМХП 2626—51, 5%-ный раствор в ацетоне. Готовят в день анализа.

Натр едкий, ГОСТ 4328—48, 0,5%-ный раствор.

Перекись водорода, ГОСТ 10929—64, 3%-ный раствор. Хранят в темной склянке.

Щелочной раствор перекиси водорода: три объема 0,5%-ного раствора едкого натра смешивают с двумя объемами 3%-ного раствора перекиси водорода. Раствор готовят перед употреблением.

Эфир диэтиловый, медицинский для наркоза, ГОСТ 6265—52, перегнанный, не содержащий примеси хлори-

дов.

Вата медицинская, обезжиренная (гигроскопическая), ГОСТ 5556—50, очищенная следующим образом: 15—20 г ваты смачивают в стакане эфиром, нагретым до 25—30°С. После пятиминутного перемешивания эфир из ваты отсасывают при помощи водоструйного насоса. Очистку повторяют 2—3 раза, после чего вату сушат при комнатной температуре. Затем сухую вату кипятят в дистиллированной воде, меняя при этом воду до тех пор, пока она не станет прозрачной. Воду отсасывают при разрежении водоструйным насосом, вату сушат при температуре 80—100°С.

б. Применяемые посуда и приборы.

Гофрированные стеклянные трубки (рис. 9). Пробирки колориметрические из бесцветного стекла, высотой 120 мм и внутренним диаметром 15 мм.

Воронки химические диаметром 30-40 мм.

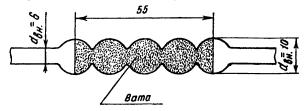


Рис. 9. Гофрированная стеклянная трубка

Пипетки, ГОСТ 1770—59, емкостью 1, 2, 5 и 10 м $_{\Lambda}$ с делениями 0,01 и 0,1 м $_{\Lambda}$.

Цилиндры мерные, ГОСТ 1770—59, емкостью 50 и 100 мл.

Груша резиновая.

III. Отбор пробы воздуха

7. 10 л исследуемого воздуха со скоростью 0,5—1,0 л/мин протягивают через гофрированную трубку, заполненную 0,2—0,3 г очищенной ваты.

IV. Описание определения

8. К көнцу гофрированной трубки (обращенному к аспиратору во время отбора пробы) присоединяют встык маленькую воронку. Другой конец опускают в колориметрическую пробирку. В трубку с пробой вносят 3 мл эфира. Через 1—2 мин при помощи груши вытесняют 1 мл эфирного раствора в колориметрическую пробирку. Для извлечения из ваты возможного остатка препарата вносят в трубку еще 1 мл эфира и выдувают 1 мл промывной жидкости в другую колориметрическую пробирку. Одновременно готовят стандартную шкалу согласно табл. 15.

Эфир выпаривают досуха, погружая пробирки в водяную баню, нагретую до 40° С. После удаления эфира в пробирки вносят по 1 мл дистиллированной воды.

Шкала стандартов

шкала стандартов										
№ стандарта	1	2	3	4	5	6				
Стандартный раствор № 2, мл	0 1	0,2 0,8	0,4 0,6	0,6 0,4 6	0,8 0,2 8	1,0				

Затем во все пробирки шкалы и пробы вносят по 1 мл ацетонового раствора орто-толидина, 1 мл щелочного раствора перекиси водорода и встряхивают.

Через 10 мин сравнивают окраску проб со шкалой

стандартов. Шкала устойчива в течение 40-50 мин.

Концентрацию эфирсульфоната в $мг/m^3$ воздуха (X) выхисляют по формуле:

$$X = \frac{G \cdot V_1}{V \cdot V_0}$$

где *G* — количество эфирсульфоната, найденное в анализируемом объеме пробы, *мкг*;

 V_1 — общий объем пробы, M_1 ;

V — объем пробы, взятый для анализа, мл;

 V_0 — объем воздуха (л), взятый для анализа и приведенный к нормальным условиям по формуле (см. приложение 1).

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1

Приведение объема воздуха к нормальным условиям производят согласно газовым законам Бойля-Мариотта и Гей-Люссака по следующей формуле:

$$V_0 = \frac{V_t \cdot 273 \cdot P}{(273+t) \cdot 760}$$

где V_t — объем воздуха, отобранный для анализа, Λ — барометрическое давление, $\mathit{мм}$ рт. ct . t — температура воздуха в месте отбора пробы, ° С. Для удобства расчета V_0 следует пользоваться таблицей коэффициентов (см. приложение 2). Для приведения объема воздуха к нормальным условиям надо умножить V_t на соответствующий коэф фициент.

ТАБЛИЦА КОЭФФИЦИЕНТОВ ДЛЯ РАЗЛИЧНЫХ ТЕМПЕРАТУР И ДАВЛЕНИИ, на которые надо умножить ДЛЯ ПРИВЕДЕНИЯ ОБЪЕМА ВОЗДУХА К НОРМАЛЬНЫМ УСЛОВИЯМ

$t_{\stackrel{a3a}{\circ}}$,), мм р:			
-C	730	732	734	736	738	740	742	74
5	0,9432	0,9458	0,9484	0,9510	0,9536	0,9561	0,9587	0,9
5 6	0,9398	0,9424		0,9476	0,9501	0,9527	0,9553	0,9
7	0,9365	0,9390	0,9416	0,9442	0,9467		0,9518	0,9
8	0,9331	0,9357	0,9383	0,9408	0,9434	0,9459	0,9485	0,9
9	0.9298	0,9324		0,9375		0.9426	0,9451	0,9
10	0,9265	0,9291		0,9341	0,9367	0,9392	0.9418	0,9
11	0,9233	0,9258		0,9308			0,9384	0,9
12	0,9200	0.9225		0,9276	0,9301	0,9326	0,9351	0,9
13	0,9168	0,9193			0,9269	0,9294	0,9319	0,9
14	0,9136	0,9161	0.9186		0,9236	0,9261	0,9286	0,9
15	0,9104	0,9129	0,9154			0,9229	0,9254	0,9
16	0,9073	0,9097		0,9147		0,9197	0,9222	0,9
17	0,9041	0,9066		0,9116		0.9165	0,9190	0,9
18	0,9010	0,9035	0.9059	0,9084			0,9158	0,9
19	0,8979	0,9004	0.9028	0.9053 0.9022	0,9078 0.9046	0,9102 0,9071	0,9127 0,9096	0,9
20 21	0,8948	0,8942	0,8967		0,9016	0,9040	0,9065	0,9
22	0,8918	0.8912	0.8936		0,8985	0,9010	0,9034	0.9
23	0,8858	0.8882	0,8906			0,8979	0,9003	0,9
24	0,8828	0.8852	0,8876			0,8949	0,8973	ŏ,8
25	0,8798	0,8822	0.8846		0.8891	0,8919	0,8943	0,8
26	0,8769	0,8793	0.8817	0,8841		0,8889	0,8913	0.8
27	0.8739	0,8763	0,8787	0.8811	0.8835	0.8859	0,8883	0,8
28	0.8710	0.8734	0.8758	0.8782	0,8806	0.8830	0,8853	0.8
29	0.8681	0.8705	0,8729	0.8753		0,8800	0,8824	0.8
30	0,8653	0.8676	0.8700	0.8724		0,8771	0,8795	0.8
31	0.8624	0.8648		0,8695		0,8742	0,8766	0,8
32	0,8596	0,8619	0,8643	0,8667	0,8691	0.8714	0,8736	0,8
33	0.8568	0,8591	0,8615	0,8638	0,8662	0,8685	0,8709	0,8
34	0,8540	0.8563	0,8587	0,8610		0,8658	0,8680	0,8
35	0,8512	0,8535	0,8559	0,8582	0,8605	0,8629	0,8652	0,8
36	0,8484	0,8508	0,8531	0,8554		0,8601	0,8624	0,8
37	0,8457	0,8480		0,8526	0,8549	0,8573	0,8596	0,8
38	0,8430	0,8453	0,8476			0,8545	0,8568	0,8
39	0,8403	0,8426	0,8449	0,8472	0,8495	0,8518	0,8541	0,8
40	0,8376	0,8399	0,8422	0,8444	0,8467	0,8490	0,8513	0,8

_				Давле	ние (Р)	, мм р	r. <i>ct</i> -		
<i>t</i> _{газа} , °С	746	748	750	752	754	756	758	760	762
5		0,9665	0,9691	0,9717	0,9742	0, 9 768	0,9794	0,9820	0,984
6	0,9604	0,9630	0,9656	0,9682	0,9707	0,9733	0,9759	0,9785	0,981
7				0,9647	0,9673	0,9698		0,9750	0,977
8	0,9536		0,9587	0,9613	0.9638	0,9664	0,9689	0,9715	0,974
9	0,9502	0,9528	0,9553	0,9578	0,9604	0,9629	0,9655	0,9680	0,970
10		0,9494	0,9519		0,9570	0,9595	0,9621	0,9646	0,967
11	0,9435	0,9460	0,9486	0,9511	0,9536	0,9062	0,9587	0,9612	0,963
12	0,9402	0,9427	0,9452	0,9477	0,9503		0,9553	0,9578	0,960
13	0,9369	0,9394	0,9419	0,9444	0,9469		0,9520	0,9545	0,957
14	0,9336	0,9363	0,9386	0,9411	0,9436	0,9461	0,9486	υ,9511	0,953
15	0,9304	0,9329	0,9354	0,9378	0,9404		0,9453	0,9478	0,950
16	0,9271	0.9296	0,9321	0,9346	0,9371	0,9396	0,9420	0,9445	0,947
17	0,9239	0,9254	0,9289	0,9314	0,9339	0,9363	5	0,9413	0,943
18	0,9207	0,9232	0,9257	0.9282	0,9306	0,9331		0,9380	0,940
19	0,9176	0,9200		0,9250	0,9275	0,9299	0,9324	0.9348	0,937
20	0,9145	0,9169	0,9194		0,9243	0,9267	0,9292	0,9316	0,934
21		0,9138	0,9162		0,9211	0,9236	0,9260	0,9285	0,930
22	0,9083		0,9131	0,9155	0,9180	0,9204	0,9229	0.9253	0,927
23		0,9076			0.9149		0,9197	0,9222	0,924
24	0,9021	0,9045		0,9094	0,9118	0,9142	0,9165	0.9191	0,921
25			0,9039		0,9087	0,9112	0.9135	0,9160	0,918
26				0,9033	0,9057		0.9105	0,9120	0,915
27		0,8955		0,9003	0,9027	0,9051	0,9074	0,9099	0,912
28	0,8901	0,8925	0,8949	0,8973	0,8997	0,9021		0,9068	0,909
29		0,8895	0,8919	0,8943	0,8967	0,8990	0,9014	0,9038	0,906
30		0,8866		0,8914	0,8937	0,8961	0,8985	0,9008	0,903
31			0,8861	0,8884	0,8908	0,8931	0,8955	0,8979	0,900
32	0,8784		0,8831	0,8855	0,8878	0,8902	0,8926	0,8949	0,897
33			0,8803	1 '	0,8850	0,8873	0,8897	0,8920	0,894
34			0,8774	ı	0,8821	0.8844	0,8867	0.8891	0,891
35			0,8745		0,8792	0,8815	0,8839	0,8862	0,888
36		0,8694	0,8717	0,8740	0,8763	0,8787		0,8833	0,885
37			0,8689	0,8712	0,8735	0,8758	0,8731	0,8804	0,882
38			0,8661	0,8684	0,8707	0,8730	0,8753	0,8776	0,879
39	0.8587		0,8633	0,8656	0,8679	0,8702	0,8725	0,8748	0,877
40	0.8559	0,8582	0,8605	0,8628	0,8651	0,8674	0,8697	0,8720	0,874

5 0,9871 0,9897 0,9923 0,9949 0,9975 1,0001 1,0026 1,0051 1,1,0051 1,0051 <th>ение</th>	ение
5 0.9871 0.9897 0.9923 0.9949 0.9975 1,0001 1,0026 1,0051 1,0 6 0.9836 0.9862 0.9888 0.9913 0,9939 0,9955 0,9990 1,0016 1,0 7 0.9801 0.9827 0.9852 0.9878 0,9904 0,9929 0,9955 0,9980 1,0016 1,0 8 0.9766 0.9792 0.9817 0.9843 0.9868 0,9919 0.9945 0,5 9 0.9731 0.6757 0.9782 0.9807 0,9833 0.9859 0,9884 0,9919 0,9945 0,5 10 0.9697 0.9722 0.9747 0,9773 0,9798 0,9849 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9805 0,9814 0,9839 0,9814 0,9839 0,9814 0,9836 0,9613 0,96	
6 0.9836 0.9862 0.9888 0.9913 0.9939 0.9965 0,9990 1,0016	780
7 0,9801 0,9827 0,9852 0,9878 0,9904 0,9929 0,9955 0,9980 1,0 8 0,9766 0,9792 0,9817 0,9843 0,9868 0,9894 0,9919 0,9945 0,5 9 0,9731 0,6757 0,9782 0,9807 0,9833 0,9824 0,9849 0,9874 0,5 10 0,9697 0,9722 0,9747 0,9773 0,9798 0,9824 0,9849 0,9874 0,5 11 0.9663 0,9688 0,9713 0,9730 0,9764 0,9780 0,9814 0,9839 0,5 12 0,9629 0,9654 0,9679 0,9704 0,9730 0,9745 0,9780 0,9805 0,5 13 0,9551 0,9652 0,9637 0,9661 0,9686 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9678 0,9711 0,9736 0,9678 0,9671 0,9736 0,9711 0,9736 0,9711 0,9736	0078
8	0042
9	0006
10 0,9697 0,9722 0,9747 0,9773 0,9798 0,9824 0,9849 0,9874 0,9839 0,9614 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9814 0,9839 0,9805 0,9814 0,9839 0,9805 0,9806 0,9711 0,9736 0,9806 0,9711 0,9736 0,9805 0,9806 0,9806 0,9711 0,9736 0,9806 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9711 0,9736 0,9681 0,9678 0,9711 0,9736 0,9681 0,9684 0,9686 0,9678 0,9678 0,9681 0,9686	9970
11 0.9663 0,9688 0.9713 0,9739 0,9764 0,9789 0,9814 0,9839 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9805 0,9720 0,9745 0,9771 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9686 0,9711 0,9736 0,9686 0,9678 0,9703 0,9681 0,9669 0,9678 0,9678 0,9669 0,9681 0,9669 0,9681 0,9669 0,9681 0,9669 0,9681	9935
12 0,9629 0,9654 0,9679 0,9704 0,9730 0,9754 0,9780 0,9805 0,9805 0,9805 0,9720 0,9745 0,9771 0,9711 0,9711 0,9711 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9688 0,9612 0,9688 0,9612 0,9688 0,9613 0,9688 0,9612 0,9520 0,9520 0,9644 0,9669 0,9611 0,9649 0,9669 0,9611 0,9648 0,96612 0,9520 0,9586 0,9611 0,9669 0,9611 0,9649 0,9669 0,9611 0,9669 0,9611 0,9669 0,9611 0,9669 0,9611 0,9660 0,9520 0,9545 0,9660 0,9520 0,9545 <td>9900</td>	9900
13 0,9595 0,9620 0,9645 0,9670 0,9695 0,9720 0,9745 0,9771 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9711 0,9736 0,9713 0,9714	9865
14 0,9561 0,9586 0,9612 0,9637 0,9661 0,9686 0,9711 0,9736 0,515 0,9528 0,9553 0,9578 0,9603 0,9628 0,9653 0,9678 0,9703 0,516 0,9495 0,9520 0,9545 0,9570 0,9595 0,9619 0,9644 0,9669 0,517 0,9686 0,9611 0,9686 0,9611 0,9669 0,517 0,9462 0,9487 0,9512 0,9537 0,9561 0,9586 0,9611 0,9636 0,9511 0,9686 0,9578 0,9681 0,9686 0,9611 0,9636 0,9611 0,9636 0,9611 0,9636 0,9611 0,9636 0,9520 0,9578 0,9602 0,512 0,9487 0,9421 0,9486 0,9520 0,9578 0,9602 0,536 0,9578 0,9586 0,9578 0,9569 0,553 0,9578 0,9569 0,553 0,9578 0,9569 0,553 0,9578 0,9569 0,553 0,9584 0,9550 0,9560 0,9480 0,9510 <	9830
15 0,9528 0,9553 0,9578 0,9603 0,9628 0,9653 0,9678 0,9703 0,510 0,9628 0,9653 0,9678 0,9703 0,511 0,9644 0,9669 0,511 0,9644 0,9669 0,511 0,9644 0,9669 0,511 0,9642 0,9487 0,9512 0,9537 0,9561 0,9586 0,9611 0,9636 0,511 0,9669 0,511 0,9669 0,511 0,9669 0,511 0,9669 0,511 0,9661 0,9578 0,9602 0,511 0,9661 0,9661 0,9661 0,9661 0,9662 0,512 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9678 0,9520 0,9545 0,9569 0,5520 0,9545 0,9569 0,5520 0,9545 0,9569 0,5520 0,9545 0,9569 0,5520 0,95420 0,9545 0,9552 0,9553 <t< td=""><td>9796</td></t<>	9796
16 0,9495 0,9520 0,9545 0,9570 0,9595 0,9619 0,9644 0,9669 0,517 0,9462 0,9487 0,9512 0,9537 0,9561 0,9586 0,9611 0,9636 0,518 0,9430 0,9454 0,9479 0,9504 0,9528 0,9553 0,9578 0,9602 0,519 0,9578 0,9602 0,519 0,9578 0,9602 0,519 0,9578 0,9602 0,512 0,9504 0,9528 0,9553 0,9578 0,9602 0,512 0,9578 0,9480 0,9578 0,9569 0,520 0,9545 0,9569 0,520 0,9545 0,9569 0,520 0,9545 0,9569 0,520 0,9545 0,9569 0,520 0,9545 0,9569 0,520 0,9545 0,9569 0,520 0,9545 0,9569 0,520 0,9520 0,9537 0,9480 0,9480 0,9514 0,9520 0,9480 0,9504 0,9480 0,9440 0,9480 0,9440 0,9480 0,9440 0,9480 0,9440 0,	9762
17 0,9462 0,9487 0,9512 0,9537 0,9561 0,9586 0,9611 0.9636 0,5 18 0,9430 0,9454 0,9479 0,9504 0,9528 0,9553 0,9578 0,9602 0,5 19 0,9397 0,9422 0,9447 0,9471 0.9496 0,9520 0,9545 0,9569 0,5 20 0,9365 0,9390 0,9414 0,9439 0,9463 0,9488 0,9512 0,9537 0,9 21 0,9333 0,9359 0,9382 0,9407 0,9431 0,9455 0,9480 0,9504 0,5 22 0,9302 0,9326 0,9350 0,9375 0,9399 0,9423 0,9448 0,9472 0,9 23 0,9270 0,9294 0,9311 0,9336 0,9391 0,9448 0,9472 0,9 24 0,9239 0,9287 0,9311 0,9336 0,9384 0,9480 0,9 25 0,9280 0,9225 0,9249	9728
18 0,9430 0,9454 0,9479 0,9504 0,9528 0,9553 0,9578 0,9602 0,519 0,9397 0,9422 0,9447 0,9471 0,9496 0,9520 0,9545 0,9569 0,550 0,9545 0,9569 0,550 0,9545 0,9569 0,550 0,9537 0,9512 0,9537 0,9512 0,9537 0,9326 0,9309 0,9407 0,9431 0,9455 0,9480 0,9504 0,524 0,9230 0,9326 0,9350 0,9375 0,9399 0,9423 0,9448 0,9472 0,537 0,9399 0,9423 0,9448 0,9472 0,9230 0,9363 0,9384 0,9480 0,9440 0,9384 0,9440 0,9384 0,9440 0,9384 0,9440 0,9384 0,9480 0,9440 0,9384 0,9480 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384 0,9480 0,9384	9694
19 0,9397 0,9422 0,9447 0,9471 0.9496 0,9520 0,9545 0,9569 0,5520 20 0,9365 0,9390 0,9414 0,9439 0,9463 0,9488 0,9512 0,9537 0,5 21 0,9333 0,9359 0,9382 0,9407 0.9431 0,9455 0,9480 0,9504 0,5 22 0,9302 0,9326 0,9350 0,9375 0,9399 0,9423 0,9448 0,9472 0,5 23 0,9270 0,9294 0,9319 0,9343 0,9367 0,9391 0,9448 0,9472 0,5 24 0,9239 0,9263 0,9287 0,9311 0,9336 0,9360 0,9384 0,9408 0,9 25 0,9208 0,9225 0,9249 0,9273 0,9227 0,9321 0,9345 0,9 26 0,9177 0,9146 0,9194 0,9218 0,9242 0,9266 0,9290 0,9314 0,9 28 0,9116 </td <td>9661</td>	9661
20 0,9365 0,9390 0,9414 0,9439 0,9463 0,9488 0,9512 0,9537 0,537 0,2337 0,9336 0,9382 0,9407 0,9431 0,9455 0,9480 0,9504 0,524 0,922 0,9326 0,9350 0,9375 0,9399 0,9423 0,9448 0,9472 0,932 0,9232 0,9343 0,9367 0,9391 0,9448 0,9472 0,9232 0,9287 0,9311 0,9367 0,9391 0,9448 0,9448 0,9472 0,9242 0,9230 0,9343 0,9367 0,9391 0,9448 0,9440 0,9463 0,9480 0,9440 0,9463 0,9480 0,9480 0,9440 0,9463 0,9480 0,9463 0,9480 0,9440 0,9463 0,9480 0,9384 0,9440 0,9463 0,9480 0,9384 0,9480 0,9480 0,9384 0,9480 0,9480 0,9384 0,9480 0,9377 0,9384 0,9480 0,9377 0,9384 0,9384 0,9377 0,9371 0,9273 0,9266	9627
21 0,9333 0,9359 0,9382 0,9407 0.9431 0,9455 0,9480 0,9504 0,5 22 0,9302 0,9326 0,9350 0,9375 0,9399 0,9423 0,9448 0,9472 0,5 23 0,9270 0,9294 0,9319 0,9343 0,9367 0,9391 0,9416 0,9440 0,5 24 0,9239 0,9263 0,9287 0,9311 0,9336 0,9360 0,9384 0,9408 0,9 25 0,9208 0,9256 0,9280 0,9304 0,9328 0,9352 0,9377 0,9 26 0,9177 0,9201 0,9225 0,9249 0,9273 0,9297 0,9321 0,9345 0,9 27 0,9146 0,9140 0,9164 0,9187 0,9211 0,9235 0,9259 0,9314 0,9 28 0,9116 0,9140 0,9164 0,9187 0,9181 0,9255 0,9228 0,9259 0,9283 0,9 30	9594
22 0,9302 0,9326 0,9350 0,9375 0,9399 0,9423 0,9448 0,9472 0,923 23 0,9270 0,9294 0,9319 0,9343 0,9367 0,9391 0,9416 0,9440 0.5 24 0,9239 0,9263 0,9287 0,9311 0,9366 0,9360 0,9384 0,9408 0.5 25 0,9208 0,9256 0,9280 0,9304 0,9328 0,9352 0,9377 0.5 26 0,9177 0,9201 0,9225 0,9249 0,9273 0,9297 0,9321 0,9345 0.5 27 0,9146 0,9170 0,9194 0,9218 0,9242 0,9266 0,9290 0,9314 0.5 28 0,9116 0,9140 0,9164 0,9187 0,9211 0,9255 0,9259 0,9283 0.5 29 0,9086 0,9109 0,9133 0,9157 0,9181 0,9205 0,9228 0,9252 0.3 30 0,9056 0,9079 0,9109 0,9127 0,9151 0,9174 0,9168 0,9191<	9561
23 0.9270 0.9294 0.9319 0.9343 0,9367 0,9391 0,9416 0,9440 0.9 24 0,9239 0,9263 0,9287 0,9311 0,9336 0,9360 0,9384 0,9408 0,9 25 0,9208 0,9232 0,9256 0,9280 0,9304 0,9328 0,9352 0,9377 0,9 26 0,9177 0,9201 0,9225 0,9249 0,9273 0,9297 0,9321 0,9345 0,9 27 0,9146 0,9170 0,9194 0,9218 0,9242 0,9266 0,9290 0,9314 0,9 28 0,9116 0,9140 0,9164 0,9187 0,9121 0,9235 0,9259 0,9283 0,9 29 0,9086 0,9109 0,9133 0,9157 0,9181 0,9205 0,9228 0,9252 0,3 30 0,9056 0,9079 0,9109 0,9127 0,9151 0,9174 0,9168 0,9191 0,9 31	9529
24 0,9239 0,9263 0,9287 0,9311 0,9336 0,9360 0,9384 0,9408 0,9250 25 0,9280 0,9280 0,9304 0,9328 0,9352 0,9377 0,926 26 0,9177 0,9201 0,9225 0,9249 0,9273 0,9297 0,9321 0,9345 0,926 27 0,9146 0,9170 0,9194 0,9218 0,9242 0,9266 0,9290 0,9314 0,928 28 0,9116 0,9140 0,9164 0,9187 0,9211 0,9235 0,9259 0,9283 0,9259 29 0,9086 0,9109 0,9133 0,9157 0,9181 0,9205 0,9228 0,9252 0,3 30 0,9056 0,9079 0,9109 0,9127 0,9151 0,9174 0,9188 0,9222 0,3 31 0,9026 0,9050 0,9073 0,9097 0,9121 0,9144 0,9168 0,9161 0,3 32 0,8996 <td< td=""><td>9496</td></td<>	9496
25 0,9208 0,9232 0,9256 0,9280 0,9304 0,9328 0,9352 0,9377 0,9377 0,926 26 0,9177 0,9201 0,9225 0,9249 0,9273 0,9297 0,9321 0,9345 0,927 27 0,9146 0,9170 0,9194 0,9218 0,9242 0,9266 0,9290 0,9314 0,9314 0,9321 28 0,9116 0,9140 0,9164 0,9187 0,9211 0,9235 0,9259 0,9283 0,9290 29 0,9086 0,9109 0,9133 0,9157 0,9181 0,9205 0,9228 0,9252 0,9252 0,9253 30 0,9056 0,9079 0,9109 0,9127 0,9151 0,9174 0,9188 0,9222 0,9 31 0,9026 0,9050 0,9073 0,9097 0,9121 0,9144 0,9168 0,9191 0,9 32 0,8996 0,9020 0,9043 0,9037 0,9061 0,9084 0,9108 0,9131 0,9 33 0,8967 0,8990 0,9014	9464
26 0,9177	9432
27 0,9146 0,9170 0,9194 0,9218 0,9242 0,9266 0,9290 0,9314 0,9314 0,9280 28 0,9116 0,9140 0,9164 0,9187 0,9211 0,9235 0,9259 0,9283 0,9280 29 0,9086 0,9109 0,9133 0,9157 0,9181 0,9205 0,9228 0,9252 0,9252 0,933 30 0,9056 0,9079 0,9109 0,9127 0,9151 0,9174 0,9188 0,9222 0,933 31 0,9026 0,9050 0,9073 0,9097 0,90121 0,9144 0,9168 0,9191 0,913 32 0,8996 0,9020 0,9043 0,9067 0,9091 0,9114 0,9138 0,9161 0,933 33 0,8967 0,8990 0,9014 0,9037 0,9061 0,9084 0,9108 0,9131 0,9131	9401
28 0.9116 0.9140 0.9164 0.9187 0.9211 0.9235 0.9259 0.9283 0.9284 0.9284 0.9284 0.9284 0.9284 0.9283 0.9283 0.9283 0.9283 0.9284 0.9284 0.9284 0.9284 0.9283 0.9283 0.9283 0.9283 0.9284 0.9284 0.9284 0.9283 0.9283 0.9283 0.9283 0.9284 0.9284 0.9284 0.9284 0.9283 0.9283 0.9283 0.9284	9369
29 0,9086 0,9109 0,9133 0,9157 0,9181 0,9205 0,9228 0,9252 0,9352	9338
30 0,9056 0,9079 0,9109 0,9127 0,9151 0,9174 0,9198 0,9222 0,931 0,9026 0,9050 0,9073 0,9097 0,9121 0,9144 0,9168 0,9191 0,932 0,8996 0,9020 0,9043 0,9067 0,9091 0,9114 0,9138 0,9161 0,933 0,8967 0,8990 0,9014 0,9037 0,9061 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0	9307
31 0,9026 0,9050 0,9073 0,9097 0,9121 0,9144 0,9168 0,9191 0,932 0,8996 0,9020 0,9043 0,9067 0,9091 0,9114 0,9138 0,9161 0,933 0,8967 0,8990 0,9014 0,9037 0,9061 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9108 0,9131 0,9084 0,9131	9276
32 0,8996 0,9020 0,9043 0,9067 0,9091 0,9114 0,9138 0,9161 0,9 33 0,8967 0,8990 0,9014 0,9037 0,9061 0,9084 0,9108 0,9131 0,9	,9245
33 0,8967 0,8990 0,9014 0,9037 0,9061 0,9084 0,9108 0,9131 0,9	9215
I a managed to the country of the co	9185
04 0 0000 2 000 2	9154
I a se detenne letenne letenne l'iteme	9125
	9092
	,9065
	9036
1 , 1 , 1 , 1 , 1 ,	,9007
	,8978
40 0,8766 0,8789 0,8812 0,8835 0,8857 0,8881 0,8903 0,8926 0.	.8949

СОДЕРЖАНИЕ

_			_				(Стр.
Технические условия на метод оп							yxe	3
I. Общая часть II. Реактивы и аппаратура		•	•	• •			•	_
П. Реактивы и аппаратура	٠.	•	•				•	5
III. Отбор пробы воздуха IV. Описание определения		• •	٠				٠	
ту. Описание определения	{ 			·			٠	
Технические условия на метод опр	редели	I KNH3	iapo:	вна	ppo	золя	cy-	^
лемы в воздухе	•	• •	•				•	9
1. Оощая часть .		•	•			•	•	
II. Реактивы и аппаратураIII. Отбор пробы воздухаIV. Описание определения		•	•				•	10
IV Описание определения	•	•	•				•	10 11
Технические условия на метод ог	[٠.	11
TURE B BOSHUVA	преде	испия	kpu	UNUB	ULU	and	де-	10
гида в воздухе	•	•	•	•		• •	•	12
II Desurueli ii annanaruna		•	•				•	_
III Orkon mooki postuva	•	•	•	• •			•	12
IV Описация оппальнация	, •	•	•	• •		• •	•	10
Технические условия на метод опр	ь пелел	 Рима :	akno				vve.	15
I Ofmag vacts	реден	CIIIA .	unpo	********		ВООД	, AC	10
II Реактивы и аппаратура		•	•	• •		• •	•	_
III Отбор пробы воздуха	• •	•	•				•	16
I. Общая часть II. Реактивы и аппаратура III. Отбор пробы воздуха IV. Описание определения		•	•	• •		• •	•	
Технические условия на метод оп	трелеј	 Іения	Mesi	 4 я и н я	R	ВОЗЛІ	vxe.	18
І Общая часть	.poдо:				-	ومروح	, , , ,	
 I. Общая часть II. Реактивы и аппаратура III. Отбор пробы воздуха IV. Описание определения 		•	•	• •			•	_
III Отбор пробы возлуха	• •	•	•	•		• •	•	19
IV. Описание определения			•				•	13
Технические условия на метод оп	пелел	ения	перя	ичны:	кя	лифа	ТИ-	
ческих аминов (метиламин, эти)	лямин	. mnor	RILHI	MUH.	бvı	MELL	uн.	
гексиламии, моноэтаноламин) І. Общая часть ІІ. Реактивы и аппаратура ІІІ. Отбор пробы воздуха IV. Описание определения	•		•		-,	•	•	21
I. Общая часть .			Ĭ					
II. Реактивы и аппаратура								
III. Отбор пробы воздуха								22
IV. Описание определения	ι.							23
Технические условия на метод	ONDE	сделен	RH!	п-амі	4110	анизс	ла	
в воздухе І. Общая часть ІІ. Реактивы и аппаратура ІІІ. Отбор пробы воздуха								24
I. Общая часть .								
II. Реактивы и аппаратура								
III. Отбор пробы воздуха								25
IV. Описание определения	ι.							

93

						С
Технические условия на метод оп	редел	ения	ксил	ола в	в возд	ıyxe
I. Общая часть .						
II. Реактивы и аппаратура						
III. Отбор пробы воздуха IV. Описание определения Технические условия на метод оп						
IV. Описание определения						
Технические условия на метод опр	редел	ения	дитол	илме	тана	илн
дикумилметана в воздухе І. Общая часть 11. Реактивы и аппаратура						
I. Общая часть .						
II. Реактивы и аппаратура						
III. Отбор пробы воздуха						
IV. Описание определения						
III. Отбор пробы воздуха IV. Описание определения Технические условия на метод опред	делен	ия бр	омофо	рма	B B03	духе
I. Общая часть		•	. :	٠.		
II. Реактивы и аппаратура						
III. Отбор пробы воздуха						
I. Общая часть II. Реактивы и аппаратура III. Отбор пробы воздуха IV. Описание определения				-	•	
Технические условия на метод опре	лелен	ия ни	troode	рма:	R ROS	пvxe
І. Общая часть				P		
I. Общая часть II. Реактивы и аппаратура	• •	•	•	. •	•	• •
ΙΙΙ Οτόορ προόμ κουπνά		•		•	•	• •
IV Описание определения		•		•	•	• •
III. Отбор пробы воздуха IV. Описание определения Технические условия на метод	OTTOE	re neu	 Ka sti	A BOBO	ro ed	 huna
R ROSTVYP	Upc	ACOICII.				huba
I Общая пасть	• •	•	• •	•	•	• •
II Dearruphi y annanaryna		•		•	•	• •
111 Orfon mofet postuva		•	• •	•	•	• •
IV Описанна оправанения	• •	•		•	•	
в воздухе	Office.	ne teu		ru nas	· nvan	 Тана
P POSTUVA	onpe	делеп	ля Э	. HALMIC	.p.a.u	iana
I Общая насть	•	•		•	•	• •
в воздухе		•		•	•	• •
II. Peakinsii n alliapatypa		•		•	•	
111. Отоор проом воздуха		•		•	•	
ту. Описание определения	•	•	• •	. •	٠.	• •
Технические условия на метод	опре,	делен	ия эф	рирсу	льфо	ната
в воздухе І. Общая часть ІІ. Реактивы и аппаратура ІІІ. Отбор пробы воздуха ІV. Описание определения		•		•	•	• •
I. Общая часть .					•	
II. Реактивы и аппаратура						
III. Отбор пробы воздуха		•			•	
IV. Описание определения						
присутствии нафталина в возлухе	е.	•				
І. Общая часть						
II Реактивы и аппаратура		•		•	·	•
III. Отбор пробы возлуха		•			•	•
IV Описание определения		•	•	•	•	
присутствии нафталина в воздухе І. Общая часть ІІ. Реактивы и аппаратура ІІ. Отбор пробы воздуха ІV. Описание определения	•				•	 Lusa
PERMATERME VIJIBMA NA MEDDA DID		CRNN	unmer	njivbi.	# W 31	unua
терефталевои кислоты		•		•	•	•
1. Оощая часть .		•		•	•	
терефталевой кислоты I. Общая часть II. Реактивы и аппаратура III. Отбор пробы воздуха IV. Описание определения		•		•	•	
ПІ. Отоор пробы воздуха		•		•	•	
IV. Описание определения						

									Стр.
Технические условия на метод	οп	редел	пення	П	ента	хло	рац	етон	ıa 🐪
U PEKCAY MANAHATANA B BASHVYE									57
I. Общая часть	_	_		_		Ċ	Ċ		
II. Реактивы и аппаратур	ล	•	•	•	•	•	•	Ī	· _
III Orfon unofis posuvya	٠.	•	•	•	•	•	•	•	. 58
IV Описание определени	, a		•	•	•	•	•	•	. 59
І. Общая часть ІІ. Реактивы и аппаратур ІІІ. Отбор пробы воздуха ІV. Описание определени Технические условия на метод							ura	nuau	. 00
в возвиче	٠,	ліред	CHEMP	171	цик	ioni	nıa,	дисс	. 60
I Ofman more	•	•	•	•	•	•	•	•	. 00
в воздухе І. Общая часть ІІ. Реактивы и аппаратур ІІІ. Отбор пробы воздуха IV. Описание определени		•	•	•	•	٠	•	•	. —
п. Реактивы и аппаратур	а.	•	•	•	•	٠	•	٠	
п. Отоор прооы воздуха		•	•	٠	•	•	•	•	. 62
IV. Описание определени	Я	•	•	٠	•	:	•	•	. —
Технические условия на мето	Д	опред	целени	191	окта	фтф	рди	ХЛО	p-
циклогенсена в воздухе І. Общая часть ІІ. Реактивы и аппаратур ІІІ. Отбор пробы воздуха ІV. Описание определени			•					•	. 64
I. Общая часть .									
II. Реактивы и аппаратур	а.								
III. Отбор пробы воздуха									. 65
IV. Описание определени	R								. —
технические условия на метод	OILL	усдел	спин	ını	JWCI	ıa ı	s BO	3 A V 2	ce 67
I. Общая часть			_						
I. Общая частьII. Реактивы и аппаратур	a .	•	•	•		•	•	•	•
III Orfon moofil mosnyva	ч.	•	•	•	•	•	•	•	. 69
III. Отбор пробы воздуха IV. Описание определени	, ,		•	•	•	•	•	•	. 09
Технические условия на метод о	ın 								. —
технические условия на метод о	mp	еделе	иня ,	цин	итрі	wa	ади	шин	U- -
вои кислоты в воздухе	•	•	•	•	•	•	•	•	• 70
вой кислоты в воздухе I. Общая часть II. Реактивы и аппаратур III. Отбор пробы воздуха IV. Описание определени Гехнические условия на метод	•	•	•	•	•	٠	•	•	
11. Реактивы и аппаратур	а.	•	•	•	•	•	•	•	
111. Отбор пробы воздуха			•	•	•	•	•	•	· 72
IV. Описание определени	íЯ	•	•	•	٠_				. —
Гехнические условия на метод	01	преде	ления	i Ki	арби	іна,	THO	дан	a,
атразина и хлоразина в возду	хe	•							. 74
I. Общая часть .					•				
II. Реактивы и аппаратур	a.								
III. Отбор пробы воздуха									- 78
IV. Описание определени	ıя								
А. Титрометрический метод ог	ıpe	пелен	ня	_		-	-		. 80
атразина и хлоразина в возду І. Общая часть ІІ. Реактивы и аппаратур ІІІ. Отбор пробы воздуха ІV. Описание определеня А. Титрометрический метод от Б. Колориметрический метод от	ים חני	елеле	ния		·			·	
Технические условия на метод от	ane	пеле	HAG C	Tam	a Ob	-34	B BA	3 TV	ke 82
І Общая расть	·PC	долс.	0			01	<i>D</i> 50	оду.	02
I. Общая часть II. Реактивы и аппаратур		•	•	•	•	٠	•	•	• —
III Orfon moofii pooriivo	a .	•	•	•	•	•	•	٠	
III. Отбор пробы воздуха IV. Описание определени	٠	• •	•	•	•	•	•	•	· 83
ту. Описание определени	IH	•	•	•		•	•	•	.: –
Технические условия на метод	out	едел	ения	pı	уть	opra	анич	ecki	łX
ядохимикатов: агронала, грано	зан	ia, m	еркур	ана	, ме	рку	pre	ксан	a,
НИУИФ-1, радосана, этилмерк	ypz	клорн	іда и	ЭТИ	лме	рку	рфо	сфат	ra
в воздухе	•	•	•		•	٠	•	•	. 85
І. Общая часть .				•					
II. Реактивы и аппаратур	а.			•					
III. Отбор пробы воздуха	,								. 87
IV. Описание определени	ıя								
в воздухе I. Общая часть II. Реактивы и аппаратур III. Отбор пробы воздуха IV. Описание определени Приложения	,								. 89
•									

Технические условия на методы определения вредных веществ в воздухе

Редактор *И. И. Кириллов* Технический редактор *Т. С. Ковалева* Корректор *Т. И. Яновская*

Л-120485. Сдано в производство 13/I-1971 г. Подписано к печати 5/IV-1971 г. Формат 84×108¹/₃₂. 3,0 печ. л., 1,5 бум. л., 4,92 усл. печ. л. Тираж 5000 экз. Изд. № 1654-В. Цена Заказ тип. № 571.

Типография «Моряк», г. Одесса, ул. Ленина, 26.