Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1 Методы контроля. Химические факторы

Методика измерений массовой доли 1,1-диметилгидразина в пробах почвы фотометрическим методом

> Методические указания по методам контроля МУК 4.1.019 – 11

ПРЕЛИСЛОВИЕ

- 1 Разработаны Федеральным государственным учреждением «Федеральный медицинский биофизический центр имени А.И. Бурназяна» Федерального медико-биологического агентства (Болтромеюк Л.П., Рябова Т.В.).
- 2 Методика аттестована в соответствии с ГОСТ Р 8.563-2009 и ГОСТ Р ИСО 5725-2002 Федеральным государственным унитарным предприятием Уральский научноисследовательский институт метрологии (ФГУП «УНИИМ») Федерального агентства по техническому регулированию и метрологии выдано Свидетельство об аттестации № 224.0167/01.00258/2010 от 25 октября 2010 г.
- 3 Рекомендованы к утверждению подкомиссией по специальному нормированию Федерального медико-биологического агентства (протокол от 24 марта 2011 года, № 3/2011)
- 4 Утверждены и введены в действие заместителем руководителя Федерального медикобиологического агентства России, Главным государственным санитарным врачом по обслуживаемым организациям и обслуживаемым территориям «24» марта 2011 г.
- 5 Введены взамен МУК 4.1.018-06 «Методика выполнения измерений массовой доли 1,1диметилгидразина в пробах почвы фотоколоримстрическим методом».

Федеральный закон Российской Федерации от 30 марта 1999 г. № 52-ФЗ "О санитарно-заидемиологическом благополучии населения"

«Государственные санитарно-эпидемнологические правила и нормативы (далее - санитарные правила) - нормативные правовые акты, устанавливающие санитарно-эпидемнологические требования (в том числе критерии безопасности и (или) безвредности факторов среды обитания для человека, гигиенические и иные нормативы), несоблюдение которых создает угрозу жизни или здоровью человека, а также угрозу возникновения и распространения заболеваний; санитарно-эпидемиологическое заключение - документ, удостоверяющий соответствие (несоответствие) санитарным правилам факторов среды обитания, хозяйственной и иной деятельности, продукции, работ и услуг, а также проектов нормативных актов, проектов строительства объектов, эксплуатационной документации» (статья 1).

«Соблюдение санитарных правил является обязательным для граждан, индивидуальных предпринимателей и юридических лиц (статья 39).

«За нарушение санитарного законодательства устанавливается дисциплинарная, административная и уголовная ответственность, в соответствии с законодательством Российской Федерации (статья 55).

СОДЕРЖАНИЕ

	именения		
НОРМАТИВН	ЫЕ ССЫЛКИ		
термины, о	пределения и со	КРАЩЕНИЯ	
ОБЩИЕ ПОЛО			
4.1 Физико-хи	мические и токсичес	кие свойства 1,1	-димстил-
4.2 Метод измер	рений		
	к показателям точност		
	измерений,	ВСПОМОГАТІ	ЛЬНЫЕ
УСТРОЙСТВА		MATE	РИАЛЫ.
РЕАКТИВЫ			
5.1 Средства изя	иерений		
5.2 Вспомогател	ьные устройства и мат	ериалы	
5.3 Реактивы			• • • • • • • • • • • • • • • • • • • •
	БЕЗОПАСНОСТИ,		
ЩЕЙ СРЕДЫ.	• • • • • • • • • • • • • • • • • • • •		
ТРЕБОВАНИЯ	І К КВАЛИФИКАЦИ	и лиц, выполі	-ОІКІ
ЩИХ ИЗМЕРЕ	ЕНИЯ I К УСЛОВИЯМ ИЗМ		•••••
ТРЕБОВАНИЯ	I К УСЛОВИЯМ ИЗ N	ЛЕРЕНИЙ	
подготовк	А К ВЫПОЛНЕНИЮ	измерений	• • • • • • • • • • • •
9.1 Подготовка	фотометра к работе		
9.2 Приготовлен	ие растворов		
ОТБОР И ХРА	нение проб	*********	
выполнени	Е ИЗМЕРЕНИЙ		
	почвы		
11.2 Проведение	е анализа		
	с градуировочного грас		
	табильности градуиро		
ОБРАБОТКА І	РЕЗУЛЬТАТОВ ИЗМ	ЕРЕНИЙ	
	Е РЕЗУЛЬТАТОВ И		
	РИЕМЛЕМОСТИ		
YAEMЫX BY	СЛОВИЯХ ВОСПРО	изволимости	
	АЧЕСТВА РЕЗУЛЬТ		
	МЕТОДИКИ В ЛАБ		
припожени	Е Расчет метрологич	sective vanatreamin	rrees non-
TRANSPIT TOMESTIC	ж тисчет метрологич стилгидразина	иских зарактерис	rux bac.
Inches 1/1-Millian	· T 85/8 8 59/45/ # 585 85 #		

УТВЕРЖДАЮ

Заместитель руководителя Федерального медико-биологического агентства Главный государственный санитарный врач по обслуживаемым организациям и

В.В.Романов 2011 г.

4.1. Методы контроля. Химические факторы

Методика измерений массовой доли 1,1-диметилгидразина в пробах почвы фотометрическим методом

Методические указания по методам контроля МУК 4.1.0 19-11

Дата введения - с момента утверждения

І ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Настоящие методические указания по методам контроля устанавливают фотометрическую методику измерений массовой доли 1,1-диметилгидразина в почве в диапазоне (0,02 10,0) мг/кг воздушно-сухой пробы. При содержании 1,1-диметилгидразина свыше 10 мг/кг до 50 мг/кг допускается разбавление почвенного экстракта.
- 1.2 Методика предназначена для применення в лабораториях научнонеследовательских организаций и центров гигиены и эпидемиологии ФМБА России, осуществляющих оценку соответствия гигиеническому нормативу содержания 1,1диметилгидразнна в почве, а также может быть использована в производственных лабораториях предприятий, специализирующихся на проведении аналогичных исследований.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем документе использованы осылки на следующие нормативные документы:

Федеральный закон от 26 июня 2008 г. № 102-ФЗ «Об обеспечении единства измерений» ГН 2.1.7.2735-10 «Предельно допустимая концентрация (ПДК) 1,1-диметилгидразина (гептил) в почве» (зарегистрировано Минюстом России 27 сентября 2010 года, регистрационный № 18550)

ГОСТ 1.5-2001 Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Общие требования к построению, изложению, оформлению, содержанию и обозначению

ГОСТ Р 1.5-2004 Стандартизация в Российской Федерации. Стандарты национальные Российской Федерации. Правила, построения, изложения, оформления и обозначения

ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений

ГОСТ 8.315-97 ГСИ Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 8.417-2002 ГСИ. Единицы величин

ГОСТ Р 8.563-2009 ГСИ. Методики (методы) измерений

ГОСТ 12.0.003-74 ССБТ. Опасные и вредные производственные факторы

ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требовання

ГОСТ 12.1.007-86 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.010-76 ССБТ. Взрывобезопасность. Общие требования

ГОСТ 12.1.019-79 ССБТ. Электробезопасность. Общие требования и номенклатура видов запиты

ГОСТ 12.4.007-74 Респираторы фильтрующие противогазовые РПР-67. Технические условия

ГОСТ 12.4.021-75 ССБТ, Системы вентиляционные. Общие требования

ГОСТ 17.4.3.01-83 Охрана природы. Почвы. Общие требования к отбору проб

ГОСТ 17.4.4.02-84 Охрана природы. Почвы. Метод отбора и подготовки проб для химического, бактериологического, гельминтологического анализа

ГОСТ 61-75 Кислота уксусная. Технические условия

ГОСТ 1770-74 Посуда мерная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 4233-77 Натрий хлористый. Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ Р ИСО 5725 (1-6)-2002 Точность (правильность и прецизиопность) методов и результатов измерений

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ Р ИСО/МЭК 17025-2006 Общие требования к компетенции испытательных и калибровочных лабораторий

ГОСТ 17435-72 Линейки чертежные. Технические условия

ГОСТ В 17803-72 Горючее несиммстричный димстилгидразин. Технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20015-88 Хлороформ. Технические условия

ГОСТ 24104-2001 Весы лабораторные общего назначения и образцовые. Общие технические условия

ГОСТ 24363-80 Калия гидроокись. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы основные, параметры и размеры

ГОСТ 29169-91 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой Примечание — При пользовании настоящей методикой целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменён (изменён), то при пользовании настоящей методикой следует руководствоваться заменяющим (изменённым) документом. Если ссылочный документ отменён без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ

В настоящем документе применяют следующие термины с соответствующими им определеннями:

3.1 аттестация методик (методов) измерений: Исследование и подтверждение соответствия методик (методов) измерений установленным метрологическим требова-

нням к измерениям / Федеральный закон от 26 июня 2008 г. № 102-ФЗ «Об обеспечении единства измерений» /.

- 3.2 методика (метод) измерений: Совокупность конкретно описанных операций, выполнение которых обеспечивает получение результатов измерений с установленными показателями точности / Федеральный закон от 26 июня 2008 г. № 102-ФЗ «Об обеспечении единства измерений»/.
- **3.3** результат измерений: Значение характеристики, полученное выподнением регламентированного метода измерений /ГОСТ Р ИСО 5725-1/.
- 3.4 показатель точности измерений: Установленная характеристика точности любого результата измерений, полученного при соблюдении требований и правил данной методики выполнения измерений /ГОСТ Р 8.563/.
- 3.5 методические указания по методам контроля (МУК): Документ, содержащий обязательные для исполнения требования к методам контроля и методикам качественного и количественного определения химических, биологических и физических факторов среды обитания человека, оказывающих или которые могут оказать опасное и вредное влияние на здоровье населения /Р 1.1.002, Р 1.1.003/, [1, 2].

4 ОБЩИЕ ПОЛОЖЕНИЯ

4.1 Физико-химические и токсические свойства 1,1-диметилгидразина [3]

1,1-диметилгидразин

Химическое название по IUPAC \sim 1,1-диметилгидразин; торговое название \sim гептил. Молекулярная формула $C_2H_8N_2$

СН₃
\
Структурная формула N - NH₂
/
СН₃

Регистрационный номер по CAS 57-14-7

Молекулярная масса 60,1

1,1-диметилгидразин - бесцветная или бледно-желтого цвета жидкость с резким специфическим запахом, характерным для органических аминов. Обладает относительно высокой летучестью и испаряемостью, о чем свидетельствует низкая температура кипения 63°C при 760 мм рт.ст. и высокое давление насыщенных паров (при т=20°C, 122,4 мм. рт. ст.) С повышением температуры летучесть вещества значительно увеличивается. Плотность 1,1-диметилгидразин при 20°C - 0,787-0,795 г/см³, Т замерзания — 57,2°C, Т веньшки 15°C, Т самовоспламенения 248,9°С. Растворяется в воде, спиртах, углеводородах, аминах, эфирах, в водных растворах кислот. Водные растворы обладают щелочными свойствами.

По химической природе 1,1-диметилгидразин представляет собой органическое основание с сильно выраженными восстановительными свойствами, легко окисляется как кислородом воздуха и растворенным кислородом в воде, так и другими окислителями – оксидами взота, хлора, озоном и др. Особенно интенсивно 1,1-диметилгидразин реагирует с 98 % азотной кислотой и окислами азота. Это реакция положена в основу применения обоих компонентов в качестве ракетного топлива.

При окислении 1,1-диметилгидразина, в зависимости от условий (температура, продолжительность окисления, наличие каталитически активных веществ), образуются новые химические соединения: нитрозодиметиламин, тетраметилтетразен, формальдегид, диметиламин, метилендиметилгидразин и другие продукты окисления, многие из которых до настоящего времени не идентифицированы. В почве разлагается, в основном, до тетраметилтетразена, нитрозодиметиламина, диметиламина, формальдегида, нитратов, нитритов.

При взаимодействии с кислотами 1,1-диметилгидразин образует соли. В водной среде вступает в реакцию с кетонами и различными ароматическими альдегидами, образуя соответствующие гидразоны, малорастворимые в воде и хорошо экстрагируемые неполярными растворителями. Эта реакция положена в основу большинства фотоколориметрических, спектрофотометрических, газохроматографических методик определения 1,1-диметилгидразина в различных средах.

1,1-диметилгидразин относится к 1 классу опасности (чрезвычайно опасное вещество в плане развития острых смертельных отравлений при комнатной температуре и нормальном атмосферном давлении). Оказывает токсическое действие при любых путях поступления в организм — через органы дыхания, желудочно-кишечный тракт, кожу.

При острых отравлениях 1,1-диметилгидразином на первый план выступают симптомы поражения центральной нервной системы и в меньшей степени - печени. При хроническом отравлении преобладают признаки поражения печени, а также других систем (центральной нервной, сердечно-сосудистой, выделительной, кроветворной). Попав в организм 1,1-диметилгидразин через 20 – 60 минут определяется в крови. По органам распределяется, практически, равномерно. Наибольшее содержание его определяется в почках, печени и селезсике. Выделение 1,1-диметилгидразина из организма происходит как через органы дыхания с выдыхаемым воздухом, так и через почки с мочой. По данным разных авторов в первые сутки с мочой выделяются от 13 до 50% 1,1-диметилгидразина в неизмененном виде.

Помимо общетоксического действия 1,1-диметилгидразии обладает отдаленными эффектами: возникновение опухолей (канцерогенный); нарушение репродуктивной функции организма в результате изменения половых клеток (гонадатоксический), влияние на плод и потомство (эмбриотоксический).

Предельно допустимая концентрация 1,1-диметилгидразина в почве 0,1 мг/кг (ГН 2.1.7.2735-10 «Предельно допустимая концентрация (ПДК) 1,1-диметилгидразина (гептил) в почве»).

4.2 Метод измерений

Метод измерений основан на экстракции 1,1-диметилгидразина из почвы соляной кислотой, оттонке из сильнощелочной среды с парами воды, взаимодействии с п-нитробензальдегидом и фотометрии окрашенных в лимонно-желтый цвет растворов образующихся гидразонов на фотометре КФК-3.

Анализу не мешает присутствие в почве нитрозодиметиламина, тетраметилтетразена, нитратов, нитритов, аммиака, сульфатов, хлоридов и ионов металлов. Не мешают определению формальдегид в концентрациях до 10 мг/кт, гидразин и диметиламин – до 2 мг/кт.

4.3 Требования к показателям точности измерений

Методика измерений обеспечивает получение результатов измерений с точностью, не превышающей значений, приведенных в таблице 1.

Таблица 1 - Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости

Показатель повторя-	Показатель воспроизво-	Показатель точности
емости (относитель-	лимости (относительное	(граница относительной
ное среднеквадрати-	среднеквадратическое	погрешности при вероят-
ческое отклонение	отклонение воспроизво-	ности Р=0,95),
повторяемости), О., %	димости), О _R , %	±δ,%
14	25	50
12	22	44
10	20	40
	емости (относитель- ное среднеквадрати- ческое отклонение повторяемости), О., % 14	емости (относитель- ное среднеквадрати- ческое отклонение повторяемости), о,, % димости), о, % 14 25 12 22

Значения показателя точности методики используют при:

- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории.

5 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА И МАТЕРИАЛЫ, РЕАКТИВЫ

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы:

5.1 Средства измерений

Таблица 2 - Средства измерсний

Наименование средства измерения (обо- значение стандарта, ТУ, ТД на СИ) Фотометр фотоэлектрический КФК-3, ТУ 3-3.2164-89 [4] Весы лабораторные ВЛР-200, 2-го класса, ГОСТ 24104-2001 Весы электронные Scout SC2020 «ОНАUS», 4-го класса, ГОСТ 24104-2001 Пипстки мерные, ГОСТ 29169-91 2-1-2-1 2-1-2-5	3 % 0,75
Фотометр фотоэлсктрический КФК-3, оптическая плотность Весы лабораторные ВЛР-200, 2-го класса, миллиграмм ГОСТ 24104-2001 Весы электронные Scout SC2020 грамм «ОНАUS», 4-го класса, ГОСТ 24104-2001 Пипстки мерные, ГОСТ 29169-91 кубический сантиметр	0,75
ТУ 3-3.2164-89 [4] плотность Весы лабораторные ВЛР-200, 2-го класса, миллиграмм ГОСТ 24104-2001 Весы электронные Scout SC2020 грамм «ОНАUS», 4-го класса, ГОСТ 24104-2001 Пипетки мерные, ГОСТ 29169-91 кубический сантиметр	0,75
Весы лабораторные ВЛР-200, 2-го класса, миллиграмм ГОСТ 24104-2001 Весы электронные Scout SC2020 грамм «ОНАUS», 4-го класса, ГОСТ 24104-2001 Пипетки мерные, ГОСТ 29169-91 кубический 2-1-2-1 сантиметр	
ГОСТ 24104-2001 Весы электронные Scout SC2020 грамм «ОНАUS», 4-го класса, ГОСТ 24104-2001 Пипетки мерные, ГОСТ 29169-91 кубический сантиметр	
Весы электронные Scout SC2020 грамм «OHAUS», 4-го класса, ГОСТ 24104-2001 Пипстки мерные, ГОСТ 29169-91 кубический сантиметр	0,01
«OHAUS», 4-го класса, ГОСТ 24104-2001 Пипстки мерные, ГОСТ 29169-91 кубический 2-1-2-1 сантиметр	0,01
Пипстки мерные, ГОСТ 29169-91 кубический сантиметр	•
2-1-2-1 сантиметр	
2-1-2-5	± 0,01
1 1	± 0,05
2-1-2-10	± 0,05
Колбы мерные, ГОСТ 1770-74 кубический	
2-50-2 сантиметр	± 0,1
2-100-2	± 0,2
2-200-2	± 0,4
Цилиндр мерный, ГОСТ 1770-74 кубический	
1-25 или сантиметр	± 0,3
3-25	± 0,3
Стаканы мерные, ГОСТ 25336-82 кубический	
В-1-50 ХС сантиметр	
B-1-500 XC	± 1,0

5.2 Вспомогательные устройства и материалы

Перемешивающее устройство ПЭ-6410М

TY 3614-008-23050963-99 [5]

Прибор для отгонки проб, состоящий из следующих

деталей (см. рис.1):

-колба круглодонная тип ККШ вместимостью	FOCT 25336-82
250 или 500 см ³ , 29/32 ТС с дефлегматором 14/23	
-холодильник типа XIII 200 14/23	ΓΟCT 25336-82
-цилиндр мерный (присмник) 1-25,3-25	FOCT 1770-74
или мерный стакан вместимостью 50 см ³	ГОСТ 25336-82
Плитка электрическая бытовая	FOCT 14919-83
Баня водяная с электропологревом	ТУ 64-12850-80 [6]
Пробирки вместимостью 15, 20 см ³	FOCT 1770-74
Воронки лабораторные	FOCT 25336-82
Воронки делительные вместимостью	FOCT 25336-82
100-150 cm ³	
Дистиллятор ДЭ-40	ТУ 9452-002-22213860-00 [7]
Колбы конические КН-1-500 29/32	FOCT 25336-82
Стакан лабораторный термостойкий вместимостью	ΓΟCT 25336-82
500, 1000 см ³	
Эксикатор диаметром 250 мм	FOCT 25336-82
Штатив лабораторный ШЛ-02	ТУ 33.1-14310460-107-2001 [8]
Фильтры беззольные «белая» или «красная лента»	ТУ-2642-001-13927158-2003 [9]
Бумага индикаторная универсальная	ТУ-6-09-1181-76 [10]
Аппарат для дистилляции воды БС	ТУ 25-11-1592-81 [11]
Линейка черт е жная	FOCT 17435-72
5.3 Реактивы	
Вода дистиллированная	ГОСТ 6709-72

0,792 г/см3, массовая доля основного	
вещества 99,4 %, погрешность 0,6 %	
Спирт этиловый	FOCT 18300-87
п-Нитробензальдегид, ч.д.а	ТУ 6-09-260-85 [12]
Натрия гидроксид, х.ч	FOCT 4328-77
Калия гидроксид, х.ч	ΓΟCT 24363-80
Уксусная кислота, ледяная, х.ч	FOCT 61-75
Хлороформ, ч.д.а или х.ч	FOCT 20015-88
Соляная кислота, х.ч	ΓΟCT 3118-77
Натрий хлористый, х.ч	FOCT 4233-77

1,1-диметилгидразии, плотность при 20°C

ГОСТ В 17803-72

Примечание: Допускается применение иных средств измерений, всномогательного оборудования, реактивов и материалов, обеспечивающих показатели точности, установленные для данной методики. Средства измерения должны быть поверены в установленные сроки.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮШЕЙ СРЕДЫ

При выполнении измерений концентраций 1,1-диметилгидразниа соблюдают следующие требования:

К работе допускаются лица, сдавшие экзамен по технике безопасности согласно ГОСТ 12.0.004.

Работы по подготовке и проведения измерений проводятся в соответствии с требованиями безопасности при работе в химической лаборатории — ГОСТ 12.0.003, с химическими реактивами по ГОСТ 12.4.021 и ГОСТ 12.4.007, при эксплуатации электрооборудования — ГОСТ 12.1.019.

В помещениях для производства работ должны выполняться общие требования пожаро- и взрывоопасности, установленные ГОСТ 12.1.010 и ГОСТ 12.1.004.

Все работы с 1,1-диметилгидразином проводят в вытяжном шкафу при включенной вентиляции в защитных очках и резиновых перчатках.

В комнате в период работы не должно быть источников открытого пламени, включенных электроприборов с открытой спиралью.

Около работающего должны находиться:

- -противогаз:
- -средства тушения: песок, асбестовое одеяло, совок, огнетущитель любой марки;
- -средства дегазации: силикатель, 10% раствор хлорного железа или хлорная известь.

На рабочем месте допускается хранение 1,1-диметилгидразина в количестве, не превышающем 10 см³, в таре из темного стекла с притертой пробкой.

Исходное вещество, а также все растворы отбирают пипетками с помощью резиновой групии.

Посуду после работы дегазируют 10% раствором хлорного железа. Отработанные растворы собирают в специальную емкость, разбавляют водой и сливают в канализацию.

При случайных проливах 1,1-диметилгидразии засыпают песком, который затем отправляют на выжигание.

При проливах рабочих растворов место пролива дегазируют 10% раствором хлорного железа или хлорной извести.

Все работы по дегазации проводят в противогазе и резиновых перчатках.

При попадании 1,1-диметилгидразниа или его растворов на кожу его сразу обильно смывают водой, затем водой с мылом; при попадании в глаза следует немедленно сильно промыть водой и отправить пострадавшего в медпункт.

Предельно допустимая концентрация (ПДК) 1,1-диметилгидразина в почве составляет 0,1 мг/кг (ГН 2.1.2735-10 «Предельно допустимая концентрация (ПДК) 1,1-диметилгидразина (гептил) в почве».

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ЛИЦ, ВЫПОЛНЯЮЩИХ ИЗМЕРЕНИЯ

К выполнению измерений и обработке их результатов могут быть допущены лица, имеющие квалификацию не ниже лаборанта — химика со средним специальным образованием, знакомые с действующими правилами и техникой безопасности работы с 1,1диметилгидразином.

8 ТРЕБОВАНИЯ К УСЛОВИЯМ ИЗМЕРЕНИЙ

При выполнении измерений соблюдаются следующие условия.

Температура окружающего воздуха, °С	+10+35
Атмосферное давление, мм рт. ст.	630 - 800
Относительная влажность воздуха, %	35 - 85
Напряжение в сети, В	220 ± 10

9 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

При подготовке к выполнению измерений проводятся следующие работы:

9.1 Подготовка фотометра к работс

Подготовка фотометра к работе и вывод прибора на рабочий режим осуществляется в соответствии с инструкцией по эксплуатации.

9.2 Приготовление растворов

9.2.1 Подготовка дистиллированной воды

Дистиллированную воду кипятят на электроплитке в течение 1,5-2-х часов для освобождения от амминка, углекислоты и других летучих соединений. Сняв колбу с плитки, сразу закрывают ее пробкой.

9.2.2 Приготовление раствора п-нигробензальдегида с массовой долей 0,6%

Взвешивают на аналитических весах 0,6 г п-нитробензальдегида, вносят в мерную колбу вместимостью 100 см³, приливают 50-60 см³ этилового спирта и нагревают на водя-

ной бане при температуре 50-60°С до полного растворения. После охлаждения до комнатной температуры объем доводят до метки этиловым спиртом. Раствор устойчив при хранении в холодильнике и в скланке из темного стекла в течение 2-х месяцев.

9.2.3 Приготовление раствора гидроксида натрия с массовой долей 40%

В стакан из термостойкого стекла помещают 250-300 см³ дистиллированной (9.2.1) или бидистиллированной воды и медленно, перемешная стеклянной палочкой, добавляют 200 г гидроксида натрия. После полного растворения добавляют воды до 500 см³. Приготовленный раствор хранят в полиэтиленовом сосуде. Срок хранения - 3 месяца.

9.2.4 Приготовление раствора гидроксида калия с молярной концентрацией 1 моль/лм³

В мерную колбу вместимостью 100 см³ помещают 50-60 см³ дистиллированной или бидистиллированной воды, растворяют 5,6 г гидроксида калия и доводят объем до метки водой. Раствор хранят в полиэтиленовом сосуде. Срок хранения - 2 месяца.

9.2.5 Приготовление паствора соляной кислоты с объемной долей 8.6%

В мерную колбу вместимостью 1000 см³ помещают 700-850 см³ дистиллированной или бидистиллированной воды, приливают 86 см³ концентрированной соляной кислоты, перемешивают, доводят объем до метки водой. Срок хранения не ограничен.

9.2.6 Приготовление раствора уксусной кислоты с объемной долей 40%

В мерную колбу вместимостью 250 см³ помещают ~100 см³ дистиллированной или бидистиллированной воды, добавляют 100 см³ уксусной кислоты и до метки доводят объем водой. Срок хранения раствора при комнатной температуре - 6 месяцев.

9.2.7 Подготовка хлеристого натрия

Натрий хлористый нагревают более двух часов в термостате при температуре 150-160°C. Охлаждают в эксикаторе над хлористым кальцием. Хранят в склянке с притертой пробкой.

9.2.8 Приготовление аттестованных растворов 1,1-диметилгидразина для построения градунровочного графика

9.2.8.1 Приготовление исходного аттестованного раствора

В мерную колбу вместимостью 50 см³ помещают 15 см³ дистиллированной (9.2.1) или бидистиллированной воды, взвещивают на аналитических весах, добавляют 0,5 см³ 1,1-

лиметилгидразина и виовь взвещивают. Доводят объем до метки водой, тщательно перемешивают и рассчитывают массу навески 1,1-диметилгидразина по формуле: m=(P₂-P₁), мг. Р1 - вес колбы с водой, мг;

Р2 - вес колбы с водой и 1,1-диметилгидразином, мг.

гле:

Аттестованное значение массовой концентрации 1,1-диметилгидразина в исходном растворе рассчитывают по формуле:

$$a_{\scriptscriptstyle b} = \frac{\mu \cdot m}{100\% \cdot l'}, \, \text{MF/cM}^3, \tag{1}$$

µ - массовая доля 1,1-диметилгидразина в продукте, %; µ=99,4 %; где:

т - масса навески 1,1-диметилгидразина, взятой для приготовления исходного рас-TBODA, MIT:

V - объем приготовленного исходного раствора, см³.

Исходный аттестованный раствор 1,1-диметилгидразина устойчив в течение одного месяца при хранении в склянке из темного стекла с притертой пробкой в холодильнике.

9.2.8.2 Приготовление основного аттестованного раствора с массовой концентрацией 1,0 мг/см3

Рассчитывают количество см3 исходного раствора, необходимое для приготовления 100 см³ основного раствора с массовой концентрацией 1.0 мг/см³.

Пипеткой отбирают рассчитанное количество см³ исходного аттестованного раствора и помещают в колбу вместимостью 50 см3. Объем раствора доводят до метки листиллированной или бидистиллированной водой и тпательно перемешивают содержимое колбы.

Основной раствор устойчив в течение 10 дней при хранении в склянке из темного стекла в холодильнике.

9.2.8.3 Приготовление аттестованного раствора с массовой концентрацией 100.0 мкг/см3

Пипеткой отбирают 10 см³ основного аттестованного раствора и помещают в колбу вместимостью 100 см³. Объем раствора доводят до метки дистиллированной или бидистиллированной водой и тщательно перемешивают содержимое колбы.

Раствор готовится перед употреблением. Устойчив в течение рабочего дня.

9.2.8.4 Приготовление аттестованного раствора с массовой концентрацией 10,0 мкг/см³

Пипеткой отбирают 10 см³ аттестованного раствора с массовой концентрацией 100 мкг/см³ и помещают в колбу вместимостью 100 см³. Объем раствора доводят до метки дистиллированной или бидистиллированной водой и тщательно перемешивают содержимое колбы.

Раствор готовится перед употреблением. Устойчив в течение рабочего дня. Примечание: 1. Формулы расчета аттестованных значений и характеристик погрешности аттестованных значений массовых концентраций 1,1-диметилгидразина в растворах, проводимого по процедуре приготовления в соответствии с РМГ 60 [13], приведены в Приложе-

нин.

2. Массовую концентрацию 1,1-диметилгидразина в продукте (µ) при необходимости можно определять титрованием исходного продукта йодноватокислым калисм в соответствии с МУК 4.1.005-09 "Методика выполнения измерений массовой концентрации 1,1-диметилгидразина в исходном продукте титриметрическим методом".

10 ОТБОР И ХРАНЕНИЕ ПРОБ

Отбор проб почвы производится в соответствии с ГОСТ 17.4.3.01 и ГОСТ 17.4.4.02. Почву отбирают с поверхностного слоя 0-20 см. При необходимости (например, в местах значительного поступления 1,1-диметилгидразина на почву) пробы следует отбирать по профилю почвы из шурфа до глубины 1 м послойно через 25 см. Для получения достоверных результатов в каждом пункте отбирают не менее 3-х объединенных проб почвы из слоя 0-20 см. Каждую объединенную пробу составляют из 3-5 точечных, отобранных методом «треугольника» или «конверта» с площади 1 х 1 яли 5 х 5 м (в зависимости от размера пробной площадки).

Отобранную пробу, в количестве не менее 400 г. упаковывают в полиэтиленовый пакет или герметично закрытую стеклянную банку.

Химический анализ почвы желательно проводить в день отбора пробы. При невозможности анализа в день отбора упакованные пробы хранятся в прохладном месте (холодильник) не более недели.

11 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Одновременно анализируют не менее двух параллельных проб. При выполнении измерений проводят следующие работы:

11.1 Поптотовка почвы

11.1.1 Подготовка почвы для построения градувровочного графика

Почву для построения градуировочного графика и приготовления контрольной пробы желательно подбирать, по возможности, по типу, близкому к анализируемым пробам. При этом почву отбирают в контрольном районе (незагрязненном 1,1-диметилгидразином) в количестве не менее 5 кг из поверхностного слоя 0–20 см, сущат в чистом, хорошо проветриваемом помещении на чистом фанерном листе или эмалированном лотке до постоянного веса и проссивают через сито с диаметром отверстий 1 мм.

Высушенную почву хранят в таре (ведро), закрытой крышкой. Срок хранения не ограничен.

11.1.2 Подготовка почвы к анализу

Отобранную пробу почвы тщательно перемешивают (в полиэтиленовом пакете или разложив на эмалированном лотке), просеивают через сито с диаметром отверстий 1 мм и отвешивают три навески почвы по 50 г. Если почва достаточно влажная и не просеивается, освобождаются от посторонних включений (камин, щебень, стекло, корни и др.) и тоже отвешивают три навески по 50 г. В обоих случаях одну из навесок оставляют на воздухе в вытяжном шкафу для определения воздушно-сухой массы (Рс), две другие (Рв, параллельные пробы) анализируют на содержание 1,1-диметилгидразина.

11.2 Проведение анализа

Навеску почвы 50 г (Рв., п.11.1.2) помещают в коническую колбу, добавляют 100 см³ соляной кислоты (п. 9.2.5), закрывают пробкой и интенсивно встряхивают на перемешивающем устройстве в течение 20 минут. После отстаивания осторожно, не взбалтывая, сливают или отфильтровывают через бумвжный фильтр ("белая" или "красная лента") 50 см³ экстракта. Нейтрализуют экстракт гидроксидом натрия (п. 9.2.3) до рН 6-7, добавляют еще 5 см³ щелочи и помещают в колбу перегонного прибора (рнс.). Колбу подсоединяют к холодильнику, отгоняют 50 см³ пробы в мерный цилиндр или мерный стакан вместимостью 50 см³ с 5 см³ уксусной кислоты (п. 9.2.6). На мерном стакане предварительно ставят метку, соответствующую общему объему отгона в 55 см³.

Отгон переносят в колбу вместимостью 200–250 см³, добавляют 1 см³ гидроксида калня (п. 9.2.4), 5 см³ спиртового раствора п-интробензальдегида (п. 9.2.2). Закрывают колбу пробкой, нагревают содержимое на водяной бане при температуре 75°С в течение 15 минут. После охлаждения до комнатной температуры добавляют 10 см³ хлороформа, интенсивно встряхивают в течение 2 минут, переносят все в делительную воронку. После расслоения нижний хлороформенный слой сливают в сухую пробирку. При недостаточно тща-

тельном разделении слоев отмечается незначительная муть, мешающая фотометрированию. В этом случве пробирки необходимо опустить на несколько секунд в теплую воду или добавить на кончике скальпеля хлористый натрий (п. 9.2.7) и встряхнуть.

Оптическую плотность анализируемой пробы измеряют на фотометре КФК-3 в коветах с толщиной поглощающего слоя 20 мм и 1 мм при длине волны 400 нм относительно одновременно приготовленной контрольной пробы.

Если оптическая плотность превышает 0,6, переливают анализируемые и контрольную пробы в кюветы 1 мм и повторяют измерение. При фотометрировании кюветы закрывают крышками.

При содержании 1,1-диметилгидразина в почве выше 10 мг/кг, отбирают новую аликвотную часть оставшегося экстракта, предварительно отфильтрованного, добавляют до 50 см³ экстракт контрольной пробы и проводят анализ.

Для приготовления контрольной пробы 50 г воздушно-сухой почвы, не содержащей 1,1-диметилгидразии (п. 11.1.2), помещают в коническую колбу, добавляют 100 см³ соляной кислоты и дальнейшую подготовку проводят в тех же условиях, как описано выше при анализе проб.

11.3 Построение градуировочного графика

Градуировочный график, выражающий зависимость оптической плотности раствора от массовой концентрации 1,1-диметилгидразина, устанавливают по восьми растворам для градуировки.

Для построення градуировочного графика готовят необходимое количество экстракта воздушно-сухой почвы, не содержащей 1,1-диметилгидразин (п.п. 11.1.2, 11.2), и аттестованные рабочие растворы 1,1-диметилгидразина в почвенном экстракте в соответствии с таблицей 3.

Приготовленные растворы нейтрализуют гидроксидом натрия (п. 9.2.3) до рН 6–7, добавляют еще 5 см³ щелочи, помещают каждый раствор в колбу перегонного прибора и дальнейший анализ проводят так же, как при анализе проб (п. 11.2). Оптическую плотность градуировочных растворов измеряют на фотометре в кюветах 20 и 1 мм при λ =400 нм относительно одновременно приготовленной контрольной пробы (п. 11.2).

Необходимо провести не менее 10 измерений каждой из восьми концентраций 1,1диметилгидразина в течение нескольких дисй, готовя при этом новые рабочие аттестованные растворы. По среднеарифметическим результатам строят два градуировочных графика;

Прибор для отгонки проб.

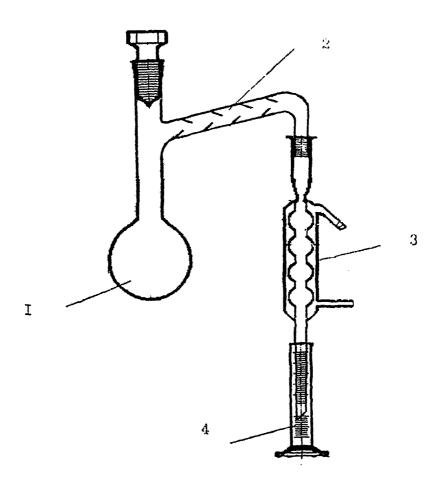


Рис.

- 1. Колба перегонная вместимостью 250 или 500 см³
- 2. Дефлегматор
- 3. Холодильник шариковый
- 4. Приеминк цилиндр

Состав градуиро-			Ho	мер грал	унровоч	ного ра	створа		
вочных растворов	0	1	2	3	4	5	6	7	8
Аттестованный раствор с массовой концентрацией 1,1-диметилгидразина 10 мкг/см³, см³		0,05	0,1	0,3	1,0	2,0			
Аттестованный раствор с массовой концентрацией 1,1- диметилгидразина 100 мкг/см ³ , см ³							0,5	1,0	2,5
Экстракт почвен- ный, см ³	0	49,95	49,9	49,7	49,0	48,0	49,5	49,0	47,5
Содержание 1,1- диметилгидразина в экстракте, мкг/пробе	0	0,5	1	3	10	20	50	100	250
Содержание 1,1- диметилгидразина в почве, мг/кг	0	0,02	0,04	0,12	0,4	0,8	2,0	4,0	10,0

Таблица 3 - Алгориты приготовления градуировочных растворов 1,1диметилгидразина для построения градуировочного графика

один график - для концентраций 0,5-10 мкг/пробе при фотометрировании в кювстах с толщиной поглощающего слоя 20 мм, другой - для концентраций 10-500 мкг/пробе при фотометрировании в кювете 1 мм. При этом по оси абсцисс откладывают концентрацию 1,1диметилгидразина в мкг/пробе, по оси ординат – оптическую плотность.

При замене реактивов и средств измерений градуировочный график строят заново.

11.4 Контроль стабильности градуировочного графика

Контроль стабильности градуировочного графика необходимо проводить перед выполнением анализов каждой партии проб.

Для этого берут не менее трех градуировочных растворов 1,1-диметилгидразина, окватывающих диапазон измерений и анализируют, как описано выше в п. 11.2.

Градуировочную характеристику считают стабильной при выполнении для каждого выбранного образца следующего условия:

$$X = C \le \Delta_{m_0} \tag{2}$$

где: X- результат измерения содержания 1,1-диметилгидразина в градуировочном растворе, мкг;

С - аттестованное значение содержания 1,1-диметилгидразина в градуировочном растворе, мкг;

 Δ_{rp} - погрешность установления градунровочной характеристики при использовании методики в лаборатории, мкг.

Значения Δ_{rp} устанавливают при построении градуировочного графика. При этом для каждого градуировочного раствора по соответствующим формулам рассчитывают:

среднее арифметическое значение результатов измерений массовой концентрации
 1,1-диметилгидразина:

$$\overline{X_i} = \frac{\sum_{i=1}^{n} X_i}{n}, \quad MKT, \tag{3}$$

где: п - число измерений

X_i - результат измерення содержания 1,1-диметилгидразина в i-ой пробе градуировочного раствора, мкг;

- среднее квадратическое отклонение результата измерения массовой доли 1,1диметнлгидразина в градуировочном растворе:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X_i})^2}{n-1}} , MK\Gamma,$$
 (4)

- доверительный интервал:

$$\Delta \overline{X}_{i} = \frac{S}{\sqrt{n}} \cdot I, \text{ MKT}, \tag{5}$$

где: t - коэффициент нормированных отклонений, определяемых по таблице Стьюдента, при доверительной вероятности 0.95:

- точность (относительная погрешлюсть) результата измерений:

$$\delta_{rp} = \frac{\Delta \overline{X_i}}{\overline{X_i}} \cdot 100\%; \ \Delta_{rp} = 0.01 \ \delta_{rp} C, \text{MKT}. \tag{6}$$

12 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Массовую долю 1,1-диметилгидразина в каждой параллельной воздушно-сухой пробе почвы $(X_1 \ \text{и} \ X_2)$ рассчитывают по формуле:

$$X_{1,2} = \frac{C_3 \cdot V \cdot K}{P_n \cdot V_1} \quad , \text{MT/KF}, \tag{7}$$

где: С, - содержание 1,1-диметиягидразина в экстракте, мкг/пробе

Р. - масса влажной почвы, взятой на анализ, (п.11.1.2.), г

V - общий объем экстракта, см³

V₁ - объем экстракта, взятого на анализ, см³

К - коэффициент пересчета массы влажной почвы на массу в воздушно-сухом

$$K = \frac{P_s}{P_c} \tag{8}$$

Рс - масса почвы, взятой на анализ, в воздушно-сухом состоянии (п.11.1.2.) г

Содержание 1,1-диметилгидразяна в экстракте в мкг/пробе находят по градуировочному графику.

За результат анализа (\overline{X}) принимают среднее арифметическое результатов двух параллельных определений X_1 и X_2 (\overline{X} =(X_1 + X_2)/2), расхождение между которыми не превышает предела повторяемости. Значения предела повторяемости (г) для двух результатов параллельных определений приведены в таблице 4.

При превышении предела повторяемости (r) необходимо дополнительно получить еще два результата параллельных определений. При повторном превышении предела повторяемости необходимо выяснить причины получения неприемлемых результатов параллельных определений и устранить их.

Таблица 4 - Значение пределов повторяемости при доверительной вероятности Р=0,95

Днапазон измерений,	Предел повторяемости (относительное значение допускаемого
ыг/кг	расхождения между двумя результатами параллельных опре-
	делений), г, %
от 0,02 до 0,2 вкл	39
св 0,2 до 1,0 вкл	34
св 1,0 до 10,0 вкл	28

13 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерения \overline{X} в документах, выдаваемых лабораторией, может быть представлен в виде: $\overline{X} \pm \Delta$, Р=0,95, где Δ = 0,01· δ· \overline{X} (\overline{X} — массовая доля 1,1-диметилгидразина):

Значения в приведены в таблице 1.

Допустимо результат измерения в документах, выдаваемых лабораторией, представлять в виде $\overline{X}\pm\Delta_{n}$, P=0,95, при условин $\Delta_{n}<\Delta_{n}$ где:

 \overline{X} - результат измерения, полученный в соответствии с прописью методики;

 $\pm\Delta_8$ - значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

Результат измерений должен оканчиваться тем же десятичным разрядом, что и погрешность. Результаты измерений удостоверяются лицом, проводившим измерение, а при необходимости руководителем организации (предприятия), подпись которого заверяется печатью.

Примечание: Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_n = 0.84 \Delta$ с последующим уточнением по мере накопления информации в процессе контроля результатов измерений.

14 ОЦЕНКА ПРИЕМЛЕМОСТИ РЕЗУЛЬТАТОВ, ПОЛУЧАЕМЫХ В УСЛОВИЯХ ВОСПРОИЗВОДИМОСТИ

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значения предела воспроизводимости приведены в таблице 5.

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725.

Таблица 5 - Диапазон измерений, значения предела воспроизводимости при доверительной вероятности Р=0.95

Диапазон измерений, мг/кг	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %		
от 0,02 до 0,2 вкл	70		
св 0,2 до 1,0 вкл	62		
св 1,0 до 10,0 вкл	56		

15 КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

15.1 Контроль качества результатов измерсний

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

- контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонеция внутрилабораторной прецизионности, погрешности).

15.2 Оперативный контроль процедуры измерений

Оперативный контроль процедуры измерений проводят на основе контроля внутрилабораторной прецизновности и погрешности.

15.3 Контроль внутрилабораторной прецизионности

Контроль внутрилабораторной прецизионности осуществляют путем сравнения результатов измерений массовой доли 1,1-диметилгидразина в пробе, полученных в условиях внутрилабораторной прецизионности. Расхождение между результатами измерений не должно превышать предела внутрилабораторной прецизионности (R_n), выраженного в единицах измеряемых содержаний

$$|X_1 - X_2| \le 0.01 R_n \cdot \overline{X}, \tag{9}$$

где: X_1, X_2 - результаты, полученные в условиях внутрилабораторной прецизионности;

 \overline{X} - средне арифметическое значение результатов измерений, полученных в условиях внутрилабораторной прецизионности;

R_в - значение предела внутрилабораторной прецизионности.

Значение R_n может быть приведено в Протоколе установленных показателей качества результатов анализа при реализации методики выполнения измерений в лаборатории.

При невыполнении условия (9) контрольную процедуру повторяют. При повторном невыполнении условия (9) выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

15.4 Контроль погрешности с использованием образца для контроля

Если анализ рабочей пробы показал отсутствие 1,1-диметилгидразина (на уровне предела обнаружения методики), то , в соответствии с п. 5 РМГ 76 [14], аведение в рабочую пробу добавки С, соответствующей диапазону действия методики, позволяет рабочую пробу с введенной добавкой рассматривать в качестве образца для контроля с аттестованным значением С. Образец для контроля анализируют в точном соответствии с прописью методики, получают результат X и сравнивают его с аттестованным значением С. При этом результат контрольной процедуры К_к рассчитывается по формуле:

$$K_{\kappa} = [X \cdot C] \tag{10}$$

Норматив контроля К рассчитывают по формулс:

$$K = \Delta. \tag{11}$$

где: Δ - характеристика погрешности результата анализа, соответствующая аттестованному значению добавки: Δ = 0,01· δ · C

Значение в приведены в таблице 1.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

$$K_{\mathbf{x}} \leq K$$
 (12)

При невыполнении условия (12) эксперименты повторяют. При повторном невыполнении условия (12) выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лаборатории согласно ГОСТ Р ИСО/МЭК 17025.

ВИФЛИОГРАФИЯ

- [1] Р 1.1.002-96 Государственная система санитарно- эпидемиологического нормирования. Руководство. Классификация нормативных и методических документов системы государственного санитарно-эпидемиологического нормирования
- [2] Р 1.1.003-96 Государственная система санитарно- эпидемиологического нормирования. Руководство. Общие требования к построению, изложению и оформлению нормативных и методических документов системы государственного санитарно-эпидемиологического нормирования
- [3] Кушнева В.С., Горшкова Р.Б. Справочник по токсикологии и гигиеническим нормативам (ПДК) потенциально опасных химических веществ, М., Изд.АТ, 1999
- [4] ТУ 3-3.2164-89 Фотометр фотоэлектрический КФК-3
- [5] ТУ 3614-008-23050963-99 Перемешивающее устройство ПЭ 6410М
- [6] ТУ 64-12850-80 Баня водяная с электроподогревом
- [7] TУ 9452-002-22213860-00 ДЭ-40. Дистиллятор (Аквадистиллятор)
- [8] ТУ 33.1-14310460-107-2001 Штатив лабораторный ШЛ-02
- [9] ТУ 2642-001-13927158-2003 Фильтры обеззоленные «Синяя лента», «Красная лента»,«Белая лента»
- 1101 ТУ 6-09-1181-76 Бумага универсальная для определения в интервале рН 1-10 и 7-14
- [11] ТУ 25-1592-81 Аппарат для дистилляции воды
- [12] ТУ 6-09-260-85 п-Нитробензальдегид. Технические условия
- [13] РМГ 60-2003 Рекомендации по межгосударственной стандартизации. ГСИ. Смеси аттестованные. Общие требования к разработке
- [14] РМГ 76-2004 ГСИ Внутренний контроль качества результатов количественного химического анализа.

приложение

РАСЧЕТ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК РАСТВОРОВ 1,1-ЛИМЕТИЛГИЛРАЗИНА

1 Расчет метрологических характеристик исходного раствора

1.1 Расчет аттестованного зивчения

Приготовление исходного раствора и формула расчета аттестованного значения массовой концентрации 1,1-диметилгидразина в растворе описаны в п. 9,2.8.1.

1.2 Расчет характеристики погрешности

Расчет характеристики погрешности аттестованного значения исходного раствора производят по формуле:

$$\Delta_{\mathbf{u}} = a_{\mathbf{u}} \sqrt{\left(\frac{\Delta \mu}{\mu}\right)^2 + \left(\frac{\Delta P_1}{P_1}\right)^2 + \left(\frac{\Delta P_2}{P_2}\right)^2 + \left(\frac{\Delta V}{V}\right)^2}, \text{MT/CM}^3,$$

где: a_и - аттестованное значение массовой концентрации 1,1-диметилгидразина в исходном растворе, мг/см³:

 $\Delta \mu$ - характеристика погрешности установления массовой доли 1.1-диметилгидразина в пролукте, % [$\Delta \mu$ ~(100- μ)%];

 μ - массовая доля 1,1-диметилгидразина в продукте, % (значение μ приводится в сертификате на продукт);

Р, - вес колбы с водой, мг;

ФР₂ - характеристика погрешности взвещивания колбы с водой и 1,1-диметилгидразином при установлении массы навески 1,1-диметилгидразина для приготовления исходного аттестованного раствора, мг;

Р2 - вес колбы с водой и 1,1-диметилгидразином, мг;

 ΔV - характеристика погрешности установления объема V (предел допускаемой погрешности вместимости колбы), см³;

V - объем приготовленного исходного аттестованного раствора, см³.

2 Расчет метрологических характеристик основного раствора

2.1 Расчет аттестованного значения

Основной раствор готовят, как описано в п. 9.2.8.2.

Аттестованное значение массовой концентрации 1.1-диметилгидразина в основном растворе рассчитывают по формуле:

$$a_0 = a_u \frac{V_1}{V_2}, \text{MF/CM}^3,$$

где: a_u - аттестованное значение массовой концентрации 1.1-диметилгидразина в исходном растворе, мг/см³;

 V_1 - объем исходного раствора, отобранного для приготовления основного аттестованного раствора, см. ³;

 V_2 - объем приготовленного основного раствора, см³; $V_2 = 50$ см³.

Аттестованное значение массовой концентрации 1,1-диметилгидразина в основном растворе составляет 1.0 мг/см³.

2.2 Расчет характеристики погрешности

Расчет характеристики погрешности аттестованного значения основного раствора производят по формуле:

$$\Delta_0 = a_0 \sqrt{\left(\frac{\Delta u}{a_u}\right)^2 + \left(\frac{\Delta V_1}{V_1}\right)^2 + \left(\frac{\Delta V_2}{V_2}\right)^2}, \text{MT/cM}^3,$$

где: a_0 - аттестованное значение массовой концентрации 1,1-диметилгидразина в основном растворе, мг/см³ ($a_0 = 1.0 \text{ мг/см}^3$);

 ΔV_1 - характеристика погрешности установления объема V_1 (предел допускаемой погрешности объема пипетки), см³;

 V_1 - объем исходного аттестованного раствора, отобранного для приготовления основного аттестованного раствора, см³:

 ΔV_2 - характеристика погрешности установления объема V_2 , (предел допускаемой погрешности вместимости колбы), см³;

 V_2 - объем приготовленного основного аттестованного раствора, см³.

3 Расчет метрологических характеристик рабочего раствора 1,1-диметилгидразина с массовой концентрацией 100 мкг/см³ (рабочий раствор № 1)

3.1 Расчет аттестованного значения

Рабочий раствор № 1 готовят, как описано в п. 9.2.8.3.

Аттестованное значение массовой концентрации 1,1-диметилгидразина в рабочем растворе № 1 рассчитывают по формуле:

$$a_1 = a_0 \frac{V_3}{V}, \quad \text{, MKT/CM}^3,$$

где: a_0 - аттестованное значение массовой концентрации 1.1-диметилгидразина в основном растворе, мг/см³; a_0 = 1.0 мг/см³ или 100,0 мкг/см³;

 V_3 - объем основного раствора, отобранного для приготовления рабочего раствора № 1, см³; V_3 =10 см³;

 V_{4} - объем приготовленного рабочего раствора № 1, см³; V_{4} =100 см³.

Аттестованное значение массовой концентрации 1,1-диметилгидразина в рабочем растворе № 1 составляет 0,1 мг/см³ или 100,0 мкг/см³.

3.2 Расчет характеристики погрешности

Расчет характеристики погрешности аттестованного значения массовой концентрации 1,1-диметилгидразина в рабочем растворе № 1 производят по формуле:

$$\Delta_1 = a_1 \sqrt{\left(\frac{\Delta_0}{a_0}\right)^2 + \left(\frac{\Delta V_3}{V_3}\right)^2 + \left(\frac{\Delta V_4}{V_4}\right)^2} \text{,MKT/cm}^3,$$

где: a_1 - аттестованное значение массовой концентрации 1,1-диметилгидразина в рабочем растворе № 1, мкг/см³ ($a_1 = 100.0$ мкг/см³);

 ΔV_3 - характеристика погрешности установления объема V_3 (предел допускаемой погрешности объема пипетки), см³:

 V_3 - объем основного аттестованного раствора, отобранного для приготовления рабочего аттестованного раствора № 1, см³;

 ΔV_4 - характеристика погрешности установления объема V_4 , (предел допускаемой погрешности вместимости колбы), см³:

 V_4 - объем приготовленного рабочего аттестованного раствора № 1, см³.

4 Расчет метрологических характеристик рабочего раствора

1,1-диметилгидразина с массовой концентрацией 10 мкг/см3 (рабочий раствор № 2)

4.1 Расчет аттестованного значения

Рабочий раствор № 2 готовят, как описано в п. 9.2.8.4.

Аттестованное значение массовой концентрации 1,1-диметилгидразина в рабочем растворе № 2 рассчитывают по формуле:

$$a_2 = a_1 \frac{V_3}{V_6}$$
, MKI/CM³,

где: a₁ - аттестованное значение массовой концентрации 1,1-диметилгидразина в рабочем растворе № 1, мкг/см³ (a, =100.0 мкг/см³);

 V_5 - объем рабочего аттестованного раствора № 1, отобранного для приготовления рабочего раствора № 2, см³; V_5 =10 см³;

 V_{6} - объем приготовленного рабочего раствора № 2, см³; V_{6} =100 см³.

Аттестованное значение массовой концентрации 1,1-диметилгидразина в рабочем растворе № 2 составляет 10.0 мкг/см³.

4.2 Расчет характеристики погрешности

Расчет характеристики погрешности аттестованного значения рабочего раствора № 2 производят по формуле:

$$\Delta_2 = \alpha_2 \sqrt{\left(\frac{\Delta_1}{\alpha_1}\right)^2 + \left(\frac{\Delta V_5}{V_5}\right)^2 + \left(\frac{\Delta V_6}{V_6}\right)^2} , \text{MKF/CM}^3,$$

где: a_2 - аттестованное значение массовой концентрации 1,1-диметилгидразниа в рабочем растворе № 2, мкг/см³ (a_2 =10,0 мкг/см³);

 ΔV_5 - характеристика погрешности установления объема V_5 , (предел допускаемой погрешности объема пипетки), см³:

 V_3 - объем рабочего аттестованного раствора № 1, отобранного для приготовления рабочего аттестованного раствора № 2, см³;

 ΔV_6 - характеристика погрешности установления объема V_6 , (предел допускаемой погрешности вместимости колбы), см³;

V₆ - объем приготовленного рабочего аттестованного раствора № 2, см³.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ (Росстандарт)

Федеральное государственное унитарное предприятие «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ»)

Государственный научный метрологический институт

СВИДЕТЕЛЬСТВО

об аггестиции методики (метода) измерений

№ 224.0167/01.00258/2010

Meropuse savenessis second near 1.1 much saveness
Методика измерений <u>массовой доли 1.1-диметилгидразина</u> наименование измеряемой величины, и, при необходимости
в пробах почв фотоколориметрическим методом.
Объекта измерений, дополнительных параметров и реализуемый способ измерений
предназначенная дая применения в лабораториях Центров Государственного санитарног
эпилемнологического надзора Федерального медико-биологического агентства,
область использования
разработанная ФГУ «ФМБЦ им. А.И. Бурназяна» ФМБА России,
(123182, г. Москва, ул. Живописная, 46)
наиме:: вание и адрес организации (предприятия), разработавшей методику (метод)
и содержащаяся в <u>Методических указаниях по методам контроля ФМБА России «Методик</u>
измерений массовой доли 1.1-диметилгидразния в пробах лоча фотоколориметрических методом».
обозначение и наименование документа, содержащего методику (метод),
гол утверждения — 2010, на 31 стр.
год утверждения, число страниц
Методика аттестована в соответствии с ФЗ № 102 «Об обеспечении единств измерений» и ГОСТ Р 8.563-2009.
Аттестация осуществлена по резудьтатам метрологической экспертизы материалов по разработке методики измерений
и экспериментальных исследований
-теоретические и (или) экспериментальные исследования
В результате аттестации методики измерений установлено, что методика измерени
соответствует требованиям, предъявляемым
FOCT P 8.563-2009
кормативно-правовой документ (при наличии), ГОСТ Р 8.563 и пругне документы
Показатели точности измерений приведены в приложений на 1 л.
Зам.директора по научной работе
Anna Maria
Зав.лабораторией В.И.Панева
Дата выдачи: 25.10.2010
Рекомендуемый срок пересмотра 25,10,20,5 методики (метода) измерений:

Россия, 620000, г. Екатеринбург, ул. Красноармейская, 4 Тел.: (343) 350-26-18, факс: (343) 350-20-39. E-mail: unilm@unilm.ru

Приложение к свидетельству № 224.0167/01.00258/2010 об аттестации методики измерений массовой доли 1,1-диметилгидразика в пробах почв фотоколориметрическим методом

Ha I nume

1 Диапазон измерений, значения показателей точности", повторяемости и воспроизводимости

Дияпазон измерений, мг/кг	Показатель повторяемости (относительное среднеквадратическое отклонение повторясмости), ог, %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %	Показатель точности (границы относительной погрешности при вероятности Р=0.95), ±δ, %
от 0.02 до 0.2 вкл.	14	25	50
св. 0.2 до 1.0 вкл.	12	22	44
св. 1.0 до 10.0 вкл.	10	20	40

2 Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной велоятичести № 0.95

BEDOMINOCIM P-0.93		
Диапазон измерений, мг/кг	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), г. %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %
от 0.02 до 0.2 вкл.	39	70
св. 0.2 до 1.0 вкл.	34	62
св. 1.0 до 10.0 вкл.	28	56

- 3 При реализации методики в лаборатории обеспечивают:
- контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности)

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в документе на методику измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лабоватории.

Старший научный сотрудник ФГУП «УННИМ», к.х.н., эксперт-метролог (сертификат № RUM 02.33.00221)

Тоболкина Н.В.

[&]quot;соответствует расширенной неопределенности U_{этн} (в относительных единицах) при коэффициенте охвата к≈2.
""Значение показателя воспроизводимости установлено на основе результатов межлабораторного эксперимента (L=5).