ОТРАСЛЕВОЙ СТАНДАРТ

электролиты хромирования. Методики выполнения измерений содержаний компонентов

OCT 3-6446-88

OKCTY 0009

дата введения OI.09.89

Настоящий стандарт распространяется на электролити кромирования и устанавливает требования к выполнению измерений массовых концентраций компонентов, составляющих электролити сернокислого кромирования, черного кромирования и электролита кромирования с добавкой солей вольфрама.

I. OEMME TPEBOBAHMA

І.І. Общие требования устанавливает ОСТ 3 - 6 4 4 2 - 88.

2. ЭЛЕКТРОЛИТ СЕРНОКИСЛОГО ХРОМИРОВАНИЯ

2.I. Состав электролита сернокислого кромирования приведен в табл.I.

Таблина І

Наименование компонента	Массовая концентрация, г/дм ⁸
Ангидрид кремовый	150-400
Кислота серная	1,5-4,0

В процессе работы определяют массовые концентрации составлякщих электролит компонентов и примесей железа и окиси хрома.

- 2.2. Методика выполнения измерений массовой концентрации кромового ангидрида объемным перманганатомет—рическим методом
- 2.2.1. Метод основан на восстановлении крома (УІ) до крома (Ш) раствором соли Мора в кислой среде

Погрешность измерений в диапазоне 150-200 г/см 3 составляет 2 г/дм 3 .

2.2.2. Требования к средствам измерений, реактивам, растворам.
 Весы аналитические.

Колом мерные вместимостью 100 см3 и І дм3.

Воронка коническая стеклянная.

Вата стеклянная.

Пипетка вместимостью 5 и 20 см³ без делений.

Бюретка вместимостью 50 cm³.

Соль закиси железа и аммония двойная сернокислая (моль Мора), раствор молярной концентрацией 0, I моль/дм³.

Калий марганцовокислый, раствор молярной концентрацией эквивалента 0,1 моль/дм³ (I/5 $|Colloober O_{ij}|$) в реакции окисления железа в кислой среде.

Натрий шавелевокислый.

Кислота серная разбавленная 1:5.

- 2.2.3. Требования к подготовка выполнения измерений.
- 2.2.3.1. Раствор марганцовокислого калия готовят из фиксанала. Приготовленний раствор стетаивают в темном месте не менее 4-х дней. Отстоявшийся раствор сливают через сифон или отфильтровивают через стеклянную вату в посуду из темного стекла. Молярную концентрацию марганцовокислого калия устанавливают по щавелевокислому натрию, предварительно просущенному в течение I ч при I20 °C.

Навеску щавелевскислого натрия 0,1000 г помещают в коническую колбу вместимостью 250 см³, растворяют в 100 см³ воды, приливают 10 см³ раствора серной кислоты, нагревают до 70 ⁰C (но не до кипения) и титруют раствором марганцевокислого калия при сильном перемешивании до неисчезающей слабо-розовой окраски раствора.

Молярную концентрацию марганцовокислого калия вычисляют по формуле (I)

$$C = \frac{m \cdot 31.61}{67.01 \cdot V} \quad , \tag{I}$$

где т - масса щавелевокислого натрия. г:

31,61 - молярная масса эксплалента марганцовскиолого калия м(1/5 KollnOu), г;

- 67,01 молярная масса эквиралента щавелевокислого натрия $M(1/2 Na_2 C_2 O_4)$, г;
 - объем раствора марганцевокиелого калия, израс кодованный на титрование, см³.
- 2.2.3.2. Для приготовления раствора соли Мора навеску соли массой 39.5 г растворяют в 950 см 3 воды и 50 см 3 серной кислоты...
- 2.2.3.3. Соотношение объемов растворов соли Мора и марганцовокислого калия устанавливают калий раз непосредственно после титрования крома. В коническую колбу вместимостью 500 см³ приливают 200-300 см³ воды, 20 см³ раствора серной кислоти и такой объем раствора соли Мора, который добавляли при проведении анализа электролита. Затем титруют раствором марганцевокислого калия, до появления слабо-розовой окраски раствора, неисчезающей в течение I мин.

Соотношение объемов растворов соли Мора и марганцовокислого калия (K_{T}) вычисляют по формуле

$$K_{i} = \frac{V_{i}}{V_{e}} , \qquad (2)$$

где

- V₁ -объем раствора марганцовокислого калия, взятый на титрование, смз;
- V₂ объем раствора соли Мора, израскодованный на титрование, см³.
- 2.2.4. Требования к выполнению измерений.
- 2.2.4.1. В мерную колбу вместимостью 100 см³ отбирают пипеткой 5 см³ электролита, доводят водой до метки, перемешивают. Отбирают пипеткой 5 см³ полученного раствора в коническую колбу вместимостью 500 см³, приливают 200-300 см³ волы, 20 см³ раствора серной кислоты.

Из бюретки приливают раствор соли Мора до полного восстановления кромового ангидрида, т.е. до окрашивания раствора в зеленовато-го-лубой цвет и избыток 3-5 см³. Затем титруют раствором марганцово-кислого калия до появления слабо розовой окраски, неисчезающей в течение I мин.

2.2.5. Требования к внчислению результатов измерений.

2.2.5.I. Массовую концентрацию кромового ангидрида в г/дм³. вычисляют по формуле (3)

$$C = \frac{(V_1 K_1 - V_2) \cdot 0.00333 \cdot K_2 \cdot 1000}{V}, \qquad (3)$$

где

 V_{I} — объем раствора соли Мора, добавленный к пробе, см 8 ;

V₂ - объем раствора марганцовокислого калия, израсходованный на титрование избытка соли Мора, см³;

К. - соотношение объемов растворов марганцево-кислого калия и соли мора

0,00333 - массовая концентрация раствора марганцовокислого калия молярной концентрацией эквивалента 0,1 моль/дм³, вираженная в г/см³ хромового ангиприла:

К₂ — поправка на отклонение молярной концентрации эквивалента марганцовокислого калия от 0,1 моль/дм⁸;

V - объем электролита, взятый на анализ, см³.

2.2.5.2. Раскождение между результатами двук параллельных измерений не должно превышать значений, указанных в табл.2.

Таблица 2

Массовая концентрация кромового ангидрида, г/дм ³	Допускаемое раскождение г/дм ⁸
От 150 до 250 включ.	5
CB.250 " 400 "	10

- 2.3. Методика выполнения измерений массовой концентрации окиси крома объемным перманганатометрическим методом
- 2.3.1. Метод основан на окислении крома (Ш) до крома (УІ) надсернокислым аммонием по реакции.

 $C_{7,2}O_3 + 3 (NH_4)_2 S_2 O_3 + 3 H_2 O = 2 C_7 O_3 + 3 (NH_4)_2 SO_4 + 2 HSO_4$ с последующим определением общего крома пермантанатометрическим методом. Содержание крома (Ш) вичисляют по разности между общим кромом и кромом (УІ).

2.3.2. Требования к средствам измерений, реактивам, растворам. Средства измерений, реактивы, растворы по п.2.1.2 настоящего стандарта.

Плитка электрическая.

Аммоний надсернокислый, раствор свежеприготовленный концентрашмей 200 г/дм³.

Марганец сернокислый 5-водный, раствор концентрацией 100 г/дм³. Натрий клористый, раствор концентрацией 50 г/дм³. Серебро азотнокислое, раствор концентрацией 2 г/дм³.

2.3.3. Требования к подготовке выполнения измерений.

Подготовку к выполнению измерений проводят по п.2.I.З настоя шего стандарта.

- 2.3.4. Требования к выполнению измерений.
- 2.3.4.I. В мерную колбу вместимостью $100~{
 m cm}^3$ отбирают пипет-кой $5~{
 m cm}^3$ электролита, доводят до метки водой, перемешивают.

Отбирают пипеткой 5 см³ полученного раствора в коническую колбу вместимостью 500 см³, приливают 100 см³ воды, 15 см³ раствора серной кислоты, 1-2 капли раствора сернокислого марганца, доводят до кипейия. Добавляют 2 см³ раствора азотнокислого серебра, 10 см³ раствора надсернокислого аммония и кипятят в течение 5-10 мин до появления малиновой окраски. Затем приливают 5 см³ раствора клористого натрия.

После охлаждения раствора приливают из бюретки раствор соли Мора в количестве, равном объему раствора, затраченного при определении хромового ангидрида. Избиток соли Мора титруют раствором марганцовокислого калия до появления слабо-розовой окраски, неисчезающей в течение I мин.

- 2.3.5. Требования к вычислению результатов измерений.
- 2.3.5.I. Массовую концентрацию окиси крома в г/дм³ вычисляют по формуле (4)

$$C = \frac{(V_z - V_s) \cdot 0.00178 \cdot K_z \cdot 1000}{V} \cdot 1.462 , \quad (4)$$

- где V2 объем раствора марганцовскислого калия, израсходованный на титрование избытка соли Мора при определении кромового ангидрида, см³;
 - V₃ объем раствора марганцовокислого калия, израсходованний на титрование избитка соли Мора при определении окиси хрома, см³.
 - 0,00173 массовая концентрация раствора марганцовскислого калия молярной концентрацией эквивалента 0,1 моль/дм³, выраженная в г/см³ хрома;

К₂ - поправка на отклонение молярной концентрации эквивалента марганцовокислого калия от 0.1 моль/дм³:

 $\sqrt{}$ - объем электролита, взятий на анализ, см 3 ;

I,462 - коэффициент пересчета с крома на окись крома.

- 2.3.5.2. Относительная ошибка измерения составляет 5%.
- 2.4. Методика выполнения измерений массовой концентрации серной кислоты гравиметрическим методом
- 2.4.I. Метод основан на осаждении серной кислоты раствором клористого бария в виде сернокислого бария

Хром (УІ) предварительно восстанавливают до крома (Ш) этиловым спиртом в присутствии соляной кислоты.

 $H_2C_{7,2}O_7 + 3C_2H_5OH + 8HCl = 2C_7Cl_3 + 3C_2H_4O + 2KCl + 7H_2O$ Хром (Ш) связывают уксусной кислотой в комплекс. Осадок сернокиспого бария отделяют, прокаливают и взвешивают.

Погрешность измерений в диапазоне I,50-2,50 г/дм⁸ составляет ± 0.03 г/дм⁸, в диапазоне 2,50-4,00 г/дм⁸— ± 0.06 г/дм⁸.

2.4.2. Требования к средствам измерений, реактивам, растворам. Средства измерений, реактива устанавливает разд.2.

Кислота уксусная.

Спирт этиловый ректификованный технический.

2.4.3. Требования к подготовке выполнения измерений.

- **2.4.3.** I. Подготовку к выполнению измерений проводят по разд.2 OCT 3-6444-88.
- 2.4.4. Требования к виполнению измерений.
- 2.3.4.1. В кимический стакан отбирают пипеткой 10 см³ электролита, разбавляют водой до 100 см³, приливают 20 см³ соляной кислоти,
 доводят до кипения и осторожно прибавляют 5-10 см³ этилового
 спирта (вместо спирта можно добешть по каплям раствор перекиси
 водорода) и кипятят 25-30 мин до перехода окраски раствора из
 желтой в темно-зеленую. Затем приливают 10 см³ уксусной кислоти,
 нагревают до кипения, по каплям при перемешивании приливают 10 см³
 горячего раствора клористого бария и кипятят 5 мин. Раствор выдерживают в теплом месте 4-6 ч, после этого фильтруют через бумажный
 обеззоленный фильтр. Осадок на фильтре промывают водой до удаления
 конов клора (отрицательная реакция с азотнокислым серебром).

Промытый фильтр с осадком помещают в предварительно взвешенный фарфоровый тигель, сушат, прокаливают до постоянной массы при 800-900 °C, охлаждают в эксикаторе, взвешивают.

- 2.4.5. Требования к вычислению результатов измеряний.
- 2.4.5.I. Массовую концентрацию серной кислоты в г/дм³ вычисияют по формуле (5)

$$C = \frac{m \cdot 0,420 \cdot 1000}{V} , \qquad (5)$$

гле *m* - масса осадка сернокислого бария, г:

0,420 - коаффициент пересчета сернокислого бария на серную кислоту:

V - объем электролита, взятый на анализ, см³.

2.4.5.2. Раскождение между результатами двук параллельных измерений не должно превышать значений, указанных в табл.3.

Таблица 3

Массовая концентрация серной кислоты, г/дм ³	Допускаемое раскождение. г/дм ³
От 1,50 до 2,50 включ.	0,06
CB.2,50 " 4,00 "	0,10

- 2.5. Методика выполнения измерений массовой концентрации железа фотометрическим методом
- 2.5.І. Массовую концентрацию железа определяют фотометрическим методом по разд.2. OCT 3 6443 -88.
 - 2.5.2. Требования к выполнению измерений.
- 2.5.2.1. В жимический стакан вместимостью 300-350 см³ отбирают пинеткой 5 см³ электролита, приливают 100 см³ води, добавляют 3-5 г клористого аммония и раствор аммиака до появления резкого запака. Затем добавляют 2-3 см³ перекиси водорода, доводят до кипения, кипятят в течение 5 мин, дают осадку скоагулировать. Растрор с осадком фильтруют через бумажный фильтр "синяя лента", промывают горячей водой и далее в соответствии с разд. 2 ОСТ 3-6443-88.

- 2.6. Методика выполнения измерений массовой концентрации хромового ангидрида фотометрическим методом
- 2.6.1. Метод основан на измерении оптической плотности раствора электролита, обусловленной собственным поглошением ионов крома (УІ) при плине волны 440 нм.
 - Хром (Ш) и железо предварительно отделяют на катионите.
- 2.6.2. Требования к средствам измерений, реактивам, растворам. Спектрофотометр или фотоэлектроколориметр.

Колонки ионообменные.

Катионит КУ-2 в Н+- форме.

Стаканы вместимостью 50 см3.

Колон мерные вместимостью 50. 100 и 500 см3.

Пипетки вместимостью 5 и IO см³ без делений и IO см³ с пелениями. XDOMA (VI) OKNOL.

- 2.6.3. Требования к подготовке выполнения измерений.
- 2.6.3.1. Для приготовления стандартного раствора кромового ангилрила концентрацией 50 г/лм⁸ навеску кромового ангидрида массой 5 г растворяют в воде в мерной колбе вместимостью 100 см³, доводят водой по метки, перемешивают.

Массовую концентрацию кромового ангидрида устанавливают по п.2.2 настоящего стандарта.

- 2.6.3.2. Хроматографическую колонку готовят к работе по разд.2 OCT 3-6444-88.
 - 2.6.3.3. Построение грануировочного графика.

В мерную колоу вместимостью 100 см³ отбирают пипеткой 10 см³ стандартного раствора космового ангиррина, доводят до метки водой, перемешивают.

В мерные колон вместимостью 50 см³ отбирают пипеткой I,0; 2,0; 4,0; 6,0; 8,0 см³ полученного раствора, доводят до метки водой, перемешивают.

Оптическую плотность растворов измеряют при длине волны 440 нм в кювете с толщиной поглощающего свет слоя 5 мм по отношению к воде.

По найденным значениям оптической плотности и соответствущим им массам кромового ангидрида строят градуировочний график.

2.6.4. Требования к выполнению измерений.

2.6.4.1. В стакан отбирают пипеткой 5 см³ электролита, добавляют 15-20 см³ воды, перемешивают. Полученный раствор электролита пропускают через колонку с катионитом КУ-2 в H⁺ - форме со скоростью 2 см³/мин. Колонку промывают водой до исчезновения в промывных водах солей крома (отсутствие желтой окраски).

Элюат и промывные воды собирают в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

Отбирают пипеткой IO см³ полученного раствора в мерную колбу вместимостью 50 см³, доливают водой до метки, перемешивают и измеряют оптическую плотность раствора при длине волни 440 нм в кювете с толщиной поглощающего свет слоя 5 мм по отношению к воде.

Массу кромового ангидрида находят по градуировочному графику.

2.6.5. Требования к вычислению результатов измерений.

2.6.5.I. Массовую концентрацию кромового ангидрида в г/дм⁸ вычисляют по формуле (6)

$$C = \frac{m \cdot 1000}{V} , \qquad (6)$$

где масса кромового ангидрида, найденная по градуировочному графику, г:

 $\sqrt{\ }$ - объем электролита, взятий для анализа, см $^{3}.$

- 2.6.5.2. Расхождение между результатами двух парадлельных измерений не должно превышать значений, указанных в табл.2.
- 2.7. Методика выполнения измерений массовой концентрации крома (Ш) фотометрическим методом
- 2.7.1. Метод основан на крематографическом отделении крома (Ш) и железа от крома (УІ) и последующем измерении оптической плотности раствора, обусловленной собственным поглошением ионов крома (Ш) при плине водны 590 нм.
 - 2.7.2. Требования к средствам измерений, реактивам, растворам.

Средства измерений, реактивн, растворы устанавливает п.2.6.2 настоящего стандарта.

Кислота соляная, разбавленная I:I и раствор концентрацией 3 моль/дм³. Хром металлический.

- 2.7.3. Требования к подготовке выполнения измерений.
- 2.7.3.1. Для приготовления стандартного раствора крома концентрацией 10 г/дм³ навеску крома металлического массой 1.0000 г растворать в 20 см³ раствора соляной кислоты, разбавленной 1:1, при нагревании, оклаждают, переносят в мерную колбу вместимостью 100 см³, доводят водой до метки и перемешивают.
 - 2.7.3.2. Построение градуировочного графика.

В мерние колон вместимостью 100 см³ отбирают 1,0; 2,0; 4,0, 6,0; 8,0; 10,0 см³ стандартного раствора крома, доводят до метки водой, перемешивают. Оптическую плотность растворов измеряют при длине волни 590 нм в кювете с толщиной поглощающего свет слоя 30 мм по отношению к воде. По найденным значениям сптической плотности и соответствующим им массам крома строят градуировочный график.

- 2.7.4. Требования к выполнению измерений.
- 2.7.4.І. Хром (Ш) и железо, адсорбированные катионитом после отделения крома (УІ) по п.2.6.4.1. настоящего стандарта вымывают из колонки соляной кислотой. Для этого через колонку пропускают 4 раза по ІО см³ 3 М раствора соляной кислоты, а затем 4-5 раз по ІО см³ воды со скоростью 2 см³/мин.

Элюат и промывние води сосирают в мерную колоу вместимостью 100 см³, доводят водой до метки и перемешивают. Оптическую плотность раствора измеряют при длине волны 590 нм в кювете с толщиной поглощающего свет слоя 30 мм по отношению к воде.

Массу крома находят по градуировочному графику.

- 2.7.5. Требования к вычислению результатов измерений.
- 2.7.5.І. Массовую концентрацию крома в $r/mм^3$ вычисляют по формуле (7)

$$C = \frac{m \cdot 4000}{V} , \qquad (7)$$

где m - масса крома, найденная по градуировочному графику,г; V - объем электродита, взятый для анализа, см³.

- 2.7.5.2. Относительная ощибка измерения составляет 4%.
- 2.8. Методика выполнения измерений массовой концентрации железа фотометрическим методом
- 2.8.1. Метод основан на кроматографическом отделении железа и крома (Ш) от крома (УІ) и последующем измерении оптической плотности раствора, обусловленной собственным поглощением ионов железа (Ш) в 0,5 М растворе серной кислоти при длине волни 320 нм.

2.8.2. Требования к средствам измерений, реактивам, раство-. MBG

Средства измерений, реактивы, растворы устанавливает п.2.6.2 настоящего станцарта.

Киреты кварцевые толшиной 10 мм.

Кислота серная, разбавленная І:4 и раствор концентрацией 0.5 моль/дм³.

Кислота азотная.

железо карбонильное.

- 2.8.3. Требования к подготовке выполнения измерений.
- 2.8.3.1. Пля приготовления раствора серной кислоти концентрашией 0.5 моль/шм³ к 970 см³ воды придивают 30 см³ серной кислоты переменивают и охлажнают.
- 2.8.3.2. Для приготовления стандартного раствора железа концентрацией 0.1 г/дм3 навеску карбонильного железа массой 0,1000 г растворяют при нагревании в 50 см³ раствора серной кислоти, разбавленной I:4, окисляют азотной кислотой, приливают 20 см³ серной кислоты и дважды упаривают до паров серного ангидрида. Раствор оклажнают, разбавляют водой, переносят в мерную колбу вместимостью I им³, повоият водой по метки и перемешивают.
 - 2.8.3.3. Построение градуировочного графика.

B Medhie konoh bmectumoctio IOO cm3 otonpart 2.5. 5.0. IO.O. I4.0. 20.0 см³ стандартного раствора железа, доводят до метки 0.5 М раствором серной кислоти и перемешивают.

Оптическую плотность растворов измеряют при плине волны 320 нм в квариевой кювете с толимной поглощающего свет слоя 10 мм по отношению к воле.

По найденным значениям оптической плотности и соответствукщим им массам железа строят градуировочный градик.

- 2.8.4. Требования к выполнению измерений.
- 2.8.4.1. В мерную колбу вместимостью 100 см³ отбирают пипеткой 10 см³ раствора, полученного после вымывания крома и железа из колонки, доливают до метки 0,5 М раствором серной кислоты и перемешивают.

Оптическую плотность раствора измеряют при длине волны 320 нм в кварцевой кювете с толщиной поглощающего свет слоя 10 мм по отношению к воде.

Массу железа находят по градуировочному графику.

- 2.8.5. Требования к вычислению результатов измерений.
- 2.8.5.1. Массовую концентрацию железа в г/дм³ вычисляют по формуле (8)

$$C = \frac{m \cdot 1000}{V} \quad , \tag{8}$$

где *т* - масса железа, найденная по градуировочному графику, г;

V - объем электролита, взятый для анализа, см $^{
m s}$.

2.8.5.2. Относительная ощибка измерения составляет 3%.

- З. ЭЛЕКТРОЛИТ ЧЕРНОГО ХРОМИРОВАНИЯ
- 3.1. Состав электролита черного хромирования приведен в табл.3.

Таблица З

Наименование компонента	Массовая концентрация, г/дм ³
Ангидрид хромовий	150–400
Хром азотнокислый	3–7
Кислота борная	8–20
Алиминий фтористый	2–5

В процессе работы определяют массовые концентрации состав-

- 3.2. Методика выполнения измерений массовой концентрации хромового ангидрида объемным перманганатомет-рическим методом
- 3.2.1. Массовую концентрацию хромового ангидрида определяют по п.2.2 настоящего стандарта.
- 3.3. Методика выполнения измерений массовой концентрации крома (Ш) объемным перманганатометрическим методом
- 3.3.1. Массовую концентрацию крома (Ш) определяют по п.2.3 настоящего стандарта.

C.ISI

- 3.4. Методика выполнения измерений массовой концентрации борной кисло-
- 3.4.I. Метод основан на титровании комплекса борной кислоти с глицерином раствором гидроокиси натрия до pH 6,9, регистрируя значения pH с помощью pH-метра.

Погрешность измерения в диапазоне 8,0-I4,0 г/дм 8 составляет $^{\pm}$ 0,4 г/дм 3 , в диапазоне I4-20 г/дм 3 составляет $^{\pm}$ I г/дм 3 .

3.4.2. Требования к средствам измерений, реактивам, растворам. Средства измерений, реактиви, растворы устанавливает разд.2

Воронки стеклянные конические.

Фильтры бумажные обеззоленные "синяя лента".

Пицетка вместимостью 25 см⁸.

Фенолфталеин, спиртовий раствор концентрацией 5 г/дм8.

Барий клористый, раствор концентрацией 100 г/лм3.

Натрия гипроокись, раствор концентрацией 200 г/mm³.

- 3.4.3. Требования к полтотовке выполнения измерений.
- 3.4.3.1. Подготовку к выполнению измерений проводят по разд.2

- 3.4.4. Требования к выполнению измерений.
- 3.4.4.1. В мерную колбу вместимостью 100 см³ отбирают пипеткой 2 см³ электролита, приливают 40-50 см³ воды, добавляют 20 см³ раствора клористого бария, перемешивают. Добавляют 10 см³ раствора гидроскием натрия концентрацией 200 г/дм³, доводят водой до метки,

c. I22

перемешивают. Через 30-40 мин отфильровивают часть раствора через бумажный фильтр в сукую колбу, отбросив первую порцию фильтрата. Отбирают пипеткой 25 см³ фильтрата в стакан вместимостью 300 см³, добявляют 2-3 капли раствора фенолфталеина и нейтрализуют раствором соляной кислоты, разбавленной I:I, до исчезновения розовой окраски раствора.

Устанавливают стакан на магнитную мешалку, опускают электроды и добавляют раствор гидроокиси натрия концентрацией 0,02 моль/дм³ до установления рН 6,9. К раствору приливают 30 см³ раствора глицерина и титруют раствором гидроокиси натрия концентрацией 0,02 моль/дм³ до рН 6,9.

- 3.4.5. Требования к вычислению результатов измерений.
- 3.4.5.І. Массовую концентрацию борной кислоты в электролите в r/m^3 вычисляют по формуле (7) разд.2 ССТ 3 6444 88.

3.4.5.2. Раскождение между результатами двух параллевьных измерений не должно превышать значений, указанных в табл.4.

Таблипа 4

Массовая концентрация	Допускаемое раскождение,
борной кислоты, г/дм ³	г/дм ³
От 8,0 до I4,0 включ.	0,8
Св. I4,0 " 20,0 "	2,0

- 3.5. Методика определения массовой концентрации фтористого алюминия потенциометрическим методом
- 3.5.1. Метод основан на измернии электродного потенциала фторид-селективного электрода, возникающего при погружении его

в раствор, содержащий ионы фтора. Для поддержания постоянной ионной силы раствора добавляют 4М цитратный буферный раствор.

Погрешность измерения в диапазоне 2,00-5,00 г/дм 3 составляет ± 0.15 г/лм 3 .

3.5.2. Требования к средствам измерений, реактивам, растворам. Мерные колон вместимостью 50, 100, 500 см 3 и 1 дм 3 .

Полиэтиленовые емкости вместимостью 500 см3.

Пипетки вместимостью 5 и 10 см³ без делений.

Стаканы кимические стеклянные вместимостью 50 см3.

Лабораторный рН-метр-милливольтметр.

Электрод ионоселективный с мембраной из фторида лантана.

Электрод сравнения - насыщенный хлорсеребрянний, ЭВЛ-IM3, включенный через солевой мостик. Раствор для заполнения солевого мостиканасыщенный раствор калия хлористого.

Калий клористый.

Кислота лимонная.

Натрия гидроокись, раствор концентрацией 10.0 моль/дм 3 и 1.0 моль/дм 3 . Натрий фтористый кристаллический.

Натрий клористый, раствор концентрацией 0,1 моль/дм³.

Аммиак водный.

Хрома (УІ) окись (хромовый ангидрид), раствор концентрацией 300 г/лм³.

3.5.3. Требования к подготовке выполнения измерений.

3.5.3.1. Для приготовления I М цитратного буферного раствора (рН 5,8) навеску лимонной кислоти массой 210,08 г растворяют в 200 см³ раствора гидроокиси натрия концентрацией 10 моль/дм³ и разбавляют водой до 1000 см³ (раствор А). В мерную колбу вместимостью I дм³ помещают 360 см³ раствора гидроокиси натрия концентрацией I моль/дм³ и доволят до метки раствором А.

3.5.3.2. Стандартные растворы фтористого натрия готовят следующим образом:

Раствор А. Навеску фтористого натрия массой 4,2000 г помещают в мерную колбу вместимостью Im^3 , доливают до метки водой, перемешивают. І Im^3 раствора А содержит I.10^{-1} моль фтористого натрия.

Раствор Б. Пипеткой отбирают 50 см³ раствора А в мерную колбу вместимостью 500 см³, поливают водой до метки, перемешивают.

I дм 3 раствора Б содержит — 1.10^{-2} моль/дм 3 фтористого натрия. Растворы, содержащие 1.10^{-3} — 1.10^{-5} моль/дм 3 фтористого натрия готовят аналогично раствору Б путем последовательного разбавления предыдущих растворов.

Стандартные растворы кранят в полиэтиленовых емкостяк.

3.5.3.4. Построение градуировочного графика.

В стакани вместимостью 50 см³ помещают по 5 см³ раствора кромового ангидрида и отбирают пипеткой по 5 см³ стандартных растворов фторидов. Приливают раствор аммиака до рН 5,8 (контроль на рН-метре), содержимое каждого стакана переводят в мерную колбу вместимостью 50 см³, приливают 20 см³ буферного раствора, доливают водой до метки и перемешивают.

В химический стакан вместимостью 50 см³ помещают поочередно 25-30 см³ полученных растворов, начиная с низшей концентрации, погружают фторид-селективный электрод и электрод сравнения и производят взмерение потенциала для каждого раствора после установления равновесного значения потенциала на рН-метре, включенном на измерение потенциалов в мВ.

C. I25

По найденным значениям потенциалов растворов и соответствующим им концентрациям фтористого натрия строят градуировочный график на полулогарифмической бумаге, откладывая по оси ординат величину потенциала в мВ, а по оси абсцисс — концентрацию фтористого натрия в моль/дм³ в логарифмическом масштабе.

Традуировочный график проверяют каждый раз перед началом работы по одному-двум стандартным растворам.

3.5.4. Требования к выполнению измерений.

3.5.4.І. В стакан вместимостью 50 см³ отбирают пипеткой 5 см³ электролита, приливают раствор аммиака до рН 5,8 (контроль на рН-метре), содержимое стакана переводят в мерную колбу вместимостью 50 см³, приливают 20 см³ буферного раствора, доливают водой до метки и перемешивают.

В стакан вместимостью 50 см³ помещают 25-30 см³ подготовленного таким образом раствора, погружают в него электроды, рН-метр устанавливают на измерение потенциалов в мВ и после установления равновесного значения измеряют величину электродного потенциала.

3.5.5. Требования к внчислению результатов измерений.

3.5.5.1. Массовую концентрацию фтористого алиминия в электролите в г/дм 3 вычисляют по формуле (9)

$$C = \frac{C_1 \cdot 19,00 \cdot 1000}{V} \cdot 1,47 \tag{9}$$

где C_{1} - концентрация фтористого натрия, найденная по градуировочному графику, моль/ди³;

V – объем электролита, взятый для анализа, см $^{\bf s}$;

19,00 - молярная масса иона фтора, г/моль:

І.47 - коэффициент пересчета со фтора на фтористый алиминий.

3.5.5.2. Раскождение между результатами двук параллельных измерений не должно превышать значений, указанных в табл.5.

Таблица 5

Массовая концентрация	Допускаемое раскождение,
фтористого алкминия, г/дм ³	г/дм ³
От 2,0 до 5,00 включ.	0,25

- З.6. Методика выполнения измерений массовой концентрации железа атом ... но-абсорбционным методом
- 3.6.1. Метод основан на измерении степени поглощения резонансного излучения атомами железа, образующимися при распилении анализируемого раствора в пламени воздук-ацетилен, при длине волны 248.3 нм.
- 3.6.2. Требования к средствам измерений, реактивам, растворам. Атомно-абсороционный пламенный спектрофотометр.

Лампа с полым катоном тина ЛП-2.

Ацетилен газообразный технический.

Компрессор, обеспечивающий подачу сжатого воздука, или балон со сжатым воздуком.

Колон мерные вместимостью 100 см3.

Бюретка вместимостью 25 см³.

Пипетки вместимостью 5, 10, 20 см³ без делений.

Железо карбонильное техническое.

Кислота соляная, разбавленная І:І.

Хрома (УІ) окись (хромовый ангидрид), раствор концентрацией 40 г/дм³.

C. 127.

- 3.6.3. Требования к подготовке выполнения измерений.
- 3.6.3.1. Для приготовления стандартного раствора железа концентрацией I г/дм³ навеску карбонильного железа массой 0,1000 г растворяют при нагревании в 20 см³ раствора соляной кислоти. Раствор переносят в мерную колбу вместимостью I дм³, доливают водой до метки, перемешивают.
- 3.6.3.2. Для построения градуировочного графика в мерные колом вместимостью 100 см³ из обретки приливают 2,5; 5,0; 10,0; 15,0; 20,0 см³ стандартного раствора железа приливают по 5 см³ раствора кромового ангидрида, доливают водой до метки, перемешивают. Полученные растворы распыляют в пламя ацетилен-воздух при одновременном просвечивании его светом резонансных частот от лампы с по лым катодом при длине волны 248,3 нм. По найденным значениям оптической плотности и соответствующим им массам железа строят градуировочный график.
 - 3.6.4. Требования к выполнению измерений.
- 3.6.4.1. В мерную колбу вместимостью 100 см³ отбирают пипеткой 5 см³ электролита, доводят водой до метки, перемешивают. Отбирают пипеткой 10 см³ полученного раствора в мерную колбу вместимостью 100 см³, доводят водой до метки, перемешивают и измеряют величину степени поглощения излучения при введении раствора в пламя воздукацетилен при плине волны 248.3 нм.

Массу железа в аликвотной части раствора находят по градуировочному графику.

C.<u>I3</u>8

- 3.6.5. Требования к вычислению результатов измерений.
- 3.6.5. І. Массовую концентрацию железа в г/лм³ вычисляют по формуле (10)

$$C = \frac{m \cdot tooo}{V} \quad , \tag{10}$$

гле т - масса железа, найденная по градуировочному

графику, г; V - объем электролита, взятый на анализ, см³.

3.6.5.2. Относительная ошибка измерения составляет 5%.

4. ЭЛЕКТРОЛИТ ХРОМИРОВАНИЯ С ДОБАВКОЙ СОЛЕЙ ВОЛЬФРАМА

4.1. Состав электролита кромирования с добавкой солей вольфрама приведен в табл.6.

Таблипа 6

Наименование компонента	Массовая концентрация, г/дм ⁸	_
Ангидрид кромовый	150-400	
Кислота серная	I-4	
Кислота фосфорная	I -4	
Натрий вольфрамовокислый 10-водный	10-25	

В процессе работы определяют массовие концентрации составлякших электролит компонентов и примесей железа и окиси крома.

C. T39

- 4.2. Методика выполнения измерений массовой концентрации кромового ангидрида объемным перманганатометрическим метопом
- 4.2.1. Массовую концентрацию кромового ангидрида определяют по п.2.2. настоящего стандарта.
- 4.3. Методика выполнения измерений массовой концентрации окиси крома объемным перманганатометрическим метолом
- 4.3.1. Массовую концентрацию окиси крома определяют по п.2.3 настоящего станцарта.
- 4.4. Методика выполнения измерений массовой концентрации серной кислоты гравиметрическим метопом
- 4.4.1. Массовую концентрацию серной кислоты определяют по п.2.4 настоящего стандарта.
- 4.5. Методика выполнения измерений массовой концентрации фосфорной кислоты молиодатным метолом с объемным ацидиметрическим окончанием
- 4.5.1. Метод основан на образовании фосфорной кислотой с молиоцатом аммония осадка фосфоромолиодата аммония.

H. PO. +12 (NH)2 MOO. +21 HNO3 = [(NH)3 PO. 12 MOO.] +21 NHOND3

Осадок растворяют в избытке раствора гидроокиси натрия

2 (NHy) PO4 -12 MOO4 + 23 NOOH = 11 NO2 MOO4 + (NH4)2 MOO4 + NQNH4HPO4+11H2D

Изонток гидроокиси натрия оттитровнвают раствором азотной кислоты.

Погрешность измерений в диапазоне 1,00-2,00 г/дм³ составляет $\pm 0,07$ г/дм⁸ в диапазоне 2,00-4,00 г/дм³ ± 0.14 г/дм³.

4.5.2. Требования к средствам измерений, реактивам, растворам. Плитка электрическая.

Колон конические вместимостью 250 см3.

Стаканы кимические стеклянные вместимостью 300 см3.

Пипетка вместимостью 5 и 20 см³ без делений.

Бюретка вместимостью 25 см³.

Мензурки мерные вместимостью 5 и 25 см³.

Воронки стеклянные конические.

Фильтры бумажные обеззоленные "желтая лента" и "синяя лента".

Кислота азотная, раствор концентрацией 0,1 моль/дм³ готовят из биксанала.

Натрия гидроокись, раствор концентрацией 0,I моль/дм³.

Аммиак водный.

Аммоний роданистий, раствор концентрацией 200 г/дм3.

Калий азотнокислый, раствор концентрацией 20 г/дм3.

Железо трекклористое 6-водное, раствор концентрацией 50 г/дм³.

Фенолфталенн, спиртовый раствор концентрацией 5 г/дм3.

Спирт этиловый ректификованный технический.

Аммоний молиоденовокислый.

c.28

- 4.5.3. Требования к подготовке выполнения измерений.
- 4.5.3.I. Для приготовления раствора молибденовой жидкости готовят два раствора.

Раствор A : 50 г молибденовокислого аммония растворяют в $200~{\rm cm}^3$ воли и $40~{\rm cm}^3$ аммуака.

Раствор Б: Готовят раствор азотной кислоти, разбавленный 2:3.

Отбирают один объем раствора A и медленно вливают в двукратный объем раствора Б.

Полученный раствор выдерживают в течение 48 ч.

4.5.3.2. Раствор гидроокиом натрия готовят по разд.3

4.5.3.3. Для установления соотношения объемов растворов гидроокиси натрия и азотной кислоты отбирают пипеткой 20 см 3 раствора гидроокиси натрия в коническую колбу, приливают 100 см 3 воды, прибавляют 3-5 капель раствора фенолфталеина и титруют раствором азотной кислоты до исчезновения розовой окраски раствора. Соотношение (K_T) вичисляют по формуле (II)

$$K_t = \frac{V_t}{V_z} \quad , \tag{II}$$

где

V₁ - объем раствора гидроскиси натрия, взятий для титрования. см³:

 V_2 - объем раствора азотной кислоты, израс кодованный на титрование, см 3 .

C. 142.

4.5.4. Требования к выполнению измерений.

4.5.4. I. В мерную колбу вместимостью 100 см³ отбирают пипеткой 10 см³ электролита, доводят до метки водой, перемешивают. Отбирают пипеткой 20 см³ полученного раствора в стакан вместимостью 300 см³, приливают 100 см³ воды и I см³ раствора трехклористого железа.

Содержимое стакана нагревают до кипения и при перемешивании приливают раствор аммиака до образования осадка гидроокиси железа. Фосфорная кислота осаждается вместе с гидроокисью железа.

Раствор с осадком выдерживают в теплом месте в течение 20 мин и фильтруют через фильтр "желтая лента". Осадок на фильтре промывают 4-5 раз горячей водой и растворяют 15-20 см³ раствора азотной кислоти, разбавленной 1:1, собирая раствор в коническую колбу вместимостью 250 см³.

Фильтр промывают 2-3 раза горячей водой, присоединяя промывную жидкость к основному фильтрату.

В колбу добавляют 10 г нитрата аммония, полученный раствор нагревают до 50 $^{\rm O}$ С, приливают 40 см $^{\rm S}$ молибденовой жидкости, встряживают содержимое колбы в течение 5 мин и дают осадку скоатулировать в течение 2-3 ч.

Раствор фильтруют через фильтр "синяя лента" с добавлением небольшого количества бумажной массы и промывают сначала раствором азотной кислоти, разбавленной I:50, для удаления железа (до отрицательной реакции с роданидом аммония), а затем раствором нитрата калия и водой до нейтральной реакции промывных вод.

Промитий осадок фосфоромолибдата аммония переносят вместе с фильтром в колбу, где производилось осаждение, приливают из

бюретки 20 см³ раствора гидроокиси натрия и взбалтивают жидкость до полного растворения желтого осадка. Если осадок полностью не растворитоя, добавляют еще раствор гидроокиси натрия (фиксируют объем) и продолжают взбалтивать до полного растворения осадка и исчезновения желтой окраски.

После этого стенки колби обмывают водой, несодержащей углекислоти, прибавляют еще 50 см³ воды, 5-7 капель раствора фенолфталеина и титруют 0,1 М раствором азотной кислоти до исчезновения розовой окраски раствора.

4.5.5. Требования к вычислению результатов измерений.

4.5.5.1. Массовую концентрацию фосфорной кислоты в $f/дм^3$ вычисляют по формуле (I2)

$$C = \frac{(V_1 - K_1 V_2) \cdot 0,000135 \cdot 1000}{V} \cdot 3,161 , \qquad (12)$$

гле

 V_I -объем раствора гидроокиси натрия, израскодованный на растворение осадка, см³;

V₂ - объем раствора азотной кислоти, израсходованний на титрование избытка гидроокиси натрия, см³;

К₁- соотношение объемов растворов гидроокиси натрия и азотной кислоти;

0,000135 - массовая концентрация 0,1 M раствора гидроокиси натрия, выраженная в г/см³ фосфора;

3,161 - коэффициент пересчета с фосфора на фосфорную кислоту;

 $\sqrt{}$ - объем электролита, взятый на анализ, см 3 .

4.5.5.2. Раскождение между результатами двух параллельных измерений не должно превышать значений, указанных в табл.7.

Таблица 7

Массовая концентрация фосфорной кислоты, г/дм ³	Допускаемое раскождение, г/дм ³
От 1,00 до 2,00 включ.	0,10
Св.2,00 " 4,00 "	0,25

- 4.6. Методика выполнения измерений массовой концентрации вольфрамовокислого натрия фотометрическим методом
- 4.6.1. Метод основан на образовании окрашенного в желто-зеленый цвет комплексного соединения вольфрама (У) с роданистым
 аммонием в солянокислой среде в присутствии трекклористого титана
 и последующем измерении оптической плотности раствора при длине
 волны 410 нм.

Погрешность измерений в диапазоне 10,0-15,0 г/дм³ составляет ± 0.6 г/дм³. В диапазоне 15,0-25,0 г/дм³— ± 1.0 г/дм³.

Железо и кром предварительно отделяют осаждением гидроокиси натрия.

4.6.2. Требования к средствам измерений, реактивам, растворам. Спектрофотометр или фотоэлектроколориметр.

Колон мерные вместимостью 50, 100 и 500 см3.

Стаканы жимические стеклянные вместимостью 200 см3.

Воронки стеклянные коничестие.

Фильтры бумажные "синяя лента".

Пипетка вместимостью 5 см³ без делений.

Кислота соляная.

Спирт этиловий ректификованный технический.

Натрия гидроскись, раствор концентрацией 200 г/дм⁸.

Аммоний роданистый, свежеприготовленный раствор концентрацией 500 г/дм^3 .

Титан металлический, раствор концентрацией 10 г/дм^3 .

Вольфрам металлический.

Аммоний щавелевокислый, раствор концентрацией 40 г/дм 3 . Аммоний сернокислый.

- 4.6.3. Требования к подготовке выполнения измерений.
- 4.6.3.1. Для приготовления раствора треххлористого титана навеску порошкового титана массой I г растворяют при нагревании в $20-25~{\rm cm}^3$ раствора соляной кислоты, охлаждают, разбавляют кипяченой водой до $100~{\rm cm}^3$.
- 4.6.3.2. Для приготовления стандартного раствора вольфрама концентрацией I г/дм³ навеску металлического вольфрама 0,1000 г растворяют при нагревании в смеси IO см³ серной кислоты и 3 г сернокислого аммония. После полного растворения стружки раствор оклаждают, приливают 40-50 см³ раствора щавелевскислого аммония, переводят в мерную колбу вместимостью IOO см³, доливают до метки раствором щавелевокислого аммония и перемешивают.
 - 4.6.3.3. Построение градуировочного графика.

В мерние колон вместимостью 50 см 3 помещают 0,5; I,0; I,5; 2,0; 2,5; 3,0; 4,0; 5,0 см 3 стандартного раствора вольфрама, добавляют I см 3 раствора роданистого аммония, 30 см 3 раствора соляной кислоты

и по каплям при перемешивании добавилят раствор трекклористого титана до появления желтой окраски и избиток 0,5 см³. Доливают до метки раствором соляной кислоти и перемешивают. Через 15 мин измеряют оптическую плотность раствора при длине волны 410 нм в кювете с толщиной поглощающего свет слоя 10 мм по отношению к воде.

По найденным значениям сптической плотности и соответствующим им массам вольфрама строят градуировочный график.

4.6.4. Требования к выполнению измерений.

4.6.4.1. В стакан отбирают пипеткой 5 см³ электролита, доливают 30 см⁸ соляной кислоти, 10 см³ спирта, нагревают до окрашивания раствора в зеленый цвет. В мерную колбу вместимостью 500 см³ поменают 150 см³ раствора гидроокиси натрия и постепенно при тщательном перемешивании переводят электролит в колбу. Содержимое колби перемешивают и фильтруки через фильтр, отбрасывая первую порцию фильтрата.

В мерную колбу вместимостью 50 см³ отбирают пипеткой 5 см³ фильтрата, разбавляют водой до метки, перемешивают. Отбирают пипет-кой 5 см³ полученного раствора в мерную колбу вместимостью 50 см³ и далее в соответствии с п.4.5.3.3 настоящего стандарта.

4.6.5. Требования к вычислению результатов измерений.

4.6.5.1. Массовую концентрацию вольфрамовокислого натрия 10-водного в г/см³ вычисляют по формуле (13)

$$C = \frac{m \cdot 1000}{V} \cdot 2,58$$
, (13)

где m - масса вольфрама, найденная по градуировочному графику, г;

- 2,58 коэффициент пересчета с вольфрама на вольфрамовокиолый натрий 10-водный;
 - V объем электролита, взятый на анализ, см³.
- 4.6.5.2. Раскождение между результатами двух параллельних измерений не должно превышать значений, указанных в табл.8.

Таблица 8

Массовая концентрация вольфрамовокислого натрия, г/дм ³			Допускаемое расхождение, г/дм ³
Or IO	до I5	включ.	I
Св.15	" 25	n	2

- 4.7. Методика выполнения измерений массовой концентрации железа фотометрическим методом
- 4.7.I. Массовую концентрацию железа определяют по п.2.5 настоящего стандарта.
- 4.8. Методика выполнения измерений массовой концентрации железа атом но-абсороционным методом
- **4.8.1.** Массовую концентрацию железа определяют по п.3.6 настоящего стандарта.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- I. УТВЕРЖДЕН 05.12.88 И ВЭЕДЕН В ДЕЙСТВИЕ МИНИСТЕРСТВОМ (ПРИКАЗ 1970 с л.02.89 № 3.901)
- 2. COTTACOBAH LIFOC 18:11.88 4K N poqpco1030 27.10.88
- 3. ЗАРЕГИСТРИРОВАН

3a M or 1989 r.

- Срок первой проверки периодичность проверки
- 5. ВВЕДЕН ВПЕРВЫЕ