ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

УТВЕРЖДАЮ Директор ФГБУ «Федеральный центр анализа и оценки техногенного воздействия»

В.В. Новиков

01 "сентября 2016 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ ВЗВЕШЕННЫХ ВЕЩЕСТВ В ПРОБАХ ПРИРОДНЫХ И СТОЧНЫХ ВОД ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 14.1:2:3.110-97

Методика допущена для целей государственного экологического контроля

> МОСКВА (Издание 2016 г)

Право тиражирования и реализации принадлежит разработчику.

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации № RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен предыдущего издания ПНД Ф 14.1:2.110-97 и действует с 01 декабря 2016 года до выхода нового издания.

Сведения об аттестованной методике измерений переданы в Федеральный информационный фонд по обеспечению единства измерений.

Заместитель директордино (ДАО)»

Научнопроизводственное в производственное в предприятие

Душч А.Б. Сучков

Разработчик: © ООО НПП «Акватест»

Адрес: 344022, г. Ростов-на-Дону, ул. Журавлева, 44

тел./факс: (863) 292 30 18; (863) 263 80 33 e-mail: atest@bk.ru; aquatest@donpac.ru

http://www.atest-rostov.ru

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовой концентрации взвешенных веществ в диапазоне от 3,0 до 5000 мг/дм³ в пробах природных (поверхностных и подземных) и сточных (производственных, хозяйственно-бытовых, ливневых, очищенных) вод гравиметрическим методом.

Результаты измерений могут быть некорректными при наличии в пробе значительных количеств нефтепродуктов и жиров, поэтому при отборе пробы не допускают попадания в нее поверхностной пленки, а также плавающих частиц (кусочков бумаги, листьев, травы и т.п.).

2 НОРМАТИВНЫЕ ССЫЛКИ

ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования.

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.1.009-83 ССБТ. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ Р 12.1.019-2009 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия.

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия.

ГОСТ 3145-84 Часы механические с сигнальным устройством. Общие технические условия

ГОСТ 3956-76 Силикагель технический. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.

ГОСТ 21241-89 (СТ СЭВ 5204-85) Пинцеты медицинские. Общие технические требования и методы испытаний.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы. Основные параметры и размеры.

ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ OIML R 76-1-2011 ГСИ Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

ТУ 6-09-1678- 95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 6-09-4711-81 Реактивы. Кальций хлористый (обезвоженный), чистый. Технические условия.

ТУ 64-1-909-80 Шкафы сушильно-стерилизационные ШСС-80П.

ТУ 2265-011-43153636-2015 Мембрана ацетатцеллюлозная Владипор МФАС-ОС-2-37мм (0,45 мкм).

ТУ 3616-001-32953279-97 Приборы вакуумного фильтрования ПВФ-35 и ПВФ-47.

3 МЕТОД ИЗМЕРЕНИЙ

Гравиметрический метод измерения массовой концентрации взвешенных веществ основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его при (105±2)°С до постоянной массы.

4 ТРЕБОВАНИЯ К ПОКАЗАТЕЛЯМ ТОЧНОСТИ ИЗМЕРЕНИЙ

4.1 Настоящая методика обеспечивает получение результатов измерений с погрешностями, не превышающими значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

Таблица 1 - Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Диапазон измерений массовой концентрации взвешенных веществ, мг/дм ³	Показатель точности (границы относительной погрешности при вероятности P=0,95), ±8, %	Показатель повторяемости (относительное средне- квадратическое отклонение повторяемости), σ ₁ , %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %
От 3,0 до 10,0 включ.	30	10	15
Св. 10,0 до 50,0 включ.	20	7	10
Св. 50,0 до 5000 включ.	10	3	5

5 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

5.1 Средства измерений, лабораторная посуда, вспомогательные устройства

Весы лабораторные общего назначения специального	ΓΟCT P 53228	
или высокого класса точности с наибольшим пределом взвешивания 210 г	или ГОСТ OIML R 76-1	
Цилиндры мерные исполнения 1, 3 вместимостью 25, 50, 100, 250, 500 и 1000 см ³	ΓΟCT 1770	
Часы механические с сигнальным устройством	ΓOCT 3145	
Воронки лабораторные диаметром 75, 100 и 150 мм	ΓΟCT 25336	
Стакан B-1, ТХС вместимостью 500 см ³	ΓΟCT 25336	
Стаканчики для взвешивания (бюксы) низкие CH- 45/13 или CH-60/14	ΓΟCT 25336	
Чашки биологические низкие (Петри) диаметром 100-150 мм	ΓΟCT 25336	
Эксикатор исполнения 2	ΓOCT 25336	
Пинцет медицинский	ΓΟCT 21241	
Шпатель	ΓΟCT 9147	
Шкаф сушильный общелабораторного назначения, обеспечивающий поддержание температуры нагрева $(105\pm2)^{\circ}\mathrm{C}$	ТУ 64-1-909-80	

Электроплитка с закрытой спиралью и регулируемой ГОСТ 14919 мощностью нагрева

Прибор вакуумного фильтрования ПВФ-35 или ТУ-3616-001-ПВФ-47 32953279

Склянки для хранения проб вместимостью 500, 1000 и 2000 cm^3

или

Бутыли полиэтиленовые (полипропиленовые) для хранения проб вместимостью 500, 1000 и 2000 см³

Средства измерений должны быть поверены в установленные сроки. Допускается использование других, в том числе импортных, средств измерений утвержденных типов и вспомогательных устройств с характеристиками не ниже указанных в п. 5.1.

5.2 Реактивы и материалы

Фильтры мембранные Владипор типа МФАС-ОС-2	ТУ 2265-011-
(0,45 мкм) с диаметром 37 или 47 мм	43153636
или	
Фильтры бумажные обеззоленные «синяя лента» диаметром 90 или 110 мм	ТУ 6-09-1678
Кислота соляная	ΓOCT 3118
Хлорид кальция безводный (для эксикатора)	ТУ 6-09-4711
или	
Силикагель	ГОСТ 3956
Вода дистиллированная	ΓΟCT 6709

Допускается использование реактивов и материалов, изготовленных по другой нормативно-технической документации, в том числе импортных, с характеристиками не ниже указанных в п. 5.2.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.
- 6.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ Р 12.1.019.
- 6.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

- 6.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.
- 6.5. Содержание вредных веществ в воздухе помещения лаборатории не должно превышать установленных предельно допустимых концентраний в соответствии с ГОСТ 12.1.005.

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

К выполнению измерений и обработке их результатов допускаются лица, имеющие квалификацию техника-химика или лаборанта-химика и владеющие техникой гравиметрического анализа.

8 УСЛОВИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

•	температура окружающего	воздуха (22±6)°С;
•	атмосферное давление	(84-106) кПа;
•	относительная влажность	не более 80% при температуре 25°C;
•	частота переменного тока	(50±1) Гц;
•	напряжение в сети	(220±22) B.

9 ОТБОР И ХРАНЕНИЕ ПРОБ

- 9.1. Отбор проб для выполнения измерений массовой концентрации взвещенных веществ производится в соответствии с ГОСТ 31861 и ГОСТ 17.1.5.05.
- 9.2. Оборудование для отбора проб должно соответствовать ГОСТ 31861, ГОСТ 17.1.5.04 и ГОСТ 17.1.5.05.
- 9.3. Пробы отбирают в стеклянную или пластиковую посуду, предварительно промытую раствором соляной кислоты, а затем дистиллированной водой. При отборе посуду ополаскивают отбираемой водой.
- 9.4. Объем отбираемой пробы должен быть не менее 1000 см³ при массовой концентрации взвешенных веществ ниже 50 мг/дм³ и не менее 500 см³ при массовой концентрации взвешенных веществ выше 50 мг/дм³.
- 9.5. Пробу анализируют как можно скорее, но не позднее 24 ч после отбора.
- 9.6. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:
 - цель анализа;
 - место, дата и время отбора;
 - номер (шифр) пробы;
 - должность, фамилия сотрудника, отбирающего пробу.

10 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

10.1 Подготовка мембранных фильтров

Фильтры кипятят в дистиллированной воде 5-10 мин. Кипячение проводят 3 раза, сливая после каждого раза воду и заменяя ее свежей. Затем фильтры помещают в чашки Петри, подсушивают на воздуже в течение 25—30 мин и сушат в сушильном шкафу при $(105 \pm 2)^{\circ}$ С в течение 1 ч. Чистые фильтры хранят в закрытых чашках Петри.

Непосредственно перед использованием фильтры маркируют карандашом с мягким грифелем, с помощью пинцета помещают в маркированные бюксы, сушат при $(105 \pm 2)^{\circ}$ С в течение 1 ч, охлаждают в эксикаторе и, закрыв бюксы крышками, взвешивают. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0.5 мг.

10.2 Подготовка бумажных фильтров

Бумажные обеззоленные фильтры «синяя лента» маркируют, складывают, помещают в воронки и промывают 150-200 см 3 дистиллированной воды. Затем пинцетом вынимают фильтр из воронки, складывают, помещают в маркированные бюксы и высушивают в сушильном шкафу при $(105 \pm 2)^{\circ}$ С в течение 2 ч. Охлаждают бюксы с фильтрами в эксикаторе и, закрыв их крышками, взвешивают. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

По готовности фильтра выполняют измерения в соответствии с п. 12.2. Если невозможно выполнить измерения сразу после подготовки фильтра, его хранят в закрытом бюксе в эксикаторе или в закрытой емкости, исключающей попадание пыли на поверхность бюкса.

10.3 Раствор соляной кислоты

30 см³ соляной кислоты смешивают с 170 см³ дистиллированной воды. Раствор хранят в плотно закрытой посуде не более 1 года.

10.4 Подготовка прибора для вакуумного фильтрования

Подготовку прибора для вакуумного фильтрования осуществляют в соответствии с инструкцией по его эксплуатации.

11 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

11.1 Измерение массовой концентрации взвешенных веществ с использованием мембранного фильтра

Подготовленный и взвешенный мембранный фильтр пинцетом извлекают из бюкса и закрепляют в ячейке прибора вакуумного фильтрова-

ния. Затем анализируемую пробу воды тщательно перемешивают энергичным взбалтыванием и переливают нужный для фильтрования объем в мерный цилиндр. Этот объем зависит от содержания взвешенных веществ в воде и подбирается с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре была не менее 3 мг и не превышала 250 мг. Рекомендуемые объемы пробы для фильтрования приведены в таблице 2.

Таблица 2 - Объём пробы воды, отбираемый для фильтрования при измерении массовой концентрации взвешенных веществ

Предполагаемый диапазон массовой концентрации взвешенных веществ, мг/дм ³	Отбираемый для фильтрования объем пробы воды, см ³
3 - 100	1000
100 - 500	500
500 - 2000	100
2000 - 5000	50

После пропускания пробы воды через фильтр ополаскивают мерный цилиндр дважды 4-5 см 3 дистиллированной воды, переносят смывы на фильтр, а приставший к стенкам ячейки для фильтрования осадок дважды смывают фильтратом порциями по 10 см 3 на фильтр.

Фильтр с осадком извлекают пинцетом из устройства для фильтрования, помещают в тот же бюкс, в котором его взвешивали до фильтрования, подсушивают сначала 15-20 мин на воздухе, а затем в сушильном шкафу при $(105 \pm 2)^{\circ}$ С в течение 1 ч со снятой крышкой. Крышка бюкса должна находиться возле бюкса. После этого бюкс охлаждают в эксикаторе, закрывают крышкой и взвешивают.

Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более $0.5~\rm Mr$ при массе осадка до $50~\rm Mr$ и $1~\rm Mr$ при массе более $50~\rm Mr$.

11.2 Измерение массовой концентрации взвешенных веществ с использованием бумажного фильтра

Использование бумажных фильтров допускается в случае отсутствия в лаборатории устройства для вакуумного фильтрования с мембранным фильтром. В этом случае в рабочем журнале указывается, что результат измерений получен с использованием бумажного фильтра.

Подготовленный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды, подобранный с таким расчетом, чтобы масса осадка

взвещенных веществ на фильтре находилась в пределах от 3 до 250 мг (таблица 2).

После пропускания пробы воды через фильтр ополаскивают мерный цилиндр дважды 4-5 см³ дистиллированной воды, перенося смывы на фильтр. Промывают фильтр 10 см³ дистиллированной воды, дают воде полностью стечь, пинцетом осторожно вынимают фильтр с осадком и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 ч при (105 ± 2) °C, охлаждают в эксикаторе и, закрыв бюкс крышкой, взвешивают.

Повторяют процедуру сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

12 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Массовую концентрацию взвешенных веществ в анализируемой пробе воды X, мг/дм 3 , рассчитывают по формуле:

$$X = \frac{(m_{\phi o} - m_{\phi}) \cdot 1000}{V}$$

где $m_{\varphi o}$ – масса бюкса с мембранным или бумажным фильтром с осадком взвешенных веществ, г;

 m_{φ} – масса бюкса с мембранным или бумажным фильтром без осадка, г:

V – объем профильтрованной пробы воды, дм³.

Расхождение между результатами измерений, полученными в условиях воспроизводимости, не должно превышать предела воспроизводимости (таблица 3).

Таблица 3 - Значения пределов воспроизводимости и повторяемости при вероятности P=0,95

Диапазон измерений массовой концентрации взвешенных веществ, мг/дм ³	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных измерений), г, %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %	
От 3,0 до 10,0 включ.	28	42	
Св. 10,0 до 50,0 включ.	20	28	
Св. 50,0 до 5000 включ.	8	14	

При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение.

При превышении предела воспроизводимости могут быть использованы методы проверки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

13 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерений массовой концентрации взвешенных веществ X в документах, предусматривающих его использование, может быть представлен в виде:

$$(X \pm \Delta)$$
 мг/дм³, P=0,95,

где Δ - границы характеристики погрешности результатов измерений для данных массовых концентраций взвешенных веществ.

Значение Δ рассчитывают по формуле:

$$\Delta = 0.01 \cdot \delta \cdot X$$

Значение δ приведено в таблице 1.

Допустимо результат измерений в документах, выдаваемых лабораторией, представлять в виде:

$$(X \pm \Delta_n)$$
 мг/дм³, P=0,95,

при условии $\Delta_n < \Delta$,

где X — результат измерений, полученный в соответствии с прописью методики;

 $\pm \Delta_n$ - значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов измерений.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

14 КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Контроль точности результатов измерений при реализации методики в лаборатории предусматривает:

 - оперативный контроль процедуры выполнения измерений на основе контроля повторяемости при реализации отдельно взятой контрольной процедуры; - оперативный контроль процедуры выполнения измерений на основе контроля воспроизводимости при реализации отдельно взятой контрольной процедуры.

14.1 Оперативный контроль процедуры измерений по оценке повторяемости

Контрольную процедуру при контроле повторяемости осуществляют с использованием рабочей пробы, разделенной на две части. Пробоотборник при выполнении контрольной процедуры должен иметь вместимость, обеспечивающей получение для измерений двух проб нужного объема (таблица 2). Пробу воды сразу после отбора с использованием воронки диаметром 150 мм разливают в две одинаковые бутыли (проба 1 и проба 2) в такой последовательности: заполняют каждую бутыль до половины вместимости, затем, периодически энергично перемешивая оставшуюся в пробоотборнике часть пробы, поочередно порциями переливают ее в каждую бутыль до опустошения пробоотборника. Переливание из пробоотборника должно проводиться быстро, чтобы поступающие в него пузырьки воздуха перемешивали пробу, препятствуя тем самым агломерации и седиментации взвешенных веществ. Одну из проб маркируют, как контрольную.

Далее выполняют измерения в соответствии с п. 11.1 или 11.2. Результат контрольной процедуры должен удовлетворять условию:

$$200 \cdot \frac{|X_1 - X_2|}{X_1 + X_2} \le r$$

где X_1 и X_2 — результаты контрольных измерений массовой концентрации взвещенных веществ в пробе 1 и 2, мг/дм³;

r - предел повторяемости (таблица 3), %.

При несоблюдении этого условия выясняют и устраняют причины, приводящие к неудовлетворительным результатам.

14.2 Оперативный контроль процедуры измерений по оценке воспроизводимости

Для контроля готовят пробу 1 и 2, как описано в п. 14.1, и выполняют измерения в соответствии с п. 11.1 или 11.2 в условиях воспроизводимости.

Расхождение между результатами измерений пробы 1 и пробы 2, полученными в условиях воспроизводимости, не должно превышать предела воспроизводимости:

$$200 \cdot \frac{|X_I - X_2|}{X_I + X_2} \leq \mathbb{R},$$

где X_1 и X_2 — результаты контрольных измерений массовой концентрации взвешенных веществ в пробе 1 и 2, мг/дм³;

R - предел воспроизводимости (таблица 3), %.

При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение.

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725 -6 -2002.

Примечание – Оценка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ АДМИНИСТРАТИВНО-ХОЗЯЙСТВЕННОЕ УПРАВЛЕНИЕ УРАЛЬСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК Центр метрологии и сертификации «СЕРТИМЕТ» (Центр «СЕРТИМЕТ» АХУ УрО РАН)

СВИДЕТЕЛЬСТВО

ОБ АТТЕСТАЦИИ МЕТОДИКИ (МЕТОДА) ИЗМЕРЕНИЙ

№ 88-16207-072-RA.RU.310657-2016

Методика измерений массовой концентрации взвешенных веществ в пробах природных и сточных вод гравиметрическим методом,

разработанная ООО НПП «Акватест» (344022, Россия, г. Ростов-на-Дону, ул Журавлева, д. 44),

предназначенная для измерения показателей состава природных и сточных вод

и регламентированная в ПНД Ф 14.1:2:3.110-97 (издание 2016 г.) «Методика измерений массовой концентрации взвешенных веществ в пробах природных и сточных вод гравиметрическим методом», утвержденная в 2016 г., на 11 л.

Методика измерений аттестована в соответствии с ФЗ № 102 от 26 июня 2008 г. «Об обеспечении единства измерений».

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики измерений.

В результате аттестации установлено, что методика измерений соответствует предъявленным к ней метрологическим требованиям и обладает показателями точности, приведенными в приложении.

Приложение: показатели точности методики измерений на 1 листе.

Дата выдачи свидетельства

1 сентября 2016 г.

В. Зиновьев

Начальник АХУ УрО РАН

Руководитель Центра «СЕРТИМЕТ» АХУ УрО РАН

Л.А.Игнатенкова

Россия, 620990, г. Екатеринбург, ул. Первомайская, 91 Тел./факс (343) 362-33-97

приложение

к свидетельству № 88-16207-072-RA.RU.310657-2016 об аттестации методики (метода) измерений массовой концентрации взвещенных веществ в пробах природных и сточных вод гравиметрическим методом на 1 листе (обязательное)

Значения показателей точности измерений приведены в таблице 1.

Таблица 1 — Диапазон измерений массовой концентрации взвешенных веществ в пробах вод, значения показателей точности, повторяемости, воспроизводимости измерений

Диапазон измерений массовой концентрации взвещенных веществ, мг/дм ³	Показатель точности (границы относительной погрешности при вероятности Р=0,95), ±8, %	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), от, %
От 3,0 до 10,0 включ.	30	10	15
Св. 10,0 до 50,0 включ.	20	7	10
Св. 50,0 до 5000 включ.	10	3	5

Руководитель Центра СБРТИМЕ АХУ УрО РАН

Научнопроизводственное предприятие "Акватест"

Л.А. Игнатенкова

