ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 11145— 2016

Оптика и фотоника ЛАЗЕРЫ И ЛАЗЕРНОЕ ОБОРУДОВАНИЕ

Термины, определения и буквенные обозначения

(ISO 11145:2016, IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Акционерным обществом «ГОИ им. С.И. Вавилова» (АО «ГОИ им. С.И. Вавилова») совместно с рабочей группой ПК 9 «Электрооптические системы» Технического комитета ТК 296 «Оптика и оптические приборы» на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Управлением технического регулирования и стандартизации Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 сентября 2016 г. № 1132-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 11145:2016 «Оптика и фотоника. Лазеры и лазерное оборудование. Словарь и буквенные обозначения» (ISO 11145:2016 «Optics and photonics Lasers and laser-related equipment Vocabulary and symbols», IDT).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

Настоящий стандарт не может быть воспроизведен полностью или частично, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	. 1
2 Обозначения и единицы измерения	. 1
3 Термины и определения	. 3
Приложение А (справочное) Сравнение терминологии МЭК 60825-1 и ИСО 11145	13
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов национальным стандартам Российской Федерации	14
Алфавитный указатель буквенных обозначений	15
Алфавитный указатель терминов на русском языке	16
Алфавитный указатель терминов на английском языке	17
Алфавитный указатель терминов на французском языке	18
Библиография	19

Введение

ИСО (Международная организация по стандартизации) — всемирная федерация национальных комитетов по стандартам (комитеты — члены ИСО). Международные стандарты обычно подготавливаются Техническими комитетами ИСО. Каждый комитет-член, заинтересованный темой, по которой создан Технический комитет, имеет право быть представленным в данном комитете. В работе также принимают участие международные правительственные и неправительственные организации совместно с ИСО. ИСО тесно сотрудничает с Международной электротехнической комиссией (МЭК) по всем вопросам электротехнической стандартизации.

Международные стандарты подготовлены в соответствии с правилами, приведенными в Директивах ИСО/МЭК, часть 2.

Проекты международных стандартов, принятые Техническими комитетами, передаются комитетам-членам для голосования. Публикация в качестве международного стандарта требует одобрения как минимум 75 % голосующих комитетов-членов.

Следует отметить, что некоторые элементы данного документа подпадают под действие патентных прав. ИСО не несет ответственности за нарушение таких патентных прав.

ИСО 11145 подготовлен Техническим комитетом ИСО/ТК 172 «Оптика и фотоника», подкомитетом ПК 9 «Электрооптические системы».

Четвертое издание отменяет и заменяет третье издание ИСО 11145:2006, пересмотренное с технической точки зрения со следующими изменениям:

- а) в пункт 3.5.3 добавлена формула для эллиптичности пучка;
- b) в пункте 3.53 пересмотрено определение относительной интенсивности шума и добавлена формула.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Оптика и фотоника

ЛАЗЕРЫ И ЛАЗЕРНОЕ ОБОРУДОВАНИЕ

Термины, определения и буквенные обозначения

Optics and photonics. Lasers and laser-related equipment. Vocabulary and symbols

Дата введения — 2017—09—01

1 Область применения

В настоящем стандарте приведены термины, обозначения и единицы измерения, применяемые в области лазерных технологий, с целью унификации терминологии и выведения воспроизводимых определений параметра пучка излучения лазера и характеристик лазерных устройств.

Примечание — Термины и определения, приведенные в настоящем стандарте, отличаются от представленных в МЭК 60825-1. ИСО и МЭК обсудили разницу и согласовали, что она исходит из различий целей, для которых применяется каждый из этих двух стандартов. Более подробная информация приведена в приложении А.

2 Обозначения и единицы измерения

- 2.1 Пространственное распределение плотности мощности (энергии) лазерного пучка излучения не всегда имеет осевую (круговую) симметрию. Таким образом, все термины, связанные с таким распределением, разделяют на применимые к пучкам с круглым сечением и к пучкам с некруглым поперечным сечением. Пучок с круглым сечением характеризуется радиусом w или диаметром d. Для пучка с некруглым сечением должны быть заданы ширины d_x и d_y для двух ортогональных направлений.
- 2.2 Пространственное распределение лазерных пучков не имеет четких границ. Поэтому необходимо определить те значения мощности (энергии), к которым относятся условия распределения пространственных границ. В зависимости от применения могут быть выбраны различные значения уровней (например, 1/e, 1/e², 1/10 от пиковой мощности).

Для обозначения процента от полной мощности (энергии) в лазерном пучке используют подстрочный индекс u.

П р и м е ч а н и е 1 — Для одной и той же составляющей по мощности (энергии) ширина лазерного пучка $d_{x,u}$ и диаметр d_u (равный $2w_u$) могут различаться при одинаковом значении u (например, для гауссова пучка с осевой симметрией $d_{86.5}$ равен $d_{x.95.4}$).

В таблице 1 представлены обозначения и единицы измерения, которые подробно описаны в разделе 3.

Таблица 1 — Обозначения и единицы измерения

Обозначение	Единица измерения	Термин
<i>A_u</i> или <i>A</i> _σ	м ²	Площадь поперечного сечения пучка
d_u или d_σ	М	Диаметр пучка
$d_{x,u}$ или $d_{\sigma x}$	М	Ширина пучка по оси <i>х</i>
$d_{y,u}$ или $d_{\sigma y}$	М	Ширина пучка по оси <i>у</i>
$d_{0,u}$ или $d_{{\scriptscriptstyle \odot}0}$	М	Диаметр перетяжки пучка
d _{⊙0} ·⊕ _⊙ /4	рад-м	Произведение параметров пучка
$E_{m{u}}$ или $E_{m{\sigma}}$	Вт/м ²	Средняя плотность мощности
f_p	Гц	Частота повторения импульсов
$H_{m{u}}$ или $H_{m{\sigma}}$	Дж/ м ²	Средняя плотность энергии
K	1	Фактор распространения пучка
l _c	М	Длина когерентности
M ²	1	Коэффициент распространения пучка
p	1	Степень линейной поляризации
P	Вт	Мощность непрерывного излучения
P _{av}	Вт	Средняя мощность
P _H	Вт	Мощность импульса
P _{pk}	Вт	Пиковая мощность
Q	Дж	Энергия импульса
R(f)	Гц ^{−1} илидБ/Гц	Относительная интенсивность шума, RIN
w_u или w_σ	М	Радиус пучка
w _{0,<i>u</i>} или w _{⊙0}	М	Радиус перетяжки пучка
z _R	М	Длина по Релею
Δθ	М	Угол отклонения
Δλ	М	Спектральная ширина полосы в терминах длины волны
Δν	Гц	Спектральная ширина полосы в терминах частоты в оптическом диапазоне
$\Delta_{\mathbf{X}}(\mathbf{Z}')$	М	Позиционная стабильность пучка по оси <i>х</i>
$\Delta_{y}(z')$	М	Позиционная стабильность пучка по оси у
Δz _a	М	Разделение перетяжек астигматического пучка
Δz_r	1	Относительное разделение перетяжек астигматического пучка
ε (Ζ)	1	Эллиптичность пучка
η_L	1	Эффективность лазера
η _Q	1	Квантовый выход
η_T	1	Эффективность устройства
$\Theta_{m{u}}$ или Θ_{σ}	рад	Угол расходимости
$\Theta_{x,u}$ или $\Theta_{\sigma x}$	рад	Угол расходимости по оси <i>х</i>
$\Theta_{ extit{ extit{y}}, \; extit{ extit{u}}}$ или $\Theta_{ extit{ extit{gy}}}$	рад	Угол расходимости по оси <i>у</i>
λ	М	Длина волны

Окончание таблицы 1

Обозначение	Единица измерения	Термин
τ _H	С	Длительность импульса
τ ₁₀	С	Длительность импульса по уровню 0,1
τ _c	С	Время когерентности

Примечание 2 — R(f), выражаемый в дБ/Гц, составляет $10 \log R(f)$, при R(f)в Гц $^{-1}$.

При указании величин, обозначенных индексом u, u заменяют конкретным числовым значением, например, A_{90} , где u = 90 %.

В отличие от величин, обозначенных индексом u, определенных при установке порогового значения мощности (энергии)[<мощность (энергия) в пределах круга>], ширины пучка и его свойства также могут быть определены, основываясь на моменте второго порядка функции распределения плотности мощности (энергии) (см. 3.5.2). Только коэффициенты распространения пучка, основанные на ширинах пучка и углах расходимости, полученные из моментов второго порядка функции распределения плотности мощности (энергии), позволяют рассчитать распространение пучка. Величины, основанные на моменте второго порядка, маркируют подстрочным индексом σ.

3 Термины и определения

3.1 Термины, относящиеся к оси пучка

- 3.1.1 ось пучка: Прямая линия, соединяющая средние точки (цен- en beam axis троиды), определенные моментом первого порядка распределения плотности мощности (энергии) в последовательных положениях в направлении распространения пучка в однородной среде.
- 3.1.2 угол отклонения $\Delta 9$: Отклонение оси пучка от механической en misalignment angle, $\Delta 9$ оси, определенной изготовителем.
- axe du faisceau
 - angle de désalignement, $\Delta 9$

3.2 Термины, относящиеся к площади поперечного сечения пучка

- 3.2.1 площадь поперечного сечения А,, [мощность (энергия) в еп пределах круга]: Наименьшая целиком заполненная область, содержащая и % общей мощности (энергии) пучка.
- Примечание Термин «площадь поперечного сечения» используют в комбинации с обозначением и соответствующим подстрочным индек $com: A_{\mu}$ или A_{σ}
- 3.2.2 площадь поперечного сечения A_{σ} [момент второго порядка en функции распределения плотности мощности (энергии)]: Площадь пучка с круглым поперечным сечением ($\pi \cdot d_{\sigma}^{-2}/4$) или эллиптическим поперечным сечением $[(\pi \cdot d_{\sigma X} \cdot d_{\sigma V})/4]$.

Примечание — Термин «площадь поперечного сечения» используют в комбинации с обозначением и соответствующим подстрочным индексом: $A_{\boldsymbol{u}}$ или A_{σ} .

 A_u

beam cross-sectional area, A_{ii} aire de la section du faisceau,

beam cross-sectional area, A_c aire de la section du faisceau. A_{σ}

3.3 Термины, относящиеся к диаметру пучка

- 3.3.1 диаметр пучка d_u [мощность (энергия) в пределах круга]: en beam diameter, d_u Минимальный диаметр круглой апертуры в плоскости, перпендикулярной к оси пучка, которая содержит u % общей мощности (энергии) пучка.
- Примечание Термин «диаметр пучка» используют в комбинации с обозначением и соответствующим подстрочным индексом: d_{μ} или d_{σ} .
- diamètre du faisceau, d₁₁

- 3.3.2 **диаметр пучка d_{\sigma}** [момент второго порядка функции распре- en beam diameter, d_{σ} деления плотности мощности (энергии)]: Диаметр пучка, определя- fr diamètre du faisceau, d_{σ} емый по следующей формуле:

$$d\sigma(z) = 2\sqrt{2} \cdot \sigma(z),$$

где момент второго порядка функции E(x,y,z) распределения плотности мощности пучка в положении z определяют по формуле:

$$\sigma^{2}(z) = \frac{\iint r^{2} \cdot E(r, \varphi, z) \cdot r \cdot d_{r} d_{\varphi}}{\iint E(r, \varphi, z) \cdot r \cdot d_{r} d_{\varphi}},$$

где r — расстояние до центроида $(\overline{x}, \overline{y})$;

 ϕ — азимутальный угол;

моменты первого порядка задают координаты центроида

$$\overline{x} = \frac{\iint xE(x,y,z)d_xd_y}{\iint E(x,y,z)d_xd_y};$$

$$\overline{y} = \frac{\iint yE(x,y,z)d_xd_y}{\iint E(x,y,z)d_xd_y}.$$

Примечание 1 — Интеграл берут по всей плоскости ху. Допускается брать интеграл по такой площади, чтобы было охвачено не менее 99 % мощности (энергии) пучка.

Примечание 2 — Для импульсных лазеров плотность мощности Е заменяют на плотность энергии H.

Примечание 3 — Термин «диаметр пучка» используют в комбинации с обозначением и соответствующим подстрочным индексом: d_{μ} или d_{σ}

3.4 Термины, относящиеся к радиусу пучка

3.4.1 радиус пучка **w**,, [мощность (энергия) в пределах круга]: Hau- en beam radius, w_{ij} меньший радиус апертуры в плоскости, перпендикулярной к оси fr пучка, которая содержит и % общей мощности (энергии) пучка.

rayon du faisceau, w,,

Примечание — Термин «радиус пучка» используют в комбинации с обозначением и соответствующим подстрочным индексом: w_{μ} или w_{σ} .

rayon du faisceau, w

3.4.2 радиус пучка w_{σ} [момент второго порядка функции распре- en beam radius, w_{σ} деления плотности мощности (энергии)]: Радиус, который определяют по формуле:

 $w\sigma(z) = \sqrt{2} \cdot \sigma(z)$.

Примечание 1 — Для определения момента второго порядка функции распределения плотности мощности $\sigma^2(z)$ см. 3.3.2.

Примечание 2 — Термин «радиус пучка» используют в комбинации с обозначением и соответствующим подстрочным индексом: w,, или w,

3.5 Термины, относящиеся к ширине пучка

3.5.1 **ширины пучка** $d_{x,u}$, $d_{y,u}$ [мощность (энергия) в пределах кру- en beam widths, $d_{x,u}$, $d_{y,u}$ га]: Ширина наименьшего светового сечения, пропускающая и % общей мощности (энергии) пучка в двух взаимно ортогональных направлениях х и у, которые перпендикулярны к оси пучка.

largeurs du faisceau, $d_{x,u}$, $d_{y,u}$

Примечание 1 — Направления задают наименьшей шириной пучка и взаимно ортогональным направлением.

Примечание 2 — Для круглых гауссовых пучков $d_{x.95.4}$ равно $d_{86.5}$

Примечание 3 — Термин «ширины пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $d_{\alpha x}, d_{\alpha y}$ или $d_{x,u}$, $d_{y,u}$

3.5.2 ширины пучка $d_{\sigma x}$, $d_{\sigma y}$ [момент второго порядка функции en beam widths, $d_{\sigma x}$, $d_{\sigma y}$ распределения плотности мощности (энергии)]: Ширины пучка fr largeurs du faisceau, $d_{\sigma x}$, $d_{\sigma y}$ определяют по следующим формулам:

$$d_{\sigma z}(z) = 4\sigma_{x}(z);$$

$$d_{\sigma y}(z) = 4\sigma_{y}(z),$$

где моменты второго порядка функции распределения плотности мощности E(x,y,z) пучка в положении z задают следующим образом:

$$\sigma_x^2(z) = \frac{\iint (x - \overline{x})^2 E(x, y, z) d_x d_y}{\iint E(x, y, z) d_x d_y};$$

$$\sigma_y^2(z) = \frac{\iint (y - \overline{y})^2 E(x, y, z) d_x d_y}{\iint E(x, y, z) d_x d_y},$$

где $(x - \overline{x})$ и $(y - \overline{y})$ — расстояния до центроида $(\overline{x}, \overline{y})$; моменты первого порядка задают координаты центроида

$$\overline{x} = \frac{\iint xE(x,y,z)d_xd_y}{\iint E(x,y,z)d_xd_y};$$

$$\overline{y} = \frac{\iint yE(x,y,z)d_xd_y}{\iint E(x,y,z)d_xd_y}.$$

Примечание 1 — Интеграл берут по всей плоскости ху. Допускается брать интеграл по такой площади, чтобы было охвачено не менее 99 % мощности (энергии) пучка.

Примечание 2 — Для импульсных лазеров плотность мощности Е заменяют на плотность энергии H.

Примечание 3 — Термин «ширины пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $d_{\sigma x}, d_{\sigma v}$ или $d_{x,u}, d_{v,u}$

3.5.3 эллиптичность пучка ε (z): Параметр, измеряющий эллиптичность или прямоугольность распределения мощности (энергии) по параметру z эллиптичности пучка

$$\varepsilon(z) = \frac{d_{\sigma y}(z)}{d_{\sigma y}(z)},$$

где направление х выбрано вдоль главной оси распределения так, что $d_{\sigma x} \ge d_{\sigma y}$

Примечание 1 — Если ε ≥ 0,87, эллиптичность распределения может считаться циркулярной. В случае прямоугольного профиля пучка эллиптичность часто определяется по его форме (отношение ширины к высоте

Примечание 2 — Технически идентично стандарту ISO 11146-1 и ISO 13694

- 3.5.4 круговое распределение плотности мощности: Распределение плотности мощности с эллиптичностью более 0,87. [ИСО 11146-1:2005, пункт 3.7]
- circular power density distribuen
- distribution de densité de puissance circulaire
- beam parameter product
- produit caractéristique du faisceau

beam propagation ratio, M^2

facteur de limite de diffraction, M2

$$d_{c0} \cdot \Theta_{c}/4$$
.

Примечание — Произведение параметров пучка для эллиптических пучков допускается задавать отдельно для главных осей распределения плотности мощности (энергии).

3.7 коэффициент распространения пучка M² (Нрк. фактор распространения пучка, К): Мера того, как близко произведение параметров пучка находится по отношению к дифракционному пределу идеального гауссова пучка

$$M^2 = \frac{1}{K} = \frac{\pi}{\lambda} \cdot \frac{d_{\sigma 0}\theta_{\sigma}}{4}.$$

Примечание 1 — Коэффициент распространения пучка равен отношению произведения параметров пучка для фактических мод лазера к основной гауссовой моде (TEM_{00}).

Коэффициент распространения пучка равен единице для теоретически идеального гауссова пучка и имеет значение больше единицы для любого реального пучка.

Примечание 2 — В последующих изданиях термин «фактор распространения пучка К» использовать не рекомендуется.

3.8 позиция пучка: Смещение оси пучка относительно фиксированной механической оси оптической системы в заданной плоскости, перпендикулярной к механической оси оптической системы.

Примечание — Механическая ось задается прямой линией, связывающей центроиды ограничивающих апертур.

3.9 позиционная стабильность пучка $\Delta_{\mathbf{x}}(\mathbf{z'})$, $\Delta_{\mathbf{v}}(\mathbf{z'})$: Четырехкратное стандартное отклонение измеренного позиционного смещения пучка в плоскости г'.

[ИСО 11670:2003, пункт 3.6]

Примечание — Эта величина определена в системе координат пучка (х, у, z). Если эллиптичность позиционной стабильности пучка превышает 0,87, позиционную стабильность рассматривают как осесимметричную и допускается задавать только одно значение. В таком случае обозначение $\Delta(z')$ используют без подстрочного индекса.

3.10 перетяжка пучка: Локальное минимальное значение диаметра или ширины пучка.

en beam waist

en beam position

position du faisceau

en beam positional stability, $\Delta_{\nu}(z')$,

stabilité de position du faisceau,

fr col du faisceau

 $\Delta_{\chi}(z'), \ \Delta_{V}(z')$

3.11 Термины, относящиеся к диаметру перетяжки пучка

3.11.1 диаметр перетяжки пучка $d_{0,u'}$ [мощность (энергия) в пределах круга]: Диаметр d_{ij} пучка в месте перетяжки пучка.

Примечание — Термин «диаметр перетяжки пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $d_{0.\mu}$ или $d_{\sigma 0}$

3.11.2 диаметр перетяжки пучка $d_{\sigma 0}$ [момент второго порядка en beam waist diameter, $d_{\sigma 0}$ функции распределения плотности мощности (энергии)]: Диаметр fr d_{σ} пучка в месте перетяжки пучка.

en beam waist diameter, d_{0.u}

diamètre du col du faisceau, $d_{0,u}$

diamètre du col du faisceau, d_{c0}

6

Примечание — Термин «диаметр перетяжки пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $d_{0.u}$ или $d_{\sigma 0}$

3.12 Термины, относящиеся к радиусу перетяжки пучка

3.12.1 радиус перетяжки пучка $w_{0,u}$ [мощность (энергия) в пределах круга]: Радиус w,, пучка в месте перетяжки пучка

Примечание — Термин «радиус перетяжки пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $W_{0,u}$ или $W_{0,0}$

3.12.2 радиус перетяжки пучка $w_{\sigma 0}$ [момент второго порядка en beam waist radius, $w_{\sigma 0}$ функции распределения плотности мощности (энергии)]: Радиус fr w_с пучка в месте перетяжки пучка.

Примечание — Термин «радиус перетяжки пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $W_{0,u}$ или $W_{\odot 0}$

3.13 Термины, относящиеся к ширинам перетяжки пучка

3.13.1 **ширины перетяжек пучка** $d_{x0,u}$, $d_{y0,u}$ [мощность (энергия) в еп пределах круга]: Ширины пучка $d_{x,u}$ и $d_{y,u}$ в месте перетяжки пучка fr в обоих направлениях х и у.

Примечание — Термин «ширины перетяжек пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $d_{x0,u'}$ $d_{y0,u}$ или $d_{\sigma x0}$, $d_{\sigma y0}$

3.13.2 ширины перетяжек пучка $d_{\sigma x 0}$, $d_{\sigma v 0}$ [момент второго по- en beam waist widths, $d_{\sigma x 0}$, $d_{\sigma v 0}$ рядка функции распределения плотности мощности (энергии)]: Ширины пучка $d_{\sigma_{V}}$ и $d_{\sigma_{V}}$ в месте перетяжки пучка в обоих направлениях х и у.

Примечание — Термин «ширины перетяжек пучка» используют в комбинации с обозначением и соответствующими подстрочными индексами: $d_{x0,u'}$ $d_{y0,u}$ или $d_{\sigma x0}$, $d_{\sigma y0}$

3.14 Термины, относящиеся к разделениям перетяжек

3.14.1 разделение перетяжек астигматического пучка Δz_a : Осевое расстояние между положениями перетяжек слабоастигматического пучка в ортогональных главных плоскостях. [ИСО 15367-1:2003, статья 3.3.4]

Примечание — Разделение перетяжек астигматического пучка также известно как астигматическая разность.

3.14.2 относительное разделение перетяжек астигматического пучка Δz_r : Разделение перетяжек астигматического пучка, деленное на арифметическое значение длин по Релею z_{R_X} и z_{R_V}

$$\Delta z_r = \frac{2\Delta z_a}{z_{Rx} + z_{Ry}}.$$

3.15 когерентность: Характеристика электромагнитного поля, где существует постоянное фазовое соотношение между каждой точкой.

3.15.1 временная когерентность: Характеристика корреляции между фазами электромагнитной волны для разных временных моментов в одном и том же положении.

3.15.2 пространственная когерентность: Характеристика корреляции между фазами электромагнитной волны для разных положений в одно и то же время.

en beam waist radius, $w_{0,u}$ rayon du col du faisceau, $w_{0.u}$

rayon du col du faisceau, $w_{\sigma 0}$

beam waist widths, $d_{x0,u}$, $d_{y0,u}$ largeurs du col du faisceau, $d_{x0.u}, d_{v0.u}$

largeurs du col du faisceau, $d_{\sigma x0}, d_{\sigma v0}$

astigmatic waist separation, Δz_a séparation du col astigmatique, Δz_a

relative astigmatic waist separation, Δz_r

séparation du col astigmatique relative, Δz_r

coherence

cohérence

temporal coherence

cohérence temporelle

spatial coherence cohérence spatiale

3.16 длина когерентности I_{C} : Расстояние в направлении пучка, en coherence length, I_{C} в пределах которого излучение лазера сохраняет фиксированную fr разность фаз.

longueur de cohérence, I_C

Примечание — Задается в виде $c/\Delta v_H$, где c — скорость света.

3.17 **время когерентности** au_c : Временной интервал, в пределах $\,$ en $\,$ coherence time, au_c которого излучение лазера сохраняет фиксированную разность фаз.

temps de cohérence, τ_c

Примечание — Задается в виде $1/\Delta v_{H}$.

3.18 эффективность устройства η_{T} : Отношение общей мощности (энергии) лазерного пучка к общей входной мощности (энергии), включая все зависимые системы.

device efficiency, η_{τ} rendement de la source, ητ

3.19 Термины, относящиеся к углу расходимости

3.19.1 угол расходимости $\Theta_{u'}$ $\Theta_{x,u'}$ $\Theta_{y,u}$ [мощность (энергия) в en divergence angle, $\Theta_{u'}$ $\Theta_{x,u'}$ $\Theta_{y,u}$ пределах круга]: Полный угол, образованный асимптотическим конусом оболочки, сформированной увеличением ширины пучка.

Примечание 1 — Для круглого поперечного сечения ширина пучка задается диаметром d_w Для некруглого поперечного сечения углы расходимости определяются с помощью ширины пучка в направлениях х и у, именуемые $d_{x,u}$ и $d_{y,u}$ соответственно.

Примечание 2 — При указании углов расходимости необходимо использовать подстрочные индексы для указания соответствующей ширины пучка.

Пример — $\Theta_{x.50}$ указывает, что используют пучок с шириной $d_{x.50}$.

Примечание 3 — Определение данного термина не распространяется на пучки с общим астигматизмом.

Примечание 4 — Термин «угол расходимости» используют в комбинации с обозначением и соответствующими подстрочными индексами: Θ_{σ} , $\Theta_{\sigma x}$ $\Theta_{\sigma y}$ или $\Theta_{u'}$ $\Theta_{\chi,u'}$ $\Theta_{y,u'}$

3.19.2 угол расходимости Θ_{σ} , $\Theta_{\sigma x}$, $\Theta_{\sigma v}$ [момент второго порядка en функции распределения плотности мощности (энергии)]: Полный угол, образованный асимптотическим конусом оболочки, сформированной увеличением ширины пучка.

Примечание 1 — Для круглого поперечного сечения ширина пучка задается диаметром $d_{\rm c}$. Для некруглого поперечного сечения углы расходимости определяют с помощью ширины пучка в направлениях x и y, именуемые d_{cx} и $d_{\sigma V}$ соответственно.

Примечание 2 — Определение данного термина не распространяется на пучки с общим астигматизмом.

Примечание 3 — Термин «угол расходимости» используют в комбинации с обозначением и соответствующими подс**тро**чными индексами: Θ_с, $\Theta_{\sigma X}$, $\Theta_{\sigma V}$ или Θ_{u} , $\Theta_{X.u}$, $\Theta_{V.u}$

3.20 эффективное диафрагменное число: Отношение фокусно- en го расстояния оптического компонента к диаметру пучка $d_{\rm g}$ в этом

3.21 средняя плотность энергии $H_{\mu\nu}$, H_{σ} : Общая энергия пучка, en деленная на площадь его поперечного сечения A_{II} или A_{cI}

3.22 **энергия импульса Q**: Энергия, содержащаяся в одном им- en пульсе.

3.23 плотность энергии *H(x,y)*: Энергия пучка, падающего на площадь δA в положении x, y, деленная на площадь δA .

angle de divergence, Θ_{u} , $\Theta_{x,u}$, $\Theta_{v,u}$

divergence angle, Θ_{σ} , $\Theta_{\sigma x}$, $\Theta_{\sigma y}$ angle de divergence, Θ_{σ} , $\Theta_{\sigma x}$,

effective f-number

nombre d'ouverture effectif

average energy density, H_{μ} , H_{σ} densité d'énergie moyenne, H_{II},

 H_{σ}

pulse energy, Q

fr énergie d'impulsion, Q

en energy density, H(x,y)

densité d'énergie, H(x,y)

Примечание — Плотность энергии физически эквивалентна лучевой экспозиции. Обе величины измеряют в джоулях на единицу площади. Плотность энергии, как правило, используют для описания распределения излучения в пучке. Лучевую экспозицию обычно используют для описания распределения излучения, падающего на поверхность.

3.24 дальняя зона: Поле излучения лазера на расстоянии z от пере- en farfield тяжки пучка, которое значительно больше, чем длина по Релею z_R . 3.25 лазер: Усиливающая среда, способная генерировать когерентное излучение длиной волны до 1 мм посредством стимулированной эмиссии (см. рисунок 1 и приложение А).

champ lointain

laser

laser

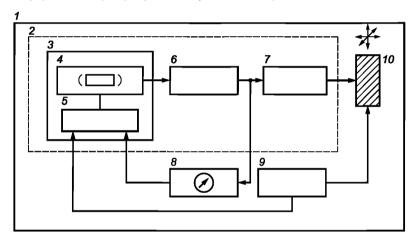
Примечание — Термин «лазер» является аббревиатурой для словосочетания «light amplification by stimulated emission of radiation» — «усиление света посредством стимулированной эмиссии излучения» (с англ.).

3.26 лазер непрерывного излучения: Лазер, непрерывно испускающий излучение длительностью более или равно 0.25 с.

3.27 импульсный лазер: Лазер, который испускает энергию в еп форме единичного импульса или цепочки импульсов, где длительность каждого импульса менее 0.25 с.

3.28 лазерная установка: Лазерное устройство с оптическими, механическими и/или электрическими системными компонентами для формирования пучка и его управления (см. рисунок 1 и приложение А).

continuous wave laser,


fr cw laser

laser continu

pulsed laser laser impulsionnel

laser assembly

ensemble laser

Примечание 1 — Этот пример взят из переработанных материалов.

Примечание 2 — В данный пример не включено оборудование для обеспечения безопасности.

Примечание 3 — См. приложение А.

- 1 лазерный блок;
- 2 лазерная установка;
- 3 лазерное устройство;
- 5 источник питания (электричество, охлаждение);
- 6 устройство направления пучка (зеркала, волокна, линзы);
- 7 устройство формирования пучка (телескоп, фокусировка);
- 8 измерение и контроль;
- 9 элементы управления (робот, размещение рабочего объекта);
- 10 рабочий объект

Рисунок 1 — Иллюстрация терминов «лазер», «лазерное устройство», «лазерная установка» и «лазерный блок»

- 3.29 лазерный пучок: Лазерное излучение, направленное в про- en laser beam странстве.
- 3.30 лазерное устройство: Лазер, в котором генерируется излу- en laser device чение, совместно с дополнительными компонентами (система охлаждения, электропитание и подача газа), необходимыми для работы лазера (см. рисунок 1 и приложение А).
- faisceau laser
 - - source laser, dispositif laser

3.31 эффективность лазера η_I : Отношение общей мощности en laser efficiency, η_I (энергии) лазерного пучка к общей мощности (энергии) накачки, fr rendement du laser, ηι напрямую подаваемой лазеру. 3.32 излучение лазера: Korepeнthoe электромагнитное излучение en laser radiation длиной волны до 1 мм, генерируемое лазером. rayonnement laser fr 3.33 лазерный блок: Одна или более лазерных установок вместе en laser unit unité laser с системами управления, измерения и контроля. Примечание — См. рисунок 1 и приложение А. 3.34 срок службы: Интервал (время или число импульсов), в течение en lifetime которого лазерное устройство или лазерная установка поддерживает fr durée de vie эксплуатационные характеристики, обозначенные изготовителем. Примечание — Условия эксплуатации, сервисного и технического обслуживания указаны изготовителем. 3.35 продольная мода: Собственная функция распределения еп longitudinal mode электрического поля в резонаторе длиной L вдоль направления fr mode longitudinal распространения электромагнитной волны. Примечание — Число продольных мод $q=2n(\lambda)L/\lambda$, где n — показатель преломления среды, описывает число полуволн, укладывающихся в длине резонатора. 3.36 поперечная мода: Собственная функция распределения en transverse mode электрического поля в резонаторе или распределение плотности mode transversal мощности (энергии) пучка перпендикулярно к направлению распространения электромагнитной волны. Примечание — Для прямоугольной симметрии числа m и n обозначают число узлов в распределении поля в х и у направлении, перпендикулярно к направлению распространения электромагнитной волны (моды Эрмита — Гаусса). Мода 01* представляет собой линейную комбинацию равных количеств прямоугольных 10 и 01 мод, обеспечивающих круговую симметрию с узлом в центре. При цилиндрической симметрии р и / обозначают число радиальных и азимутальных узлов (моды Лагерра — Гаусса). 3.37 поляризация: Ограничение колебания электромагнитной en polarization волны определенными направлениями. polarisation Примечание — Данное фундаментальное свойство трактуют, исходя из концепций наличия поперечной волны электромагнитного поля, т. е. колебания совершаются перпендикулярно направлению ее распространения. Обычно эти колебания рассматривают применительно к электрическому вектору.

3.38 круговая поляризация: Описание волны излучения, в котором электрический вектор имеет постоянную амплитуду и вращается вокруг направления распространения на частоте, равной частоте излучения в однородной оптической среде

стоте излучения в однородной оптической среде.

3.39 эллиптическая поляризация: Описание волны излучения, в еп котором электрический вектор вращается с частотой излучения, но fr

Примечание — Конечная точка электрического вектора описывает эллипс.

изменяется по амплитуде в однородной оптической среде.

3.40 **линейная поляризация**: Описание волны излучения, в кото- en ром электрический вектор находится на фиксированном азимуте. fr

Примечание 1 — В пределах плоскости, содержащей направление распространения излучения в однородной оптической среде.

en circular polarization fr polarisation circulaire

en elliptical polarization fr polarisation elliptique

en linear polarization fr polarisation rectiligne Примечание 2 — Лазерный пучок называют «линейно поляризованным», если степень линейной поляризации превышает 0,9 и направление поляризации остается неизменным.

3.41 **степень линейной поляризации** *p*: Отношение разности к сумме мощностей *P* (энергий Q) пучка в двух взаимно перпендикулярных направлениях поляризации.

$$\rho = \frac{\rho_{x} - \rho_{y}}{\rho_{x} + \rho_{v}} \text{ NJM } \rho = \frac{Q_{x} - Q_{y}}{Q_{x} + Q_{v}}.$$

Примечание — Выбирают направления поляризации x и y, для которых мощность (энергия) пучка ослабляется минимально или максимально после прохождения через линейный поляризатор. Направление x, для которого ослабление пучка после прохождения через линейный поляризатор минимально, и есть направление поляризации.

3.42 частичная поляризация: Состояние, в котором пучок излучения, исходящий из естественного или искусственного источника, не является полностью поляризованным или неполяризованным.

Примечание 1 — Частично поляризованный пучок рассматривают как состоящий из двух компонентов: один — поляризованный, другой — неполяризованный.

Примечание 2 — Лазерный пучок называют «частично линейно поляризованным», если степень линейной поляризации превышает 0,1 и направление поляризации остается неизменным.

- 3.43 произвольно поляризованное излучение: Излучение, которое рассматривают как композицию двух взаимно перпендикулярных линейно поляризованных волн фиксированных направлений, амплитуды которых произвольно меняются с течением времени по отношению друг к другу.
- 3.44 средняя плотность мощности E_u , E_σ : Общая мощность пучка, деленная на площадь его поперечного сечения A_u или A_σ .
- 3.45 **мощность непрерывного излучения** *P*: Выходная мощность лазера непрерывного излучения.
- 3.46 плотность мощности E(x,y): Мощность пучка, падающая на площадь δA в положении x,y, деленная на площадь δA .

Примечание — Плотность мощности физически эквивалентна освещенности. Обе измеряют в ваттах на единицу площади. Термин «плотность мощности» используют для описания распространения излучения в пучке. Термин «освещенность» используют для описания распространения излучения, падающего на поверхность.

- 3.47 **мощность импульса** P_{H} : Отношение энергии импульса Q к длительности импульса τ_{H} .
- 3.48 **средняя мощность** P_{av} . Произведение средней энергии импульса Q на частоту повторения импульсов f_p
- 3.49 пиковая мощность P_{pk} . Максимум временной функции мощности.
- 3.50 длительность импульса τ_H : Временной интервал между точками половины пиковой мощности на переднем и заднем фронтах импульса.
- 3.51 длительность импульса по уровню 0,1 τ_{10} : Временной интервал между точками 0,1 пиковой мощности на переднем и заднем фронтах импульса.

n partial polarization
r polarisation partielle

en randomly polarized radiation fr rayonnement à polarization aléatoire

en average power density, E_u , E_{σ} fr densité de puissance moyenne,

 E_u , E_{σ}

en cw-power, P

fr puissance continue, P

en power density, *E(x,y)* fr densité de puissance, *E(x,y)*

pulse power, P_H

fr puissance d'impulsion, P_H

en average power, P_{av}

fr puissance moyenne, P_{av}

en peak power, P_{pk} fr puissance crête, P_{pk}

en pulse duration, τ_H

fr durée d'impulsion, τ_H

en 10 %-pulse duration, τ₁₀

fr durée d'impulsion à 10 %, τ_{10}

- 3.52 частота повторения импульсов f_p : Число лазерных импульсов в секунду для импульсно-периодического лазера.
- 3.53 относительная интенсивность шума R(f); RIN: Отношение en среднеквадратических флюктуаций излучаемой мощности к среднеквадратической излучаемой мощности, приведенное к удельной ширине полосы частот

$$R(f) = \frac{\left\langle \Delta P(f)^2 \right\rangle}{\left\langle P(f)^2 \right\rangle} \frac{1}{\Delta f}.$$

Примечание — Термин имеет более широкое наименование «относительная интенсивность спектральной плотности шума», но применяют понятие «относительная интенсивность шума» (RIN).

- 3.54 **квантовый выход** η_{Q} : Отношение энергии **единичного лазер**ного фотона к энергии единичного фотона накачки, который вызывает инверсию в лазере с оптической накачкой.
- 3.55 **длина по Релею** z_R , z_{Rx} , z_{Ry} . Расстояние от перетяжки пучка еп в направлении распространения, для которого диаметр пучка или fr ширина пучка равняется √2 от значения перетяжки пучка.

Примечание — Для основной гауссовой моды длина по Релею равна:

$$Z_R = \frac{\pi d_{\sigma 0}^2}{4\lambda}.$$

Также допускается использовать формулу

$$Z_R = \frac{d_{\sigma 0}}{\theta_{\sigma}}$$
.

- 3.56 спектральная ширина полосы $\Delta \lambda$, Δv : Максимальная разница между длинами волн (оптических частот), для которых плотность спектральной мощности (энергии) равна половине ее пикового значения.
- 3.57 устойчивый резонатор: Резонатор с двумя концевыми зеркалами, пути параксиальных лучей которого остаются внутри резонатора для бесконечного числа циклов проходов.
- 3.58 неустойчивый резонатор: Резонатор с двумя концевыми зеркалами, пути параксиальных лучей которого уходят из резонатора после конечного числа циклов проходов.

Примечание — Один осевой луч остается в резонаторе, если не учитывать дифракцию.

- pulse repetition rate, f_p en
- fréquence de répétition des impulsions, f_p
- relative intensity noise, RIN,
- R(f)

intensité relative de bruit. RIN. R(f)

- quantum efficiency, η_O
- rendement optique, η_O
- Rayleigh length, z_R , z_{Rx} , z_{Ry} longueur de Rayleigh, z_R , z_{Rx} , z_{Rv}

- spectral bandwidth, $\Delta\lambda$, $\Delta\nu$
- fr largeur spectrale, $\Delta\lambda$, $\Delta\nu$
- stable resonator en
- résonateur stable
- unstable resonator
- résonateur instable

Приложение А (справочное)

Сравнение терминологии МЭК 60825-1 и ИСО 11145

Лазерный структурированный алфавитный указатель, иллюстрируемый на рисунке 1, отличается от предложенного МЭК 60825-1. ИСО и МЭК обсудили эту разницу и согласились, что он отражает различные цели, для которых были разработаны данные стандарты.

Терминологический стандарт МЭК 60825-1 был разработан, основываясь на применимости стандарта безопасности для производителей лазерной аппаратуры, которая продается конечным пользователям, а не последующим производителям, которые занимаются объединением лазеров и лазерных систем в установки более высокого уровня для продажи конечному пользователю. Назначение раздела 1 стандарта МЭК 60825-1 — сделать производителя лазерной аппаратуры для конечного потребителя ответственным за соблюдение требований по безопасности по стандарту МЭК 60825-1. Кроме того, требования по безопасности шире для «лазеров» с подключенными источниками питания. Таким образом, термин «лазерная система» был введен для того, чтобы установить различие с термином «лазер». Термины МЭК были получены из национальных стандартов по лазерной безопасности и введены в многочисленные национальные и международные стандарты безопасности с указанием того, что имеющиеся в них термины соответствуют содержащим их стандартам.

Словарь ИСО был разработан с целью выведения абсолютных определений для иерархической стадий развития лазерного оборудования. Поскольку словарь МЭК однозначно зависит от того, что произойдет в сфере лазерного оборудования в будущем, это не удовлетворяет требований ИСО об абсолютности. Определения МЭК для «лазерной системы» и «лазерной аппаратуры» не входят в терминологию ИСО. Они указаны ниже с информационной целью.

«Лазерная аппаратура: любая аппаратура или соединение компонентов, которые составляют, создают или приводят к созданию лазера или лазерной системы».

«Лазерная система: лазер в комбинации с соответствующим источником лазерной энергии, с дополнительными компонентами или без».

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов национальным стандартам Российской Федерации

Таблица ДА.1

Обозначени е ссылочно го международно го станда рта	Степень соответствия	Обозначение и наименование соответствующего национального стандарта
ИСО 11146-1	IDT	ГОСТ Р ИСО 11146-1—2008 «Лазеры и лазерные установки (системы). Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков. Часть 1. Стигматические (гомоцентрические) и слабоастигматические пучки»
ИСО 11670	IDT	ГОСТ Р ИСО 11670—2010 «Лазеры и лазерные установки (системы). Методы измерений параметров лазерных пучков. Стабильность положения пучка»
ИСО 15367-1	IDT	ГОСТ Р ИСО 15367-1—2012 «Лазеры и лазерные установки (системы). Методы измерений формы волнового фронта пучка лазерного излучения. Часть 1. Терминология и основные положения»
MЭK 60825-1	IDT	ГОСТ IEC 60825-1—2013 «Безопасность лазерной аппаратуры. Часть 1. Классификация оборудования, требования и руководство для пользователей»

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:
- IDT — идентичные стандарты.

Алфавитный указатель буквенных обозначений

Латинский алфавит		Греческий алфавит	
$A_{\it u}$ — площадь поперечного сечения пучка	3.2.1	$\epsilon\left(z ight)$ — эллиптичность пучка	3.5.3
$A_{_{ m C}}$ — площадь поперечного сечения пучка	3.2.2	η_L — эффективность лазера	3.31
$d_{m{u}}$ — диаметр пучка	3.3.1	η_{Q} — квантовый выход	3.54
d_{σ} — диаметр пучка	3.3.2	$\eta_{\mathcal{T}}$ — эффективность устройства	3.18
$d_{x,u}$ — ширина пучка по оси x	3.5.1	$\Theta_{\pmb{u}}$ — угол расходимости	3.19.1
$d_{\sigma x}$ — ширина пучка по оси x	3.5.2	$\Theta_{_{\!$	3.19.2
$d_{v,u}$ — ширина пучка по оси y	3.5.1	$\Theta_{{m x},{m u}}$ — угол расходимости по оси ${m x}$	3.19.1
$d_{\sigma y}$ — ширина пучка по оси y	3.5.2	$\Theta_{y,u}$ — угол расходимости по оси y	3.19.1
$d_{0,u}$ — диаметр перетяжки пучка	3.11.1	$\Theta_{\sigma x}$ — угол расходимости по оси x	3.19.2
$d_{\sigma 0}$ — диаметр перетяжки пучка	3.11.2	$\Theta_{\sigma \mathbf{y}}$ — угол расходимости по оси y	3.19.2
$d_{x0,u}$ — ширина перетяжки пучка по оси x	3.13.1	$\Delta_{\chi}(z')$ — позиционная стабильность	
$d_{v0,u}$ — ширина перетяжки пучка по оси y	3.13.1	пучка по оси x	3.9
$d_{\sigma x 0}$ — ширина перетяжки пучка по оси x	3.13.2	$\Delta_{y}\!(z')$ — позиционная стабильность	
$d_{\sigma y 0}$ — ширина перетяжки пучка по оси y	3.13.2	пучка по оси у	3.9
$E_{m{u}}$ — средняя плотность мощности	3.44	$\Delta \mathbf{z_a}$ — разделение перетяжек	
$E_{_{ m C}}$ — средняя плотность мощности	3.44	астигматического пучка	3.14.1
E(x,y) — плотность мощности	3.46	$\Delta \mathbf{z}_r$ — относительное разделение	
$f_{m p}$ — частота повторения импульсов	3.52	перетяжек астигматического пучка	3.14.2
$\overset{\cdot}{H}_{u}$ — средняя плотность энергии	3.21	$\Delta\lambda$ — спектральная ширина полосы	
$H_{_{\!$	3.21	в терминах длины волны	3.56
К — фактор распространения пучка	3.7	Δu — спектральная ширина полосы	
I_{C} — длина когерентности	3.16	в терминах частоты в оптическом	
<i>M</i> ² — коэффициент распространения пучка	3.7	диапазоне	3.56
ho — степень линейной поляризации	3.41	$\Delta \vartheta$ — угол отклонения	3.1.2
P — мощность непрерывного излучения	3.45	\mathfrak{r}_H — длительность импульса	3.50
$P_{m{av}}$ — средняя мощность	3.48	τ ₁₀ — длительность импульса по	
Р _Н — мощность импульса	3.47	уровню 0,1	3.51
$P_{\it pk}$ — пиковая мощность	3.49	\mathbf{r}_c — время когерентности	3.17
Q — энергия импульса	3.22		
RIN — относительная интенсивность шума	3.53		
R(f) — относительная интенсивность шума	3.53		
w _u — радиус пучка	3.4.1		
$ extbf{\textit{w}}_{\sigma}$ — радиус пучка	3.4.2		
$w_{0,u}$ — радиус перетяжки пучка	3.12.1		
$w_{\sigma 0}$ — радиус перетяжки пучка	3.12.2		
$z_{R^{\prime}}z_{R\mathrm{x}^{\prime}}z_{R\mathrm{y}}$ — длина по Релею	3.55		

Алфавитный указатель терминов на русском языке

Б		позиция пучка	3.8
блок лазерный	3.33	поляризация	3.37
В		поляризация круговая	3.38
время когерентности	3.17	поляризация линейная	3.40
выход квантовый	3.54	поляризация частичная	3.42
д		поляризация эллиптическая	3.39
диаметр перетяжки пучка	3.11.1, 3.11.2	произведение параметров	
диаметр пучка	3.3.1, 3.3.2	пучка	3.6
длина когерентн ости	3.16	г пучок лазерный	3.29
длина по Релею	3.55	P	
длительность импульса	3.50	радиус перетяжки пучка	3.12.1, 3.12.2
длительность импульса по уровню 0,1	3.51	радиус пучка	3.4.1, 3.4.2
3		разделение перетяжек	
зона дальняя	3.24	астигматического пучка	3.14.1
И		разделение перетяжек	
излучение лазера	3.32	астигматического пучка	3.14.2
излучение произвольно поляризованное	3.43	относительное	5.14.2
интенсивность шума относительная	3.53	распределение плотности мощности круговое	3.5.4
К		резонатор неустойчивый	3.58
когерентность	3.15	резонатор устойчивый	3.57
когерентность временная	3.15.1	C	
когерентность пространственная	3.15.2	срок службы	3.34
коэффициент распространения пучка	3.7	стабильность пучка позиционная	3.9
Л		степень линейной поляризации	3.41
лазер	3.25	у	
лазер импульсный	3.27	угол отклонения	3.1.2
лазер непрерывного излучения	3.26	угол расходимости	3.19.1, 3.19.2
M		установка лазерная	3.28
мода поперечная	3.36	устройство лазерное	3.30
мода продольная	3.35	Φ	
мощность импульса	3.47	фактор распространения пучка	3.7
мощность непрерывного излучения	3.45	Ч	
мощность пиковая	3.49	частота повторения импульсов	3.52
мощность средняя	3.48	число диафрагменное эффективное	3.20
0		Ш	
ось пучка	3.1.1	ширина полосы спектральная	3.56
П		ширины пучка	3.5.1, 3.5.2
перетяжка пучка	3.10	ширины перетяжек пучка	3.13.1, 3.13.2
плотность мощности	3.46	Э	
плотность мощности средняя	3.44	эллиптичность пучка	3.5.3
плотность энергии	3.23	энергия импульса	3.22
плотность энергии средняя	3.21	эффективность лазера	3.31
площадь поперечного сечения	3.2.1, 3.2.2	эффективность устройства	3.18

Алфавитный указатель терминов на английском языке

Α		L	
astigmatic waist separation	3.14.1	laser	3.25
average energy density	3.21	laser assembly	3.28
average power	3.48	laser beam	3.29
average power density	3.44	laser device	3.30
В		laser efficiency	3.31
beam axis	3.1.1	laser radiation	3.32
beam cross-sectional area	3.2.1, 3.2.2	laser unit	3.33
beam diameter	3.3.1, 3.3.2	lifetime	3.34
beam ellipticity	3.5.3	linear polarization	3.40
beam parameter product	3.6	longitudinal mode	3.35
beam position	3.8	M	
beam positional stability	3.9	misalignment angle	3.1.2
beam propagation ratio	3.7	P	
beam radius	3.4.1, 3.4.2	partial polarization	3.42
beam waist	3.10	peak power	3.49
beam waist diameter	3.11.1, 3.11.2	polarization	3.37
beam waist radius	3.12.1, 3.12.2	power density	3.46
beam waist widths	3.13.1, 3.13.2	pulse duration	3.50, 3.51
beam widths	3.5.1, 3.5.2	pulse energy	3.22
С		pulse power	3.47
circular polarization	3.38	pulse repetition rate	3.52
circular power density		pulsed laser	3.27
distribution	3.5.4	Q	
coherence	3.15	quantum efficiency	3.54
coherence length	3.16	R	
coherence time	3.17	randomly polarized radiation	3.43
continuous wave laser	3.26	Rayleigh length	3.55
cw laser	3.26	relative astigmatic waist separation	3.14.2
cw-power	3.45	relative intensity noise	3.53
D		RIN	3.53
degree of linear polarization	3.41	S	
device efficiency	3.18	spatial coherence	3.15.2
divergence angle	3.19.1, 3.19.2	spectral bandwidth	3.56
E		stable resonator	3.57
effective <i>f</i> -number	3.20	Т	
elliptical polarization	3.39	temporal coherence	3.15.1
energy density	3.23	transverse mode	3.36
F		U	2.50
far field	3.24	unstable resonator	3.58

Алфавитный указатель терминов на французском языке

Α		laser impulsionnel	3.27
aire de la section dufaisceau	3.2.1, 3.2.2	longueur de cohérence	3.16
angle de désalignement	3.1.2	longueur de Rayleigh	3.55
angle de divergence	3.19.1, 3.19.2	M	
axe du faisceau	3.1.1	mode longitudinal	3.35
C	J	mode transversal	3.36
champ lointain	3.24	N	
cohérence	3.15	nombre d'ouverture effectif	3.20
cohérence spatiale	3.15.2	P	
cohérence temporelle	3.15.1	polarisation	3.37
col du faisceau	3.10	polarization circulaire	3.38
D	0.10	polarization elliptique	3.39
degré de polarisationrectiligne	3.41	polarization partielle	3.42
densité de puissance	3.46	polarization rectiligne	3.40
densité de puissance moyenne	3.44	position du faisceau	3.8
densité d'énergie	3.23	produit caractéristique dufaisceau	3.6
densité d'énergie moyenne	3.21	puissance continue	3.45
diamètre du col du faisceau	3.11.1, 3.11.2	puissance crête	3.49
diamètre du faisceau	3.3.1, 3.3.2	puissance d'impulsion	3.47
dispositif laser	3.30	puissance moyenne	3.48
distribution de densité depuissance	3.30	R	
circulaire	3.5.4	rayon du col du faisceau	3.12.1, 3.12.2
durée de vie	3.34	rayon du faisceau	3.4.1, 3.4.2
durée d'impulsion	3.50, 3.51	rayonnement à polarisationaléatoire	3.43
E	,	rayonnement laser	3.32
ellipticité d'une distribution dedensité		rendement de la source	3.18
de puissance	3.5.3	rendement du laser	3.31
énergie d'impulsion	3.22	rendement optiquerésonateur instable	3.543.58
ensemble laser	3.28	résonateur stable	3.57
F		RIN	3.53
facteur de limite de diffraction	3.7	S	
faisceau laser	3.29	séparation du col astigmatique	3.14.1
fréquence de répétition desimpulsions	3.52	séparation du col astigmatique	
1		relativesource laser	3.14.23.30
intensité relative de bruit	3.53	stabilité de position du	
L		fa isceau	3.9
largeur spectrale	3.56	Т	
largeurs du col du faisceau	3.13.1, 3.13.2	taille du faisceau	3.10
largeurs du faisceau	3.5.1, 3.5.2	temps de cohérence	3.17
laser	3.25	U	
laser continu	3.26	unité laser	3.3 3

Библиография

- [1] ISO 11146-1:2005, Lasers and laser-related equipment Test methods for laser beam widths, divergence angles and beam propagation ratios Part 1: Stigmatic and simple astigmatic beams
- [2] ISO 11670:2003, Lasers and laser-related equipment Test methods for laser beam parameters Beam positional stability
- [3] ISO 15367-1:2003, Lasers and laser-related equipment Test methods for determination of the shape of a laser beam wavefront Part 1: Terminology and fundamental aspects
- [4] IEC 60825-1, Safety of laser products Part 1: Equipment classification, requirements and user's guide

УДК 681.7:006.354

OKC 31.260

П46

MKC 01.080.40: 01.040.31

Ключевые слова: термин, определение, обозначения, единицы измерения, лазер, лазерная система, лазерный продукт

Редактор *П.А. Захаренко* Корректор *Е.Р. Ароян* Компьютерная верстка *Ю.В. Поповой*

Сдано в набор 19.09.2016. Подписано в печать 30.09.2016. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 2,79. Уч.-изд. л. 2,54. Тираж 40 экз. Зак. 2460. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Набрано в ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru