4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний МУК 4.1.1437—4.1.1448—03, МУК 4.1.1453—4.1.1460—03, МУК 4.1.1467—03

Выпуск 4

Издание официальное

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний МУК 4.1.1437—4.1.1448—03, МУК 4.1.1453—4.1.1460—03, МУК 4.1.1467—03

Выпуск 4

ББК 51.21 О 37

О 37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний. Вып. 4—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2007.—254 с.

Настоящий сборник содержит копии оригиналов методических указаний по определению остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды.

- 1. Сборник подготовлен: Федеральным научным центром гигиены им. Ф.Ф. Эрисмана (академик РАМН, проф. В.Н. Ракитский, проф. Т.В. Юдина); Российским государственным аграрным университетом МСХА им. К.А. Тимирязева (проф. В.А. Калинин, к.х.н. А.В. Довгилевич); при участии Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (А.П.Веселов). Разработчики методов указаны в каждом из них.
- 2. Методические указания рекомендовваны к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.
- 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, академиком РАМН Г.Г. Онищенко 24 июня 2003 г.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ.л.16,0

Тираж 150 экз.

Тиражировано отделом информационно-издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора

- © Роспотребнадзор, 2007
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2007

Содержание

Определение остаточных количеств тритосульфурона в воде, почве, зерне и соломе зерновых культур, зерне и зеленой массе кукурузы методом высокоэффективной жидкостной хроматографии: МУК 4.1.1437—03	4
Определение остаточных количеств трифлуралина в зеленой массе и зерне зерновых культур, в семенах и масле подсолнечника, сои и рапса методом газожидкостной хрома- тографии: МУК 4.1.1438—03	20
Определение остаточных количеств фенпироксимата и его метаболитов в воде, почве, винограде и яблоках методом высокоэффективной жидкостной хроматографии: МУК 4.1.1439—03	30
Измерение концентрации фенпироксимата в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1440—03	43
Измерение концентраций флуметсулама и флорасулама в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1441—03	50
Определение остаточных количеств флуметсулама и флорасулама в воде, почве, зерне и соломе зерновых колосовых культур методом высокоэффективной жидкостной хроматографии: МУК 4.1.1442—03	59
Определение остаточных количеств флуазифоп-П-бутил по флуазифоп-П в воде, зеленой массе растений, клубнях картофеля, зерне гороха, семенах и масле сои, подсолнечника, рапса, льна методом газожидкостной хроматографии: МУК 4.1.1443—03	77
Определение остаточных количеств флутриафола в воде, почве, зеленой массе, зерне и соломе зерновых колосовых культур, ботве и корнеплодах сахарной свеклы, винограде и яблоках методом капиллярной газожидкостной хроматографии: МУК 4.1.1444—03	99
Определение остаточных количеств хлороталонила в зерне и соломе зерновых колосовых культур, винограде, яблоках, хлороталонила и его метаболита – SDS 3701 (R 182281) методом газожидкостной хроматографии: МУК 4.1.1445—03	113
Определение остаточных количеств эсфенвалерата в воде водоемов, почве, яблоках, клубнях картофеля, зерне и соломе зерновых колосовых культур методом газожидкостной хроматографии: МУК 4.1.1446—03	128
Измерение концентраций карбосульфана в воздухе рабочей зоны методом газожидкостной хроматографии: МУК 4.1.1447—03	139
Определение остаточных количеств диниконазола в семенах и масле подсолнечника методом газожидкостной хроматографии: МУК 4.1.1448—03	146
Измерение концентраций дикамбы в воздухе рабочей зоны газожидкостной и тонкослойной хроматографией: МУК 4.1.1453—03	153
	164
Определение остаточных количеств клефоксидима в воде, почве, зерне и соломе риса методом высокоэффективной жидкостной хроматографии: МУК 4.1.1455—03	176
Определение остаточных количеств кломазона в воде, почве, зерне, соломе риса, семенах и масле сои хроматографическими методами: МУК 4.1.1456—03	187
Определение остаточных количеств крезоксим-метила в воде, почве, яблоках и его метаболита крезоксима в воде и почве газохроматографическим методом: МУК 4.1.1457—03.	203
Определение остаточных количеств метазахлора в семенах и масле горчицы и рапса га- зохроматографическим методом: МУК 4.1.1458—03	215
Определение остатков пирипроксифена в воде, почве и яблоках методом высокоэффективной жидкостной хроматографии: МУК 4.1.1459—03	223
Определение остаточных количеств тепралоксидима в воде, почве, сахарной свекле и сое методом газожидкостной хроматографии: МУК 4.1.1460—03	233
Определение остаточных количеств бромуконазола в воде, почве, зерне и зеленой массе зерновых колосовых культур, ягодах черной смородины и винограда методом	21-
газожидкостной хроматографии: МУК 4.1.1467—03	245

Главный государственный санитарный врач Российской Федерации Первый заместитель Министра здравоохранения Российской Федерации

Г.Г. Онищенко

24 way 2002

MYK 4.1./434-03

Дата введения с можентарувержими 30 ини 2003 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания по определению остаточных количеств Фенпироксимата и его метаболитов в воде, почве, винограде и яблоках методом высокоэффективной жидкостной хроматографии

1.ВВОДНАЯ ЧАСТЬ

Фирма-производитель: Нихон Нохияку Компани, ЛТД, Япония.

Торговое название: Ортус

Название действующего вещества по ИСО: Фенцироксимат

Название действующего вещества по ИСО: mpem - бутил (E)- α -(1,3-диметил-5-феноксипиразол-4-ил-метиленамино -p- толуат-окси) метил бензоат.

Структурная формула:

Эмпирическая формула: С24H27N3O4.

$$\begin{array}{c|c} H_3C & C=N \\ \hline \\ N & C+1 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \end{array}$$

Химически чистый Фенпироксимат представляет собой белое кристаллическое вещество, без запаха.

Давление паров – 0,0075 мПа (при 25°C).

Температура плавления 101,1-102,4 °C.

Коэффициент распределения н-октанол-вода: K ow log P =5,01 (20°C).

Растворимость в воде составляет при 25° C - 1,46 x 10^{-2} мг/л.

Растворимость в органических растворителях (г/л при 25°C): дихлорметан- 1307, хлороформ - 1197, ацетон – 150, метанол - 15 г/л.

Краткая гигиеническая характеристика: Фенпироксимат относится к умеренноопасным по острой оральной (ЛД₅₀ /крысы / 245-480 мг/кг) и дермальной (ЛД₅₀ /крысы/ свыше 2000 мг/кг) токсичности веществам, но чрезвычайно опасным по ингаляционной (ЛД₅₀ /крысы/ 4 ч. 0,33-0,36 мг/л) токсичности. Вызывает очень слабое раздражение кожи и среднее раздражение слизистых оболочек глаз. При хроническом воздействии может оказывать слабое тератогенное действие.

В России установлены следующие гигиенические нормативы:

ДСД - 0.005 мг/кг/сут;

ОБУВ в воздухе рабочей зоны – 0,05 мг/м³;

ПДК в воде -0.001 мг/л;

ОДК в почве -0.3 мг/кг;

МЛУ (м Γ /к Γ) в яблоках, винограде – 0,2.

Область применения: Фенпироксимат является контактным акарицидом из группы пиразолов, предназначенным для уничтожения различных видов клещей. Зарегистрирован в России и странах СНГ под торговой маркой Ортус, ск (50 г/л) в качестве акарицида на яблоне с нормой расхода 0,5-0,9 л/га, а также на виноградниках с нормой расхода 0,6-0,9 л/га при 2- кратной обработке.

При определенных условиях может трансформироваться в растениях и объектах окружающей среды с образованием Z- изомера и деметилфенпироксимата.

Название действующего вещества Z- изомера по ИСО: *трет* бутил-(Z)- α -(1,3-диметил-5-фенокси-1H-пиразол-4-ил) метиленамино-p- толуат-окси метил бензоат.

Структурная формула:

Название действующего вещества деметилфенпироксимата по ИСО: *трет* - бутил-(E)- α-(3-метил-5-фенокси-1H-пиразол-4-ил) метиленамино - -*p*- толуат — окси метил бензоат. Структурная формула:

2. Методика определения остаточных количеств Фенпироксимата и его метаболитов воде, почве, яблоках и винограде методом высокоэффективной жидкостной хроматографии

2.1. Основные положения

2.1.1. Принцип метода

Методика основана на определении Фенпироксимата и его метаболитов методом высокоэффективной жидкостной хроматографии с использованием ультрафиолетового детектора, после экстракции ацетонитрилом (яблоки, виноград), хлороформом (вода), подкисленным 80%-м ацетоном (почва), перераспределении в гексан или хлористый метилен (почва) и очистки экстракта на колонках с силикагелем. Количественное определение проводится методом абсолютной калибровки.

2.1.2. Избирательность метода

В предлагаемых условиях метод специфичен в присутствии пестицидов, применяемых при возделывании плодовых культур и виноградников (хлор- и фосфорорганические со единения, синтетические пиретроиды, фенилмочевины, тио- и дитиокарбаматы и т.д.).

2.1.3. Метрологическая характеристика метода

Метрологическая характеристика метода приведена в таблицах 1 и 2.

Таблица 1 Метрологические параметры метода определения остаточных количеств Фенпироксимата и продуктов его трансформации в винограде, яблоках, воде

Метрологические параметры, p=0,95, n=20							
Анализи-	Предел об-	Диапазон оп-	Среднее	Стан-	Доверитель-		
руемый	наружения,	ределяемых	значение	дартное	ный интервал		
объект	ML/KL	концентраций,	определе-	отклоне-	среднего ре-		
		мг/кг	ния, %	ние, S	зультата, % <u>+</u>		
вода	0,001	0,001 - 0,5	92,8	1,10	92,8 ±2,69		
почва	0,02	0,02-0,1	78,1	3,05	78,1 ±3,85		
яблоки	0,025	0,025-0,5	84,8	3,90	84,8 <u>+4,</u> 12		
виноград	0,025	0,025-0,5	86,5	4,190	86,5 <u>+4</u> ,42		

Таблица 2. Доверительный интервал и полнота определения Фенпироксимата в воде, почве, яблоках и винограде

Среда	Добавлено	Обнаружено	Доверитель-	Полнота
_	Фенпироксимата,	Фенпироксимата	ный интервал,	определе-
	мг/кг	ML/KL	<u>+</u>	ния, %
вода	0,01	0,0091	0,0003	91,0
	0,04	0,0373	0,001	93,2
	0.08	0,0742	0,002	93,3
	0,15	0,1407	0,002	93,8
почва	0,02	0,0147	0,0004	78,4
	0,05	0,0483	0,002	76,6
	0,1	0,0794	0,003	79,4
яблоки	0,02	0,0167	0,0008	83,5
	0,05	0,0423	0,001	84,7
	0,10	0,0857	0,004	85,7
	0,50	0,426	0,019	85,2
виноград	0,02	0,00162	0,0001	81,2
annoi pag	0,05	0,0043	0,0001	86,0
İ	0,10	0,0088	0,0003	88,3
	0,50	0,0045	0,0002	90,2

2.2. Реактивы, растворы, материалы и оборудование

2.2.1. Реактивы, растворы и материалы

Фенпироксимат, х.ч., аналитический стандарт с содержанием д.в. 99,70 %.

Z-изомер Фенпироксимата.

Деметилфенпироксимат (производство Нихон Нояку, Япония).

Ацетонитрил, ч., ТУ 6-09-3534-87.

Ацетон, ч.д.а., ГОСТ 2603-79.

Хлористый метилен, х.ч., ГОСТ 12794-80.

Спирт метиловый, ГОСт 6995-77.

н-Гексан, ч., ТУ 6-09-3375-78.

Хлорофрм, Фармакопея СССР.

Этиловый эфир уксусной кислоты, ч.д.а., ГОСТ 22300.

Кислота хлороводородная, х.ч., ГОСТ 3118-77.

Натрий сернокислый безводный, х.ч., ГОСТ 4166-76.

Натрий хлористый, ч.д.а., ГОСТ 4233-77.

Вода дистиллированная, ГОСТ 6709.

Вода бидистиллированная.

Силикагель для колоночной хроматографии 70-230 меш, фирма мерк, № 7734.

Вата, сухая обезжиренная, ГОСТ 5556-81.

Универсальная индикаторная бумага. ТУ 6-09-1181-71.

Фильтры бумажные, ТУ-6-09-1678-86.

2.2.2. Приборы, аппаратура, посуда

Жидкостный хроматограф "Hewlett-Packard HP 1050" с ультрафиолетовым детектором или аналогичный (например, "Beckman Gold System").

Хроматографическая колонка обращенно - фазовая Hypersyl RP-18, размером 200 мм x 4, 6 мм или аналогичная.

Хроматографическая колонка нормально- фазовая Resolve Silica, , размером 3,9 мм х 150 мм или аналогичная.

Жидкостный хроматограф "Милихром 4" (Россия) с ультрафиолетовым детектором

Колонка аналитическая КАХ-4643, содержащая носитель Separon C18.

Встряхиватель механический. ТУ 64-1-1081-73.

Ротационный вакуумный испаритель ИР-1М. ТУ 25-11-917-74 или аналогичный.

Насос водоструйный, ГОСТ 25336 или вакуумный насос масляный, типа ВН-461-М или аналогичный.

Микропприпы, ГОСТ 20292-74.

Баня водяная, ТУ 64-1-2850.

Колонки для адсорбционной хроматографии, длина 35 м, внутренний диаметр 1,2 см.

Колбы конические плоскодонный на 100 и 250 мл, с притертыми пробками (шлиф № 29), КПШ-100-29/32 и КПШ-250-29/32, ГОСТ 10394-72.

Воронки для фильтрования, стеклянные, ГОСТ 8613

Воронки делительные стеклянные на 100 и 500 мл, ГОСТ 8613.

Колбы круглодонные на шлифах на 250 мл, ГОСТ 25336-83

Концентраторы конические НШ 19, КГУ-100-14/19, ТС, ГОСТ 10394-72.

Колбы грушевидные на шлифах, на 50 и 100 мл, КГУ 50-14/19 и КГУ 100-14/19, ТС, ГОСТ 10394-72.

Пробирки градуированные, стеклянные, на 10 и 25 мл, ГОСТ 1770-74 Е.

Пипетки мерные на 100 мл, ГОСТ 25336-82.

Стаканы стеклянные на 100 мл., ГОСТ 25336-82 Е.

Колбы мерные на 50, 100, 250 и 500 мл, ГОСТ 1770-74 Е.

Цилиндры мерные на 50, 100, 250 и 500 мл, ГОСТ 1770-74 Е.

Колбы Бунзена, вместимостью 500 мл, ГОСТ 6514-75.

Фильтры бумажные "синяя лента", ТУ 6-09-2678.

Весы аналитические ВЛР-200 г, ГОСТ 24104-80.

Весы технические ВЛКТ-500 г. ГОСТ 19491-74.

Секундомер, ГОСТ 16820-71.

2.3. Подготовка к определению

 2.3.1. Подготовка растворителей и приготовление подвижных фаз для колоночной и ВЭЖХ -хроматографии.

2.3.1.1. Метод очистки ацетонитрила.

Ацетонитрил кипятят с обратным холодильником над пентаоксидом фосфора несколько раз, до тех пор, пока ацетонитрил не перестанст окрашиваться. После этого ацетонитрил отгоняют, и перегоняют еще раз над карбонатом калия.

2.3.1.2. Метод очистки гексана

Гексан (1 л) выдерживают 15 часов с концентрированной серной кислотой (0,1 л). Гексан аккуратно декантируют в делительную воронку и трижды промывают: дистиллированной водой, 2%-ным ведиым раствором гидроксида натрия и снова водой. Осущают гексан гидроксидом калия, после чего перегоняют.

2.3.1.3. Метод очистки хлористого метилена

Хлористый метилен последовательно промывают: концентрированной серной кислотой, водой, 2%-м водным раствором гидроксида натрия и снова водой. Осущают карбонатом калия и перегоняют.

2.3.1.4. Метод очистки метанола

К 1 л метанола добавляют 5 г стружек магния, кипятят 2-3 часа с обратным холодильником, после чего перегоняют.

2.3.1.5.1. Приготовление подвижной фазы для ВЭЖХ с обращенной фазой.

Бидистиллят получают с помощью лабораторного бидистиллятора. Для получения подвижной фазы (ВЭЖХ) 750 мл ацетонитрила смешивают с 250 мл бидистиллята (800 мл и 200 мл для "Милихрома"). Полученную фазу тщательно дегазируют путем продувки гелием или вакуумированием в течение 10 мин (до окончания вскипания при встряхивании).

2.3.1.5.2. Приготовление подвижной фазы для ВЭЖХ с нормальной фазой (почва).

Для получения подвижной фазы к 700 мл очищенного гексана прибавляют 297 мл очищенного хлористого метилена и 3 мл очищенного метанола, тщательно перемешивают и дегазируют путем продувки гелием или вакуумированием до прекращения вскипания при встряхивании.

2.3.1.6. Приготовление подвижной фазы для колоночной хроматографии

Для колоночной хроматографии 500 мл хлороформа смешивают с 500 мл гексана, тщательно перемешивают (колонка №1). Для колонки № 2 готовят две подвижные фазы:

- 1) 450 мл гексана смешивают с 50 мл этилацетата (фаза№ 1 гексан/этилацетат (9:1));
- 2) 60 мл гексана смешивают с 40 мл этилацетата (фаза№ 2 гексан/этилацетат (6:4)).

2.3.2. Подготовка колонки с силикагелем для очистки экстракта

2.3.2.1. Колонка № 1.

В стеклянную колонку помещают чистую стекловату (при ее отсутствии обычную вату замачивают на 24 часа в хлороформе, после чего высущивают на воздухе). 3,5 г силикателя Si-60 помещают в стеклянный стакан и суспендируют в 15-20 мл подвижной фазы — гексан/хлороформ (1·1 по объему). Колонку промывают этой же фазой и, не дав растворителю полностью стечь, вливают в колонку суспензию силикателя. Операцию повторяют 2-3 раза.

пока весь силикатель не будет перепесен в колонку. Сорбент уплотняют постукиванием по стенкам колонки, до прекращения видимого оседания силикателя. Сверху помещают стекловату или вату, промытую в хлороформе. Недопустимы видимые пустоты и пузырьки возлуха в колонке! В этом случае колонку заполняют повторно.

2.3.2.2. Колонка № 2.

В стеклянную колонку помещают чистую стекловату (при ее отсутствии обычную вату замачивают на 24 часа в хлороформе, после чего высушивают на воздухе). 3,0 г силикагеля Si-60 помещают в стеклянный стакан и суспендируют в 15-20 мл подвижной фазы № 1 гексан/этилацетат (9:1 по объему). Колонку промывают этой же фазой и, не дав растворителю полностью стечь, вливают в колонку суспензию силикагеля. Операцию повторяют 2-3 раза, пока весь силикагель не будет перенесен в колонку. Сорбент уплотняют постукиванием по стенкам колонки, до прекращения видимого оседания силикагеля. Сверху помещают стекловату или вату, промытую в хлороформе. Недопустимы видимые пустоты и пузырьки воздуха в колонке! В этом случае колонку заполняют повторно. После впитывания растворителя в поверхность силикагеля можно наносить образец.

2.3.3. Подготовка хроматографической системы к проведению анализа.

Подготовку хроматографической системы проводят согласно заводской инструкции по эксплуатации хроматографа.

2.3.4. Проверка хроматографического поведения Фенпироксимата, Z-изомера и диметилфенпироксимата.

При использовании новой партии силикагеля, а также при отработке методики или при замене силикагеля Si-60 на силикагель КСК (ЛХМ), необходимо провести уточнение поведения анализируемого вещества на хромтаографической колонке. Для этого 1 мл стандартного раствора анализируемых веществ с концентрацией 2 мкг/мл упаривают в концентраторе досуха. Остаток растворяют в 2 мл подвижной фазы (гексан/хлороформ 1:1) и наносят на колонку. Колбу вновь ополаскивают 2 мл фазы, и, после впитывания первой порции в слой силикагеля, также наносят на колонку.

После впитывания колонку промывают 150 мл подвижной фазы (гексан/хлороформ 1:1), отбирая следующие фракции: первые 15 мл, следующие 35 мл (в них содержится фенпироксимат и Z-изомер) и следующие 100 мл (в них содержится деметилфенпироксимат). Элюент из каждой фракции упаривают до объема 15-20 мл и количественно, используя 15-20 мл хлороформа, переносят в концентратор, упаривают до объема 0,3-0,5 мл.

В токе азота выпаривают растворитель досуха, остаток растворяют в 1 мл ацетонитрила и хромтатографируют (при использовании хроматографа "Милихром 4", образец, содержащий деметилфенпироксимат растворяют в 0,8 мл ацетонитрила и после растворения добавляют 0,2 мл бидистиллята).

Аналогично изучают поведение Фенпироксимата и продуктов его трансформации на колонке № 2. Для этого 1 мл стандартного раствора анализируемых веществ с концентрацией 2 мкг/мл упаривают в концентраторе досуха. Остаток растворяют в 2 мл подвижной фазы (гексан/хлороформ 1:1) и наносят на колонку. Колбу вновь ополаскивают 2 мл фазы, и, после впитывания первой порции в слой силикагеля, также наносят на колонку.

После впитывания колонку промывают 50 мл подвижной фазы № 1 (гексан/этилацетат 9:1), собирая элюат в колбу для упаривания. После промывки колонки фенпироксимат и продукты его трансформации элюируют 25 мл фазы № 2 (гексан/этилацетат 6:4), собирая элюат в колбу для упаривания. Элюат упаривают до объема 0,3-0,5 мл. В токе азота выпаривают растворитель досуха, остаток растворяют в 1 мл ацетонитрила и хромтатографируют.

ВНИМАНИЕ! При использовании хроматографа "Милихром 4", следует вышеуказанную проверку на колонке № 2 проводить только для фенпироксимата и его Z-изомера (первый стандарт).

2.3.5. Приготовление стандартных растворов

На аналитических весах взвещивают 10 мг фенцироксимата, 10 мг Z-изомера и 10 мг деметилфенцироксимата в колбу на 100 мл. Навеску растворяют в очищенном ацетонитриле и доводят объем до метки.

Полученный раствор с концентрацией 0,1 мг/мл (стандартный раствор № 1) хранят в холодильнике в течение 1 месяца.

При проведении анализа с помощью хроматографа "Милихром 4", готовят 2 стандартных раствора:

- 10 мг фенпироксимата и 10 мг Z-изомера взвешивают в колбу на 100 мл, растворяют в ацетонитриле и доводят до метки (стандарт № 1).
- В другой колбе на 100 мл взвешивают 10 мг фенпироксимата, растворяют в ацетонитриле и доводят до метки (стандарт № 2).

Непосредственно перед анализом готовят серийные разведения стандартных растворов с концентрацией 2, 1, 0,5 и 0,1 мкг/мл. Для этого из стандартного раствора с концентрацией 100 мкг/мл (стандартные растворы № 1и № 2) отбирают 2 мл, переносят в мерную кол-

бу на 100 мл, доводят до метки ацетонитрилом и тщательно перемешивают. Затем бинарными разведениями получают стандартные растворы с требуемой концентрацией. Стандарт деметилфешироксимата разводят подвижной фазой (ацетонитрил/вода, 80:20).

Вводят в хроматограф по 10 мкл (20 мкл) каждого раствора, измеряют высоты пиков и строят график зависимости высоты пика от концентрации анализируемого вещества.

2.4. Отбор проб

Отбор проб производится в соответствии с "Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов" (N 2051-79 от 21.08.79 г.).

Отобранные пробы анализируют в день взятия образца. При отсутствии такой возможности фрукты замораживают и хранят в холодильнике при -18°C не более 1 месяца, предварительно определив содержание влаги.

Образцы воды помещают в стеклянную посуду, заполнив не более, чем на 2/3, замораживают и хранят в горизонтальном положении.

Образцы почвы подсущивают до воздушно-сухого состояния, размалывают на мельнице и просеивают через сито с отверстиями диаметром 1 мм. Подготовленную почву хранят до анализа в плотно закрытой стеклянной таре при -18°С, в течение месяца.

Перед анализом яблоки и виноград гомогенизируют (натирают яблоки на терке, виноград растирают в ступке). Образцы воды фильтруют.

- 2.5. Описание определения
- 2.5.1. Яблоки и виноград.
- 2.5.1.1. Экстракция и предварительная очистка

Навеску 50 г измельченных плодов помещают в колбу на 250 мл и заливают 100 мл ацетонитрила. Образец встряхивают в течение 30 мин. Экстракт фильтруют, к образцу добавляют свежую порцию ацетонитрила (100 мл) и встряхивают в течение 30 мин. Экстракт отфильтровывают, остаток на фильтре промывают 50 мл ацетонитрила. Экстракты объединяют. Из полученного объема (250 мл) отбирают 50 мл экстракта, переносят в делительную воронку на 500 мл, добавляют 100 мл дистиллированной воды и 30 мл насыщенного раствора хлорида натрия, перемешивают и трижды экстрагируют гексаном порциями по 70 мл. Объединенные гексановые фракции упаривают до объема 0,3-0,5 мл на на ротационном испарителе при температуре водяной бани 40°С. В токе азота выпаривают растворитель досуха, полученныи остаток очищают на колонке с силикателем (колонка № 1).

2.5.1.2. Очистка на колонке с силикагелем № 1

Сухой остаток в конценираторе растворяют в 2 мл подвижной фазы (гексан/хлороформ) и наносят на колонку, подготовленную согласно пп. 2.3.2.1., не допуская ее пересыхания. Колбу повторно ополаскивают 2 мл подвижной фазы и наносят на колонку после впитывания первой порции в слой силикагеля. После нанесения образца, Фенпироксимат и продукты его деградации, элюируют 150 мл подвижной фазы (гексан/хлороформ 1:1). Первые 15 мл элюата отбрасывают. Далее фракции собирают, с учетом дальнейшего использования хроматографа:

1). Хроматограф "Hewlett-Packard HP 1050" или аналогичный с аналитической колон-кой 200 х 4,6 мм.

После сброса первых 15 мл собирают остальные 135 мл элюента, упаривают до объема 10-15 мл и количественно переносят в конический концентратор, используя 15-20 мл хлороформа для 2-3-кратного ополаскивания колбы. Растворитель отгоняют до объема 0,3-0,5 мл на ротационном испарителе при температуре водяной бани 40°С. Полностью удаляют растворитель в токе азота, а остаток очищают на колонке № 2.

2). Хроматограф "Милихром 4".

После сброса первых 15 мл собирают следующие 35 мл, содержащие Фенцироксимат и его Z-изомер. В другую колбу собирают следующие 100 мл элюата, которые содержат деметилфенцироксимат. Растворитель отгоняют до объема 0,3-0,5 мл на ротационном испарителе при температуре водяной бани 40°С. Полностью удаляют растворитель в токе азота, а остаток в колбе № 1 (Фенцироксимат и Z-изомер) очищают на колонке № 2. Сухой же остаток в колбе № 2 (деметилфенцироксимат) растворяют в 0,4 мл ацетонитрила, добавляют 0,1 мл бидистиллята и хроматографируют.

2.5.1.3. Очистка на колонке с силикагелем № 2

Сухой остаток, полученный согласно пп. 2.6.1. и 2.6.2., растворяют в 2 мл подвижной фазы № 1 (гексан/этилацетат, 9:1) и наносят на колонку № 2, подготовленную согласно пп. 2.5.2.2. Колбу повторно ополаскивают 2 мл подвижной фазы и также наносят на колонку после впитывания предыдущей порции. После впитывания образца в слой силикагеля, колонку промывают 50 мл подвижной фазы № 1 (гексан/этилацетат, 9:1). Элюат отбрасывают, а Фенпироксимат и его метаболиты элюируют 25 мл подвижной фазы № 2 (гексан/этилацетат, 6:4). Собранный элюат упаривают до объема 0,3-0,5 мл, растворитель удаляют в токе азота, остаток растворяют в 1 мл ацетонитрила (для хроматографа "Милихром 4" в 0,5 мл) и хроматографируют.

40

2.5.2. Почва

В коническую колбу на 100 мл помещают 20 г воздушно-сухой почвы, подготовленной согласно п. 2.4. К навеске добавляют 40 мл смеси: 80%-й водный ацетон/концентрированная соляная кислота (40:2), встряхивают в течение 1 часа и выдерживают в течение 18 часов (оставляют на ночь). Утром колбу дополнительно встряхивают в течение 30 мин и фильтруют на воронке Бюхнера под вакуумом. К остатку в колбе добавляют 20 мл экстрагирующей смеси и повторяют экстракцию в течение 20 мин, при постоянном встряхивании.

Полученный экстракт также фильтруют с помощью воронки Бюхнера. Экстракты объединяют и из полученного объема отбирают 30 мл. Отобранную аликвоту упаривают до водного остатка на ротационном испарителе при температуре водяной бани не более 45°C.

Водный остаток переносят в делительную воронку на 100 мл, и фенцироксимат реэкстрагируют хлористым метиленом (3 порции по 15 мл). Органические фракции объединяют, осущают сульфатом натрия и упаривают на ротационном испарителе при температуре водяной бани не более 45°С, до объема 1-2 мл. В токе азота выпаривают растворитель досуха, сухой остаток перерастворяют в 5-10 мл подвижной фазы и хроматографируют на колонке с нормальной фазой.

2.5.3. Вола

Аликвоту образца (250 мл) воды экстрагируют тремя порциями хлороформа (по 50 мл). Объедыненный экстракт высушивают, пропуская через безводный сульфат натрия, увлажненный хлороформом, в круглодонную колбу. Сульфат натрия промывают хлороформом и полученный экстракт упаривают досуха на ротационном испарителе при температуре водяной бани 40°С. При необходимости, а при использовании хроматографа "Милихром 4" обязательно, образец очищают на колонке с силикагелем (колонка № 1), как указано в п. 2.5.1.2. Сухой остаток растворяют в 2 мл ацетонитрила и хроматографируют.

2.6. Условия хроматографирования

2.6.1. Жидкостной хроматограф "Hewlett-Packard HP 1050" или аналогичный.

Детектор ультрафиолетовый, длина волны 258 нм.

Подвижная фаза: ацетонитрил/вода (75:25).

Скорость потока - 1,5 мкл/мин.

Объем дозирования – 10 мкл.

Чувствительность детектора – 2,000 aufs.

Показания атенюатора -2^2 .

Скорость протяжки леяты – 0,2 мм/мин.

Линейный диапазон – 1-60 нг/колонку.

Время удерживания: деметилфенпироксимат - 5,6 - 5,8 мин;

Z-изомер фенцироксимата -7,1-7,3 мин; фенцироксимат -9.8-10.0 мин.

Хроматограф "Beckman Gold System" или аналогичный (почва).

Колонка нормально-фазовая Resolve Silica, размером 3,9-150 мм или аналогичная

Детектор ультрафиолетовый (UV-detector 166), длина волны 258 нм.

Подвижная фаза - гексан:хлористый метилен: метанол (700:297:3)

Скорость потока - 0,7 мкл/мин.

Объем петли - 20 мкл.

Чувствительность детектора - 0,2 aufs.

Показания атенюатора – 2^6 .

Скорость протяжки ленты - 0,2 мм/мин.

Линейный диапазон – 2-60 нг/колонку.

Время удерживания: фентироксимата – 7 мин 33 сек.

Хроматограф "Милихром 4".

Колонка обращенно-фазовая КАХ-4643

Детектор ультрафиолетовый, длина волны 258 нм.

Подвижная фаза: ацетонитрил/вода (80:20).

Скорость потока - 50 мкл/мин.

Объем дозирования - 10 мкл.

Чувствительность детектора - 0,002 ед.он.

Масштаб регистрации - 0,08

Чувствительность самописца -0,1 V.

Скорость протяжки ленты - 0.2 мм/мин.

Линейный диапазон – 2-60 нг/колонку.

Объем удерживания: деметилфенпироксимат – 400 мкл (8,0 мин);

Z-изомер фенпироксимата — 445 мкл (8,9 мин);

фентироксимат – 590 мкл (11,8 мин).

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю высоту пика. Образцы с концентрацией больше, чем 5 мкг/мл (по стандартному раствору) разбавляют ацетонитрилом.