МИНИСТЕРСТВО ГЕОЛОГИИ С С С Р ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

минерального сырья (вимс)

Научный совет по аналитическим методам

Химические методы Инструкция № 160-X

СЕЛЕН

Выписка из приказа Министра геологии \$ 496 от 29 октября 1976 г.

4. При выполнении анадизов геологических проб применять методы, рекомендованные ГОСТами и Научным советом по аналитическим методам.

Воспроизводимость и правильность результатов анализа руд и горных пород оценивается согласно Методическим указаниям НСАМ "Методы лабораторного контроля качества акалитических работ".

<u>Примечание</u>: Размножение инструкций на местах во избежание возможных искажений разрешается только фотографическим или электрографическим способом,

МИНИСТЕРСТВО ГЕОЛОГИИ СССР Научный Совет по аналитическим методам при ВИМСе

Химические методы Инструкция № 160-Х

ЭКСТРАКЦИОННО-ФЛУОРИМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ СЕЛЕНА С 2.3 - ДИАМИНОНАФТАЛИНОМ

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС)

Москва. 1979

В соответствии с приказом Мингео СССР № 496 от 29.Х.76 г. инструкция № 160-Х рассмотрена и рекомендована Научным советом по аналитическим методам к применению для анализа рядовых проб - Ш категория.

(Протокол № 31 от І.П.78 г.)

Председатель ИСАМ

Г.В. Остроумов

Председатель секции химических методов

В.В.Горипсов

Ученый секретарь

Р.С.Фридман

Инструкция № 160-X рассмотрена в соответствий с приказом миннео СССР № 496 от 29.X.76 г. Научным советом по аналитическим методам (протокол № 31 от I.П.78 г.) и утверждена ВИМСом с введением в действие с Î ноября 1978 г.

Экстрани**и о**нно-флуориметрическое определение селена с 2,3-диаминонафталином^X

Сущность метода

методика определения селена, разработанная И.И.Назаренко и И.В.Кисловой, основана на способности селенистой кислоты реагировать в кислом растворе с 2,3-диаминонафталином. При этом образуется 4,5-бензопиазоселеноя²⁻⁵:

Реакция проходит в солянокислой среде при оптимальной кислотности рн=1. При большей кислотности реакция замедияется, при меньшей ускоряется окисление реагента, понижается сслективность реакции, проходит гидролиз и т.д. При рн=1 реакции идет довольно медленно: для достижения постоянной флуоресценции растворы следует выдерживать в течение двух часов. Нагревание значительно ускоряет реакцию.

Кодученное соединение экстрагируется из кислых растворов органическими растворителями — тодуолом, циклогексаном, на тексаном, декалином.

Под действием ультрафиолетового облучения соединение фиуоресцирует. Максимум светополющения раствора 4,5—бензо-пиазоселенома в циклогексане наблюдается при 377—378 нм, молярный коэффициент погашения равси 26400. Спектр флуореоценции комплекса имеет максимум при длине волны 520 нм. При измерении флуоресценции на ФАС-2 (Анализ-1) применяют первичный светофильтр 366 нм и вторичный № 04, при измерении флуориметре "Офорт" — первичный светофильтр 365 нм и вторичные К-4 и КС-17.

Реакции салена с 2,3 — диаминонафталином мещают окислители — NO₅, NO₂ и др., способствующие разложению реагента и образованию сильно флуоресцирующих продуктов окисления а также сильные восстановители — Fe II, Sn II и др., восх/ Внесена в НСАМ химико-аналитической лабораторией ИМТРЭ. станавливающие селен до нереакционноспособного элементного состояния. При обработке пробы азотной и хлорной кислотами восстановленные формы элементов окисляются. Для удаления азотной кислоты и окислов азота раствор выпарявают с хлорной кислотой до появления паров хлорной кислоты.

При добавлении в раствор маскирующих агентов (комплексс на ш, сульфосалициловой кислоты или винной кислоты при анализе сурьмяних материалов) можно определять селен в присутствии меди П, железа Ш, ртути П, мышьяка Ш, сурьмы Ш, теллура ІУ, ванация У, платины ІУ, золота Ш, олова ІУ, а также больших количеств свинца, цинка, кадмин, урана, церми, алюминия, щелочноземельных металлов и т.д.

Таким образом, подавляющее большинство алементов не мешает определению селена, и поэтому не требуетси предварительного отделения его от основных компонентов природних проб.

Способ разложения пробы занисит от природы материола. Большую часть сульфидных руд и минералов, а также органические вещества разлагают смесью концентрированиях азотной и клорной кислот (2:1). Силикатные породы и минералы разлагают смесью фтористоводородной и азотной кислот (1:1).

Методика рекомендуется для определения селена в различных сульфилных рудах, в сульфилных и силикатных породах и минералах в широком диапазоне содержаний – от 1.10^{-6} до $1.10^{-1}\%$.

Расхождения между повторыми определениями селена укладеваются в допустиме расхождения инструкции по внутрилабораторному контролю I (табл.).

Допустимые расхождения	
Содержание селена, З Допустимые расхожденля, о (Ддоп.)	тн. З
C, T = 0.199	
0,05-0,099	
0,02 - 0,049	
0, OI = 0, OI3	
0, 005-0, 0099 45	
0,002-0,0049 60	
0,001-0,0019 77	
0,0005-0,0009 83	

Фактические расхождения между повторными определениями по данным авторов инструкции показаны в табл. 2.

Фактические расхождения

Содержани	е селена,%	Фактические расхождения отн. % (Д _{эксп.})	Запас точности (Д _{доп.} /Д _{эксп.})
0,02	-0,049	I4,8	I,7
0,01	-0,019 }	I 2. 6	3,2
0,005	-0, 0099]	•	
0,002	-0,0049	17,4	3,5
0,001	-0,0019	16, 8	4,6
0,0005	-0,00099	2 8,0	2,9
0,0000I	-0,000I	70,0	1,2
0,000001	-0,0000I	73,3	I,I

Реактивы и материалы

- І. Азотная кислота
- d I, 40^X/
- 2. Соляная кислота dI, 19 и 0, I н. раствор.
- 3. Сульфосалициловая кислота. 20%-ный раствор.
- 4. Фтористоводородная кислота.
- Хлорная кислота 57%—ная и разбавленная водой I: ICO.
- 6. Винная кислота.
- 7. Аммиак 25%-ный.
- 2,3-диаминонафталин, 0,1%-ный раствор в 0,1 н. соляной кислоте.
- 9. Комплексон Ш, 10%-ный раствор.
- 10. Циклогексан перегнанный или н-гексан.
- II. Стандартные растворы селена.

Раствор А. Навеску О, I г металлического селена, истертого до порошкообразного состояния, помещают в стакан, приливают 10 мл азотной кислоти d I,40, покрывают стакан стеклом и разлагают сначала на холоду, затем при нагревании. После полного растворения навески обмывают стекло и стенки стакана водой и упаривают раствор на водяной бане до влажных солей. Полученную селенистую кислоту растворяют в воде, раствор переносят в мерную колбу на I л, прибавляют 10 мл

x/d - относительная плотность.

57%-ной хлорной кислоты, доливают водой до метки и перемешивают. Раствор A содержит IOO мкг селена в I мл.

Раствор Б. 10 мл раствора A помещают в мерную колоу на 100мл, доливают водой до метки и перемешивают. Раствор Б содержит 10 имг селена в I мл.

Раствор В. І мл. раствора Б помещают в мерную колбу на 100 мл, доливают водой до метки и перемешивают. Раствор В соцержит 0, I мкг селена в I мл (готовят в день применения).

Хол анализа

При анализе сульфидных РУД и минералов навеску тщательно истертой пробы 0,2 г или меньше помещаю г в стеклянный стакан, приливают 5-7 мл смеси азотной и клорной кислот (2:1) и нагревают на плитке. Если после полного упаления азотной кислоты и появления наров хлорной кислоты навеска полностью не разложилась, добавляют еще 2-3 мл азотной кислоти с 1.40 и продолжают нагревание. После полного разложения навеских и появления паров хлорной кислоты раствор охлажиают, побавляют 2-3 мл дистиллированной воды и снова нагревают до появления паров, что необходимо для полного упаления азотной кислоти. Следует избегать длительного дымления хлорной кислоты, так как при этом возможен переход седена ІУ в нереакционноспособный седен УІ. Для вос-Se УІ по Se IV к раствору после выпаривания становления с клорной кислотой добавляют I мл нс1 d I, I9 и нагревают на нипящей водяной бане в течение IO минут.

При анализе силикатных пород и минералов навеску проби I г помещают в платиновую чашку, приливают IO мл смеси азотной и фтористоводородной кислот (I:I) и нагревают на плитке, пока объем раствора не уменьшится до I-2 мл. Прибавляют 3 м клорной кислоты и далее продолжают как при анализе сульфидных рук.

В стакан (или в платиновую чашку) добавляют 20 мл воды и нагревают до кинения. Остывший раствор фильтруют в мерную колбу на 100 мл через фильтр с белой лентой, нерастворимый остаток промывают на фильтре разбавленной I:100 хлорной кислотой и отбрасивают вместе с фильтром. Раствор в колбе доливают водой до метки и премешивают.

х/ Воли есть небольшой остаток силикатной породы, его отбрась

100**–**3.

К аликвотной части раствора (от I до 20 мл. в зависимости от предполагаемого содержания селена) добавляют 0.1 ч. раствор соляной кислоты до общего объема раствора 20 мл и устанавливают рН=I по универсальной индикаторной бумалке. приливая соответственно соляную кислоту или аммиак. Добавляют 2 мл раствора комплексона \mathbb{I}^{X} , 2 мл раствора 2,3диаминонафталина и нагревают в течение 5 минут на киплией водяной бане. Остывший раствор переносят в делительную воронку, добавляют 5 мл имклогексана или н-гексана и экстрагируют в течение одной минути. Органическую фазу отфильтровивают через маленький фильтр в пробирку с притертой пробкой. После окончания экстрагирования партии растворов (8-I2 прос) измеряют фиуоресценцию полученных растворов на фиуориметра ФАС-2 (Анализ-I) или любом другом с первичным светойкивтром 366 нм и вторичным № 04 (граница скрещения - 530 нм), используя в качестве ковет специальные пробирки с плоским дном, прилагаемые к прибору.

Построение градуировочного графика

Для построения градуировочного градика в стакан емкостью 50 или 100 мл помещают 0; 0,1; 0,2; 0,3; 0,4; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 мл стандартного раствора В, содержащего 0,1 мкг селена в І мл (0,00; 0,01; 0,02; 0,03; 0,04; 0,05; 0,1; 0,2; 0,3; 0,4; 0,5 мкг селена), доливают до 20 мл 0,1 н. соляной кислотой, устанавливают заданное рН и далее как при анализе проб. Для каждой партии проб ведут "холостой" опыт по всему ходу анализа; полученную величину (обычно она составляет не более 0,01 мкг селена в анализируемом раство-

х/ Предварительно проверяют содержание железа и мартанца; если в аликвотной части раствора содержится более 50 мг этих элементов, то при добавлении комплексона II и 2,3 — диаминонайталина и нагревании выпадает осадок. В этом случае берут для анализа новую аликвотную часть раствора, добавлеят 3 ми 20%—ного раствора сульфосадициловой кислоты и осторожно нейтрализуют раствор, добавля по каплям раствор аммака до перехода красно-фиолетовой окраски в красно-оранжевую, и сразу же приливают 3 мл I н. раствора сульной кислоты. Раствор нагревают до 50—60°С и титруют 10%—ным раствором комплексона II до полното исчезновения красной окраски сульфосадицилата железа. При больших содержаниях железа остается желтая с зеленоватым оттенком окраска комплекса железа.

ро) вычитают по результата определения при расчете содержания селена

С-роят график, откладывая по оси абсиисе содержание селена в растворах шкалы, по оси ординат - величину фиуоресценции этих растворов.

Вичисление результатов анализа

Зодершание селена в анализируемой пробе вичисляют по формуле:

% Se =
$$\frac{A.B}{B.H.706}$$
 . 100,

где А - содержание селена, найденное по градику, мкг;

Б - общий объем анализируемого раствора, мл;

В – объем аликвотной части раствора, взятой для определения, мл:

Н - навеска. г.

Литература

- Методы лабораторного контроля качества аналитических работ. Методические указания НСАМ. М., ВИМС, 1975 г.
- 2. Назаренко И.И., Ермаков А.Н. Аналитическая химия селана и теллура. М., "Наука", 1971 г.
- 3. Назаренко И.И., Кислов А.М., Кислова И.В., Малевский А.Ю., ЖАХ, ХХУ, 6, II35, I970.
- 4. Lott P.F., Cukor P., Morieber G. Analyt. Chem. 35, 1159, 1963.
 - 5. Parker C.A., Harvey L.C. Analyst 87, 558, 1962.

Синтез 2.3 - дваминонафталина

Исходными веществами для синтеза 2,3 - диаминонафталина служат 2,3 - дигидроксинафталин и 25%-ный раствор аммиака. Реагент синтезируют в стальном автоклаве с вкладышем из фторопласта-4. Объем камеры вкладына составляет 180 см³. Камеру заполняют исходными продуктами приблизительно на одну десятур часть ее объема: это составляет 2.0-2.3г 2.3-лигилоосинафталина и 20 мл аммизка. Автоклав помещают в вертикальную тигельную электропечь с автоматическим регулированием температуры, нагревают до 250-260°С и выперживают при этой температуре 4-5 часов. После полного остивания автоклава содержимое его переносят в стакан емкостью 200 мл. используя для этого минимальное количество аммиака. Осадок отфильтровывают через тигель с пильтрующим дном (%4), промывают небольшим количеством аммиака и внеушивают в эксикаторе наи СаО.

Подученный 2,3 - диаминонайталин представляет собой кристаллическое вещество желто-зеленого ивета с температурой ндавления 192°С (по литературным данным 190-199°С). Сопержание полезного пролукта составляет 30-50%.

Для приготовления раствора к навеске 0.I г реагента приливают 100мд 0,1 н. соляной кислоты и нагревают на воляной бане в течение 10 мин. Раствор с оседном оставляют при постоянном перемешивании (желательно магнитной мешалкой) на 3-4 часа для более полного растворения полезного продукта. так как реактив предварительно не очищается, а представляет собор смесь. Затем осадок отфильтровнивот, а раствор очищают двукратной экстракцией по 30 мл циклогексана и н-гексана. Очищенный солянокислый раствор используют для анализа. Раствор годен в течение 3-5 дней при хранении в темной склянке в холодильнике.

Изъятые из употребления инструкции	Заменяющие их инструкции
№ 52–X № 53–X	№ 103-X
№ 92 - X	№ 113-X
№ 90 - X	№ 115 - X
N= 9-\$1Φ	\\ 110=λΦ
№ 13 - X	>- 119-X
№ 107-C	№ 141-C
№ 8-C	№ 150-C
N∈ 95-\$1Φ	N: 158-7Φ

blichic Rayunm corevom no aukomyveckum metogam 1.77.1974r. Начальник управления паучнонеследовательских организаций мингео СССР, член коллегия 25 дажноря 1974г. Н.П. ЛАВЕРОВ

КЛАССИФИКАЦИЯ

JABOPATOPHIX METOJOB AHAJIRSA MUREPAJEHOFO CLPER

		JAE	OPATOPHEX METOLOB AHAIRSA MAHEPAREHOFO CEPER	
rat To,		нальнование - онализа	Воспроизводимость методов анализа	Козобышент к допустимы, срегнекванга- тичном, откло- нению
	ſ	Особо точный аналия	Средненведратичное отклонение результатов он- ределения должно онть в три раза меньше долу- стимого средненвадратичного отклонения, ре- гламентируемого инструкцией инутривасорятор- ного контроля. (см. Приложение)	v , 35
	1	iloлица винлой	Среднеквапратичные отклонения результатов определения отдельных компонентов не дол- жни превышать допустимых среднеквапратичных отклонений	ţ
			Сумма компонентов, если определены все компо- ненты при содержании каждого выще 0,1%, долж- на лежать в интервеле 99,5±1,50%	
F M R 3			Сумма компонентов, если определены все ком- поненти при содержании каждого выше 0,01%, должна лежать в интервале 99,9±1,50%	
ថ ដ ប			Среднеквадратичние отклонения результатов определения главных (содержание более 5%) компонентов должны быть в три раза меньше допустимого среднеквадратичного отклонения	0, 53
H II II I			Среднеквадратичные отклонения результатов определения отдельных компонентов не дол- жнь превышать допустимого среднеквадратич- ного отклонения	ī
ө н ы			Сумма компонентов, если определени все ком- поненти при содержании каждого више 0.1%, должна лежать в интервале 99,5±0,80%	
9 11 13			Сумма компонентов, если определени все компо- ненти при содержании каждого выше U.OI%, должна лежать в интервале 99,9±0,80%	
श ० ध	i.i	-одво силенА Воодп хиа	Среднеквалратичное отклонение результатов он- ределений не должно превыпать донустилых среднеквалратичных отклонений	Ī
	īλ	Акализ техно- логических продуктов	Среднеквадратичние отклонения результатов определения могут превышать допустимое сред- неквадратичное отклонение не более, чем в два раза (по особой договоренности с заказчиком)	I-2
	y	Особо точный анализ геохи- мических проб	Среднекводратичные отклонения результатов оп- ределения должны быть в два реза мечьше допу- стимых среднеквадратичных отклонения	Ù , 5
	Ji	Аналия рядових проб	Среднекиндратичные отклонения результатов оп- ределения не должны пресышать удвоенную вели- чиму допустимого среднеки-адратичного отклоне- ния	2
	ΑII	іюлуколиче— ственный анализ		Воспроизводи- мость определе- ния 4-10 пмдл: (интерналов) на один поря- док содержаний с догорительной вероятностью
·	Уlii	Качествен- ный анализ	WHE WATORY TRANSPORTED POSTEROR MOTIONARY DESCRIPTION	Точность опре- деления не нормируется

х) См. Методические указания "Методы дабораторного контроля качества аналитических работ", М. . НИМС, 1975 г.