МИНИСТЕРСТВО ГЕОЛОГИИ СССР ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МИНЕРАЛЬНОГО СЫРЬЯ (ВИМС)

Научный совет по аналитическим методам

Химико-аналитические методы

Инструкция № 115-X

ЦИНК

Выписка из приказа ГГК СССР № 229 от 18 мая 1964 года

- 7. Министорству геологии и охраны недр Казахской ССР, главным управлениям и управлениям геологии и охраны недр при Советах жинистров союзных республик, научно-исследовательским институтам, организациям и учреждениям Госгеолиома СССР:
- а) обязать лаборатории при выполнении количественных анализов геологических проб применять методы, рекомендованные ГОСТами, а также Научным советом, по море утверждения последних ВИЖСОМ.

При отсутствии ГОСТов и методов, утвержденных ВИЛСОМ, разрешить временно применение методик, утвержденных в порядке, предусмотренном приказом от I ноября 1954 г. № 998;

в) выделить лиц, ответственных за выполнение лабораториями установленных настоящим приказом требований к применению наиболее прогрессивных методов анализа.

Приложение № 3, § 8. Разыножение инструкций на местах во избежание возможных искажении разрешается только фотографическим путем.

МИНИСТЕРСТВО ГЕОЛОГИИ СССР

Научный Совет по аналитическим методам при ВИМСе

Химико-аналитические методы Инструкция № 115-X

УСКОРЕННОЕ КОМПЛЕКСОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЦИНКА В СВИНЦОВО-ЦИНКОВЫХ И ПОЛИМЕТАЛЛИЧЕС-КИХ РУДАХ

КОМПЛЕКСОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЦИНКА В СВИНЦОВО-ЦИНКОВЫХ И ДРУГИХ РУДАХ С ПРЕДВА-РИТЕЛЬНЫМ ОТДЕЛЕНИЕМ ЦИНКА

Всесоюзный научно-исследовательский институт минерального сырья. (ВИМС)

Москва , 1972

В соответствии с приказом Госгеолкома СССР 229 от 18 ман 1964г. инструкция № 115-Х рекомендована Научным Советом по аналитическим методам к применению для анализа рядовых проб — Ш категория вместо инструкции № 90-Х.

(Протокол № 20 от 30.ХІ.7Іг.)

Председатель НСАМ

В.Г. Сочеванов

Председатель секции химико-аналитических методов

К.С. Пахомова

Ученый секретарь

Р.С. Фридман

Инструкция № 115-х рассмотрена в соответствии с приказом Государственного геологического комитета СССР № 229 от 18 мая 1964г. Научным Советом по аналитическим методам (протокол № 16 от 23 июня 1969г.), утверждена ВИМСом с введением в действие с I сентября 1969г. и дополнена в 1972г.

УСКОРЕННОЕ КОМПЛЕКСОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЦИНКА В СВИНЦОВО-ЦИНКОВЫХ И ПОЛИМЕТАЛЛИЧЕСКИХ РУЛАХ[×])

Сущность метода

Метод основан на способности цинка образовывать с комплексоном $\mathbb U$ прочное растворимое внутрикомплексное соединение: $Zn^{2+} + H_2J^{2-} = \lceil ZnJ \rceil^{2-} + 2H^+$

цинк титруют комплексоном Ш при рН 5-6. В качестве буферного раствора применяют раствор адетата натрия 1,3,6. Индикатором служит ксиленоловый оранжевый, образующий с цинком окрашенное соединение. Это соединение, менее прочное, чем комплекс цинка с комплексоном Ш, разрушается, и в точке эквивалентности окраска раствора переходит от красно-фиолетовой к чисто желтой.

Определению цинка менают кадмий, медь, марганец, никель, кобальт, свинец, так как эти элементы титруются комплексоном ш в тех же условиях, что и цинк.

Определению цинка мещают также железо Ш, алюминий и другие элементы, которые в условиях титрования цинка образуют осадки гидроокисей.

В ходе анализа свинец предварительно выделяют в виде труднорастворимого сульфата⁴, алюминий связывают во фторидими комплекс добавлением фтористого аммония, а для полного свя-

х) Внесена в НСАМ химико-аналитической лабораторией ЦНИГРИ, 1968г. Дополнена ВИК Сым. 1972г. С изданием настоящей инструкции должиа быть изъята из употребления инструкция НСАМ № 90-Х.

вывания желева прибавляют бифторид аммония^{х)}. При этом растворе устанавливается рН 5,2-5,8. Медь связивают в бесцветный комплекс тиосульфатом натрия⁷. Чтобы довесть рН раствора до 5-6, прибавляют ацетат натрия.

Кадмий, если он присутствует, титруется вместе с цинком¹. В большей части полиметаллических руд кобальт и никель отсутствуют⁵, и в ходе анализа с ними редко приходится считаться. Марганец не мещает определению цинка, если его содержание не превышает 0,1%.

Пробу обрабатывают соляной кислотой для разложения сульфидов и удаления сероводорода, затем добавляют азотную кислоту и упаривают с серной кислотой до выделения паров серной кислоты.

метод рекомендуется для определения цинка в свинцовоцинковых и других полиметаллических рудах при содержании цинка ст 3% и выше. Метод не применим для анализа руд, содержаних более 0.05% кадмия и 0.1% марганца.

Допустимые расхождения2

Таблица 1

Содержание цинка, %	Допустимые расхождения, отн.%
5 и выще	8
2- 4,99	13

Реактивы и материалы

- I. Кислота азотная \hat{d} I,40^{XX}).
- 2. Кислота серная, разбавленная I:I и 2%-ный раствор
- 3. Кислота соляная d I, 19 и I:I.
- 4. Аммиак, разбавленный I:I.
- 5. Аммоний роданистый, 10%-ный раствор.
- 5. Аммоний фтористый, 20%-ный раствор.
- 7. Аммоний фтористый кислый (бифхорид аммония).
- 3. Аммоний хлористый.

х) Таким образом поступают, если содержание железа в пробе невелико. При повышенном содержание железа в пробеды осаждая полуторные окислы избыт гом амымака.

хх) d - относительная плотность

- 9. Аммоний хлористый, 2%-ный раствор.
- 10. Аммоний уксуснокислый, 15%-ный раствор.
- II. Натрий серноватистокислый (тиосульфат натрия), 20%-ный раствор.
 - 12. Натрий уксуснокислый, 20%-ный раствор.
- 13. Комплексон Ш (трилон Б), 0, 05 М раствор. Навеску 18,6 г комплексона Ш растворяют в небольшом количестве воды, раствор фильтруют и доливают до I л водой.

Для установки титра раствора комплексона Ш в несколько стаканов помещают по 5-IO мл стандартного раствора цинка, упаривают сначала с азотной кислотой, а затем с серной кислотой I:I до выделения паров серной кислоты и далее, как в холе анализа.

14. Стандартный раствор цинка. Навеску I г металлическото цинка растворяют в 25 мл соляной кислоты I:I при нагревании. Раствор охлаждают, переносят в мерную колбу на IOO мл и доливают до метки водой. I мл раствора содержит 0,0I г пинка.

- 15. Бумага индикаторная.
- 16. Индикатор ксиленоловый оранжевый, 1%-ная смесь с нитратом калия.

Ход анализа

Навеску 0,5-1 г руды помещают в стакан на 300 мл, приливают 15-20 мл соляной кислоты d I,19, нагревают и упаривают до объема 5-7 мл. К остывшему раствору прибавляют
10-15 мл азотной кислоты d I,40 и выдерживают на горячей
бане до прекращения выделения окислов азота. К остывшему
раствору прибавляют 10 мл серной кислоты I:I, нагревают до
появления паров серной кислоты и еще 7-10 минут. Раствор
охлаждают, обмывают стенки стакана водой и снова нагревают
до выделения паров серной кислоты (для разрушения нитрозилсерной кислоты). Прибавляют 70 мл воды и кипятят 15-20 мин.
Для полного выделения сульфата свинца стакан с раствором
помещают в ванночку с проточной водой и оставляют на 2-3 часа или до следующего дня.

Осадок сульфата свинца вместе с нерастворимым остатком отфильтровывают (фильтр с фильтровальной массой), промывают

2%-ным раствором серной кислоты до исчезновения реакции на трехвалентное железо (проба с раствором роданистого аммония) и два раза водой.

Промытый осадок, если нужно, используют для определения свинцах) В фильтрате определяют цинк одним из следующих способов: а) в присутствии небольших количеств железа (менее 5% в пробе) прибавляют аммиак І:І до выпадения осадка гидроокисей, затем приливают 20 мл 20%-ного раствора фтористого аммония, перемешивают и небольшими порциями прибавляют бийторид аммония (сухая соль) до растворения осадка гидроокисей. К совершенно прозрачному раствору (рН 5.2-5,8) прибавляют 20 мл 20%-ного раствора тиосульфата натрия. 20 мл 20%-ного раствора уксуснокислого натрия (величину рН 5-6 проверяют по индикаторной бумаге). Раствор разбавляют водой до 200 мл, прибавляют на кончике шпателя индикатор ксиленоловый оранжевый и титруют 0.05 М раствором комплексона Ш до перехода окраски от красно-фиолетовой к желтой; б) в присутствии больших количеств железа (более 5% в пробе) 0,5 г МН СС, нагревают и осаждают полуторприбавляют ные окислы большим избытком аммиака (10 мл NH₄0H 100 мл раствора). Осадок отфильтровывают через фильтр с белой лентой, промывают 2%-ным раствором NHACL , смывают с фильтра, растворяют в соляной кислоте I:I, разбавляют водой до 100-150 мл и снова осаждают полуторные окислы избытком аммиа-Осадок отфильтровывают через фильтр с белой лентой и премывают 2%-ным раствором ЛН4СС (до отсутствия запаха аммиака). Фильтраты объединяют, упаривают до 200 мл, прибавляют 3 г бифторида аммония, перемешивают, прибавляют 5 мл 20%-ного раствора тиосульфата натрия и 3-4 капли ксиленолового оранжевого. К полученному желтому раствору добавляют аммиак до буророзового цвета. Приливают 30 мл 15%-ного раствора уксуснокислого аммония (рН 5,6-5,9) и титруют 0,05 М раствором комплексона Ш до желтого цвета. По ходу анализа ведут глухой опыт на реактивах.

х) Полученный таким образом осадок можно использовать для определения свинца только в том случае, если проба не содержит бария. В присутствии бария разлагают пробу и выделяют сульфат свинца так, как это описано в инструкции НСАМ № 89-Х "Комплексонометрическое определение свинца в свинцово-цинковых и других полиметаллических рудах".

Вычисление результатов анализа. Содержание цинка вычисляют по формуле: $% \chi_n = \frac{T(A-B)}{H} \cdot 100$,

- тде Т титр раствора комплексона П, выраженный в г/мл цинка;
 - А объем раствора комплексона Ш, помедшего на титрование, мл;
 - б объем раствора комплексона Ш, пошедшего на титрование раствора глухого опыта, мл;
 - Н навеска, г.

Если содержание цинка должно быть пересчитано на абсолютно сухое вещество, полученный результат (%) умножают на величину $\frac{100}{100-a}$, где а — содержание гигроскопической воды (%), определенное высушиванием отдельной навески при 105° С.

Литература

- I. Будевский С.Б., Каролев А.Н., Каранов Р.А., Симонова-Филиппова Л. Комплексометрическое определение цанка в концентратах с индикатором ксиленолоранжем и метилтимолблау. Зав. лаб. 25, I2, I439 (1959).
- 2. Инструкция по внутрилабораторному контролю точности (воспроизводимости) результатов количественных анализов рядовых проб полезных ископаемых, выполняемых в лабораториях МГ СССР, 1968.
- 3. Пршибил Р. Комплексоны в химическом анализе. Изд-во ИЛ. М.. 1960.
- 4. Файнберг С.Ю., Филиппова Н.А. Анализ руд цветных металлов. Металлургиздат, 1963, стр. 171.
- 5. Ягодницкий M.A. Последовательное объемное определение меди и цинка без выделения меди. Зав. лаб. 35, 2,161 (1969).
- 6. Körbl J. Pribil R., Emr A. Komplexometriké titrace (chelatometrie) XXIII Xylenolová oranž jako nový specificky indikator. Chemické listy 50(80), 9,1440 (1956).
- 7. Cheng K.L. Complexometric titration of copper and other metals in mixture. /nal.Chem. 30, 2,243 (1958).

КОМПЛЕКСОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЦИНКА В СВИНЦОВО-ЦИНКОБЫХ И ДРУГИХ РУДАХ С ПРЕДВАРИТЕЛЬНЫМ ОТЛЕЛЕНИЕМ ПИНКА^Х)

Сущность метода

Метод основан на способности цинка образовывать с комплексоном Ш прочное растворимое внутрикомплексное соединение:

 $2n^{2+} + H_2J^{2-} = \left[2nJ\right]^{2-} + 2H^+$

Цинк титруют комплексоном Ш в ацетатном буфере при рН = 5,5. В качестве индикатора применяют ксиленоловый оранжевый, образующий с цинком окрашенное соединение. Это соединение, менее прочное, чем комплекс цинка с комплексоном Ш, разрушается, и в точке эквивалентности окраска раствора переходит от фислетовой к желтой.

Определению цинка мешают кадмий, медь, марганец, имкель, кобальт, свинец, так как эти элементы титруюжея комплексоном и в тех же условиях, что и цинк.

Определению цинка мешают также железо Ш, алюминий и другие элементы, которые в условиях титрования цинка образуют осадки гидроокисей.

Цинк отделяют от алюминия, железа, меди, никеля, нобальта и марганца методом ионообменной хроматографии на анионите AB-I7 в CC^- -форме . Цинк, кадмий, висмут, ржуть и частично свинец поглощаются анионитом из 2 н. солянокислого раствора.

Цинк элюируют 0, I н. соляной кислотой. При эком кадмий, висмут и ртуть остаются сорбированными на анмоните, а свинец частично пережодит в элюат и мещает опредолению пинка.

Для устранения мещающего действия свинца его предварительно отделяют в виде сульфата в процессе разложения пробы. Полученный осадок можно использовать для определения свинца комплексометрическим методом.

х) Внесена в НСАМ ЦЛ Бурятского ГУ, 1988г.

Висмут, кадмий и ртуть, остающиеся на анисните после элюирования цинка, можно извлечь разбавленной азотной или серной кислотой.

Природные материалы разлагают кислотным способом. Сначала пробу обрабатывают соляной кислотой для разложения сульфидов и удаления сероводорода, затем добавляют авотную кислоту и, наконец, упаривают с серной кислотой.

Метод рекомендуется для определения цинка в свинцовоцинковых, полиметаллических и других рудах при содержании цинка от 3% и выше.

Допустимые расхождения2

Таблица Т

Содержание цинка, %	Допустимые расхождения отн. %
5 и выше	8
2- 4,99	I3

Реактивы и материалы

- I. Кислота азотная $d^{(X)}$ I,40.
- 2. Кислота серная, разбавленная І:І и 2%-ный раствор.
- 3. Кислота соляная d I,19, 2н.и 0,I н.растворы (164,6 мл или 8,28 мл соляной кислоты d I,19 доливают до Іл водой).
 - 4. Аммиак, разбавленный І:1.
- 5. Буфер ацетатный. Назеску 250 г ацетата натрия растворяют в воде, прибавляют 20 мл ледяной уксусной кислоты и доливают водой до I л. pH раствора равен 5,5.
- 6. Раствор цинка, 0,02 М. Навеску I,3076 г металлического цинка, не содержащего мышьяка, растворяют в 50 мл соляной кислоты I:I, раствор выпаривают до объема 5-10 мл, переносят в мерную колбу на I и и доливают до метки водой. I мл раствора содержит 0,0013076 г цинка.

х) d - относительная плотность.

7. Комплексон Ш (трилон Б), 0,02 М раствор. 8 г комплексена Ш растворяют в небольшом количестве воды, если нужно, лильтруют и доливают до I л водой.

Титр раствора устанавливают по 0,02 М раствору цинка: к 25 мл раствора цинка добавляют 100 мл воды, 10 мл ацетатвого буферного раствора, на кончике шпателя ксиленолового оранжевого и титруют раствором комплексона Ш до появления желтой окраски.

Титр раствора комплексона \mathbb{U} , выраженный в г/мл цинка ($\mathcal{T}_{\Xi_{\Omega}}$), вычисляют по формуле:

$$T_{z_n} = \frac{0.0013076.25}{A}$$
,

где 0,0013076 - содержание цинка в I мл 0,02 M раствора, r;

25 - объем раствора цинка, взятого для титрования, мл;

- объем раствора комплексона Ш, пошедшего на титрование. ил.
- 8. Индикатор ксиленоловый оранжевый, сухая 1%-ная смесь с нитратом калия.
 - Э. Метиловый оранжевый, О, 1% -ный водный раствор.
 - 10. Анионит AB-17.

Подготовка анионита к работе. Анионит АВ-17 (крупность верен - 0,1-0,25 мл) помещают в стакан и заливают водой для набухания. На следующий день набухший анионит помещают в колонку диаметром I-1,2 см (высота слоя анионита должна составлять 15-18 см) и отмывают от железа 0,1 н.раствором соляной кислоты.

Ход анализа

Навеску руды 0,1-0,5 г^х) помещают в коническую колбу емкостью 250 мл, смачивают водой, приливают 10-20 мл солянной кмслоты с 1,19 и кипятят под стеклом 10-15 мин. При-бавляют 5-10 мл азотной кислоти с 1,40, кипятят 5-10 мин., снимают и обмивают стекло. Раствор охлаждают, добавляют 15 мл серной кислоти 1:1 и выпаривают до обильного выделения па-

эсли предполагается одновременное определение свинца, тообрат навеску не менее 0,5 г.

ров серной кислоты. Раствор охлаждают, обмывают стенки колбы водой и снова нагревают до выделения паров серной мислоты. К остывшему раствору прибавляют около 100 мл горячей воды и нагревают до кипения. Раствор с осадком оставляют на ночь.

Раствор фильтруют (плотный фильтр с синей лентой), собирая фильтрат в мерную колбу на 200-250 мл, и промывают осадок пять раз холодным 2%-ным раствором серной кислоты, а затем два-три раза холодной водой.

Промытый осадок, если нужно, используют для определения свинца x).

Раствор в колбе доливают до метки водой, перемешивают, отбирают для определения цинка аликвотную часть 25-50 мл и выпаривают ее до прекращения выделения паров серной кислоты. Сухой остаток смачивают несколькими каплями соляной кислоты и выпаривают досуха. Затем прибавляют 20-25 мл 2н. раствора соляной кислоты и нагревают до растворения солей. Остывший раствор пропускают через колонку с анионитом АВ-17 в СС-форме, предварительно промытую 50 мл 2 н. раствора соляной кислоты, со скоростью I мл/мин. Колонку промывают 150 мл 2 н. раствора соляной кислоты.

Сорбированный цинк элбируют 200 мл 0, I н. соляной кислоты. К элбату добавляют I-2 капли раствора метилового оранжевого и приливают аммиак I:I до перехода окраски индикатора
в желтую, затем добавляют I0 мл ацетатного буферного раствора (рН 5,5), индикатора ксиленолового оранжевого (на концешпателя) и титруют цинк 0,02 м раствором комплексона Ш до
перехода окраски от красно-фиолетовой к желтой.

По ходу аналива ведут глухой опыт.

Вычисление результатов анализа. Содержание цинка вычисляют по формуле $% \mathcal{Z}_{n} = \frac{T(A-\alpha)\cdot 5}{B\cdot H} \cdot 100$,

где Т - титр раствора комплексона Ш, выраженный в г/мл цинка; А- объем раствора комплексона Ш, пошедшего на титрование, мл;

х) Полученный таким образом осадок можно использовать для определения свинца только в том случае, если проба не содержит бария. В присутствии бария разлагают пробу и выделяют сульфат свинца как описано в инструкции НСАМ № 89—к "Комплексонометрическое определение свинца в свинцово—пинковых и других полиметаллических рудах".

- а объем раствора комплексона Ш, пошедшего на титрование раствора глухого опыта, мл;
- Б- общий объем раствора, мл;
- В объем аликвотной части раствора, взятой для определения, мл;
- Н- навеска, г.

Всли содержание цинка должно быть пересчитано на абсолютно сухое вещество, полученный результат (%) умножают на величину $\frac{100}{100-0}$, где а — содержание гигроскопической воды (%), определенное высушиванием отдельной навески при 105^0 С.

Литература

- I. Будевский О.Б., Каролев А.Н., Каранов Р.А., Симонова-Филиппова Л. Комплексометрическое определение цинка в концентратах с индикатором ксиленолоранжем и метилтимолблау. Зав. лаб. 25, I2, I439 (I959).
- 2. Инструкция по внутрилабораторному контролю точности (воспроизводимости) результатов количественных анализов рядовых проб полезных ископаемых, выполняемых в лабораториях мГ СССР. 1968.
- 3. Каролев А.Н., Койчев М.К. Комплексометрическое опредедение свинца с применением индикатора ксиленолоранжа и метилтимолблау. Сав. лаб. 25.5.546 (1959).
- 4. Пршибил Р. Комплексоны в химическом анализе. Изд-во ид. м. 1960.
- 5. Самуэльсон О. Ионообменные разделения в аналитической химии. Изд-во "Химия". М-Л.,1966.
- 6.Körbl J., Pribil R., Emr A. Komplexometrické titrace (chelatometrie!) XXIII Xylenolová oranž jaka nový specifichy indikator. Chemieké listy 50 (80), 9, 1440 (1956).

MODETHE	на употребления инструкции	Заменяющие их инструкции
	52 - X 53 - X	№ 103 - X
	No 92 - X	Ne 113 - X
	Ne 90 - X	№ 115 - X
	No 8 - 8 c	N= 118 - ЯФ

Сдено в почать 14.1У.72г. Подписано к почати 21.У1.72г. Л-44907 Заказ № 34 Тираж 1000

К Л А С С И Ф И К А Е И Я лабораторных методов анализа минерального сырья по их назначению и достигаемой точности

Кате- гория анали за	Наименование анализа	назначение внализа с допусками внутрила- ц с орвторного контроля д	REET K
I.	Особо точный анелиз	Арбитражный онализ, Средняя ошибка в 3 раза анализ эталонов моньше допусков	C, 35
П.	сильна йинлош	Полные анализи гор- Течность анализа должна ных пород и минера- обеспечивать получение сумми элементов в предлах 99, о-100, 5%	
й .	-одко викына оодп ушв	Массовый анализ гео Сымбки анализа должны логических проб при укладываться в допуски оазведочных рабстах и подсчете запасов, а также при контроль-ных анализах.	1
Iy.	Анализ техноло- гических продук- тов	Текущий контроль тех-Ошибки анализа могут нологических процес-укладываться в расши- сов реннае допуски по осо- бой договоренности с заказчиком.	I-2
у.	Особо точный анализ геохи— мических проб	Определение редких Сымбка определения не и рассеяных элемен-должна превышать полотов и "элементов— вины допуска; для низспутников"при близких ких содержаний, для к кларковым содержа-которых допуски отсутниях. ствуст, — по договоренности с заказ-	0,5
yı.	Анализ рядовых геохимических проб.	Анализ проб при гео- Ошибиз определения химических и других должна укладываться исследованиях с по- в удвоенный допуск; вышенной чувствитель-для низких содержаностью и высокой про-ний, для которых доноводительностью. Пуски отсутствуют, — по договоренности с заказчиком.	2
уп.	Іголу количест вен- ный анализ	- Качественная харак-При определении содер- теристика минараль-жания элемента допуска- ного сыръя с ориен-ются отклонения на 0, о-1 тировочным указани- порядок. ем содержания эле- ментов, применяемая при металлометриче- ской съемке и др. поисковых теологи- ческих работах	
уш.	Качественный анализ	Качественное опреде-Точность определения не ление присутствия нормируется элемента в минераль- ном сырье.	