МИНИСТЕРСТВО ГЕОЛОГИИ С С С Р ВСЕСОЮЗНЫЙ НАУЧНО ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МИНЕРАЛЬНОГО СЫРЬЯ (В ИМС)

Научный совет по аналитическим методам

Ядерно-физические методы

Инструкция № 87-ЯФ

ОЛОВО

Выписка из приказа ГГК СССР № 229 от 18 мая 1964 года.

- 7. министерству геологии и охраны недр Казахской ССР, главным управлениям и управлениям геологии и охраны недр при Советах жинистров союзных республик, научно-исследовательским институтам, организациям и учреждениям Госгеолкома СССР:
- а) обязать лаборатории при выполнении количественных анализов геологических проб применять методы, рекомендованные ГОСТами, а также Научным советом, по мере утверждения последних ВЕМСОм.

При отсутствии ГОСТов и методов, утвержденных ВИ. СОМ, разрешить временно применение методик, утвержденных в порядке, предусмотренном приказом от I ноября 1954 г. № 998;

в) выделить лиц, ответственных за выполнение дабораториями установленных настоящим приказом требований к применению наиболее прогрессивных методов анализа.

Приложение № 3,9 8. Размножение инструкций на местах во избежание возможных искажений разрещается только фотографическим путем.

МИНИСТЕРСТВО ГЕОЛОГИИ С.С.С.Р.

Научный Совет по аналитическим методам при **ВПМС**е

Ядерно-физические методы Инструкция № 87-ЯФ

метод определения двуокиси олова в горных породах и оловянных рудах на приборе мак—1 по резонапсному поглощению гамма—квантов

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС)

москва 1969 г.

В соответствии с приказом Госгеолкома СССР № 229 от 18 мая 1964 г. инструкция № 87-ЯФ рассмотрена и рекомендована Научным Севетом по аналитическим методам к применению для анализа рядовых проб — Ш категория.

(Протокол № 16 от 23 июня 1969 г.)

Председатель НСАМ

В.Г.Сочеванов

Председатель секции ядерно-физических методов НСАМ

А.Л.Якубович

Ученый секретарь

Р.С.Фридман

Инструкция № 87-ЯФ рассмотрена в соответствии с приказом Государственного геологического комитета СССР № 229 от 18 мая 1964г. Научным Советом по аналитическим методам (протокол № 16 от 23 июня 1969г.) и утверждена ВИМСом с введением в действие с I июля 1969 года.

МЕТОЛ ОПРЕДЕЛЕНИЯ ДВУОКИСИ ОЛОВА В ГОРНЫХ ПОРОДАХ И ОЛОВЯННЫХ РУДАХ НА ПРИБОРЕ МАКТО ПО РЕЗОНАНСНОМУ ПОГЛОЩЕНИЮ ГАММА-КВАНТОВ

Сущность метода

метод, разработанный В.М.Запорожцем, В.М.Ратниковым, Г.Н. цигельницким и В.К.Рябкиным, основан на способности ядер изотопа Sn^{19} , входящих в SnO_2 , резонансно поглощать гамма-кванты с энергией 23,8 кав, испускаемые радиоактивным источником $Sn^{10m}O_2^{-1}$. Эффект резонансного поглощения гамма-квантов ("Ядерный гамма-резонанс"—ЯГР, "Эффект Мессбауара"—ЭМ) наблюдается, если источник гамма-квантов неподвижен относительно поглотителя; если же источник движется относительно поглотителя с некоторой скоростью, то за счет эффекта Допплера энергия гамма-квантов изменяется, и условия резонанса нарушаются.

Величина эффекта $\mathcal E$ резонансного поглощения определяются как относительное изменение интенсивности гамма-издучения, регистрируемого сцинтиляционным счетчиком при двух измерениях: с неподвижным источником ($\mathcal N_0$) и с источником, перемещающимся (колеблющимся) относительно поглотителя со скоростью более [мм/сек ($\mathcal N_\infty$), достаточной для нарушения условий $\mathbf RTP$.

х) Внесена в НСАМ Всесорзным Научно-исследовательским институтом ядерной геофизики и геохимии МГ СССР, 1967 г.

$$\varepsilon = \frac{N_{\infty} - N_0}{N_{\infty}} \cdot 100 \tag{I}$$

Величина эффекта ξ , зависит от количества ядер изотопа $\xi_n^{1/9}$ в двускиси одова, содержащейся в пробе. В соответствии с формулой, приведенной в работе H.H.Шумиловского и др. 4

$$\mathcal{E} = \mathcal{L}f[1 - e^{-Kx} \mathcal{F}_0(Kx)]$$
 (2)

- где: χ коэффициент, характеризующий величину нерезонансного фона источника;
 - ф вероятность испускания источником резонансных гамма-квантов;
 - Jo- функция Бесселя первого рода нулевого порядка;
 - К коэффициент, жарактеризующий величину резонансного поглощения гамма-квантов при концентрации поглощающего элемента, равной единице.
 - X концентрация резонансно поглощающего элемента, вы раженная в весовых единицах X).

Так как содержание изотопа S_n^{19} в природной смеси изотопов олова неизменно (8,5%), то по величине эффекта ЯГР можно судить о содержании двускиси олова в анализируемой пробе. Основной особенностью метода является его полная нечувствительность к присутствию в пробах других форм соединений олова, кроме окисной.

Для внализа используют портативный прибор типа MAK-I (Мессбауэровский акализатор касситерита), выпускаемый промыш-ленностью², применительно к которому и составлена настоящая инструкция.

Методика предусматривает использование этого прибора для количественного определения олова в порошковых пробах руд, минералов, горных пород и продуктов обогащения при его содержании от 0,05% до 5%. Метод проверялся на пробах ряда оловорудных месторождений. Метод применим как в стационарных,

X)Размерность величин К и х зависит от принятого способа выражения концентреции.

так и в полевых лабораториях. По точности результаты опредедения укладываются в допустивые расхождения (см. табл. I).

Таблица I Допустимые расхождения ³

Содержание олово, абс. 🚧	Допустимые расхождения отн.
2,0 - 4,99	12
1,0 - 1,99	15
0,5 - 0,99	1 9
0,2 - 0,499	23
0,1 - 0,199	37
0.05- 0.099	47

Реактивы и материалы

Измельченный до \leq 200 мет, не содержащий олова природный материал с удельным весом не более 2,5 (кварц, известняк) для разбавления проб, содержащих более 5/6 олова (разбавитель).

Аппаратура

Прибор МАК-I, серийно выпускаемый промышленностью, в комплект которого входят: пульт, измерательная головка (дяя работы с порошковыми пробами) с источником $5n^{19}$ интенсивностью насколько единиц милликюри, блоки питания от сети и батарей, весы с разновесами, комплект эталонных фильтров, чашки для проб, пуансон для разравнивания проб, ремонтные принадлежности и запасные части, техническое описание присора. Пермод полураспада источника 270 дней, что обеспечивает работу прибора без смены источника в течение 1,5-2 лет

Эталоны

для градуировки прибора можно использовать два типа вталонов:

- 1. Комплект из 12 эталонных фильтров, прилагаемый заводом-изготовителем к прибору. Эталоны представляют собой дискм из органического стекла площадью 8 см 2 и толщиной 2 мм,
 содержащие в своем составе взвесь порошка $5nO_2$. Поверхностная плотность олова (мг/см 2) имеет следующие значения:
 0,8; 1,6; 2,4; 3,2; 4,0; 4,8; 5,6; 6,4; 7,2; 8,0; 8,8; 9,6
 (увазано на фильтре).
- 2. Естественные пробы руд обследуемого райсна. Подбирают не менее ТО проб с содержаниями, равномерно распределейными в диапавоне 0.85-5% олова в форме двуокиси. Содержание $5nO_2$ должно быть установлено наиболее надежными методами.

ход анализа

- А. Подготовка пробы к анадизу. Анадизируют сухиех, тща тельно перемешанные пробы, измельченные до 250 меш, весом от I до 3 г, в зависимости от содержания олова. Пробы взвешивают на весах, входящих в комплект прибира, с точностью то (можно использовать и более точные весы, например, анадитические). Навеску пробы насыпают в чашку из органического стекла и разравнивают сначала ложечкой, а затем пуансоном.
- Б. <u>Подготовка прибора к работе.</u> Прибор после включения прогревают в течение 5 минут и снимают защитную крышку с источника. Определяют число импульсов \mathcal{N}_0 за 20 секунд при каждом положении переключателя "Усиление", после чего переключатель устанавливают в положение, соответствующее наи большей скорости счета. Этим обеспечивается совмещение "ожна" дифференциального дискриминатора прибора с положением фотопика, соответствующего гамма-излучению $5n^{119}$ с энергией 23,8 кав.

т) При повышенной влажности воздуха пробы перед анализом необходимо высушить при IO5°C.

В. Контроль исправности прибора. На место пробы в прибор устанавливают эталонный фильтр 9,6 мг/см 2 . Тумолером "генератор" включают вибратор источника и, перемещая тубус измерительной головки, устанавливают скорость счета 10-15 имп/сек. при коэффициенте пересчета 1:256 или 1:128 (при большей скорости возможны просчеты импульсов счетчиком). Далее считают количество импульсов за 1 мин. при включенном (N_0) и выключенном (N_0) генераторе и вычисляют эффект ЯГР по формуле (1).

Результаты измерений по п.Б и В заносят в соответствующие графы журнала измерений (см. табл. 4).

С прибором начинают работу, если величина \mathcal{E} , измеряемая с фильтром 9,6 мг/см², не менее 16%. Меньшее значение свидетельствует о неисправности прибора. Контроль положения фотопика и величины эффекта на фильтре 9,6 мг/см² повторяют в конце рабочего дня, а также если возникает сомнение в правильности работы прибора. При нормальной работе прибора значения \mathcal{E} не должны изменяться более чем на \pm 1½ абс., а положение переключателя "усиление" — более чем на \pm 1 деление в течение рабочего дня.

Г. Выполнение определения. Подготовленную к анализу пробу весом 3 г устанавливают на контейнер датчика. Скорость счета при включенном вибраторе доводят до ТО-Т5 имп/сек. Определяют величину эффекта по данным измерений \mathcal{N}_0 и \mathcal{N}_{∞} длительностью каждое по I мин. Если $\mathcal{E} < \mathbb{IO}_{\mathcal{S}}$, то измерения продолжают с той же навеской. Если $\mathcal{E} > \mathbb{IO}_{\mathcal{S}}$, то приготовляют пробу весом I г. Далее измерения \mathcal{N}_0 и \mathcal{N}_{∞} по I мин. чередуют до набора необходимого суммарного числа импульсов $\mathcal{E} \mathcal{N}_{\infty}$ (с учетом коэффициента пересчета), обеспечивающего требуемую статистическую точность (табл.2).

Если при навеске L г эффект E > LS% (содержание олова > 5%), то для обеспечения надлежащей точности определения необходимо разбавить пробу, чтобы концентрация олова не выходила из диапазона 0.2 - 5%.

Пробу смешивают с разбавителем и тщательно перемешивают. Разбавленную пробу анадизируют по обычной методике. Величину навески определяют по данным табл.2.

Таблица 2 Условия анализа, обеспечивающие необходимую точность определения

Навеска, г	٤,%	€ N00
3	до I,3 I,3 - 2,5 2,5 - IO	1,5 x 10 ⁶ 6 x 10 ⁵ 3 x 10 ⁵
I	до 7 7 - IS	6 x 10 ⁵ 3 x 10 ⁵

Особые случаи

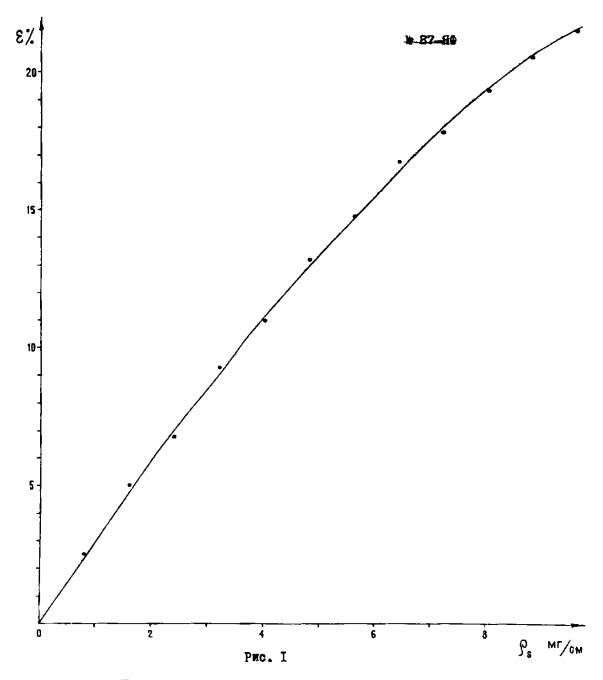
- Г. При работе с пробами, содержащими большое количество тяжелых элементов (свинец, цинк, вольфрам), не всегда
 можно брать навеску 3 г вследствие значительного поглощения веществом пробы гамма-излучения с энергией 23,8 кэв.
 В этих условиях надо брать такую навеску, чтобы при том же
 положении тубуса датчика скорость счета при чашке с пробой
 и при пустой чашке различалась не более, чем в 50 раз. Суммарное число импульсов при уменьшенных навесках необходимо
 набирать в соответствии с данными табл.3.
- 2. При аналиве руд кварц-касситеритового состава с низким содержанием касситерита допустимо увеличение навески до 4-5 г с набором количества импульсов, указанного в табл.2 для навески 3 г. Это обеспечивает повышенную точность определения малых содержаний касситерита (меньше 0,1%).

Таблица З Условия анализа проб, содержащих тяжелые элементы

Навес	Ka [r	Навеска 2 г			
٤, %	E Noo	ε, %	€ N.		
0,2	2 x TO 7				
,2 - 0,5	$I \times I0^{7}$	0,5	6 x 10 ⁶		
,5 - I	6 x T0 ⁶	0,5 - I	5 x 10 ⁶		
T - 2	3 x 10 ⁶	T - 2	I x 10 ⁶		
2 - 4	τ x το ⁶	2 - 4	6 x 10		
4 - 7	6 x το ⁵	4 - 7	4 x TO		
> 7	3 x T0 ⁵	7 - T3	2 x To ²		

Градуировка прибора

Построение градуировочного графика


Для построения графика зависимости эффекта $\mathcal E$ от величины $\mathcal P_S$ измеряют величину $\mathcal E$ для всех приложенных к прибору эталонных фильтров. По оси абсцисс откладывают значения $\mathcal P_S$, обозначенные на фильтрах, а по оси ординат — полученные значения $\mathcal E$, и проводят по точкам плавную линию (рис. I).

Вместо эталонных фильтров можно использовать естественные пробы руд с известным содержанием олова, для которых величину ρ_S (мг/см²) рассчитывают по формуле: $\rho_S = \frac{c \cdot \rho}{c.8}$,

где С - содержание олова в пробе 🗼 🕉

Р - навеска, г.

Для обеспечения необходимой статистической точности при каждом измерении соблюдают условие $\mathcal{E} \mathcal{N}_{\infty} \ge 10^6$ импульсов

Градуировочный график прибора МАК-I

Для исключения субъективных ошибок желательно, чтобы все измерения выполнялись дважды разными операторами.

При непрерывной эксплуатации присор эталонируют ежемесячно, а также после ремонта, смень кристалла, источника или ФЭУ.

вычисляют по формуле: $\frac{\mathcal{E} \, \mathcal{N}_{\infty} - \mathcal{E} \, \mathcal{N}_{\infty}}{\mathcal{E} \, \mathcal{E} \, \mathcal{N}_{\infty}}$. Величину эффекта $\mathcal{E} \, \mathbf{b} \, \mathcal{N}_{\infty}^{\prime\prime}$

По градуировочному графику определяют поверхностную плотность олова ρ_{ς} мг/см².

Содержание олова (C_{Sn} ,%) в пробе вычисляют по формуле:

$$C_{sn} = \frac{\rho_{s} \cdot 8 \cdot 100}{\rho \cdot 1000} = 0.8 \frac{\rho_{s}}{\rho}$$
 (3)

где: Р - вес пробы, г

 P_5 - поверхностная плотность пробы, мг/см²

8 - площадь чашки, см².

Результаты измерений и расчетов записывают в журнал анализов по форме, приведенной в табл.4.

Техника безопасности

Ввиду небольшой активности источника (несколько единиц милликори) и малой энергии гамма-излучения (23,8 кэв) прибор при работе безопасен для обслуживающего персонала.

После окончания работы контейнер с источником необходимо закрывать защитной крышкой.

Заменять источник необходимо за свинцовым стеклом тол-шиной не менее 5 мм.

При ремонте прибора необходимо соблюдать правила техники безопасности при работе с электронной и высоковольтной аппаратурой.

Операторы должны проити инструктаж по технике безопасности при работе с радиоактивными веществами.

Таблица 4 Форма журнала анализов порошковых проб прибором МАК-I

Оператор Проверка положения фотопика время:							Контроль на фильтре 9,6							
и кана Пусил		2	3	4	5	6	,	7	8		N∞	No	, N.,-	No 8 4
<u> </u>	о имп.		T 05	124	133	[3	19	130	112		632 633 630	49 49 49	6 137	,
										٤	T895		۶ 4 1 0	21,6
e te n.n	¥е ¥е проб	Наве	ска	Коэф. пересче	Ta	No	-	N	ΔN	٤,٤	Ps mr/	'om ²	C,%	Примечание
τ.	332	3		T:256		697		72 T	24					
						696		72 t	25					
						692		719	27					
							Σ	2161	٤ 76	3,51	X) [,I	8 ^{XX})	0,3T ^{XXX})	
2.	T 98	3		T:256		516		620	T04	16,8				Переход
		τ		T:256		7 80		834	54					к навеско Гг
						782 779		831	49					• •
					_	779 E		833 2498	<u>54</u> ₹ [57	6,28	2,1		1,72	

х)Вычисляется по формуле Т. хх)Снимается с эталонировочного графика. ххх)Вычисляется по формуле З.

Литература

- Гольданский В.И. Эффект Мессбауэра и его применение в химии. М., 1962.
- 2. Доленко А.В., Егизаров Б.Г., Исаков Л.М. Ядерные гамма-резонансные приборы для научных исследований и прикладных задач. Сб. Ядерное приборостроение. Атомиздат, 1967.
- 3. Инструкция по внутрилабораторному контролю точности (воспроизводимости) результатов количественных анализов рядових проб полезных ископаемых, выполняемых в лабораториях министерства Геологии СССР, 1968 г.
- 4. Шумиловский Н.Н. и др. Радиоизотопные и рентгеноспектральные методы. Изд.Энергия. М-Л. 1965.

Сдано в печ. 9/УП-69г. Подписано к печ.12/УП-69г. Л72186 Заказ № 64. Тираж 400.

класси ф и кация

лабораторных методов анализа минерального сырья по их назначению и достигаемой точности

Кате- гория анали- за	анализа	назначение анализа !	Точность по срав- Коэффи- нению с допусками циейт к внутрилабораторно-допускам го контроля
I.	Особо точный анализ	Арбитражный анализ, анализ эталонов	Средняя ошибка в 3 0,33 раза меньше допус- ков
Π.	Полный анализ	Полные анализы гор- ных пород и минера- лов.	Точность анализа должна обеспечивать получение суммы элементов в преде- лах 99,5-100,5%
Ш.	одре с вих проб	Массовый анализ гео- логических проб при разведочных работах и подсчете запасов, а также при контроль- ных анализах.	Ошибки анализа дол- I жны укладываться в допуски
Iy.	Анализ техноло- гических продук- тов	Текущий контроль тех- нологических процес- сов	Ошибки анализа могут I-2 укладываться в рас- ширенные допуски по особой договореннос- ти с заказчиком.
у.	Особо точный анализ геохи- мических проб	Определение редких и рассеянных элементов и "элементов-спутни-ков" при близких к кларковым содержа-ниях.	Ошибка определения не должна превышать поло- вины допуска; для низ- ких содержаний, для которых допуски от- сутствуют, - по дого- воренности с заказчи- ком.
yI.	Анализ рядовых геохимических проб	Анализ проб при гео- химических и других исследованиях с повы- шенной чувствитель- ностью и высокой про- изводительностью.	Ошибка определения 2 должна укладываться в удвоенный допуск; для низких содержаний, для которых допуски отсутствуют, — по договоренности с заказчиком.
yn.	Полуколичествен- ный анализ	Качественная харак- теристика минераль— ного сырья с ориен- тировочным указани- ем содержания элемен- тов, применяемая при металлометрической съемке и др. поисковых геологи- ческих работах	При определении содер- жания элемента до- пускаются отклонения на 0,5-I порядок.
уш.	Каче ственный анализ	Качественное опреде- ление присутствия элемента в минераль- ном сыръе.	Точность определения не норм:руется