МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT EN 14148— 2015

ПРОДУКЦИЯ ПИЩЕВАЯ

Определение витамина K₁ методом высокоэффективной жидкостной хроматографии

(EN 14148:2003, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации» (БелГИСС)
 - 2 ВНЕСЕН Государственным комитетом по стандартизации Республики Беларусь
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол от 27 февраля 2015 г. № 75-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 13 мая 2016 г. № 312-ст межгосударственный стандарт ГОСТ EN 14148—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2017 г.
- 5 Настоящий стандарт идентичен европейскому стандарту EN 14148:2003 «Продукция пищевая. Определение витамина K1 с помощью ВЭЖХ» («Foodstuffs. Determination of vitamin K1 by HPLC», IDT) Европейский стандарт EN 14148:2003 разработан техническим комитетом CEN/TC 275 «Анализ пищевых продуктов. Горизонтальные методы» Европейского комитета по стандартизации (CEN).

Официальный экземпляр европейского стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и европейского стандарта, на который дана ссылка, имеются в Федеральном информационном фонде технических регламентов и стандартов.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им нормативные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

FOCT EN 14148—2015

Содержание

1 Область применения	. 1
2 Нормативные ссылки	. 1
3 Сущность метода	. 1
4 Реактивы	. 1
5 Оборудование	. 3
6 Методика проведения испытания	. 4
7 Обработка результатов измерений	. 5
8 Прецизионность	. 5
9 Протокол испытаний	. 6
Приложение А (справочное) Примеры хроматограмм	. 8
Приложение В (справочное) Данные по прецизионности	10
Приложение С (справочное) Альтернативные системы ВЭЖХ	11
Приложение ДА (справочное) Сведения о соответствии ссылочных европейских стандартов	
межгосударственным стандартам	12
Библиография	13

ПРОДУКЦИЯ ПИЩЕВАЯ

Определение витамина K₁ методом высокоэффективной жидкостной хроматографии

Foodstuffs.

Determination of vitamin K₁ by high performance liquid chromatographic method

Дата введения — 2017—07—01

1 Область применения

Настоящий стандарт устанавливает метод определения витамина K_1 в пищевой продукции с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ). Определение витамина K_1 проводится путем измерения восстановленного филлохинона. Метод прошел валидацию для молока и детских смесей, однако известен опыт лабораторий, который показал, что метод также применим к другой пищевой продукции [10].

2 Нормативные ссылки

Для применения настоящего стандарта необходим следующий ссылочный документ. Для недатированных ссылок применяют последнее издание ссылочного стандарта (включая все его изменения).

EN ISO 3696 Water for analytical laboratory use — Specification and test methods (Вода для лабораторного анализа. Технические требования и методы испытаний)

3 Сущность метода

Витамин K_1 отделяют в растворе пробы от сопутствующих веществ методом высокоэффективной жидкостной хроматографии и определяют флуориметрическим методом после восстановления в послеколоночном реакторе. Количественно определяют сумму изомеров витамина K_1 , которые на колонках с фазой C_{18} выходят в виде единого неразрешенного пика [1]–[4].

4 Реактивы

4.1 Общие положения

Для проведения анализа, если не указано иное, используют только реактивы признанной аналитической чистоты и воду не ниже первой степени чистоты по EN ISO 3696 или дистиллированную воду.

4.2 Химические вещества и растворы

- 4.2.1 Метанол, массовая доля $w(CH_3OH) \ge 99,8 \%$.
- 4.2.2 Этанол, объемная доля $\phi(C_2H_5OH) \ge 99,8 \%$.
- 4.2.3 Смесь этанола и метанола, объемная доля $\phi(C_2H_5OH) = 95 \%$

Смешивают 950 см³ этанола (4.2.2) с 50 см³ метанола ($\bar{4}$.2.1).

- 4.2.4 Дихлорметан, массовая доля $w(CH_2CI_2) \ge 99,5 \%$.
- 4.2.5 Н-гексан, массовая доля $w(C_6H_{14}) \ge 97\%$.
- 4.2.6 Петролейный эфир, с диапазоном температуры кипения 35-60 °C, ч. д. а.
- 4.2.7 Гидроксид калия, массовая доля w(KOH) ≥ 85 %.
- 4.2.8 Раствор гидроксида калия молярной концентрации c(KOH) = 10 моль/дм³.
- 4.2.9 Калий фосфорнокислый однозамещенный, массовая доля $w(KH_2PO_4)$ ≥ 99,5 %.
- 4.2.10 Карбонат калия, массовая доля $w(K_2CO_3) \ge 99,9 \%$.
- 4.2.11 Ацетат натрия, безводный, массовая доля w(CH₂COONa) ≥ 99.5 %.
- 4.2.12 Уксусная кислота, массовая доля w(CH₃COOH) ≥ 99,8 %.
- 4.2.13 Хлорид цинка, массовая доля $w(ZnCl_2)$ ≥ 98 %.
- 4.2.14 Цинк, порошок, размер частиц < 63 мкм, массовая доля w(Zn) ≥ 97 %.

4.2.15 Фосфатный буфер с рН 7,9-8,0

Растворяют 54,0 г калия фосфорнокислого однозамещенного (4.2.9) примерно в 350 см³ воды, регулируют рН до 7,9–8,0 раствором гидроксида калия (4.2.8) и разбавляют до 500 см³ водой.

4.2.16 Раствор хлорида-ацетата цинка

Взвешивают 13,7 г хлорида цинка (4.2.13), 4,1 г безводного натрия ацетата (4.2.11) и 3,0 г уксусной кислоты (4.2.12) и переносят в мерную колбу вместимостью 50 см³, растворяют в метаноле (4.2.1) и объем содержимого колбы доводят до метки метанолом.

4.2.17 Липаза типа VII

Липаза из Candida rugosa с каталитической активностью 1000 Ед/мг или другой подходящий вариант¹⁾. Могут использоваться другие источники фермента из видов *Pseudomonas* и *Rhizopus* с учетом разницы в показателях активности.

4.2.18 Подвижная фаза для ВЭЖХ

Смешивают 100 см³ дихлорметана (4.2.4), 900 см³ метанола (4.2.1) и 5 см³ раствора хлорида-ацетата цинка (4.2.16). Фильтруют через фильтр с размером пор 0,45 мкм.

4.3 Витамин K_1 , образец сравнения (филлохинон, 3-фитилменадион), массовая доля $w(C_{31}H_{46}O_2) \ge 99 \%$

Витамин K₁ можно приобрести у различных поставщиков. Степень чистоты филлохинона может отличаться. Поэтому необходимо определить массовую концентрацию градуировочного раствора спектрофотометрическим методом в ультрафиолетовой области (см. 4.4.4).

4.4 Исходные растворы

4.4.1 Меры предосторожности

Витамин K_1 очень чувствителен к свету. Следует принять меры по защите образца сравнения и соответствующих растворов в процессе выполнения методики с использованием лабораторной посуды из коричневого стекла.

4.4.2 Исходный раствор I витамина K_1 , массовой концентрацией $\rho(C3_1H_{46}O_2)$ = 1,0 мг/см³

Взвешивают около 100 мг (точная навеска) образца сравнения витамина K_1 (4.3), переносят в мерную колбу вместимостью 100 см³, растворяют в метаноле (4.2.1) и объем содержимого колбы доводят до метки метанолом. Раствор можно хранить в среде азота в течение 3 мес при температуре минус 20 °C в темном месте.

Примечание — При растворении указанных количеств витамина К₁ могут возникнуть затруднения.

4.4.3 Исходный раствор II витамина K_1 , массовой концентрацией $\rho(C_{31}H_{46}O_2) = 50,0$ мкг/см³ Переносят пипеткой 5,0 см³ исходного раствора I витамина K_1 (4.4.2) в мерную колбу вместимостью 100 см³ и объем содержимого колбы доводят до метки метанолом (4.2.1). Раствор может храниться в среде азота в течение 1 мес при температуре минус 20 °C в темном месте.

4.4.4 Определение массовой концентрации

Выпаривают 5,0 см 3 исходного раствора II витамина K_1 (4.4.3) с помощью ротационного испарителя в условиях частичного вакуума или под воздействием потока азота. Повторно растворяют осадок в 25,0 см 3 н-гексана (4.2.5) или петролейного эфира (4.2.6).

¹⁾ Например, L-1754; Sigma Chemical Co, P.O. 14508, Saint Louis MO 63178, USA (США). Указанный продукт использовался в межлабораторном испытании. Информация приведена для удобства пользователей настоящего стандарта и не является рекламой указанного продукта со стороны СЕN. Могут быть использованы эквивалентные продукты, если было установлено, что они дают аналогичные результаты.

Измеряют на спектрофотометре (5.1) оптическую плотность раствора в кювете с оптической длиной пути 1 см относительно н-гексана или петролейного эфира в качестве образца сравнения в максимуме поглощения при длине волны около 248 нм. Рассчитывают массовую концентрацию витамина К₁ в исходном растворе II витамина К₁ (4.4.3) р, мкг/см³, по формуле

$$\rho = \frac{A_{248} \cdot 10^4 \cdot 5}{416},\tag{1}$$

где A_{248} — величина оптической плотности раствора в максимуме поглощения при длине волны около 248 нм:

- 10^4 коэффициент для перевода $A_{1\text{cm}}^{1\%}$ в микрограмм на миллилитр;
- 5 коэффициент разбавления при замене растворителя метанола на н-гексан;
- 419 величина $A_{1\text{CM}}^{1\%}$ витамина K_1 в н-гексане (4.2.5) или петролейном эфире (4.2.6) при 248 нм ([5]);

4.5 Стандартные растворы

4.5.1 Промежуточный стандартный раствор витамина K_1 , массовая концентрация $\rho(C_{31}H_{46}O_2) = 2,5$ мкг/см³

Пипеткой переносят 5,0 см 3 исходного раствора II витамина K_1 (4.4.3) в мерную колбу вместимостью 100 см 3 и объем содержимого колбы доводят до метки метанолом (4.2.1).

4.5.2 Стандартный аналитический раствор витамина K_1 для ВЭЖХ, массовая концентрация $\rho(C_{31}H_{46}O_2)=25,0$ нг/см³

Пипеткой переносят 1 см³ промежуточного стандартного раствора витамина K_1 (4.5.1) в мерную колбу из коричневого стекла вместимостью 100 см³ и объем содержимого колбы доводят до метки метанолом (4.2.1). Данный раствор должен быть свежеприготовленным.

5 Оборудование

Используют стандартное лабораторное оборудование, в том числе перечисленное ниже.

5.1 Ультрафиолетовый спектрофотометр

УФ-спектрофотометр, способный измерять оптическую плотность при установленной длине волны, в кюветах с оптической длиной пути 1 см.

5.2 Система для ВЭЖХ

Система для ВЭЖХ, состоящая из насоса, устройства для инжекции проб, флуориметрического детектора, позволяющего выполнять измерения при заданных длинах волн (например, при длине волны возбуждения 243 нм и длине регистрации 430 нм), и системы для сбора и обработки данных (например, интегратора).

5.3 Колонка для ВЭЖХ

Аналитическая колонка с обращенной фазой, диаметром 3,0—4,6 мм, длиной 100—250 мм, заполненная частицами размером 3–10 мкм.

Допускается использовать колонки других размеров или с частицами другого размера. В этом случае параметры разделения должны быть адаптированы к таким материалам, чтобы обеспечить аналогичные результаты.

Могут использоваться и другие системы (см. приложение C), которые обеспечивают надлежащее разделение филлохинона от других совместно экстрагируемых компонентов пробы.

5.4 Система послеколоночной дериватизации

Колонка из нержавеющей стали или стекла, помещенная между аналитической колонкой и флуориметрическим детектором, диаметром 2,0–6,0 мм, длиной 10–150 мм, заполненная цинковым порошком (4.2.14).

5.5 Устройство для фильтрации

Подходит мембранный фильтр с размером пор 0,45 мкм.

Примечание — Фильтрация подвижной фазы, так же как и раствора пробы, через мембранный фильтр до использования или инжектирования может увеличить срок службы колонок.

6 Методика проведения испытания

6.1 Меры предосторожности

Витамин К₁ очень чувствителен к свету. Во время проведения испытаний следует принимать меры для защиты пробы и соответствующих растворов с использованием лабораторной посуды из коричневого стекла.

6.2 Подготовка аналитической пробы

Гомогенизируют аналитическую пробу. Измельчают грубый материал при помощи соответствующего измельчителя и снова перемешивают, предварительно охлаждая, чтобы не допустить воздействия высокой температуры в течение длительного периода.

6.3 Приготовление раствора пробы

6.3.1 Экстракция из пробы

Взвешивают 1 г порошкообразной или 10 г жидкой пробы с точностью до 0,001 г в закрывающуюся аналитическую пробирку или коническую колбу. В порошкообразную пробу добавляют 15 см³ воды с температурой 40 °C и перемешивают на вортексе, в жидкую пробу добавляют 5 см³ воды с температурой 40 °C. Проводят холостой опыт, используя только реактивы без пробы (см. 6.5).

6.3.2 Обработка ферментом

Добавляют 5 см³ фосфатного буфера с pH 7,9–8,0 (4.2.15) и перемешивают. Добавляют 1,0 г липазы (4.2.17), перемешивают на вортексе, закрывают пробкой и встряхивают в течение примерно 2-3 мин. Выдерживают смесь при температуре (37 ± 2) °С в течение 2 ч. Через равные промежутки времени, например 20 мин, энергично встряхивают смесь вручную.

6.3.3 Экстракция

Смесь охлаждают до комнатной температуры, добавляют 10 см³ смеси этанола и метанола (4.2.3) и 1,0 г карбоната калия (4.2.10) и хорошо перемешивают. Добавляют установленный объем $V_{\rm F}$ (30 см 3) н-гексана (4.2.5) и энергично встряхивают. Затем оставляют в темном месте до разделения фаз или центрифугируют при 2000 дв течение 10 мин. Н-гексановый экстракт можно хранить в течение ночи при температуре 4 °C в среде азота в темном месте.

6.3.4 Перенос и разбавление фазы

Переносят в виалу пипеткой аликвотный объем V_a фазы н-гексана (6.3.3): 0,5 см³ для обогащенной пробы и 5,0 см³ для необогащенной пробы. Удаляют растворитель в токе азота и снова растворяют осадок в установленном объеме V метанола (4.2.1) — 1,0 см³, получая раствор анализируемой пробы для анализа методом ВЭЖХ.

6.4 Идентификация

Идентифицируют витамин К₁, сравнивая время удержания пика на хроматограммах, полученных при анализе раствора анализируемой пробы (6.3.4) и стандартного аналитического раствора (4.5.2). Идентификацию пика также можно выполнить, если добавлять соответствующие стандартные растворы в небольшом количестве в раствор анализируемой пробы.

Было доказано, что разделение и количественный анализ являются удовлетворительными при соблюдении указанных ниже экспериментальных условий (см. также рисунки А.1 — А.3). Альтернативные условия ВЭЖХ приведены в таблице С.1.

Неподвижная фаза и размеры

Resolve C18, 5 мкм, 150 × 3,9 мм.

колонки:

Подвижная фаза: Смешивают 100 см 3 дихлорметана (4.2.4), 900 см 3

метанола (4.2.1) и 5 см³ раствора хлорида-ацетата цинка

(4.2.16).

1.0 см³/мин. Скорость потока: 20 мм³. Инжектируемый объем:

Колонка для дериватизации: Колонка из нержавеющей стали размером 20 × 4 мм.

заполненная цинковым порошком (4.2.14).

Флуориметрическое, длина волны возбуждения — 243 нм: Детектирование:

длина волны регистрации — 430 нм.

Примечания

1 На неподвижных фазах С18 изомеры витамина К₁ (цис- и транс-) элюируются единым неразрешенным пиком ([6], [7]). Современные исследования показали, что разделение изомеров в пробах пищевой продукции может быть осуществлено на колонках с фазой СЗО ([10]). В стандартных растворах и концентратах проб изомеры могут быть определены в условиях нормальнофазовой хроматографии с применением ультрафиолетового детектирования ([8], [9]).

2 В ходе экспериментальных исследований было установлено, что колонку для дериватизации можно нагреть до 40 °C во время проведения анализов методом ВЭЖХ, для ускорения дериватизации.

6.5 Определение

Инжектируют 20 мм³ стандартного раствора анализируемой пробы (4.5.2) и аналитического раствора пробы (6.3.4) в хроматографическую систему.

При использовании метода внешнего стандарта находят интегрированием значения площадей пиков или определяют высоты пиков и сравнивают результаты с соответствующими значениями для образца сравнения.

Обычно концентрация витамина К1 в растворе пробы очень мала. Поэтому, чтобы избежать загрязнений, все работы необходимо проводить с использованием чистой лабораторной посуды. Чтобы убедиться в отсутствии загрязнений, проводят холостую пробу с использованием тех же количеств реактивов, но без анализируемой пробы.

7 Обработка результатов измерений

Результат измерений рассчитывают при помощи градуировочной характеристики, либо используют соответствующие программы интегратора, либо применяют следующий упрощенный способ.

Рассчитывают массовую долю витамина К₁ w, мкг/100 г пробы, по формуле

$$w = \frac{A_{S} \cdot \rho \cdot V \cdot V_{E} \cdot 100}{A_{ST} \cdot m \cdot V_{A} \cdot 1000},$$
(2)

где $A_{\mathcal{S}}$ — площадь пика или высота пика витамина K_1 , полученная при использовании раствора анализируемой пробы (6.3.4), в единицах площади или высоты;

— массовая концентрация витамина K_1 в стандартном аналитическом растворе (4.5.2), нг/см³; — конечный объем аналитического раствора пробы (6.3.4), см³;

 $V_{\rm F}$ — объем экстракта н-гексана (6.3.3), см³;

100 — коэффициент для перевода массовой доли на 100 г пробы;

 A_{ST} — площадь пика или высота пика витамина K_1 , полученная при использовании стандартного аналитического раствора (4.5.2), в единицах площади или высоты;

масса пробы, г;

— объем аликвоты экстракта, использованной для переноса фазы, см³;

1000 — коэффициент для перевода нанограммов в микрограммы.

Результат измерений для витамина К₁ регистрируют в протоколе в микрограммах на 100 г пробы.

8 Прецизионность

8.1 Общие положения

Данные по прецизионности определения витамина К1 были получены в 1998 году при межлабораторном испытании, проводимом в соответствии с Международным руководством АОАС на различных обогащенных и необогащенных пробах молочных продуктов [4]. Эти данные представлены в приложении В. Результаты, полученные в ходе совместного исследования, не обязательно могут быть применены к содержанию исследуемого вещества и матрицам пробы, отличным от представленных в приложении В.

8.2 Повторяемость

Абсолютное расхождение между двумя отдельными результатами испытаний, которые были получены при применении одного и того же метода на идентичном испытательном материале одним и тем же оператором на одном и том же оборудовании в течение короткого промежутка времени, не должно превышать предел повторяемости *r* более чем в 5 % случаев.

Значения для витамина К₁: ультрапастеризованное цельное жидкое необогаr = 0.12 MKF/100 F $\bar{x} = 0.49 \text{ MKF}/100 \text{ F}$ шенное молоко (1) сухое молоко из цельного козьего молока (2) x = 6,63 мкг/100 гr = 0.60 MKF/100 F $\bar{x} = 118,07 \text{ MKF}/100 \text{ F}$ r = 14,01 MKF/100 Fдетские смеси на основе молока с пониженной жирностью обогащенные (3) $\bar{x} = 32.24 \text{ MK} / 100 \text{ r}$ r = 4.31 MK / 100 rдетские смеси на основе сыворотки с пониженной жирностью обогащенные (4) $\bar{x} = 78.69 \text{ MKF}/100 \text{ F}$ r = 5.71 MKF/100 Fдетские смеси на основе сои с повышенной жирностью, обогащенные (5) $\bar{x} = 49.64 \text{ MKF}/100 \text{ F}$ r = 7.11 MKF/100 Fдетские смеси на основе сыворотки с повышенной жирностью, обогащенные (6) $\bar{x} = 90.94 \text{ MK} / 100 \text{ r}$ r = 11.32 MK / 100 rдетские смеси на основе сыворотки с пониженной жирностью обогащенные (7) NIST SRM 1846¹⁾ сухая детская смесь (8) $\bar{x} = 94,62 \text{ MKF}/100 \text{ F}$ r = 15,05 MKF/100 FЧисло в скобках — номер пробы в таблице В.1 (см. приложение В).

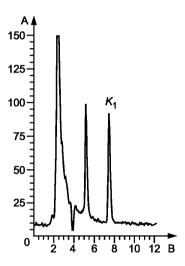
8.3 Воспроизводимость

Абсолютное расхождение между двумя отдельными результатами испытаний, полученными при применении одного и того же метода на идентичном испытательном материале двумя лабораториями, не должно превышать предел воспроизводимости *R* более чем в 5 % случаев.

Значения для витамина K ₁ :				
ультрапастеризованное, цельное, жидкое, необогащенное молоко (1)	$\bar{x} = 0.49 \text{ MKF}/100 \text{ F}$	<i>R</i> = 0,15 мкг/100 г		
сухое молоко из цельного козьего молока (2)	$\bar{x} = 6,63 \text{ MKF}/100 \text{ F}$	<i>R</i> = 1,08 мкг/100 г		
детские смеси на основе молока с пониженной жирностью обогащенные (3)	$\bar{x} = 118,07 \text{ MKF}/100 \text{ F}$	<i>R</i> = 18,19 мкг/100 г		
детские смеси на основе сыворотки с пониженной жирностью обогащенные (4)	$\bar{x} = 32,24 \text{ MKF}/100 \text{ F}$	<i>R</i> = 5,98 мкг/100 г		
детские смеси на основе сои, с повышенной жирностью, обогащенные (5)	$\bar{x} = 78,69 \text{ MKF}/100 \text{ F}$	<i>R</i> = 9,53 мкг/100 г		
детские смеси на основе сыворотки, с повышенной жирностью, обогащенные (6)	$\bar{x} = 49,64 \text{ MKF}/100 \text{ r}$	<i>R</i> = 10,65 мкг/100 г		
детские смеси на основе сыворотки, с пониженной жирностью, обогащенные (7)	$\bar{x} = 90,94 \text{ MKF}/100 \text{ r}$	<i>R</i> = 11,60 мкг/100 г		
NIST SRM 1846 ²⁾ , сухая детская смесь (8)	$\bar{x} = 94,62 \text{ мкг/}100 \text{ r}$	<i>R</i> = 17,95 мкг/100 г		
Число в ско бках — номер пробы в таблице В.1 (см. приложение В).				

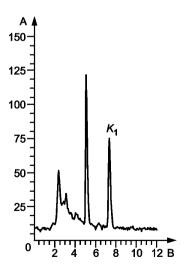
9 Протокол испытаний

Протокол испытания должен содержать следующие сведения:


¹⁾ Принято опорное значение при испытаниях (94 ± 10) мкг/100 г.

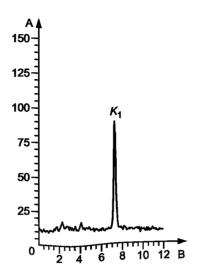
 $^{^{2)}}$ Принято опорное значение при испытаниях (94 \pm 10) мкг/100 г.

- а) всю информацию, необходимую для полной идентификации пробы;
- b) ссылку на настоящий стандарт или примененный метод;
- с) дату и тип методики отбора пробы (если они известны);
- d) дату поступления пробы в лабораторию;
- е) дату проведения испытания;
- f) результаты испытания с указанием единиц выражения результатов;
- g) все особенности, наблюдавшиеся при проведении испытания;
- h) все операции, не оговоренные в методике или рассматриваемые как необязательные, которые могли повлиять на результаты испытания.


Приложение А (справочное)

Примеры хроматограмм

A — интенсивность, мВ; В — время, мин.


Рисунок А.1 — Пример разделения витамина K₁ из пробы 1 (ультрапастеризованное цельное жидкое необогащенное молоко) методом ВЭЖХ

А — интенсивность, мВ;

В — время, мин.

Рисунок А.2 — Пример разделения витамина ${\sf K}_1$ из пробы 2 (сухое молоко из цельного козьего молока) методом ВЭЖХ

А — интенсивность, мВ; В — время, мин.

Рисунок А.3 — Пример разделения витамина K₁ из пробы 5 (обогащенные детские смеси на основе сои с повышенной жирностью) методом ВЭЖХ

Неподвижная фаза и размеры колонки: Resolve C18, 5 мкм, 150 × 3,9 мм

Подвижная фаза: Смешивают 100 см³ дихлорметана (4.2.4), 900 см³ метанола (4.2.1)

и 5 см³ раствора хлорида-ацетата цинка (4.2.16).

 Скорость потока:
 1,0 см³/мин

 Инжектируемый объем:
 20 мм³

Колонка для дериватизации: Колонка из нержавеющей стали размером 20 × 4 мм, заполненная

цинковым порошком (4.2.14).

Детектирование: Флуориметрическое, длина волны возбуждения — 243 нм;

длина волны регистрации — 430 нм.

Приложение В (справочное)

Данные по прецизионности

Следующие данные по прецизионности были установлены при межлабораторном совместном испытании [4].

Таблица В.1

Номер пробы	1	2	3	4	5	6	7	8
Исследуемое вещество	Вита- мин К ₁	В ита- мин К ₁	Вита- мин К ₁	Вит а - мин К ₁				
Год межлабораторного ис- пытания	1998	1998	1998	1998	1998	1998	1998	1998
Количество лабораторий	33	34	34	34	34	34	34	34
Количество проб	2	2	2	2	2	2	2	2
Количество лабораторий, оставшихся после вычитания выбросов	32	29	34	34	34	34	33	34
Количество выбросов	1	5	0	0	0	0	1	0
Количество комплектов данных	62	56	66	66	66	66	64	66
Среднее значение $\frac{1}{x}$, мкг/100 г	0,49	6,63	118,07	32,24	78,69	49,64	90,94	94,62
Стандартное отклонение повторяемости s_p мкг/100 г	0,04	0,21	5,00	1,54	2,04	2,54	4,04	5,38
Относительное стандартное отклонение повторяемости RSD _p %	9,03	3,23	4,24	4,77	2,59	5,11	4,44	5,68
Предел повторяемости $r[r=2,8\cdot s_r]$, мкг/100 г	0,12	0,60	14,01	4,31	5,71	7,11	11,32	15,05
Стандартное отклонение воспроизводимости \mathbf{s}_{R} , мкг/100 г	0,05	0,39	6,50	2,14	3,40	3,80	4,14	6,41
Относительное стандартное отклонение воспроизводимости RSD _R , %	10,94	5,81	5,50	6,63	4,33	7,66	4,56	6,78
Предел воспроизводимости R [$R = 2.8 \cdot s_R$], мкг/100 г	0,15	1,08	18,19	5,98	9,53	10,65	11,60	17,95

Пробы:

- 1 ультрапастеризованное цельное жидкое необогащенное молоко;
 2 сухое молоко из цельного козьего молока;
 3 обогащенная детская смесь на основе молока с пониженной жирностью;
 4 обогащенная детская смесь на основе сыворотки с пониженной жирностью;
 5 обогащенная детская смесь на основе сои с повышенной жирностью;

- 6 обогащенная детская смесь на основе сыворотки с повышенной жирностью; 7 обогащенная детская смесь на основе сыворотки с пониженной жирностью; 8 NIST SRM 1846, сухая детская смесь с принятым значением (94 ± 10) мкг/100 г.

Приложение С (справочное)

Альтернативные системы ВЭЖХ

Разделение и количественное определение витамина K₁ было признано удовлетворительным при применении следующих хроматографических условий [4].

Таблица С.1

Неподвижная фаза	Размеры колонки, (мм × мм) ^а	Колонка для дериватиза- ции, (мм × мм) ^а	Скорость потока, (см ³ /мин) ^с	
Alltima® C18, 5 мкм	150 × 4,6	20 × 4	1,5	
Novapak® C18, 5 мкм	100 × 8,0	20 × 4	1,5	
Lichrospher® 100 RP18, 5 мкм	250 × 4,0	125 × 3 ^b	1,5	
Resolve® C18, 5 мкм	150 × 3,9	20 × 4	1,0	
L-Column® ODS, 5 мкм	250 × 4,6	20 × 4	0,8	
L-Column® ODS, 5 мкм	150 × 4,6	10 × 6	0,8	
Capcell Pak® C18, 5 мкм	250 × 4,6	20 × 2	1,0	
Econosphere® C18, 5 мкм	250 × 4,6	30 × 4,6	1,0	
 Vydac® C18, 5 мкм	250 × 4,6	20 × 4	1,0	
Nucleosil® 120 С18, 5 мкм	250 × 4,0	30 × 4	1,3	
Spherisorb® ODS2, 5 мкм	250 × 4,6	20 × 4	1,5	
Varian® C18, <mark>5 мкм</mark>	250 × 4,6	20 × 4,6	1,2	
Pickering® C18, 5 мкм	150 × 4,6	20 × 4	1,0	
Hypersil® BDS C18, 3 мкм	150 × 3,0	40 × 2	0,5	
ChromSpher® C18, 5 мкм	100 × 3,0	40 × 3	0,6	
Hypersil® ODS, 5 мкм	250 × 4,6	20 × 4	1,0	
Vydac® 201 TP54 C18, 5 мкм	250 × 4,6	50 × 2,1	0,8	
Partisil® ODS3, 5 мкм	250 × 4,6	20 × 4	1,0	
Supelco® C18, 5 мкм	250 × 4,0	30 × 4	1,5	
YMC Pack® ODS-AM, 5 мкм	250 × 4,6	150 × 4,6	1,3	
Zorba® R× C18, 5 мкм	150 × 4,6	20 × 4	1,0	
Zorba® ODS, 5 мкм	250 × 4,6	20 × 4	1,5	
µ Bondapak® C18, 10 мкм	300 × 3,9	20 × 4	1,0	
Prodigy® ODS3, 5 мкм	150 × 4,6	20 × 4	1,5	
YMC® C30, 5 мкм ^d	250 × 4,6	20 × 4	1,5	

^а Нержавеющая сталь.

^b Стекло.

^c Состав подвижной фазы, который указан в настоящем стандарте.

^d Данная колонка отделяет изомеры витамина К₁ (цис- и транс-). Результаты, полученные на этой колонке, не включены в статистические данные.

Приложение ДА (справочное)

Сведения о соответствии ссылочных европейских стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного европейского стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
EN ISO 3696	_	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык европейского стандарта EN ISO 3696. Официальный перевод данного европейского стандарта находится в Федеральном информационном фонде технических регламентов и стандартов Российской Федерации.

Библиография

- [1] Indyk, H. E., and Woollard, D. C.: Vitamin K in Milk and Infant Formulas: Determination of Phylloquinone and Menaquinone-4. Analyst 122, 1997, 465–469 (Витамин К в молоке и детских смесях. Определение содержания филлохинона и менахинона-4)
- [2] Indyk, H.E., Littlejohn, V.C., Lawrence, J.L., and Woollard, D.C.: Liquid Chromatographic Determination of Vitamin K₁ in Infant Formulas and Milk. J. AOAC intern. 78, 1995, 719–723. AOAC Official Methods of Analysis, 17th Ed, 2000, Method 999.15 Determination of Vitamin K₁ by HPLC (Определение содержания витамина K₁ в детских смесях и молоке при помощи жидкостной хроматографии. Официальные методы анализа. Определение содержания витамина K₁ методом ВЭЖХ)
- [3] Haroon, Y., Bacon, D.S., and Sadowski, J.A.: Chemical reduction system for the detection of phylloquinone (vitamin K_1) and menaquinones (vitamin K_2). J. Chromatogr. 384, 1987, 382–389 (Системы химической дериватизации для обнаружения филлохинона (витамина K_1) и менахинонов (витамина K_2))
- [4] Indyk, H.E., and Woollard, D.C.: Vitamin K in Milk and Infant Formulas by Liquid Chromatography: Collaborative study. J. AOAC Intern. 83, 2000, 121–130 (Определение содержания витамина К в молоке и детских смесях методом жидкостной хроматографии: Совместное исследование)
- [5] The Merck Index: Vitamin K₁. 12th Ed.: 7536, р. 1269 (1996) (Каталог Мерк. Витамин К₁)
- [6] Ball, G. F. M, in G. F. M. Ball (Hrsg.): Fat-Soluble Vitamin Assays in Food Analysis: A Comprehensive Review. Elsevier Applied Science, London, 1988, 258–273 (Образцы жирорастворимых витаминов в анализе пищевых продуктов. Комплексный анализ)
- [7] Eitenmiller, R.R. and Landen, W.O.: Vitamin Analysis for the Health and Food Sciences. CRC Press, Boca Raton, London, New York, Washington, D.C., 1999, 149–184 (Анализ витаминов для наук о здоровье и пище)
- [8] European Pharmacopoeia 1997: 1997: 1036; Phytomenadione. 1332–1334 (Европейская фармакопея 1997. Фитоменадион)
- [9] European Pharmacopoeia Supplement 2000: 1999: 1036; Phytomenadione. 1060–1062 (Европейская фармакопея. Дополнение 2000. Фитоменадион)
- [10] Woolard, D.C., Indyk, H. E., Bertram, Y.F., and Cook, K.K.: Determination of Vitamin K₁ Isomers in Food by liquid Chromatography with C 30 Bonded-Phase Column, J. AOAC Intern. 85, 2002, 682–691 (Определение изомеров витамина K₁ в пищевых продукта методом жидкостной хроматографии на колонке с С 30 химически связанной фазой)

УДК 641.1:577.161.5:543.544.5.068.7:006.35

MKC 67.050

IDT

Ключевые слова: продукция пищевая, определение, витамин K_1 , высокоэффективная жидкостная хроматография, ВЭЖХ

Редактор *К.В. Дудко* Корректор *Г.В. Яковлева* Компьютерная верстка *Ю.В. Поповой*

Сдано в набор 16.05.2016.

Подписано в печать 22.08.2016. Усл. печ. л. 2,10. Формат $60 \times 84^{1}/_{8}$.

Гарнитура Ариал.

Набрано в ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru