МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 33582— 2015

УГОЛЬ АКТИВИРОВАННЫЙ

Стандартный метод определения рабочей емкости по бутану

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации материалов и технологий» (ФГУП «ВНИИ СМТ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 5
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол 27 октября 2015 г. № 81-П)

За принятие проголосовали:

Краткое наименование страны	Код страны	Сокращенное наименование национального орга	
по МК (ИСО 3166) 004—97	по МК (ИСО 3166) 004—97	по стандартизации	
Беларусь	BY	Госстандарт Республики Беларусь	
Казахстан	KZ	Госстандарт Республики Казахстан	
Киргизия	KG	Кыргызстандарт	
Россия	RU	Росстандарт	
Таджикистан	TJ	Таджикстандарт	

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 17 марта 2016 г. № 151-ст межгосударственный стандарт ГОСТ 33582—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2017 г.
- 5 Настоящий стандарт идентичен стандарту ASTM D 5228—92 (Reapproved 2010) Standard Test Method for Determination of Butane Working Capacity of Activated Carbon (Стандартный метод определения рабочей емкости по бутану активированного угля).

Стандарт разработан комитетом ASTM D28 «Активированный уголь», и непосредственную ответственность за разработку метода несет подкомитет D28.04 «Методы анализа газовой фазы».

Перевод с английского языка (en).

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5—2001 (подраздел 3.6).

Официальные экземпляры стандарта ASTM, на основе которого подготовлен настоящий межгосударственный стандарт, и стандартов ASTM, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Сведения о соответствии межгосударственных стандартов ссылочным стандартам ASTM приведены в дополнительном приложении ДА.

Степень соответствия — идентичная (IDT)

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

УГОЛЬ АКТИВИРОВАННЫЙ

Стандартный метод определения рабочей емкости по бутану

Activated carbon. Standard test method for determination of butane working capacity

Дата введения — 2017—04—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод определения рабочей емкости по бутану свежего активированного угля (BWC butane working capacity). Параметр BWC определяют как разность между количеством бутана на единицу объема активированного угля в состоянии насыщения и после очистки в стандартных условиях. Настоящий метод позволяет также получить значение активности по бутану, которую определяют как общее количество бутана, адсорбированного пробой активированного угля, и выражают в виде массы бутана на единицу массы или объема активированного угля.
- 1.2 В настоящем стандарте все единицы измерения приведены в системе СИ. Никакие другие единицы измерений в настоящий стандарт не включены.
- 1.3 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь стандарта несет ответственность за обеспечение соответствующих мер безопасности и охраны здоровья и определяет целесообразность применения законодательных ограничений перед его использованием. Меры предосторожности приведены в 7.1.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).

2.1 Стандарты **ASTM**¹⁾

ASTM D 2652 Terminology Relating to Activated Carbon (Терминология, относящаяся кактивированному углю)

ASTM D 2854 Test Method for Apparent Density of Activated Carbon (Метод определения кажущейся плотности активированного угля)

ASTM D 2867 Test Methods for Moisture in Activated Carbon (Методы определения влаги в активированном угле)

ASTM D 3195 Practice for Rotameter Calibration (Практика по градуировке ротаметров)

ASTM E 177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods (Практика использования понятий прецизионности и систематической погрешности в стандартах ASTM на методы испытаний)

ASTM E 300 Practice for Sampling Industrial Chemicals (Практика отбора проб промышленных химических продуктов)

¹⁾ Уточнить ссылки на стандарты ASTM можно на сайте ASTM: www.astm.org или в службе поддержки клиентов ASTM: service@astm.org. В информационном томе ежегодного сборника стандартов (Annual Book of ASTM Standards) следует обращаться к сводке стандартов ежегодного сборника стандартов на странице сайта.

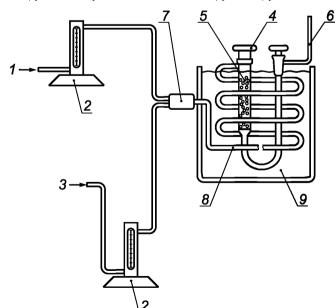
ΓΟCT 33582-2015

ASTM E 691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method (Практика проведения межлабораторных испытаний с целью установления прецизионности метода испытаний)

3 Термины и определения

3.1 В настоящем стандарте применены термины по ASTM D 2652.

4 Сущность метода

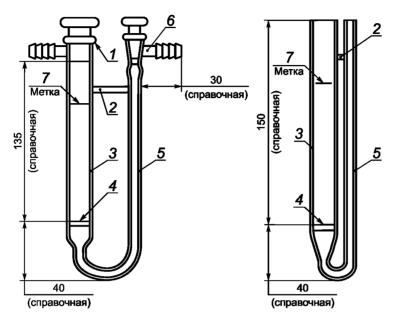

4.1 Слой активированного угля известного объема и массы насыщают парами бутана. Рассчитывают массу адсорбированного бутана в насыщенной пробе активированного угля. Затем активированный уголь продувают при определенных условиях сухим воздухом, не содержащим углеводородов. Исходя из потери массы трубки с активированным углем при продувке воздухом, вычисляют показатель ВWC как массу бутана, адсорбированного единицей объема активированного угля.

5 Назначение и применение

- 5.1 Рабочая емкость по бутану (BWC), определяемая настоящим методом, характеризует способность активированного угля адсорбировать бутан и десорбировать его в сухом воздухе при определенных условиях. Данный показатель используют для оценки и контроля качества гранулированных активированных углей, используемых в случаях, когда адсорбция бутана и его десорбция с помощью сухого воздуха представляют интерес. Показатель BWC в определенной степени характеризует эффективность активированных углей по отношению к другим адсорбатам.
- 5.2 В условиях настоящего испытания может быть также определена адсорбционная активность и удерживающая способность пробы активированного угля по бутану. Активность по бутану характеризует объем микропор пробы активированного угля. Способность удерживать бутан характеризует структуру пор пробы активированного угля.

6 Аппаратура

 $6.1\,$ Водяная баня, в которой поддерживается температура (25.0 ± 0.2) °C. Глубина бани должна быть такой, чтобы при помещении в нее трубки с пробой активированного угля слой угля был полностью погружен в воду. Змеевик из медной трубки наружным диаметром 6 мм и длиной погруженной в водяную



баню части 1,9 м (рисунок 1) обеспечивает нагрев до необходимой температуры газа, проходящего по змеевику.

1 — п-бутан; 2 — расходомер; 3 — сухой воздух без органических примесей; 4 — трубка для пробы;
 5 — активированный уголь; 6 — к вытяжной вентиляции; 7 — двухходовой кран; 8 — змеевик для нагрева газа длиной 1,9 м; 9 — водяная баня

Рисунок 1 — Схема установки для определения рабочей емкости по бутану

6.2 Трубка для пробы активированного угля, показанная на рисунке 2. Для поддержки слоя активированного угля в трубку предпочтительней помещать стеклянную пластину с отверстиями, а не фриттованный диск, поскольку фриттованные диски могут сильно изменяться под воздействием перепада давления.

1 — полая стеклянная пробка со шлифом 14/20 средней длины (например, адсорбционная трубка Шварца, по Kontes каталогу номер K-89100 или аналогичная); 2 — укрепляющий стержень толщиной 5 мм; 3 — трубка наружным диаметром 17 мм и толщиной стенки 1,2 мм; 4 — перфорированный фарфоровый диск или необработанный фриттованный диск, или аналогичный; 5 — трубка наружным диаметром 10 мм и толщиной стенки 1,0 мм; 6 — запорный кран, перекрывающий поток при повороте под прямым углом (например, по Kontes каталогу номер K-84700, размер 4, наружный диаметр трубки — 10 мм или аналогичный) и соединительный шланг с зубчатой поверхностью (например, по Kontes каталогу номер K-89340, размер В или эквивалентный); 7 — метка, соответствующая объему 16,7 см³ над пластиной, служащей опорой для адсорбента

Рисунок 2 — Трубка для активированного угля, используемая при определении рабочей емкости по бутану

- 6.3 Расходомеры (два), один из которых предназначен для измерения потока воздуха в интервале от 0 до 500 см³/мин, а второй для измерения потока бутана в интервале от 0 до 500 см³/мин. Оба расходомера градуируют в соответствии с ASTM D 3195.
 - 6.4 Весы с пределом допускаемой погрешности взвешивания ± 0.01 г.
 - 6.5 Устройство для заполнения трубки активированным углем.

Предпочтительней использовать вибрационное устройство, описанное в ASTM D 2854, рисунки 1—4

- 6.6 Бюретка класса Авместимостью 25 см³.
- 6.7 Установка для испытания в сборе схематично изображена на рисунке 1.

7 Реактивы

7.1 *п*-Бутан химически чистый.

Предупреждение — Бутан — легковоспламеняющийся газ с температурой плавления минус 138 °C и температурой кипения минус 0,5 °C. Относительная плотность бутана по воздуху — 2,046. В высоких концентрациях бутан обладает наркотическими свойствами, его относят к категории простых токсических удушающих веществ. Если нельзя разместить под колпаком вытяжной вентиляции всю установку целиком, то газ, выходящий из трубки с активированным углем, должен поступать в вытяжной шкаф.

7.2 Сухой воздух, не содержащий органических примесей, точка росы — не более минус 32 °C.

8 Подготовка пробы

8.1 Подготовку проб активированного угля проводят по ASTM E 300.

9 Градуировка трубки для пробы

- 9.1 Трубку моют так, чтобы капли воды не прилипали к ее внутренним стенкам, и высушивают.
- 9.2 Заполняют трубку дистиллированной водой, подавая воду в ее узкую часть так, чтобы пузырьки воздуха не попадали в трубку.
- 9.2.1 При медленном заполнении дистиллированной водой держите трубку вертикально. Пузырьки воздуха легче всего образуются под пластиной, служащей опорой пробе активированного угля.
- 9.3 Закрепляют трубку, заполненную водой, в вертикальном положении и закрывают пробкой ее узкую часть.
- 9.4 С помощью пипетки осторожно удаляют воду, пока ее уровень не опустится до верха пластины, служащей опорой пробе активированного угля. Осторожность необходима для того, чтобы не допустить опускания уровня воды ниже пластины-опоры, что может привести к образованию пузырьков воздуха и неправильной градуировке трубки. Если это все же произошло, трубку вновь заполняют водой по 9.1—9.3.
- 9.5 С помощью бюретки помещают в трубку (16,7 \pm 0,05) см 3 воды и ставят на трубке метку на уровне мениска.

10 Уход за водяной баней

10.1 Во избежание образования плесени воду в водяной бане периодически меняют.

11 Проведение испытания

- 11.1 Подходящее количество активированного угля сушат способом, регламентированным ASTM D 2867, раздел 4.
- 11.2 Определяют кажущуюся плотность активированного угля по ASTM D 2854 и записывают результат определения.
- 11.3 Взвешивают пустую сухую трубку для пробы с заглушками с погрешностью $\pm 0,01$ г и записывают результат взвешивания.
- 11.4 Заполняют трубку активированным углем со скоростью от 0,35 до 1,0 см³/с до уровня метки. Делают это с помощью вибрационного питателя, описанного в ASTM D 2854, и подходящей воронки. Активированным углем с более крупными зернами заполняют трубку медленнее для достижения требуемой плотности упаковки.
- 11.5 Заполненную трубку с заглушками взвешивают с погрешностью $\pm\,0,01\,$ г и записывают ее массу.
- 11.5.1 Для получения воспроизводимых результатов плотность упаковки угля в трубке, вычисляемая как масса активированного угля, деленная на 16,7, должна составлять не менее 94 % кажущейся плотности сухого активированного угля. При несоблюдении данного требования соотношение объемов пробы и очищающего воздуха, а следовательно, количество бутана, уходящего с очищающим воздухом, будет изменяться от одного испытания к другому. Если требуемая плотность упаковки активированного угля не достигнута с первого раза, процедуру заполнения трубки повторяют до тех пор, пока не получат требуемую плотность. Если требуемой плотности не удается достичь после нескольких попыток, испытание продолжают, записав плотность слоя активированного угля, при которой испытание проводят.
 - 11.6 Устанавливают температуру воды в водяной бане (25,0 \pm 0,2) °C.
- 11.7 Трубку с активированным углем опускают в вертикальном положении в водяную баню и присоединяют к выходу расходомера. Если установка для испытания не размещена целиком в вытяжном шкафу, то выходной патрубок трубки с активированным углем соединяют с вытяжным шкафом с помощью шланга.
- 11.8 Устанавливают скорость бутана, проходящего через слой активированного угля, (250 ± 5) см³/мин. Продолжают пропускать бутан через слой активированного угля в течение 900 с.
- 11.9 Прекращают подачу бутана и отсоединяют трубку с пробой активированного угля от установки, немедленно закрыв ее входной и выходной патрубки заглушками. Трубку извлекают из водяной бани,

протирают насухо ее внешнюю поверхность и визуально проверяют наличие в трубке водяного конденсата. При обнаружении следов конденсата испытание прекращают и повторяют его с самого начала.

- 11.10 Взвешивают трубку с пробой и заглушками с погрешностью $\pm 0,01$ г и записывают ее массу.
- 11.11 Вновь присоединяют трубку с пробой к установке и продувают ее бутаном в течение 600 с, после чего снова взвешивают. Процедуру продувки и взвешивания повторяют до достижения постоянной массы трубки.
- 11.12 Трубку с пробой насыщенного активированного угля присоединяют к установке и пропускают через нее сухой, не содержащий органических примесей воздух со скоростью (300 ± 5) см³/мин в течение (2400 ± 20) с.
- 11.13 Прекращают продувку воздухом, отсоединяют трубку с пробой от установки, ставя заглушки на входной и выходной патрубки, извлекают трубку из водяной бани и вытирают насухо ее внешнюю поверхность.
 - 11.14 Взвешивают трубку с пробой и заглушками с погрешностью $\pm 0,01$ г и записывают ее массу.

12 Обработка результатов

- 12.1 Вычисления, описанные в настоящем разделе, основаны на следующих показателях, определяемых в ходе испытания:
 - A кажущаяся плотность по 11.2;
 - В масса пустой трубки с заглушками;
 - С масса трубки с активированным углем и заглушками до продувки;
 - масса трубки с активированным углем, насыщенным бутаном, и заглушками;
 - Е масса трубки с активированным углем и заглушками после продувки воздухом.

П р и м е ч а н и е 1 — Форма записи результатов измерений <mark>и вычислений при определении показате</mark>ля ВWC дана в приложении A1.

12.2 Рабочую емкость по бутану BWC, выраженную на массу и на объем угля, вычисляют по формулам:

BWC (Macca/Macca, %) =
$$\frac{D - E}{C - B}$$
 100; (1)

BWC (масса/объем, г/100 см³) =
$$\frac{D-E}{C-B}$$
 A 100. (2)

12.3 Адсорбционную активность по бутану, выраженную на массу и на объем активированного угля, вычисляют по формулам:

Адсорбционная активность по бутану (масса/масса, %) =
$$\frac{D-C}{C-B}$$
 100; (3)

Адсорбционная активность по бутану (масса/объем, г/100 см³) =
$$\frac{D-C}{C-B}$$
 A100. (4)

12.4 Удерживающую способность по бутану, выраженную на массу и на объем активированного угля, вычисляют по формулам:

Удерживающая способность по бутану (масса/масса, %) =
$$\frac{E-C}{C-B}$$
 100; (5)

Удерживающая способность по бутану (масса/объем, г/100 см³) =
$$\frac{E-C}{C-B}$$
 A100. (6)

13 Протокол испытаний

- 13.1 протокол испытаний должен содержать:
- 13.1.1 наименование поставщика активированного угля;
- 13.1.2 обозначение пробы активированного угля;
- 13.1.3 размер гранул активированного угля;
- 13.1.4 значение рабочей емкости по бутану;
- 13.1.5 значение адсорбционной активности по бутану;

FOCT 33582-2015

- 13.1.6 значение удерживающей способности по бутану;
- 13.1.7 наименование исполнителя и технические характеристики испытания;
- 13.1.8 идентификационный номер и дату проведения испытания;
- 13.1.9 номер партии, от которой отобрана проба активированного угля.

14 Прецизионность и смещение

- 14.1 Межлабораторные испытания с использованием настоящего метода проведены в 1990 г.²⁾. Каждая из восьми лабораторий-участников провела испытания трех разных проб активированного угля, каждая из которых была представлена тремя случайно выбранными экземплярами. Ниже представлены результаты, обработанные с помощью компьютерной программы в соответствии с ASTM E 691.
- 14.2 Пределы повторяемости (внутри лаборатории), %, рассчитанные с доверительной вероятностью 95 %:

	Активированный уголь		
	Α	В	С
Адсорбционная активность (масса/масса, %)	1,95	2,34	0,97
Удерживающая способность (масса/масса, %)	2,52	1,80	1,77
Рабочая емкость (масса/масса, %)	2,05	3,14	2,19
Адсорбционная активность (масса/объем, г/100 см ³)	0,68	0,70	0,40
Удерживающая способность (масса/объем, г/100 см ³)	0,72	0,52	0,95
Рабочая емкость (масса/объем, г/100 см³)	0,51	0,92	1,04

14.3 Пределы воспроизводимости (между лабораториями), %, рассчитанные с доверительной вероятностью 95 %:

	Активированный уголь		
	Α	В	С
Адсорбционная активность (масса/масса, %)	3,57	3,15	1,05
Удерживающая способность (масса/масса, %)	3,75	3,79	3,79
Рабочая емкость (масса/масса, %)	5,06	4,70	3,83
Адсорбционная активность (масса/объем, г/100 см ³)	0,91	1,08	0,57
Удерживающая способность (масса/объем, г/100 см ³)	1,05	1,22	1,84
Рабочая емкость (масса/объем, г/100 см ³)	1,41	1,51	2,06

14.4 Пределы повторяемости и воспроизводимости результатов определения кажущейся плотности, рассчитанные с доверительной вероятностью 95 %:

	Активированный уголь		
	Α	В	С
Предел повторяемости, г/100 см ³	0,012	0,004	0,008
Предел воспроизводимости, г/100 см ³	0,019	0,021	0,025

П р и м е ч a н и е 2 — Термины «повторяемость» и «воспроизводимость» использованы в соответствии с ASTM E 177.

²⁾ Подтверждающие данные хранятся в центральном международном офисе ASTM и могут быть получены для ознакомления при запросе Отчета об исследовании (Research Report) RR:D28-1003.

Приложение A1 (обязательное)

А1 Форма записи результатов и вычислений при определении BWC

А1.1 Форма записи представлена на рисунке А1.1

Лаборатория	
Исполнитель	Дата
Обозначение пробы	
А Кажущаяся плотность	
В Масса пустой трубки с заглушками	
С Масса трубки с активированным углем и заглушками	
D Масса трубки с активированным углем, насыщенным бутаном, и заглушками	
E Масса трубки с активированным углем и заглушками после продувки воздухом	
Рабочая емкость (масса/масса, %)	
Рабочая емкость (масса/объем, г/100 см ³)	
Адсорбционная активность (масса/масса, %)	
Адсорбционная активность (масса/объем, г/100 см ³)	
Удерживающая способность (масса/масса, %)	
Удерживающая способность (масса/объем, г/100 см ³)	

Рисунок A1.1 — Пример записи результатов измерений и вычислений при определении BWC

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным стандартам ASTM

Таблица ДА.1

Обозначение и наименование ссылочного стандарта ASTM	Степень соответствия	Обозначение и наименование межгосударственного стандарта
ASTM D 2652 Терминология, относящаяся к активированному углю	_	*
ASTM D 2854 Метод определения кажущейся плотности активированного угля	_	*
ASTM D 2867 Методы определения влаги в активированном угле	_	*
ASTM D 3195 Практика по градуировке ротаметров	_	*
ASTM E 177 Практика использования понятий прецизионности и систематической погрешности в стандартах ASTM на методы испытаний	_	*
ASTM E 300 Практика отбора проб промышленных химичес- ких продуктов	_	*
ASTM E 691 Практика проведения межлабораторных испытаний с целью установления прецизионности метода испытаний	_	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного стандарта.

УДК 621.3.035.222.2:543.06:006.354

MKC 75.160.10

IDT

Ключевые слова: активированный уголь, стандартный метод, определение рабочей емкости, бутан

Редактор *Л.И. Нахимова*Технический редактор *В.Ю. Фотиева*Корректор *О.В. Лазарева*Компьютерная верстка *А.Н. Золотаревой*

Сдано в набор 18.04.2016. Подписано в печать 28.04.2016. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,10. Тираж 31 экз. Зак. 1205.