МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 33616— 2015

ПРОДУКТЫ ПИЩЕВЫЕ, ПРОДОВОЛЬСТВЕННОЕ СЫРЬЕ

Метод определения остаточного содержания мышьяксодержащих стимуляторов роста с помощью высокоэффективной жидкостной хроматографии-масс-спектрометрии с индуктивно-связанной плазмой

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межтосударственной стандартизации установлены ГОСТ 1.0—92 «Межтосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межтосударственная система стандартизации. Стандарты межтосударственные, правила и рекомендации по межтосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением «Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов» (ФГБУ «ВГНКИ»)
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 октября 2015 г. № 81-П)

За принятие проголосовали:

Краткое наименование страны	Код страны по МК	Сокращенное наименование национального органа
по МК (ИСО 3166) 004—97	(ИСО 3166) 004—97	по стандартизации
Армения	AM	Минэкономики Республики Армения
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт

⁴ Приказом Федерального агентства по техническому регулированию и метрологии от 18 января 2016 г. № 5-ст межгосударственный стандарт ГОСТ 33616—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

FOCT 33616—2015

Содержание

1 Область применения
2 Нормативные ссылки
3 Сущность метода
4 Условия выполнения измерений и требования безопасности
5 Средства измерений, аппаратура, материалы, посуда и реактивы
6 Подготовка к проведению измерений
6.1 Подготовка лабораторной посуды и реактивов
6.2 Приготовление растворов
6.3 Приготовление градуировочных растворов
7 Отбор и подготовка проб
7.1 Отбор проб
7.2 Подготовка проб
8 Порядок выполнения анализа 6
8.1 Условия хроматографических измерений 6
8.2 Построение градуировочной характеристики 7
8.3 ВЭЖХ-ИСП-МС анализ
9 Обработка результатов хроматографического анализа
10 Оформление результатов измерений 8
11 Метрологические характеристики
12 Контроль стабильности результатов измерений

ПРОДУКТЫ ПИЩЕВЫЕ, ПРОДОВОЛЬСТВЕННОЕ СЫРЬЕ

Метод определения остаточного содержания мышьяксодержащих стимуляторов роста с помощью высокоэффективной жидкостной хроматографии-масс-спектрометрии с индуктивно-связанной плазмой

Food products, food raw materials. Method for determination of residues of arsenic containing growth stimulators using high performance liquid chromatography — mass spectrometry with inductively coupled plasma

Дата введения — 2017—01—01

1 Область применения

Настоящий стандарт распространяется на мясо птицы, субпродукты и полуфабрикаты из мяса птицы и устанавливает метод высокоэффективной жидкостной хроматографии-масс-спектрометрии с индуктивно-связанной плазмой (далее — ВЭЖХ-ИСП-МС) для определения остаточного содержания мышьяксодержащих стимуляторов роста в диапазоне измерений для арсаниловой кислоты — от 0,2 до 40,0 мкг/кг, нитарсона и роксарсона — от 0,4 до 40,0 мкг/кг.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.018—93 Система стандартов безопасности труда. Пожаровзрывобезопасность статического электричества. Общие требования

ГОСТ 12.1.019—79¹⁾ Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.2.085—2002 Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности

ГОСТ OIML R 76-1—2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 1770—74 (ИСО 1042—83, ИСО 4788–80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2603—79 Реактивы. Ацетон. Технические условия

ГОСТ ИСО 5725-6—2003²⁾ Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

¹⁾ В Российской Федерации действует ГОСТ Р 12.1.019—2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты».

²⁾ В Российской Федерации действует ГОСТ Р ИСО 5725-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 22300—76 Реактивы. Эфиры этиловый и бутиловый уксусной кислоты. Технические условия ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 31467—2012 Мясо птицы, субпродукты и полуфабрикаты из мяса птицы. Методы отбора проб и подготовка их к испытаниям

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Сущность метода

Количественное определение проводят методом внешнего стандарта по площади пика идентифицированных соединений относительно градуировочной характеристики, полученной при анализе градуировочных растворов мышьяковых соединений.

4 Условия выполнения измерений и требования безопасности

- 4.1 При выполнении измерений соблюдают следующие условия:
- температура окружающего воздуха от 23 до 30 °С; - атмосферное давление от 84 до 106 кПа; - напряжение в питающей электросети от 200 до 240 В; - частота переменного тока от 49 до 51 Гц; - относительная влажность воздуха от 40 до 80 %
- 4.2 Хроматографические измерения проводят в условиях, указанных инструкцией по эксплуатации соответствующего прибора.
- 4.3 Применяемые в работе реактивы относятся к веществам 1-го и 2-го классов опасности по ГОСТ 12.1.007, при работе с ними необходимо соблюдать требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005.
- 4.4 Помещения, в которых проводятся анализ и подготовка проб, должны быть оборудованы приточно-вытяжной вентиляцией.
 - 4.5 Приготовление градуировочных растворов проводят под тягой в вытяжном шкафу.
 - 4.6 При проведении испытаний соблюдают требования ГОСТ 12.2.085.
- 4.7 При выполнении измерений на масс-спектрометре с индуктивно-связанной плазмой следует соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019, пожаровзрывобезопасности по ГОСТ 12.1.018 и инструкции по эксплуатации прибора.
- 4.8 К выполнению измерений методом ВЭЖХ-ИСП-МС допускаются лица, владеющие техникой ВЭЖХ-ИСП-МС и изучившие инструкции по эксплуатации применяемой аппаратуры.

5 Средства измерений, аппаратура, материалы, посуда и реактивы

- 5.1 Для определения остаточного содержания мышьяксодержащих стимуляторов роста применяют следующие средства измерений, аппаратуру, материалы и посуду:
- весы неавтоматического действия высокого класса точности по ГОСТ OIML R 76-1 с наибольшим пределом взвешивания не более 150 г и пределом допускаемой абсолютной погрешности ± 0,05 г;
- весы микроаналитические с наибольшим пределом взвешивания 52 г, с пределом допускаемой абсолютной погрешности не более ± 0.01 мг:
- квадрупольный масс-спектрометр с индуктивно-связанной плазмой с диапазоном измерений от 3 до 250 атомных единиц массы (а. е. м.), массовым разрешением не более 0,8 атомных единиц массы (а. е. м.);
- pH-метр или универсальный иономер с диапазоном измерения от 4 до 9 ед. pH с погрешностью измерения ± 0,05 ед. pH;

- систему высокоэффективную жидкостную хроматографическую, состоящую из насоса с четырехканальным смесителем, термостата хроматографической колонки, обеспечивающего температуру нагрева до 50 °C:
 - баню ультразвуковую с рабочей частотой не менее 20 Гц и объемом не менее 1 дм³;
- измельчитель-гомогенизатор погружной лабораторный со скоростью измельчающей насадки от 200 до 5000 об/мин:
- испаритель ротационный со скоростью вращения от 20 до 280 об/мин и температурным диапазоном нагревательной бани от 30 до 60 °C;
- камеру лабораторную морозильную с цифровым контроллером температуры и рабочим диапазоном температур от минус 20 °C до минус 40 °C;
- колонку хроматографическую обращенно-фазную диаметром 3 мм, длиной не менее 150 мм с диаметром частиц обращенно-фазного сорбента С8 не более 3,6 мкм или колонку хроматографическую обращенно-фазную диаметром 4,6 мм, длиной не менее 150 мм с диаметром частиц обращенно-фазного сорбента С8 не более 5,0 мкм;
- компьютер с установленным программным обеспечением для управления масс-спектрометром, хроматографической системой и обработки результатов измерений;
 - систему микроволновой подготовки проб;
 - систему получения деионизованной воды высокой чистоты;
- холодильник бытовой с цифровым контроллером температуры и рабочим диапазоном температур от 0 до 5 °C;
- центрифугу лабораторную рефрижераторную со скоростью вращения не менее 4000 об/мин и рабочим диапазоном температур от 4 до 20 °C;
- центрифугу лабораторную рефрижераторную со скоростью вращения не менее 15000 об/мин, рабочим диапазоном температур от 4 до 40 °С и адаптером для микроцентрифужных пробирок;
 - шкаф сушильный лабораторный с рабочим диапазоном температур от 50 до 200 °С;
 - фильтры мембранные диаметром 13 мм и размером пор не менее 0,45 мкм;
 - виалы (флаконы) полипропиленовые вместимостью 2 см³ с завинчивающимися крышками;
- пипетки одноканальные переменной вместимости 20—200 мм³, 200—1000 мм³, 200—5000 мм³ с допустимой относительной погрешностью дозирования по водным растворам не более 1 %;
 - пробирки полипропиленовые вместимостью 50 см³ с завинчивающимися крышками;
 - пробирки полипропиленовые микроцентрифужные вместимостью 1,5 cm³;
 - колбы круглодонные K 1-50 -29/32 TC по ГОСТ 25336;
 - колбы мерные 1-50(1000) -2 по ГОСТ 1770;
- 5.2 При определении остаточного содержания мышьяксодержащих стимуляторов роста применяют следующие реактивы:
 - ацетон по ГОСТ 2603;
 - водный раствор гидроксида тетрабутиламмония с содержанием основного вещества 25 %;
 - воду дистиллированную по ГОСТ 6709;
 - кислоту малоновую с содержанием основного вещества не менее 99 %, ч. д. а;
 - кислоту трифторуксусную с содержанием основного вещества не менее 99,9 %, ч. д. а;
 - метанол с содержанием основного вещества не менее 99,9 %, х. ч.;
 - этилацетат по ГОСТ 22300, х. ч.
- 5.3 При определении остаточного содержания мышьяксодержащих стимуляторов роста в качестве образцов сравнения применяют соединения мышьяка с содержанием основного вещества:
 - роксарсон не менее 98,1 %;
 - арсаниловая кислота 99,1 %;
 - нитарсон 99,6 %;
 - ацетарсон 99,0 %.

6 Подготовка к проведению измерений

6.1 Подготовка лабораторной посуды и реактивов

6.1.1 Мойку и сушку посуды проводят в отдельном помещении, оборудованном приточно-вытяжной вентиляцией. Для сушки лабораторной посуды и подготовки реактивов необходимо использовать отдельные сушильные шкафы.

- 6.1.2 Стеклянную посуду подвергают стандартной процедуре очистки лабораторной посуды с последующей последовательной промывкой органическими растворителями: этилацетатом (однократно), ацетоном (дважды).
- 6.1.3 Процедуру промывки органическими растворителями следует проводить в вытяжном шкафу. Рекомендуется на стадиях промывки использовать ультразвуковую баню. Окончательную сушку посуды проводят в сушильном шкафу, установленном в вытяжном шкафу, при температуре от 105 до 110 °C.
- 6.1.4 Каждую новую партию реактивов проверяют на отсутствие контаминации анализируемыми соединениями путем проведения холостого опыта в соответствии с процедурой анализа.

6.2 Приготовление растворов

6.2.1 Приготовление раствора малоновой кислоты массовой концентрацией 0,02 г/см³

В мерную колбу вместимостью 50 см³ вносят 1,0 г малоновой кислоты, растворяют в небольшом количестве деионизованной воды и доводят до метки деионизованной водой.

Срок хранения раствора при температуре от 2 до 4 °C — не более 6 мес.

6.2.2 Приготовление подвижных фаз А и Б

6.2.2.1 Для приготовления подвижной фазы A в мерную колбу вместимостью 1000 см³ приливают небольшое количество деионизованной воды, добавляют 1 см³ трифторуксусной кислоты, объем доводят до метки деионизованной водой.

Срок хранения раствора при комнатной температуре — не более 1 мес.

6.2.2.2 Для приготовления подвижной фазы Б в мерную колбу вместимостью 1000 см³ приливают 4 см³ водного раствора гидроксида тетрабутиламмония и доводят до метки деионизованной водой. С помощью рН-метра раствором малоновой кислоты (см. 6.2.1) доводят значение pH до 6,2.

Срок хранения раствора при комнатной температуре — не более 14 сут.

6.2.3 Приготовление исходного раствора ацетарсона массовой концентрацией 200 мг/дм³

В мерную колбу вместимостью 50 см³ вносят 10 мг ацетарсона. Добавляют небольшое количество деионизованной воды, помещают в ультразвуковую баню на 1 мин, деионизованной водой доводят объем полученного раствора до метки.

Срок хранения раствора при температуре от 2 до 4 °C — не более 6 мес.

6.2.4 Приготовление раствора ацетарсона массовой концентрацией 4 мг/дм³

В мерную колбу вместимостью 50 см³ вносят 1 см³ исходного раствора ацетарсона (см. 6.2.3) и доводят объем раствора до метки деионизованной водой.

Срок хранения раствора при температуре от 2 до 4 °С — не более 6 мес.

6.2.5 Приготовление раствора ацетарсона массовой концентрацией 20 мкг/дм³

В мерную колбу вместимостью 50 см³ вносят **0,25 см³ раствора ацетарсона (см. 6.2.4)**. **Доводят** объем раствора до метки деионизованной водой.

Срок хранения раствора при температуре от 2 до 4 °C — не более 1 мес.

6.3 Приготовление градуировочных растворов

6.3.1 Приготовление исходного раствора мышьяковых соединений (Міх0)

В мерную колбу вместимостью 50 см³ вносят по 10 мг роксарсона, нитарсона, арсаниловой кисло-ты. Добавляют небольшое количество деионизованной воды, помещают в ультразвуковую баню на 1 мин, затем доводят объем полученного раствора до метки деионизованной водой.

Массовую концентрацию каждого соединения мышьяка $X_{\rm Mix0}$, мг/дм³, в исходном растворе рассчитывают по формуле

$$X_{\text{MixO}} = \frac{m_{\text{MixO}}}{V},\tag{1}$$

где $m_{ exttt{Mix0}}$ — масса і-го вещества, взятого для приготовления исходного раствора, мг;

/ — вместимость мерной колбы, дм³.

6.3.2 Приготовление промежуточного раствора мышьяковых соединений (Міхп)

В мерную колбу вместимостью 50 см³ вносят 0,05 см³ исходного раствора Mix0 (см. 6.3.1) и доводят объем раствора до метки деионизованной водой. Массовую концентрацию соединений мышьяка в растворе Mixn, мг/дм³, рассчитывают по формуле:

$$X_{\text{Mix}\Pi} = \frac{X_{\text{Mix}0} \cdot V_0}{V},\tag{2}$$

где X_{MixO} — массовая концентрация исходного раствора, мг/дм³;

 V_0 — объем вносимого исходного раствора, дм³;

V — вместимость колбы, дм³.

6.3.3 Приготовление градуировочного раствора (Міх20)

В мерную колбу вместимостью 50 см³ вносят 5,0 см³ промежуточного раствора Міхп (см. 6.3.2), добавляют 0,25 см³ раствора ацетарсона (см. 6.2.4). Доводят объем раствора до метки деионизованной водой. Массовую концентрацию соединений мышьяка в растворе $X_{\text{Міх20}}$ рассчитывают по формуле (2). Срок хранения раствора при температуре от 2 до 4 °C — не более 6 мес.

6.3.4 Приготовление градуировочного раствора (Міх2)

В мерную колбу вместимостью 50 см 3 вносят 5,0 см 3 градуировочного раствора Mix20 (см. 6.3.3), добавляют 0,25 см 3 раствора ацетарсона (см. 6.2.4). Доводят объем раствора до метки деионизованной водой. Массовую концентрацию соединений мышьяка в растворе $X_{\rm Mix2}$ рассчитывают по формуле (2).

6.3.5 Приготовление градуировочного раствора (Міх0,2)

В мерную колбу вместимостью 50 см³ вносят 5,0 см³ градуировочного раствора Mix2 (см. 6.3.4), добавляют 0,25 см³ раствора ацетарсона (см. 6.2.4) и доводят объем раствора до метки деионизованной водой. Массовую концентрацию соединений мышьяка в растворе $X_{\text{Mix0},2}$ рассчитывают по формуле (2).

Растворы хранят при температуре от 2 до 4 $^{\circ}$ С. Срок хранения растворов (см. 6.3.1—6.3.4) — 6 мес. раствора по 6.3.5 — 1 мес.

7 Отбор и подготовка проб

7.1 Отбор проб

- 7.1.1 Отбор проб мяса птицы, субпродуктов и полуфабрикатов из мяса птицы по ГОСТ 31467.
- 7.1.2 Пробы, отобранные по 7.1.1, при отсутствии возможности анализа в день отбора хранят до проведения анализа при температуре от 2 до $8\,^{\circ}$ C 2 сут или при температуре минус $20\,^{\circ}$ C не более 2 мес.

7.2 Подготовка проб

7.2.1 Мышечную ткань предварительно очищают от грубой соединительной ткани и проводят обработку пробы в соответствии с рисунком 1.

1,0 г пробы взвешивают в полипропиленовой пробирке вместимостью 50 см³, вносят 5,0 см³ метанола, 5 см³ деионизованной воды и гомогенизируют в течение 10–20 с при 1500 об/мин

Пробирку помещают в микроволновую систему разложения проб на 5 мин. Мощность облучения устанавливают из расчета 20 Вт на пробу при температуре не выше 50 °C

Помещают пробирку в ультразвуковую баню на 5 мин., после чего центрифугируют при 4000 об/мин в течение 20 мин., затем переносят супернатант в круглодонную колбу вместимостью 50 см³

Повторяют процедуру экстракции осадка 5,0 см³ метанола и 5 см³ деионизованной воды. Соединяют супернатанты и упаривают досуха на роторном испарителе при температуре водяной бани 40 °C

К сухому остатку приливают 1 см³ раствора ацетарсона (см. 6.2.5), перемешивают и переносят в полипропиленовую пробирку вместимостью 1,5 см³

Центрифугируют при 15000 об/мин в течение 15 мин. при температуре 10 °C

Экстракт фильтруют через мембранные фильтры в виалу для автосамплера жидкостного хроматографа и используют для ВЭЖХ-ИСП-МС анализа

7.2.2 Приготовление холостой пробы

Приготовление холостой пробы для контроля чистоты реактивов и посуды проводят по 7.2, не добавляя пробу.

8 Порядок выполнения анализа

8.1 Условия хроматографических измерений

- 8.1.1 Масс-спектрометр и хроматограф включают в соответствии с руководством (инструкцией) по эксплуатации и устанавливают параметры, рекомендуемые изготовителем хроматографических колонок.
- 8.1.2 Для колонки диаметром 3 мм, длиной 150 мм с обращенно-фазным сорбентом С8 с размером частиц 3,6 мкм применяют следующие хроматографические условия:
 - температура колонки 28 °C;
 - объем вводимой пробы 5 мм³.

Разделение проводят в режиме градиентного элюирования (приготовление растворов элюентов по 6.2.2) в соответствии с таблицей 1.

Таблица 1 — Условия хроматографического разделения

Время, мин	Подвижная фаза А, %	Подвижная фаза Б, %	Скорость потока подвижной фазы, см ³ /мин
0—6	0	100	0,40
6—16	100	0	0,52
16—24	0	100	0,52

- 8.1.3 Для колонки диаметром 4,6 мм, длиной 150 мм с обращенно-фазным сорбентом С8 с размером частиц 5,0 мкм применяют следующие хроматографические условия:
 - температура колонки 28 °C;
 - объем вводимой пробы 10 мм³.

Разделение проводят в режиме градиентного элюирования (приготовление растворов элюентов в соответствии 6.2.2) в соответствии с таблицей 2.

Таблица 2 — Условия хроматографического разделения

Время, мин	Подвижная фаза А, %	Подвижная фаза Б, %	Скорость потока подвижной фазы, см ³ /мин
0—6	0	100	0,7
6—16	100	0	1,0
16—24	0	100	1,0

8.1.4 Значения абсолютного времени удерживания определяемых соединений в предложенных хроматографических условиях приведены в таблице 3.

Таблица 3 — Время удерживания определяемых соединений

Аналит	Время удерживания, мин	Возможное отклонение, мин
Арсаниловая кислота	5,1	± 0,1
Роксарсон	18,6	± 0,3
Нитарсон	21,0	± 0,3

8.2 Построение градуировочной характеристики

Построение и расчет градуировочной характеристики проводят методом внешнего стандарта в каждой серии анализов с помощью программного обеспечения масс-спектрометра.

- 8.2.1 Для построения градуировочной характеристики используют три уровня градуировочных растворов, приготовленных по 6.3.3—6.3.5. Для каждого уровня концентрации проводят не менее двух измерений.
- 8.2.2 При установлении градуировочной характеристики в инжектор хроматографа вводят 5 мм³ для колонки диаметром 3,0 мм (или 10 мм³ для колонки диаметром 4,6 мм) градуировочные растворы различных уровней концентраций в условиях, указанных в 8.1.
- 8.2.3 Градуировочную характеристику строят заново в каждой серии испытаний с помощью компьютерной системы обработки данных в координатах «массовая концентрация» — «площадь пика» каждого определяемого вещества методом абсолютной градуировки.
- 8.2.4 Расчеты коэффициентов градуировочной характеристики выполняются системой обработки данных в автоматическом режиме.
- 8.2.5 Градуировочную характеристику считают приемлемой, если рассчитанное с помощью компьютерной системы обработки данных значение коэффициента корреляции (коэффициент регрессии) каждого определяемого соединения не менее 0.98.

8.3 ВЭЖХ-ИСП-МС анализ

- 8.3.1 Для определения остаточного содержания мышьяксодержащих стимуляторов роста проводят анализ в соответствии с руководством (инструкцией) по эксплуатации применяемого оборудования.
 - 8.3.2 ВЭЖХ-ИСП-МС анализ выполняют в виде серии измерений, включающей следующие образцы:
 - холостую пробу (см. 7.3);
 - градуировочные растворы (см. 6.3.3—6.3.5);
 - экстракты анализируемых проб, приготовленных по 7.2.
- 8.3.3 Через каждые десять измерений проб проводят измерение градуировочного раствора Міх2 (6.3.4). Контроль дрейфа проводят после корректировки по пику ацетарсона. После корректировки расхождение между параллельными определениями градуировочного раствора не должно превышать 5 %.

9 Обработка результатов хроматографического анализа

- 9.1 Программное обеспечение автоматически рассчитывает содержание мышьяковых соединений, используя градуировочную зависимость, построенную при анализе градуировочных растворов.
 - 9.2 Метод обработки хроматограммы по внешнему стандарту.
- 9.3 Расчеты площадей пиков и значений массовой концентрации соединений в экстрактах выполняются системой обработки данных в автоматическом режиме.
- 9.4 Для учета дрейфа чувствительности масс-спектрометра значения массовой концентрации соединений мышьяка в экстракте пробы корректируют по площадям пиков ацетарсона. Для этого используют формулу

$$X'_{i,j} = X_{i,j} \cdot \frac{S^{is}_{std}}{S^{is}_{j}},$$
 (3)

где $X_{i,j}'$ — расчетная массовая концентрация *i*-го соединения мышьяка в экстракте пробы в *j*-м параллельном измерении, мкг/дм³;

 $S_{\it std}^{\it is}$ — площадь пика ацетарсона в градуировочном растворе (см. 6.2.5) (имп./с) 2 ;

 S_i^{is} — площадь пика ацетарсона в j-м параллельном измерении (имп./с) 2 .

Содержание соединений мышьяка в ј-й параллельной пробе вычисляют по формуле

$$C_{ij} = X'_{ij} \cdot K_i \cdot \frac{V}{m}, \tag{4}$$

где $X_{i,j}'$ — значение массовой концентрации i-го соединения мышьяка в экстракте пробы, рассчитанное по формуле (3), мкг/дм 3 ; V — объем экстракта, см 3 ;

т — масса навески *j*-й параллельной пробы, г;

 K_i — коэффициент извлечения для i-го соединения мышьяка, рассчитываемый по формуле

$$K_i = \frac{X_i^{add}}{X_i^m},\tag{5}$$

где X_i^{add} — значение заданной массовой концентрации внесенной добавки i-го соединения, мкг/дм 3 ;

 X_i^m — значение найденной массовой концентрации добавки i-го соединения мышьяка, мкг/дм 3 .

9.5 За результат измерений принимают среднеарифметическое значение результатов двух параллельных определений, если выполняется условие приемлемости

$$\frac{2 \cdot |C_1 - C_2| \cdot 100}{(C_1 + C_2)} \le r,\tag{6}$$

где C_1 , C_2 — результаты параллельных определений содержания мышьяксодержащих соединений, мкг/кг:

r — значение предела повторяемости, % (r = 115 %).

9.6 Если условие (6) не выполняется, получают еще два результата в полном соответствии с данной методикой измерений. За результат измерений принимают среднеарифметическое значение результатов четырех определений, если выполняется условие

$$\frac{4 \cdot \left| C_{\text{max}} - C_{\text{min}} \right| \cdot 100}{\left(C_1 + C_2 + C_3 + C_4 \right)} \le CR_{0,95},\tag{7}$$

где C_{max} , C_{min} — максимальное и минимальное значения из полученных четырех результатов параллельных определений содержания мышьяксодержащих соединений, мкг/кг;

 $CR_{0,95}$ — значение критического диапазона для уровня вероятности P = 0,95 и n — результатов определений

$$CR_{0.95} = f(n) \cdot \sigma_r, \tag{8}$$

для n = 4

$$CR_{0.95} = 3.6 \cdot \sigma_r, \tag{9}$$

где σ_r — показатель повторяемости, % (σ_r = 40 %).

9.7 Если условие (7) не выполняется, выясняют причины превышения критического диапазона, устраняют их и повторяют выполнение измерений в соответствии с требованиями методики измерений.

10 Оформление результатов измерений

10.1 Результат анализа представляют в виде

$$\overline{C} \pm 0.01 \cdot U_i \cdot \overline{C}$$
, при $P = 0.95$, (10)

где \overline{C} — среднеарифметическое значение результатов n определений, признанных приемлемыми по 8.3.5, 8.3.6, мкг/кг;

6.3.5, 6.3.5, мкг/кг, U_i — значение относительной расширенной неопределенности, %, указанной в таблице 4.

Таблица 4 — Показатели точности метода при проведении измерений

Аналит	Диапазон измерений содержания, мкг/кг	Значение относительной расширенной неопределенности $\pm U_i$ при коэффициенте охвата $k=2, \%$
Роксарсон	От 0,4 до 40,0 включ.	75
Арсаниловая кислота	От 0,2 до 4,0 включ.	80
	Св. 4 до 40 включ.	60
Нитарсон	От 0,4 до 40,0 включ.	95

10.2 Значение расширенной неопределенности измерений рассчитывают с использованием значения относительной расширенной неопределенности при k = 2 (см. таблицу 4) по формуле

$$U_i = C_i \cdot \frac{V_i}{100},\tag{11}$$

где U_i — значение относительной расширенной неопределенности *i-*го соединения мышьяка для соответствующего диапазона измерений массовой доли (см. таблицу 4).

11 Метрологические характеристики

Установленный в настоящем стандарте метод обеспечивает выполнение измерений массовой доли исследуемых веществ с расширенной неопределенностью результатов аналитических измерений при коэффициенте охвата k=2 или с соответствующей границей относительной погрешности, указанной в таблице 4.

12 Контроль стабильности результатов измерений

Контроль стабильности результатов измерений в пределах лаборатории осуществляют по ГОСТ ИСО 5725-6 (раздел 6) с использованием контрольных карт Шухарта.

УДК 664:543.544.5.068.7:006.354

MKC 67.050 67.120

Ключевые слова: пищевые продукты, продовольственное сырье, остаточное содержание, мышьяксодержащие стимуляторы роста, высокоэффективная жидкостная хроматография, масс-спектрометрия с индуктивно-связанной плазмой, арсаниловая кислота, роксарсон, нитарсон

Редактор *К.В. Дудко*Технический редактор *В.Н. Прусакова*Корректор *Е.Р. Ароян*Компьютерная верстка *Ю.В. Поповой*

Сдано в набор 09.11.2015. Подписано в печать 25.02.2016. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,35. Тираж 33 экз. Зак. 596.

Набрано в ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru