ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

УТВЕРЖДАЮ

В.Н.Пуканов 2012 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ ВИСМУТА В
ПИТЬЕВЫХ, ПОВЕРХНОСТНЫХ, ПОДЗЕМНЫХ
ПРЕСНЫХ И СТОЧНЫХ ВОДАХ ФОТОМЕТРИЧЕСКИМ
МЕТОДОМ С ТИОКАРБАМИДОМ

ПНД Ф 14.1:2:3:4.196-2003

Методика допущена для целей государственного экологического контроля

> МОСКВА 2003 г. (Издание 2012 г.)

Право тиражирования и реализации принадлежит разработчику.

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»).

Настоящее издание методики действует до выхода нового издания.

Главный и жене об така бай к.х.н.

В.С. Талисманов

Разработчик:

Федеральное бюджетное учреждение «Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

Адрес: 125080, г. Москва, п/о № 80, а/я № 86

Телефон/факс: (495) 781-64-95, телефон: (495) 943-29-44

E-mail: info@fcao.ru, www.fcao.ru.

1 ВВЕЛЕНИЕ

Настоящий документ устанавливает методику измерений массовой концентрации ионов висмута в питьевых, поверхностных, подземных пресных и сточных водах фотометрическим методом с тиокарбамидом.

Диапазон измерений от 0,1 до 5 мг/дм³

При содержании ионов висмута от 0,1 до 1 мг/дм³ пробу концентрируют путем упаривания (п. 9.2).

Если массовая концентрация ионов висмута в анализируемой пробе превышает верхнюю границу диапазона (5 мг/дм³), то допускается разбавление пробы таким образом, чтобы концентрация соответствовала регламентированному диапазону.

Определению массовой концентрации ионов висмута с применением раствора тиокарбамида мещают редко встречающиеся в водах элементы: платиновые металлы, сурьма в относительно больших количествах, теллур. Мешающее влияние железа (3+) устраняется добавлением аскорбиновой кислоты в ходе выполнения анализа (п. 9.1).

2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ

Значения показателя точности измерений — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

Таблица 1 – Диапазон измерений, показатели неопределенности измерений

Диапазон измерений, мг/дм ³	Суммарная стандартная относительная неопределенность, и, %	Расширенная относительная неопределенность ² , U при коэффициенте охвата $k = 2, \%$
	Питьевая вода	
От 0,1 до 1 включ.	12	24
Св. 1 до 5 включ.	10	20
Поверхн	остные, подземные и сточ	ные воды
От 0,1 до 1 включ.	17	34
Св. 1 до 5 включ.	15	30

¹ В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

² Соответствует характеристике погрещности при доверительной вероятности Р = 0,95.

Значения показателя точности методики используют при:

- оформлении результатов измерений, выдаваемых лабораторией;
- оценке качества проведения испытаний в лаборатории;
- оценке возможности использования настоящей методики в конкретной лаборатории.

3 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, ПОСУДА, РЕАКТИВЫ

При выполнении измерений применяют следующие средства измерений, вспомогательное оборудование, посуду, стандартные образцы и реактивы.

3.1 Средства измерений, вспомогательное оборудование

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны λ =470 нм

Кюветы с толщиной поглощающего слоя 50 мм

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

Гири по ГОСТ 7328-2001

Колбы мерные 2-го класса точности вместимостью 50, $100~{\rm cm}^3$ по ГОСТ 1770-74

Пипетки градуированные 2-го класса точности вместимостью 1, 2, 5, 10 cm^3 по ГОСТ 29227-91

Плитка электрическая по ГОСТ 14919-83

Государственные стандартные образцы (ГСО) состава раствора ионов висмута. Относительная погрешность аттестованных значений массовой концентрации не более 1% при Р=0,95.

3.2 Посуда

Колбы конические Кн-1-250 по ГОСТ 25336-82

Стакан Н-1-150 по ГОСТ 25336-82

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 250-500см³ для отбора проб и хранения растворов.

Примечания.

- Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.
- 2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.
- 3 Средства измерений должны быть поверены в установленные сроки.

3.3 Реактивы

Тиомочевина (тиокарбамил) по ГОСТ 6344-73

Кислота азотная по ГОСТ 4461-77

Висмута нитрат по ГОСТ 4110-75

Висмута оксид по ГОСТ 10216-75

Кислота аскорбиновая по ТУ 42-26-68-89

Вода дистиллированная по ГОСТ 6709-72

Бумага индикаторная универсальная по ТУ 6-09-1181-76

Примечания.

- 1 Все реактивы, используемые для измерений, должны быть квалификации ч.д.а. или х.ч.
- 2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

4 МЕТОД ИЗМЕРЕНИЙ

Метод определения массовой концентрации ионов висмута основан на взаимодействии ионов висмута с тиокарбамидом с образованием окрашенного в желтый цвет комплекса. Измерение оптической плотности проводят при λ=470 нм.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

- 5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.
- **5.2** Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.
- 5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.
- 5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
- 5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

К выполнению измерений и обработке результатов допускаются лица, имеющие специальное химическое образование или опыт работы в химической лаборатории, прошедшие соответствующий инструктаж, освоившие технику фотометрического анализа и получившие удовлетворительные результаты при выполнении контроля процедуры измерений.

7 ТРЕБОВАНИЯ К УСЛОВИЯМ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

Температура окружающего воздуха $(20 \pm 5)^{\circ}$ С. Атмосферное давление (97,3-104,6) кПа, (730-780 мм рт.ст.).

Относительная влажность воздуха до 80 % при температуре 25° С.

Напряжение в сети (220 \pm 22) В.

8 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

8.1 Подготовка прибора

Подготовку спектрофотометра или фотоколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8.2 Приготовление растворов

8.2.1 Приготовление раствора тиокарбамида

Навеску тиокарбамида (10,0 г) помещают в мерную колбу вместимостью 100 см³, растворяют в небольшом количестве дистиллированной воды и доводят до метки дистиллированной водой.

8.2.2 Приготовление раствора аскорбиновой кислоты с массовой долей 2 %

Навеску аскорбиновой кислоты (2,0 г) помещают в колбу и растворяют в 98 см 3 дистиллированной воды.

Раствор используют свежеприготовленным.

8.2.3 Приготовление раствора азотной кислоты (1:1)

В стакане смешивают равные части дистиллированной воды и азотной кислоты, при этом кислоту добавляют к воде.

Срок хранения раствора – 6 месяцев.

8.2.4 Приготовление основного градуировочного раствора висмута с массовой концентрацией 0,1 мг/см³

Раствор готовят из ГСО с аттестованным содержанием ионов висмута в соответствии с прилагаемой к образцу инструкцией.

Срок хранения основного градуировочного раствора – 3 месяца.

8.2.5 Приготовление рабочего градуировочного раствора висмута с массовой концентрацией 0,01 мг/см³

Раствор готовят путем разбавления в мерной колбе основного градуировочного раствора в 10 раз дистиллированной водой.

Срок хранения раствора - 1 месяц.

Примечание.

При отсутствии ГСО допускается приготовление рабочего градуировочного раствора из нитрата или оксида висмута

Приготовление основного градуировочного раствора из нитрата висмута

0,2321 г нитрата висмута помещают в мерную колбу вместимостью $1~{\rm дм}^3$, растворяют в $20~{\rm cm}^3$ азотной кислоты (1:1) и доводят до метки дистиллированной водой. В $1~{\rm cm}^3$ раствора содержится $0,1~{\rm mr}$ висмута.

Срок хранения раствора - 3 месяца.

Приготовление основного градуировочного раствора из оксида висмута

0,1115 г оксида висмута помещают в мерную колбу вместимостью 1 дм³, растворяют в 20 см³ азотной кислоты (1:1) и доводят до метки дистиллированной водой. В 1 см³ раствора содержится 0,1 мг висмута.

Срок хранения раствора – 3 месяца.

8.3 Построение градуировочного графика

Для построения градуировочного графика необходимо приготовить образцы для градуировки в соответствии с таблицей 2. Условия анализа, его проведение должны соответствовать п.п.7 и 9.

Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5%.

Номер образ- ца	Аликвотная часть рабочего градуировочного раствора с концентрацией 0,01 мг/см ³ , (см ³)	Содержание ионов висмута в пробе, мг в пробе	Концентрация ионов висмута, мг/дм ³
1	0,0	0,00	0,0
2	5,0	0,05	1,0
3	10,0	0,10	2,0
4	15,0	0,15	3,0
5	20,0	0,20	4,0
6	25,0	0,25	5,0

Таблица 2- Состав и количество образцов для градуировки

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. По оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм³.

8.4 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

$$\left| \begin{array}{c} X - C \end{array} \right| \leq 0,01 \cdot 1,96 \cdot C \cdot u_{I(TOE)}, \qquad (1)$$

где X— результат контрольного измерения массовой концентрации ионов висмута в образце для градуировки;

С – аттестованное значение массовой концентрации ионов висмута;

 $u_{I(TOE)}$ стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения и (СТОЕ) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

8.5 Отбор и хранение проб

8.5.1 Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 "Вода питьевая. Отбор проб".

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 "Вода. Общие требования к отбору проб", ПНД Ф 12.15.1-08 "Методические указания по отбору проб для анализа сточных вод".

- 8.5.2 Посуду для отбора проб и проведения анализа обезжиривают раствором СМС, промывают водопроводной водой, обрабатывают раствором азотной кислоты (1:1), тщательно промывают водопроводной водой, затем 3-4 раза дистиллированной водой.
- 8.5.3 Пробы воды отбирают в стеклянные или полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой. Объем отбираемой пробы должен быть не менее 250 см³. Пробы анализируют в день отбора или консервируют, прибавляя 3 см³ концентрированной азотной кислоты на 1 дм³ пробы. Пробы хранят в течение 1 месяца.
- 8.5.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

цель анализа, предполагаемые загрязнители;

место, время отбора;

объем пробы;

номер пробы;

должность, фамилия отбирающего пробу, дата.

9 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

9.1 Пробу воды (не более 30 см³) помещают в мерную колбу вместимостью 50 см³. Прибавляют 7 см³ раствора азотной кислоты (1:1), 2 см³ раствора аскорбиновой кислоты, 10 см³ раствора тиокарбамида. Доводят объем раствора до метки дистиллированной водой, перемешивают и через 10-15 минут измеряют оптическую плотность при длине волны 470 нм в кювете с толщиной оптического слоя 50 мм против холостой пробы. В качестве холостой пробы используют дистиллированную воду с добавлением всех реактивов.

9.2 При массовой концентрации ионов висмута в анализируемой пробе от 0,1 до 1,0 мг/дм³ перед началом анализа проводят концентрирование. Для этого 500 см³ или меньший объем пробы подкисляют 1,5 см³ концентрированной азотной кислоты и упаривают до 20-30 см³. Охлажденный концентрат переносят в мерную колбу вместимостью 50 см³ и проводят анализ пробы по п.9.1.

При концентрировании пробы одновременно проводят анализ по п.9.2 аттестованного раствора с содержанием ионов висмута, соответствующим содержанию их в исходной рабочей пробе. Результат анализа исходной рабочей пробы признают удовлетворительным, если выполняется следующее условие:

$$|X-C| \leq 0.5 \cdot C$$

где X – результат контрольного измерения массовой концентрации ионов висмута в аттестованном растворе;

С – аттестованное значение массовой концентрации ионов висмута.

10 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Содержание ионов висмута X (мг/дм³) рассчитывают по формуле:

$$X = \frac{C * 50}{V},\tag{2}$$

где С – массовая концентрация ионов висмута, найденная по градуировочному графику, мг/дм³;

V – объем пробы, взятой для определения, см³;

50 – объем, до которого доведена проба, см³.

Если проводилось разбавление или концентрирование пробы, при расчете учитывают соответствующий коэффициент.

При необходимости за результат измерений X_{cp} принимают среднее арифметическое значение двух параллельных определений X_1 и X_2

$$X_{cp} = \frac{X_1 + X_2}{2},\tag{3}$$

для которых выполняется следующее условие:

$$|X_1 - X_2| \le 0.01 \cdot r \cdot X_{co}$$
 (4)

где г - предел повторяемости, значения которого приведены в таблице 3.

Таблица 3 - Значения предела повторяемости при доверительной вероятности P=0,95

Диапазон измерений, мг/дм ³	Предел повторяемости (относительное значение доп каемого расхождения между двумя результатами параллельня определений), г, %		
	Питьевая вода		
От 0,1 до 1 включ.	22		
Св. 1 до 5 включ.	19		
Поверхно	тные, подземные и сточные воды		
От 0,1 до 1 включ.	31		
Св. 1 до 5 включ.	28		

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параплельных определений и установления окончательного результата согласно разделу 5 ГОСТ Р ИСО 5725-6-2002.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4 - Значения предела воспроизводимости при доверительной вероятности P=0,95

Диапазон измерений, мг/дм ³	Предел воспроизводимости (относительное значение д пускаемого расхождения между двумя результатами измерений, и лученными в разных лабораториях), R, %		
	Питьевая вода		
От 0,1 до 1 включ.	31		
Св. 1 до 5 включ.	26		
Поверхн	остные, подземные и сточные воды		
От 0,1 до 1 включ.	45		
Св. 1 до 5 включ.	39		

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно разделу 5 ГОСТ Р ИСО 5725-6.

Численное значение результата измерений должно оканчиваться цифрой того же разряда, что и значение погрешности.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: $X \pm 0.01 \cdot U \cdot X$, мг/дм³,

где X — результат измерений массовой концентрации, установленный по $\mathbf{n}.10$, мг/дм³;

U- значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: $X\pm0.01\cdot U_A\cdot X$, мг/дм³, Р=0,95, при условии $U_A<U_B$, где U_A - значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата 2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

12 КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

12.1 Общие положения

- 12.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
 - оперативный контроль процедуры измерений;
- контроль стабильности результатов измерений на основе контроля стабильности среднего квадратического отклонения (СКО) повторяемости, СКО промежуточной (внутрилабораторной) прецизионности и правильности.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лабораторий.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с п.5.3.3 ГОСТ Р ИСО 5725-6-2002.

- 12.1.2 При проведении контроля стабильности градуировочной характеристики в лаборатории используют либо приведенные в бюджете неопределенности стандартные отклонения промежуточной прецизионности, либо установленные в лаборатории, при выполнении следующего условия:
- $\sigma_{R_n} \le \sigma_{I(TOE)} \le \sigma_R$, где σ_R стандартное отклонение (СКО) воспроизводимости, приведенное в бюджете неопределенности;
- $\sigma_{I(TOE)}$ стандартное отклонение (СКО) промежуточной прецизионности, приведенное в бюджете неопределенности;
- σ_{R_a} СКО внутрилабораторной прецизионности, установленное в лаборатории при внедрении методики измерений.

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\kappa} = \left| X_{cp} - X_{cp} - C_{\delta} \right|, \tag{5}$$

где X_{cp}^{\cdot} — результат анализа массовой концентрации ионов висмута в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4).

 X_{cp} — результат анализа массовой концентрации ионов висмута в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4).

Норматив контроля K_{∂} рассчитывают по формуле:

$$K_{\delta} = \sqrt{U_{s,\mathcal{X}}^2 + U_{s,\mathcal{X}'}^2} \quad , \tag{6}$$

где $U_{A,X}$ и $U_{A,X}$. показатели точности результатов измерений (расширенная неопределенность с коэффициентом охвата 2), установленные в лаборатории при реализации методики, соответствующие массовой концентрации фторид-ионов в рабочей пробе и в пробе с добавкой соответственно, мг/дм³.

Процедуру измерений признают удовлетворительной при выполнении условия:

$$K_{x} \leq K$$
 (7)

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\kappa} = \left| C_{cp} - C \right|, \tag{8}$$

где C_{c_p} – результат анализа массовой концентрации фторид-ионов в образце для контроля – среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4);

C – аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

$$K = 0.01 \cdot U_{a} \cdot C, \tag{9}$$

где U_{π} - значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата k=2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

Процедуру измерений признают удовлетворительной при выполнении условия:

$$K_{\mathbf{r}} \leq K$$
 (10)

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Примечание - Допустимо показатели точности измерений при внедрении методики в лаборатории устанавливать на основе выражения:

$$U_{\pi} = 0.84 \cdot U(X) \tag{11}$$

с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

ПРИЛОЖЕНИЕ А (информационное)

Таблица А.1 - Бюджет неопределенности измерений

Источник неопределенности	Оценка типа	Стандартная относительная неопределенность ³ , %	
		От 0,1 до 1 мг/дм ³	Св. 1 до 5 мг/дм ³
Приготовление градуировочных растворов, u_1 , %	В	2,5	2,5
Степень чистоты реактивов и дистиллированной воды, u_2 , %	В	2,8	2,5
Подготовка проб к анализу, из, %	В	2,3	2,1
Стандартное отклонение результатов измерений, полученных в условиях повторяемости 4 , u_r (σ_r), %	A	11(8)*	10(7)*
Стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности ⁴ , и _(ПОЕ) (О(ПОЕ)), %	A	13(9)*	12(7,5)*
Стандартное отклонение результатов измерений, полученных в условиях воспроизводимости, u_R (σ_R), %	A	16(11)*	14(9)*
Суммарная стандартная относительная ределенность, u_c , %	неоп-	17(12)*	15(10)*
Расширенная относительная неопределенность, $(U_{omn.})$ при $k=2$, %		34(24)*	30(20)*

Примечания.

¹ Оценка (неопределенности) типа А получена путем статистического анализа ряда наблюдений.

² Оценка (неопределенности) типа В получена способами, отличными от статистического анализа ряда наблюдений.

^{*}Значения в скобках представлены для питьевой воды.

 $^{^{3}}$ Соответствует характеристике относительной погрешности при доверительной вероятности P=0.95.

⁴ Согласно ГОСТ Р ИСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимссти.

ФЕЛЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ (РОСПРИРОДНАДЗОР)

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ЦЕНТР АНАЛИЗА И ОЦЕНКИ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ» ~ (ФБУ «ФЦАО»)

СВИДЕТЕЛЬСТВО

об аттестации методики (метода) измерений

№ 010/01.00301-2010/2012

Методика измерений массовой концентрации ионов висмута в ритьевых, поверхностных, подземных пресных в сточных водах фогометрическим методом с тиокарбамидом,

предназначенная для применения в организациях, осуществляющих контроль состава питьевых, поверхностных, подземных пресных и сточных вод.

разработанная ФБУ «ФЦАО» 125080, г. Москва, Волоколамское шоссе, д. 11, стр. 1

и содержащаяся в ПНД Ф 14.1:2:3:4-196-2003 «Методика измерений массовой концевтрации ионов висмута в питьевых, поверхностных, подземных пресных и сточных водах фотометрическим методом с тиокарбамидом», 2012 г., на 16 листах.

Методика (мстод) аттестована (ан) в соответствии с Федеральным законом от 26.06,2008 № 102-ФЗ «Об обеспечении единства измерений» и ГОСТ Р 8.563-2009.

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики (метода) измерений и экспериментальных исследований.

В результате аттестации методики (метода) измерений установлено, что методика (метод) измерений соответствует требованиям, предъявляемым ГОСТР 8.563-2009.

Показатели точности измерений приведены в приложении на 2 листах.

Директор ФБУ «ФЦАО»

В.П.Цуканов

Дата выдачи: 20.06.2012 г.

125080, г. Москва, Волоколамское шоссе, д. Н. стр. 1; тел.: (495) 943-29-44, мыл. fcao ги

приложение

к свидетельству № 010/01.00301-2010/2012 об аттестации

методики измерений массовой концентрации ионов висмута в питьевых, поверхностных, подземных пресных и сточных водах фотометрическим методом с тиокарбамидом на 2 листах

1 Показатели точности измерений приведены в таблице 1

Таблица 1 - Диапазон измерений, показатели неопределенности измерений

Диалазон измерений, мг/дм ³	Суммарная стандартная относительная неопределенность, и, %	Расширенная относительная неопределенность ² , U при коэффициенте охвата k = 2, %	
	Питьевая вода	3	
От 0,1 до 1 включ.	12	24	
Св. 1 до 5 включ.	10	20	
	Поверхностные, подземные прес	ные и сточные воды	
От 0,1 до 1 включ.	17	34	
Св. 1 до 5 включ.	15	30	

2 Бюджет неопределенности измерений массовой концентрации ионов висмута

Таблица 2 - Бюджет неопределенности измерений массовой концентрации ионов висмута

Источник неопределенности	Оцен- ка	Стандартная относитель- ная неопределенность, %	
	типа	От 0,1 до 1 мг/дм ³	Св. 1 до 5 мг/дм ³
Приготовление градуировочных растворов, и1. %	В	2,5	2,5
Степень чистоты реактивов и дистиллированной воды, u_2 , %	В	2,8	2,5
Подготовка проб к анализу, из , %	В	2,3	2,1
Стандартное отклонение результатов измерений, полученных в условиях повторяемости 3 , u_r , $\%$	A	11(8)*	10(7)*
Стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, $u_{I(TOE)}$, %	A	13(9)*	12(7,5)*
Стандартное отклонение результатов измерений, полученных в условиях воспроизводимости, u_R , %	A	16(11)*	14(9)*
Суммарная стандартная относительная неопределенность	, u _c . %	17(12)*	15(10)*
Расширенная относительная неопределенность, ($U_{omn.}$) при k = 2, %		34(24)*	30(20)*

Примечания:

- 1 Оценка (неопределенности) типа А получена путем статистического анализа ряда наблюдений.
- 2 Оценка (неопределенности) типа В получена способами, отличными от статистического анализа ряда наблюдений.

^{*}Значения в скобках представлены для питьевой воды.

¹ В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).
² Соответствует характеристике погрешности при доверительной вероятности P = 0.95.

³ Согласно ГОСТ Р ЙСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимости.

продолжение приложения

к свидетельству № 010/01.00301-2010/2012 об аттестации методики измерений массовой концентрации ионов висмута в питьевых, поверхностных подземных пресных и сточных водах фотометрическим методом с тиокарбамидом на 2 листах

3 Нормативы для процедур обеспечения приемлемости результатов измерений

Таблица 3 - Нормативы для процедур обеспечения приемлемости результатов измерений

Наименование операции	Контролируемая (проверяемая) характеристика	Значение норматива при вероятности P = 0,95,%			
		От 0,1 до 1 мг/дм ³	Св. 1 до 5 мг/дм ³		
Проверка приемлемо- Модуль разности двух парал-		r			
сти результатов па- раллельных измере- ний (определений)	лельных определений, отнесен- ный к среднему арифметиче- скому	31(22)*	28(19)*		
Проверка приемлемо-	ока приемлемо- Модуль разности двух резуль-		R ⁴		
татов измерений, полученных в условиях воспроизводимости, отнесенный к среднему ариф- цимости татов измерений, полученных в условиях воспроизводимости, отнесенный к среднему ариф- метическому		45(31)*	39(26)*		

^{*}Значения в скобках представлены для питьевой воды.

Начальник отдела ФБУ «ФЦАО» Эксперт-метролог (Сертификат № RUM 02.33.00389, дата выдачи: 24.11.2009 г.)

Theres

Т.Н. Попова

⁴ Результаты измерений на идентичных образцах исследуемого объекта, полученные двумя лабораториями, будут различаться с превышением предела воспроизводимости (R) в среднем не чаще одного раза на 20 случаев при нормальном и правильном использовании методики измерений. Это проверено по экспериментальным данным, полученным в десяти лабораториях, при разработке данной методики.