МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (MITC) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 33405— 2015

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Определение спектра поглощения в ультрафиолетовой и видимой областях спектрофотометрическим методом

(OECD, Test No. 101:1981, MOD)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации 339 «Безопасность сырья, материалов и веществ» на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 5
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 июля 2015 г. № 78-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 октября 2015 г. № 1606-ст межгосударственный стандарт ГОСТ 33405—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2016 г.
- 5 Настоящий стандарт модифицирован по отношению к международному документу OECD, Test No. 101:1981 UV-VIS Absorption spectra (Spectrophotometric method) [Спектры поглощения в УФ и видимой области (спектрофотометрический метод)] путем изменения структуры. Сравнение структуры международного документа со структурой настоящего стандарта приведено в дополнительном приложении ДА.

Наименование настоящего стандарта изменено относительно наименования международного документа для приведения в соответствие с ГОСТ 1.5 (3.5).

Перевод с английского языка (en).

Степень соответствия — модифицированная (МОD)

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2016

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения	1
2	Термины и определения	1
3	Общие сведения	1
4	Принцип метода	2
5	Достоверность испытания	2
6	Стандартные вещества	2
7	Процедура испытания	3
	7.1 Приготовление исследуемого раствора	3
	7.2 Приготовление контрольного раствора	3
	7.3 Кюветы	3
8	Проведение испытания	3
9	Данные и отчет о проведении испытания	4
	9.1 Обработка результатов	4
	9.2 Отчет о проведении испытания	4
П	риложение ДА (справочное) Сравнение структуры международного документа со структурой	
	настоящего стандарта	5
Б	иблиография	6

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Определение спектра поглощения в ультрафиолетовой и видимой областях спектрофотометрическим методом

Testing of chemicals of environmental hazard.

Determination of the UV-VIS absorption spectral by spectrophotometric method

Дата введения — 2016—09—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает спектрофотометрический метод определения спектра поглощения химического вещества в ультрафиолетовой и видимой областях.
- 1.2 Спектрофотометрический метод основан на национальных и согласованных международных стандартах, которые применяются для определения спектров поглощения.

2 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

2.1 спектр поглощения раствора в УФ и видимой областях (UV-VIS absorption spectrum): Функция концентрации всех присутствующих в растворе поглощающих веществ c_i , выраженной в моль/л, длины оптического пути кюветы спектрофотометра d, выраженной в см, и молярного коэффициента поглощения (экстинкции) каждого вещества ε_i .

3 Общие сведения

- 3.1 Основной целью определения спектра поглощения химического вещества в УФ и видимой областях (UV-VIS) является установление длин волн, при которых вещество может подвергаться фотохимической деградации в окружающей среде. Поскольку фотохимическая деградация может происходить как в атмосфере, так и в водной среде, то спектры, соответствующие данным средам, будут информативными для дальнейшего изучения устойчивости вещества.
- 3.2 Деградация зависит от общей энергии, поглощенной в конкретных диапазонах длин волн. Такое поглощение энергии характеризуется молярным коэффициентом поглощения (молярным коэффициентом экстинкции) ε_i и шириной полосы поглощения λ . Отсутствие измеряемого поглощения не исключает возможности фотодеградации.
 - 3.3 Показатель поглощения (оптическую плотность) раствора А вычисляют по соотношению

$$A = d \Sigma_i \varepsilon_i c_i, \tag{1}$$

где d — длина оптического пути кюветы спектрофотометра;

- ε_i молярный коэффициент поглощения (экстинкции) каждого поглощающего вещества, присутствующего в растворе;
- c_i концентрация каждого поглощающего вещества, присутствующего в растворе.

Для разрешимого пика поглощения ширина полосы λ представляет собой длину волны на высоте, соответствующей половине пика; ширину полосы выражают в нм (1 нм = 10^{-9} м).

4 Принцип метода

В данном методе используется двухлучевой спектрофотометр, который регистрирует только разницу поглощения между контрольным и исследуемым растворами с получением спектра исследуемого химического вещества.

5 Достоверность испытания

5.1 Определять воспроизводимость и чувствительность не требуется. Вместо этого необходимо оценить точность системы при определении спектров стандартного вещества для подтверждения соответствующей воспроизводимости и чувствительности.

Предпочтительно использовать двухлучевой регистрирующий спектрофотометр для получения спектра исследуемого вещества в УФ и видимой области. Используемый прибор должен иметь точность фотометрических измерений, равную $\pm 0,02$ единиц в пределах поглощения от 0 до 2 единиц, и быть пригодным для регистрации поглощения при длинах волн в пределах от 200 до 750 нм с точностью определения длины волны $\pm 0,05$ нм. Кюветы для спектрофотометра обязательно должны быть прозрачными в указанном диапазоне длин волн и иметь длину оптического пути, определяемую в пределах 1 %. Для гарантии того, что прибор работает удовлетворительно, следует периодически снимать спектры стандартных растворов $K_2Cr_2O_7$ (для подтверждения точности определения поглощения) и гольмиевого стекла (для подтверждения точности установки длины волны).

5.2 При отсутствии возможности использовать двухлучевой спектрофотометр поглощение исследуемого раствора определяют на однолучевом спектрофотометре с интервалами 5 нм в полном диапазоне длин волн и с интервалами 1 нм в диапазонах длин волн, в которых были зарегистрированы максимумы поглощения. Определение длины волны и поглощения следует проводить так же, как на двухлучевом спектрофотометре.

6 Стандартные вещества

- 6.1 Использование стандартных веществ во всех случаях при испытании нового вещества не требуется. Использование стандартных веществ необходимо для периодической калибровки метода и возможности сопоставления результатов в случае применения других методов.
- 6.2 Показатели поглощения стандартных веществ, пригодных для калибровки системы, указаны в таблицах 1—3.

Т а б л и ц а 1 — Показатели поглощения раствора дихромата калия $(0,005 \text{ моль/л раствор в H}_2SO_4)$ [1]

log ε	3,56	3,63	3,16	3,50
λ, нм	235	257	313	350

Таблица 2 — Показатели поглощения раствора флуорантена в метаноле [2]

log ε	4,75	4,18	4,73	3,91	3,92
λ, нм	237	236	288	339	357

Таблица 3 — Показатели поглощения раствора 4-нитрофенола в метаноле [2]

log ε	3,88	4,04
λ, нм	288	311

Дополнительная информация о стандартных веществах представлена в [3].

7 Процедура испытания

7.1 Приготовление исследуемого раствора

- 7.1.1 Для приготовления исследуемого раствора используют точную навеску наиболее чистой доступной формы исследуемого вещества. Должны быть известны молекулярная и структурная формулы исследуемого вещества. Концентрация исследуемого раствора должна обеспечивать наличие не менее одного максимума поглощения в пределах от 0,5 до 1,5 единиц.
- 7.1.2 Поглощение исследуемого вещества также зависит от его конкретной химической формы. Вещество может существовать в различных формах в зависимости от кислотности среды (кислой, щелочной или нейтральной). Следовательно, необходимо снятие спектров во всех трех случаях, когда это возможно с учетом растворимости и концентрации вещества. Если получение необходимых концентраций в любой из водных сред невозможно, то используют подходящий органический растворитель (например, метанол).
- 7.1.3 Кислая среда должна иметь уровень pH ниже 2, а основная среда pH не менее 10. В качестве растворителя для приготовления нейтрального, кислого и основного растворов исследуемого вещества используют дистиллированную воду, прозрачную для ультрафиолетового света с длиной волны ниже 200 нм. При использовании метанола кислые или щелочные растворы исследуемого вещества готовят, добавляя в исходный раствор 10 %-ные по объему водные растворы соляной кислоты или гидроксида натрия ([HCI], [NaOH] = 1 моль/л).
- 7.1.4 Теоретически все химические вещества, за исключением исследуемого вещества, подвергаются облучению в обеих кюветах спектрофотометра и, следовательно, не будут появляться в регистрируемом спектре. На практике за счет того, что обычно растворитель находится в избытке, имеется пороговое значение длины волны, ниже которой регистрация спектра исследуемого химического вещества становится невозможной. Такая длина волны должна быть свойством растворителя или используемой среды. В общем случае использование дистиллированной воды пригодно для испытаний с длиной волны от 200 нм (растворенные ионы часто способствуют повышению указанного предела), метанола от 210 нм, гексана от 210 нм, ацетонитрила от 215 нм и дихлорметана от 235 нм.

7.2 Приготовление контрольного раствора

Контрольный раствор готовят аналогично исследуемому раствору, но без добавления исследуемого вещества. Спектр поглощения контрольного раствора должен быть зарегистрирован таким же способом, что и спектр исследуемого раствора, и предпочтительно с использованием того же градуировочного графика. Данный базовый спектр не должен включать значения, отличающиеся более чем на ± 0.05 единиц от номинального нулевого значения.

7.3 Кюветы

Длина оптического пути кювет, как правило, должна находиться в диапазоне от 0,1 до 10 см. Длина кюветы должна быть выбрана таким образом, чтобы обеспечивался, по меньшей мере, один максимум поглощения в диапазоне от 0,5 до 1,5 единиц. Выбор кювет зависит от концентрации и поглощения исследуемого раствора, длина кювет может быть определена на основании закона Ламберта-Бугера-Бера. Кюветы должны быть прозрачными в пределах регистрируемого спектра, и длины оптического пути кювет должны быть известны с точностью, как минимум, 1 %. Кюветы должны быть тщательно вымыты (например, для кварцевых кювет используют хромовую кислоту) и несколько раз промыты исследуемым или контрольным раствором.

8 Проведение испытания

Обе кюветы промывают и заполняют контрольным раствором. Прибор устанавливают на сканирование со скоростью, соответствующей разрешению требуемой длины волны и спектру контрольного раствора. Затем кювету для исследуемого раствора промывают и заполняют исследуемым раствором, повторяют сканирование, предпочтительно на том же графике спектра, для отображения базовой линии. Испытание проводят при температуре 25 °C.

9 Данные и отчет о проведении испытания

9.1 Обработка результатов

9.1.1 Молярный коэффициент поглощения (экстинкции) ε рассчитывают для всех максимумов поглощения исследуемого вещества, используя следующее соотношение:

$$\varepsilon = \frac{A}{c_i \cdot d} \,. \tag{2}$$

Обозначение величин указано в 3.3.

9.1.2 Для каждого максимума, способного к разрешению, зарегистрированного или полученного путем экстраполяции симметричного пика, определяют ширину полосы λ .

9.2 Отчет о проведении испытания

- 9.2.1 Отчет о проведении испытания должен содержать копию каждого из трех зарегистрированных спектров (для трех значений уровня рН). Если невозможно приготовить необходимые растворы в воде или метаноле, то будет получен только один спектр. Спектры должны включать шкалу длин волн, пригодную для прочтения. На каждом спектре должны быть четко указаны условия проведения испытания.
- 9.2.2 Для каждого максимума в каждом спектре рассчитывают и регистрируют значение ϵ и ширину полосы (где это применимо), а также длину волны максимума. Данные представляют в табличной форме.
- 9.2.3 В отчет о проведении испытания необходимо включить описание условий проведения испытания, таких как скорость сканирования, наименование и марка спектрофотометра, ширина расщепления (где это применимо), тип кювет и длина оптического пути кювет, концентрация исследуемого вещества, природа и кислотность растворителя. Также необходимо представить график спектров соответствующих стандартных веществ для оценки точности определения поглощения и длины волны (см. раздел 5).

Приложение ДА (справочное)

Сравнение структуры международного документа со структурой настоящего стандарта

Структура международного документа	Структура межгосударственного стандарта
Раздел 1	1
Раздел 2	_
	2
	3
A	4
	5
	6
D	7
В	8
Раздел 3	9
Раздел 4	Библиография

FOCT 33405—2015

Библиография

- [1] J.A.A. Ketelaar, Photoelectric Spectrometry Group Bulletin 8, Cambridge (1955) (Фотоэлектрическая спектро-
- Chemical Rubber Company, Atlas of Spectral Data, Cliffland, Ohio.
- [2] [3] G. Milazzo, S. Caroli, M. Palumbo-Doretti, N. Violante, Anal. Chem., 49, 711 (1977) (Аналитическая химия)

УДК 658.382.3:006.354 MKC 13.020.01 MOD

Ключевые слова: химическая продукция, окружающая среда, спектр поглощения

Редактор О.А. Стояновская
Технический редактор В.Ю. Фотиева
Корректор О.В. Лазарева
Компьютерная верстка И.А. Налейкиной

Сдано в набор 04.02.2016. Подписано в печать 09.03.2016. Формат $60 \times 84 \frac{\gamma_8}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,00. Тираж 37 экз. Зак. 699.