ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮШЕЙ СРЕДЫ

УТВЕРЖЛАЮ

Заместитель Председателя Государственного комитета РФ по охране окружающей среды А.А.Соловьянов

гивара 2000 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ ГЕКСАЦИАНОФЕРРАТОВ В ПРОБАХ ПРИРОДНЫХ И СТОЧНЫХ ВОД ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 14.1:2.164-2000

Методика допущена для целей государственного экологического контроля

МОСКВА 2000 г. (издание 2009 г.) Методика рассмотрена и одобрена ФГУ «Федеральный центр анализа и оценки техногенного воздействия» (ФГУ «ФЦАО»).

Заместитель директора ФГУ «ФЦАО»

_____ М.Ю.1 авриков

Разработчик: Аналитический центр ЗАО «РОСА»

Адрес: 119297, г. Москва, ул.Родниковая, л. 7 гор. 35. Телефон: (495) 439-52-13

Факс: (495) 435-13-00

Регистрационный код МВИ в Федеральнам реестре: ФР. №317/009,06195

ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает фотометрическую методику количественного химического анализа для определения суммарной концентрации гексацианоферратов (ферроцианидов) (II) и (III) в природных и сточных водах в диапазоне концентраций от 0,5 до 4 мг/дм³. При анализе проб с концентрацией гексацианоферратов свыше 4 мг/дм³ необходимо соответствующее разбавление пробы.

Продолжительность анализа одной пробы 3,5 часа, серии из 10 проб – 4 часа.

Блок схема анализа приведена в Приложении 1.

Проведению анализа мешают:

- взвешенные вещества (удаляют фильтрованием пробы);
- роданиды, если их концентрация превышает концентрацию гексацианоферратов (II) более чем в 5 раз.

Цианиды не мешают проведению анализа.

1. ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

Настоящая методика обеспечивает с вероятностью Р=0,95 получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице. 1.

Таблица 1 Значения показателей точности, правильности, воспроизводимости и повторяемости

Диапазон	Показатель	Показатель	Показатель	Показатель
измерений, мг/лм ³	повторяемости (относительное	воспроизводимости (относительное	правильности (границы	точности (границы
1	среднеквадратическое отклонение	среднеквадратическое отклонение	относительной систематической	относительной погрешности при
	повторяемости), сг.,%	воспроизводимости) О _R ,%	погрешности при Р=0,95), ±δ _c , %	вероятности P=0,95), ± δ, %
от 0,5 до 1 вкл.	12	17	7	34
св. 1 до 4 вкл.	9	12	6	24

2. МЕТОД ИЗМЕРЕНИЙ

Фотометрический метод определения суммарной массовой концентрации гексацианоферратов (II и III) основан на взаимодействии гексацианоферратов (II) с ионами железа (III) с образованием берлинской лазури, а гексацианоферратов (II) с ионами железа (II) с образованием турнбулевой сини с последующим измерением оптической плотности комплексов синего цвета при длине волны 610 нм.

Поскольку интенсивность окраски берлинской лазури и турнбулевой сини от равных количеств гексацианоферратов (II) и гексацианоферратов (III)

одинакова, количественное определение проводят по градуировочной характеристике установленной для гексацианоферратов (II).

3. СРЕДСТВА ИЗМЕРЕНИЙ. ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ. РЕАКТИВЫ И МАТЕРИАЛЫ

3.1. Средства измерений и вспомогательное оборудование

- 3.1.1. Весы лабораторные общего назначения по ГОСТ 24104, класс точности 2;
- 3.1.2. Фотоэлектроколориметр или спектрофотометр, позволяющий проводить измерения при длине волны 610 нм и снабженный кюветами с толщиной поглощающего слоя 30 мм.
- 3.1.3. Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или деионизованной 2 степени чистоты по ГОСТ P 52501;
- 3.1.4. Холодильник бытовой любой марки, обеспечивающий температуру 4 10 °C:

Допускается использование других средств измерения, метрологические характеристики которых не хуже, чем у вышеуказанных и вспомогательных устройств с техническими характеристиками не хуже, чем у вышеуказанных.

3.2. Лабораторная посуда

- 3.2.1. Колбы мерные вместимостью 50, 100, 500 и 1000 см 3 по ГОСТ 1770 класс точности 2;
- 3.2.2. Пипетки градуированные вместимостью 1, 2, 5, 10 см 3 по ГОСТ 29227, класс точности 2;
- 3.2.3. Цилиндры мерные вместимостью 50 см 3 с притертыми пробками по ГОСТ 1770, класс точности 2.
- 3.2.4. Воронки лабораторные стеклянные диаметром 90 мм по ГОСТ 19908.
- 3.2.5. Стаканы вместимостью 100 см³ по ГОСТ 25336.
- 3.2.6. Склянка из темного стекла вместимостью 500 см³ (для хранения основного градуировочного раствора).
- 3.2.7. Флакон пластиковый вместимостью 500 см³ (для хранения раствора щелочи).

3.3. Материалы

- 3.3.1. Фильтры бумажные "синяя лента" по ТУ 9-09-1678-77.
- 3.3.2. Бумага индикаторная универсальная по ТУ 6-09-1181.

3.4. Реактивы

3.4.1. Вода дистиллированная по ГОСТ 6709 или деионизованная степени чистоты 2 по ГОСТ Р 52501;

- 3.4.2. Натрий гидроокись (натрия гидроксид, едкий натр), ч.д.а. по ГОСТ 4328.
- 3.4.3. Кислота соляная (хлористоводородная кислота) (ρ =1,18 г/дм³), ч.д.а по ГОСТ 3118.
- 3.4.4. Кислота серная, х.ч. по ГОСТ 4204
- 3.4.5. Железо треххлористое, 6-водное (железо клорное, железа (III) хлорид), ч.д.а. по ГОСТ 4147.
- 3.4.6. Железо (II) сернокислое, 7-водное (железо серное закисное, железа (II) сульфат) $FeSO_4 \times 7H_2O$, ч.д.а. по ΓOCT 4148.
- 3.4.7. Калий железистосинеродистый, 3-х водный (калия гексацианоферрат (II), соль кровяная желтая) $K_4[(Fe(CN)_6)]\times 3H_2O$, ч.д.а. по ГОСТ 4207 (вещество гарантированной чистоты).

Допускается использование реактивов с квалификацией не ниже, чем у вышеуказанных.

4. УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ

- 4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.4.019.
- 4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.
- 4.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.
- 4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротущения по ГОСТ 12.4.009.

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа и изучивший правила эксплуатации используемого оборудования.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура воздуха 20 – 28 °C

влажность воздуха не более 80 % при 25 °C

частота переменного тока $(50 \pm 1) \Gamma \mu$; напряжение в электросети $(220 \pm 10) B$.

7. ОТБОР ПРОБ

- 7.1. Отбор проб воды осуществляют по ГОСТ 51592 в пластиковые флаконы. Объем отбираемой пробы должен быть не менее 0,1 дм³.
- 7.2. Пробы не консервируют. Анализ следует проводить не позже, чем через 6 часов с момента отбора.

- 7.3. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:
 - место, дата и время отбора;
 - определяемый показатель;
 - шифр пробы;
 - должность, фамилия отбирающего пробу.

8. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

8.1. Подготовка аппаратуры

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с инструкцией по эксплуатации.

8.2. Приготовление растворов

8.2.1. Приготовление раствора соляной кислоты 1:7

Прибавляют при перемешивании к 7 объемам дистиллированной воды 1 объем хлористоводородной кислоты (ρ =1,18 г/см³). Срок хранения раствора 6 месяцев при комнатной температуре.

8.2.2. Приготовление 0,1 % раствора хлорида железа (III)

В мерной колбе вместимостью 100 см³ растворяют 0,1 г хлорида железа в небольшом количестве дистиллированной воды, прибавляют 5 см³ разбавленной 1:7 хлористоводородной кислоты и доводят объем раствора до метки дистиллированной водой. Раствор устойчив при комнатной температуре в течение 1 месяца.

8.2.3. Приготовление 0,1 М раствора гидроксида натрия

В мерную колбу вместимостью 1 дм³ вносят 4,0 г гидроксида натрия, растворяют в дистиллированной воде и доводят объем раствора до метки дистиллированной водой. Раствор хранят в пластиковом флаконе. Срок хранения раствора 1 месяц при комнатной температуре.

8.2.4. Приготовление раствора серной кислоты 3:97

Прибавляют осторожно при перемешивании к 97 объемам дистиллированной воды 3 объема концентрированной серной кислоты. Срок хранения раствора 6 месяцев при комнатной температуре.

8.2.5. Приготовление 0,1 % раствора сульфата железа (II)

В мерной колбе вместимостью $100~{\rm cm}^3$ растворяют $0,1~{\rm f}$ сульфата железа в дистиллированной воде, прибавляют 5 см³ разбавленной (3 : 97) серной кислоты и доводят объем раствора до метки дистиллированной водой. Срок хранения раствора 1 месяц при температуре 4– $10^{\circ}{\rm C}$.

8.2.6. Приготовление градуировочных растворов

Основной градуировочный раствор с концентрацией гексацианоферратов (11) $1000\ \text{мг/дм}^3$.

В мерную колбу вместимостью 500 см 3 помещают 0,9964 г соли $K_4[Fe(CN)_6] \times 3H_2O$, растворяют в дистиллированной воде и доводят объем

раствора до метки. Перемешивают. Срок хранения раствора 2 месяца при температуре $4-10^{\circ}\mathrm{C}$ в склянке из темного стекла.

8.2.7. Рабочий градуировочный раствор с концентрацией гексацианоферратов (II) 10 мг/дм^3 .

В мерную колбу вместимостью 100 см³ помещают 1 см³ основного градуировочного раствора и доводят объем раствора дистиллированной водой до метки. Раствор применяют свежеприготовленным.

8.3. Установление градуировочной характеристики

В мерные колбы или в цилиндры вместимостью 50 см 3 вносят 0-2,5-5-10-15-20 см 3 рабочего градуировочного раствора, доводят объем раствора до метки дистиллированной водой и перемешивают. Концентрации гексацианоферрата (II) в приготовленных градуировочных растворах 0-0,5-1,0-2,0-3,0-4,0 мг/дм 3 . К растворам прибавляют по 1 см 3 0,1 % раствора хлорида железа (III) и 1 см 3 0,1 % раствора сульфата железа (II), перемешивают, закрывают цилиндры пробками и оставляют не менее чем на 30 минут при комнатной температуре. Измеряют оптическую плотность растворов при длине волны 610 нм в кюветах с толщиной оптического слоя 30 мм.

По полученным результатам строят градуировочный график в координатах оптическая плотность – содержание гексацианоферратов (II) в мг/дм³.

Градуировочную характеристику устанавливают при смене партии любого из реактивов, после ремонта или юстировки прибора, но не реже 1 раза в 3 месяца.

Контроль стабильности градуировочной характеристики проводят по одному градуировочному раствору ежедневно перед выполнением серии анализов. Градуировочную характеристику считают стабильной в случае, если полученное значение концентрации градуировочного раствора не отличается от аттестованного значения концентрации градуировочного раствора более чем на 10 %.

Если условие стабильности градуировочной характеристики не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение этого градуировочного раствора с целью исключения результата измерения, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют и устраняют причины нестабильности и повторяют контроль с использованием других градуировочных растворов для градуировки, предусмотренных методикой. При повторном обнаружении отклонения результата от градуировочной характеристики строят новый градуировочный график.

9. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Пробу фильтруют через бумажный фильтр «синяя лента», доводят рН пробы до значения 4 – 5 ед. рН, добавляя по каплям раствор гидроксида натрия (0,1 М) или соляной кислоты (1:7), контролируя значение рН с помощью универсальной индикаторной бумаги. Отбирают 50 см³ подготовленной к анализу пробы, переливают её в мерную колбу или цилиндр и приливают к пробе 1 см³ 0,1 % раствора хлорида железа (III) и 1 см³ 0,1% раствора сульфата железа (III). Раствор перемешивают и оставляют на 30 минут при комнатной температуре. После выдержки измеряют оптическую плотность при длине волны 610 нм в кюветах с толщиной оптического слоя 30 мм по отношению к холостой пробе. В качестве холостой пробы используют дистиллированную воду, в которую добавляют по 1 см³ растворов хлорида и сульфата железа.

Примечание: Окрашенный комплекс устойчив в течение 15-16 часов. Если после длительного стояния выпадает осадок, его легко растворить интенсивным перемещиванием.

10. ВЫЧИСЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Суммарную концентрацию гексацианоферратов (II и III) (X в мг/дм³) рассчитывают по формуле:

 $X=C_{rp}\times K$, где

 $C_{\rm rp}$ — содержание гексацианоферратов в мг/дм³, найденное по градуировочному графику;

К - коэффициент разбавления.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

11.1. Результаты количественного анализа в протоколах анализов представляют в виде:

$$X \pm \Delta$$
, мг/ дм³ (P = 0,95),
 $\Delta = \delta \times 0.01 \times X$, где

 δ – значения характеристики погрещности (см. табл. 1).

11.2. Результаты измерений в диапазоне концентраций от 0,5 мг/дм³ до 4 мг/дм³ заносят в протокол анализа, округляя с точностью до 0,01 мг/дм³.

12. ОЦЕНКА ПРИЕМЛЕМОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

12.1.При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости) осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (г). Значения г приведены в таблице 2.

Таблица 2

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 2.

Пределы повторяемости и воспроизводимости результатов измерений

Диапазон измерений, мг/дм ³	Предел повторяемости (относительное значение допускаемого расхождения между двумя параллельными результатами измерений), г, %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %	
от 0,5 до 1 вкл.	33	47	
св. 1 до 4 вкл.	25	33	

13. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

- 13.1.Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
 - контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации контрольной процедуры с использованием образцов для контроля);
 - контроль стабильности результатов измерений (на основе контроля стабильности погрешности и среднеквадратического отклонения повторяемости и внутрилабораторной прецизионности).
- 13.2.Контроль процедуры выполнения измерений с использованием образцов для контроля:

Анализируют образец для контроля, приготовленный с использованием вещества гарантированной чистоты. Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_K = X - C,$$

где Х-результат анализа;

С-аттестованное значение гексацианоферратов в образце для контроля.

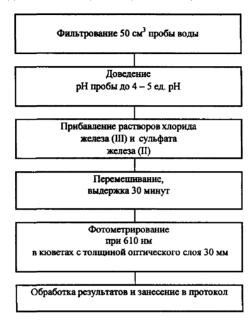
Для оценки качества процедуры выполнения анализа рассчитывают норматив контроля К по формуле:

$$K = \Delta_n$$

где \pm Δ_n — характеристика погрешности результатов анализа, соответствующая аттестованному значению ОК.

Примечание: На первом этале допускается считать $\Delta_s=0.84~\Delta$, где Δ – показатель точности МВИ, Δ =0,01*8°C, где δ – показатель точности (см. табл. 1).

Если результат контрольной процедуры удовлетворяет условию: $|K_{\bullet}| \le |K|$,


процедуру анализа признают удовлетворительной. Претензии к качеству процесса измерений не предъявляют.

При невыполнении условия контрольную процедуру повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

13.3. Процедуру контроля стабильности показателей качества результатов анализа (повторяемости, внутрилабораторной прецизионности и погрешности) проводят в соответствии с порядком, установленным в лаборатории.

приложение 1

БЛОК-СХЕМА АНАЛИЗА ПРИ ОПРЕДЕЛЕНИИ КОНЦЕНТРАЦИИ ГЕКСАЦИАНОФЕРРАТОВ В ВОДЕ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

No. 223.1.01.03.32 / 2008

Методика выполнения измерений массовых концентраций гексацианоферратов в

природных и сточных водях фотометрическим методом,

и мотода минерений

разработанная Аналитическим центром контроля качества воды ЗАО "РОСА",

аттестована в соответствии с ГОСТ Р 8.563.

Аттестация осуществлена по результатам метрологической экспертизы материалов

по разработке МВИ

ама работ: метродотическая экспертика материалов по разработке MBM, теоретическое или экспериментальное исследование МВМ, другие вызы работ

В результате аттестации установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками, приведенными в приложении.

Приложение: метрологические характеристики МВИ на

листе

Зам. директора по научной работе

Зав. лабораторией

Дата выдачи:

09.06.2008r.

Срок действия:

С.В. Медведевских

Г.И.Терентьев

Россия, 62000, г. Енгтеринбург, ун. Красноарнейския,4 тел.: (343) 350-26-18, факс: (343) 350-26-39. E-mail: uniin@uniim.ru

Приложение к свидетельству № 223.1.01.03.32 / 2008 об аттестации методики выполнения измерений массовых концентраций гексацианоферратов в природных и сточных водах фотометрическим методом

1. Диапазон измерений, значения показателей точности, воспроизводимости и повторяемости

Двапазон измерений, мг/ды ³	Показатель, повторяемости (относиденное организменное организменное повторяемости), Ст. %	Показатель воспроизводи- мости (относительное среднения драги- месное отклонение воспроизводи- мости), од, %	Показатель- правильности (границы относительной- систематической закрешности при вероятности P=0,95), ±8°с, %	Показатель почисств 7 (границы относттельной погрешности при перодгности Р-0,95), ±8, %
от 0.5 до 1 вкл.	12	17	7	34
са. 1 до 4 вкл.	9	12	6	24

Диапазон измерений, значения предела воспроизводимости при доверительной вероятности Р=0.95

Дивлязон измерений, мг/дм ³	Предел воспроизводныести (отпроительное значение допускаемого раскождения между двумя результатами жысрений, полученными в разных лабораториях), R, %	
от 0.5 до 1 вкл.	47	
св. 1 до 4 вкл.	33	

- 3. При реализации методики в лаборатории обеспечивают:
- оперативный контроль процедуры измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погредняющий,

Алгоритм оперативного контроля процедуры измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству даборатории.

Старший научный сотрудник паборатории 223 ФГУП «УНИИМ»

Hozap meny

О.В. Кочергина

^{*)} Соответствует относительной расширенной неопределенности с коэффициентом охвата k=2