

## РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ

#### АППАРАТЫ ВЫПАРНЫЕ

Нормы и методы расчета на прочность

РД 26-01-55-84

Издание официальное

УТВЕРЕДЕН Начальником Союзхиммаша

ВВЕДЕН В ДЕЯСТВИЕ ПРИКАЗОМ по Всесоюзному промышленному

объеджнению № 53 от "23" мая 1984 г.

исполнители п.с. Марченко (руководитель разработки)

Н.Д. Шарапова В.Н.Нелюба Д.Г.Ряузов

COLITACOBAH HINIXIMMATI

## РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ

АШАРАТЫ ВЫПАРНЫЕ

PII 26-0I-55- 84

Нормы и методы расчета

на прочность

Взамен РТМ 26-01-55-73

Приказом по Всесокзному промышленному объединению

от "23" мая І984 г. № 53

срок введения

установлен

c 01.01.1986

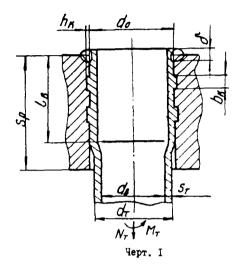
Настоящий руководящий технический материал устанавливает нормы и методы расчета на статическую и малоцикловую прочность сборных единиц и деталей выпарных и опреснительных установок на ЭВМ.

Расчеты на прочность производят для различных состояний, которые могут иметь место при монтаже, пуске, эксплуатации или испытаниях выпарного аппарата с целью выявления мексимальных напряжений и определения условных упругих напряжений, необходимых для оценки малоцикловой прочности. Нормативный материал применим при соблюдении требований ГОСТ 14249-80, ОСТ 26-291-79 и ОСТ 26-01-112-79.

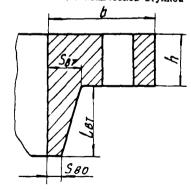
Издание официальное

Перепечатка воспрешеня

#### I. PACYET TPENNINX KAMEP


## І.І. Ископные панные

#### I.I.I. Odmore


```
D - внутренный дваметр кожуха ( D = 2a), мм;
S. - TOMBEHS CTORE ROMYXS, MN;
5. - толшина стенки кожуха в зоне присоединения к решетке, мм;
   - илина теплообменных труб.мм:
\ell_{\mathcal{D}} - максимальное расстояние от решетки до перегородки, мм;
l_{np} — приведенная дляна мм ( l_{np} = l_n/3 — если есть перегородки по межтрубному пространству; l_{np} = l/2 — если нет перегородок);
d_{r} - наружный дваметр теплообменной трубы, мм;
\hat{S}_r — толивна стенки теплообменной трубн,мм;
d_{B} - внутренный дееметр теплообменной труби.мм:
    -(d_n = d_r - 2S_r) exe uperemaetes koncepyktebno);
f_{r} - площадь сечения теплообменной труби, \mathbf{m}^2
(f_T = \pi (d_T - S_T) S_T наи принимается конструктивно); 

— шаг расположения отверстий в трубной решетке, им;
f_i — площадь трубной решетки, приходищаяся на одну трубу, мм<sup>2</sup> ( f_i = \sqrt{3} / 2/2 — при треугольном размещении труб;
           f_i = f^2 - при квадратном);
d_o - measure other other b penetre, and:
чае, если вальпуются трубы в отверстия с канавками (черт. I):
 DK - MEDEHA KAHABOK, MM:
 h_{\kappa} - rayonna kanabok.mm:
 Sp - толикна трубной решатки. мм:
 LA - глубина развальновки труб, им;
 \lambda_B — расстояние от плоскости вальцевания до серединной плоскости
       Demetra (vept.3).mm:
 \delta - висота сварного шва в месте приварки труби к решетке, им:
```

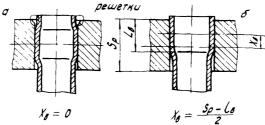
## Крепление теплообменной трубы к трубной решетке



Фланец с коншческой втулкой

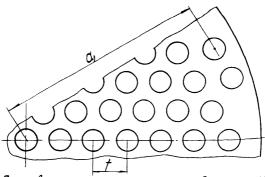


Черт. 2


## PH 26-01- 55 -84 CTD.4

- $S_{np}$  примеденная глубина, мм ( $S_{np} = \mathcal{L}_B$  при креплении труб развальцовкой или приваркой с развальцовкой;  $S_{np} = \mathcal{E}$  - при креплении труб приваркой );
- О, расчетний радмус перформрованной части трубной решетки, мм. Принимается равным расстоянию от оси аппарата до оси наиболее удаленной трубы в трубном пучке (черт. 4);
- [y] допускаемый прогио теплообменных труб, мм. Принимается меньше зазора между трубами с учетом начальной погиом труб [y] = 0.5... 0.9 (f-g):
  - С сумма необходимых прибавок и расчетной толишне на возможные утонения при изготовлении и эксплуатации, мм. Задается для каждой из рассчитываемых деталей;
  - $f_0$  начальная температура, °C ( $f_0 \approx 20$  °C);
  - $\mathcal{O}_{TP}^{-}$  . Предел текучести материалов решетки и труб при начальной температуре. МІа :
  - $\alpha_{\rho}$ ,  $\alpha_{\kappa}$  коэффициенты линейного расширения материалов решетки, труб и кожуха . I/°C :
  - $\mathcal{E}_{P}$ ,  $\mathcal{E}_{T}$ ,  $\mathcal{E}_{K}$  модуля продольной упругости материалов решетки, труб и кожуха . МПа.

Пля кажного из расчетных режимов задается:


- Р<sub>т</sub> , Р<sub>м</sub> давление избиточное ( наружное со знаком минус) в трубном и ментрубном пространствах, МПа;
  - $t_{PT}$  .  $t_{PM}$  температуры решетки со стороны трубного и межтрубного пространств,  ${}^{\circ}\mathrm{C}$  ;
  - $f_P$ ,  $f_T$ ,  $f_K$  -средние значения температуры решетки, труб и кожуха,  $^{\circ}$ C; N число ликлов нагружения ( повторений данного расчетного ражима ) за весь период эксплуатации :
    - [0] допускаемое напряжение, МПа. Принимается по ГОСТ 14249-80 или другой руководящей нормативной документации для каж дой из рассчитываемых деталей;
      - V- коэффициент Пуассона (V =0,3).

Схемы для определения расстаяния от плоскости вальцевания до серединной плоскости



4epm. 3

Сжема для определения расчетного радица перфорированной части трубной решемки



При равномерном заполнении площади решетки i трубами  $d_i \approx \sqrt{|f_i|/\pi}$ 

I.I.2. And recommend was vapr. 8. . . I2.

Од - толимна стенки камеры,мм. Отдельные конструкции вместо камеры вмеют днише, циркуляционную трубу или другие детали, образующие трубное пространство;

S2 - толияна стенки камеры в месте приссединения к трубной решетке или фланцу.мм:

 $\alpha_{J^-}$  коэффециент женейного расшерения материала камеры,  $I/^0$ С

 $\ell_\partial$  - модуль продольной упругости метернала камеры, МІа;

 $t_{\partial}$  - расчетная температура камеры в месте присоединения к решетке или фланцу.  $^{\circ}$ С.

I.I.3. Для греник камер черт.9...II, содержащих фланцевые разъемы

 $h_{\!\scriptscriptstyle 1}, h_{\!\scriptscriptstyle 2}$  — толияна кольца фланца кожуха и камери,ми;

 $b_{7}$   $b_{2}$  – ширина кольца фланца колуха и камеры, им;

 $R_1$ ,  $R_2$  — средняю радинуюм поперечных осчений колец фианцев кожуха и камеры, ми:

 $S_1$ ,  $S_2$  — толимин отенок кожуха и камеры в местах присоединения к фланцу кожуха и камеры, мм. Дия фланцев с коническими втулками (черт. 2) значения  $S_1$  и  $S_2$  принимаются равными  $S_3$ :

$$S_3 = \mathcal{L}S_{BD}$$
;  $\mathcal{L} = 1 - \frac{(|_{BT} - 1)\chi_{BT}}{\chi_{BT} + |_{BD} + 1}$ ,  $\chi_{BT} = \frac{4|_{BT}}{\sqrt{D}S_{BD}}$ ;  $j_{BT} = \frac{S_{BT}}{S_{BD}}$ ;

 $S_{87}, S_{80}$  тольшен отенок конической втулки в месте присоединения к кольпу фланца и оболочке, мы;

RT - BROOTS KOHENGOKOE BTYRKE, MM;

Rn - радмус среджнеей окружности прокладки;

So - TORMER HOOKRAINE. NO:

Dn - ширина прокладки в зоне скатия, мм. Для резиновых прокладок принимается приведенная инрина по ОСТ 26-373-78;

E<sub>п</sub> - модуль упругости материала прокладки. МПа. Принимается по ОСТ 26-373-78 или другой руководящей нормативной документа-

```
y_n - линейная податливость прокладки, ма/Н ( y_n = \int_n /2\pi R_n b_n E_n );
  q/q/- минимальное и допускаемое удельное давление на прокладку,
           MIa. Принимается по ОСТ 26-373-78 :

    прокладочный коэффициент. Принимается по ОСТ 26-373-78;

   //_{X} - количество болтов или шилек ;
   \mathcal{R}_{\pi} - радиус болтовой окружности, мм ;
   d_{\delta}^{\prime} – диаметр болта или шпильки, мм ;
   f_{\delta} - площадь поперечного сечения болта или шпильки, мм. Опреде -
           ляется по внутреннему дваметру резьбы :
    L_S - pacternas grana dourta ( L_S = h_1 + h_2 + S_R + 0.3 d_S ) whe
           INTERDER ( L_S = h_s + h_s + S_n + 0.6 ds ) , MM ;
    \mathcal{E}_{\kappa} - модуль продольной упругости материала болтов или шпилек, МІа;
    y_{\delta} - линейная податливость болтов вли шпилек, мм/Н ( y_{\delta} =
         = LE/Extens) :
    \mathcal{O}_{\mathcal{S}} - коэффиционт линейного расширения материала болтов или шии -
           лек. I/OC:
f_{\delta} — расчетная температура болтов или шпилек. ^{\circ}С ; [O]_{\delta}^{20}[O]_{\delta}^{\dagger}—допускаемое напряжение для материала болтов или шпилек при
               20^{\circ}C и пои расчетной температуре, MIa. Принимается по
               ОСТ 26-373-78 вля другой руководящей нормативной докумен-
  Q_{\delta}^{o} - усилее затяжке болгов. Н/мм (Q_{\delta}^{o} \leqslant f_{\delta}/\delta)^{20}/2\pi R_{\delta}
     t_{\alpha} (t_{\varphi_{i}}, t_{\varphi_{2}}) - расчетная температура фланца. Ос:
    lpha_{\infty}(lpha_{p_1},d_{p_2}) - чоэффициент линейного расширения материала флан-
    \mathcal{E}_{\omega} (\mathcal{E}_{\omega}) - модуля продольной упругости материала фланиа, МІа;
    До Дол До - приведенные значения податливости (ланцев,мм/Н
```

 $(\lambda_{\varphi_i} = 6R_i(R_{\delta} - R_n)D/E_{\varphi_i}D_ih_i^3;$ 

 $\lambda_{02} = 6R_2(R_5 - R_n) D/E_{\phi 2} b_2 b_2^3$ .

I.I.4. Джи гренцей камеры черт. II

 $D_{\!\scriptscriptstyle H}$  - наружний диаметр трубной решетки, им:

Sp. - толижна решетки в зоне присоединения к кожуху, мм.

І.І.5. Для греппей камеры с кольцевой полостью для отвода конденсата (черт. 12)

L - ILIEHA ROXYXA, MM;

Lo - длана плинирической обечайки в зоне образования полости для отвода конденсата.мм:

 $\mathcal{S}_o$  — толишна стенки цилиндрической обечайки, мы:

 $\mathcal{O}_{o}$  - радиус цилиндрической обечайки, мм;

 $S_{nn}$ - толияна кольцевой пластины, ми:

 $O_0, O_{n\bar{n}}$  коэффициент линейного расширения материалов цилинарической обечайки и кольцевой пластины,  $I/^0C$ :

 $E_0, E_{n\bar{n}}$  модуле продольной упругости материалов цениндрической обечайки и кольцевой пластим. МПа.

1.2. Определение возможности развальцовки труб в решетке

1.2.1. Остаточное давление определяется по формуле

$$P_{ocr} = min \left\{ P_{or}, \frac{1}{B_c} \left[ \left( B_c - 1 \right) P_{os} - P_{or} \right] \right\} ,$$

$$rms \quad d_3 = \sqrt{\frac{6\sqrt{J}}{\pi}} \int_{-2}^{2} 2d_o^2 \qquad \text{при треугольном размещении труб;}$$

$$d_3 = \sqrt{\frac{8/^2}{\pi} - d_o^2}$$

при квадратном размещении труб;

$$\lambda_{7} = \frac{d_{o}}{d_{o} - 2S_{7}}; \qquad \beta_{7} = \frac{\lambda_{7}^{2} + 1}{\lambda_{7}^{2} - 1} - 0.43;$$

$$\lambda_{3} = \frac{d_{3}}{d_{o}}; \qquad \beta_{3} = \frac{\lambda_{3}^{2} + 1}{\lambda_{3}^{2} - 1} + 0.43;$$

$$K_{3} = \min\left\{l_{n}\lambda_{3}, 1\right\}; \qquad \beta_{c} = \frac{\lambda_{r}^{2} - 1}{2}\left(\beta_{r} + \frac{E_{r}}{E_{\rho}}\beta_{3}\right);$$

$$P_{or} = \frac{2}{\sqrt{3}}\mathcal{O}_{rr}l_{n}\lambda_{r}; \qquad P_{os} = \frac{2}{\sqrt{3}}\mathcal{O}_{r\rho}K_{3}.$$

- I.2.2. Условие возможности развальновки труб в решетке  $^{*}$  Рост > 0.
  - I.2.3. Условие применимости расчетных формул  $d_3 \leq 1,2(2f-d_o)$ .
- I.2.4. Требуемая степень развальцовки теплосоменных труб рассчитывается по формуле

$$\mathcal{E} = (\text{I...I,5}) \frac{(d_{BB} - d_{B}) - (d_{o} - d_{T})}{d_{o}}_{\text{IOOM}},$$

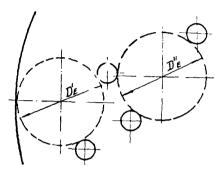
$$d_{\theta B} = d_{o} \left\{ 1 + \frac{1}{E_{\rho}} \left[ \sqrt{J} \lambda_{3}^{2} O_{T\rho} + 0.91 B_{3} (P_{ocT} - P_{O3}) \right] \right\};$$

$$\lambda_{\kappa} = \sqrt{1 + \frac{n_{\kappa} b_{\kappa}}{l_{B}} \left[ \frac{(d_{o} + 2h_{\kappa})^{2} - 1}{d_{oB}^{2}} \right]}; d_{\theta B} = \sqrt{(\lambda_{\kappa} d_{oB})^{2} - \frac{4l_{T}}{\pi}}.$$

- I.З. Определение минимальной толщины трубной решетки Толщина трубной решетки назначается конструктивно.
- I.3.I. Принятая толщина трубной решетки должна удовлетворять условию прочности беструбной зони:

$$S_{P} \geqslant 0.5 D_{E} \sqrt{\frac{P_{r} - P_{M}}{[O]}} + C ,$$

$$PRE D_{E} = Max \left\{ D_{E}', D_{E}'', \ldots \right\} ;$$


 $D_{E}^{'}, D_{E}^{''}$  - деяметры окружностей, вписанных в беструбные зоны решет-ки ( черт.5).

- I.3.2. Для решеток, у которых крепление теплообменных труб производится развальцовкой или развальновкой с обваркой, принятая толщина трубной решетки должна удовлетворять:
  - УСЛОВИЮ ВОЗМОЖНОСТИ ВАЗВАЛЬНОВКИ

$$S_p \ge l_B$$
,  $l_B \ge 7.5\sqrt{(d_T - S_T)S_T}$ ;

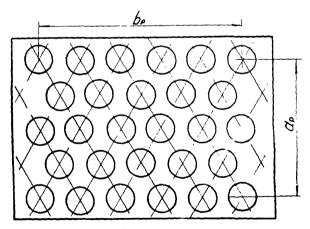

ж Отклонения размеров и свойств материалов даже в допустимых по руководиней нормативной документации пределах могут привести к тому, что не будет выполняться это условие. Поэтому гарантированная прочность вальцовых соединений достигается при выполнении технических требований к развальцовке труб, например по ОСТ 26-17-01-83.

Схема для определения диаметра окружности, вписанной в максимальную беструбную зону решетки



Wepr. 5

Схема для определения расстояния между осями крайних труб у примоугольной решетки



Tepr.6

- условию устойчивости решетих при развальцовие<sup>ж</sup>

$$S_{\rho} \ge 0.655 \, G_1 \sqrt{\frac{10.92 \,^{A_4} \, P \, oot}{\psi_{\rho} \, E_{\rho}}}$$
 her repyraoù demetru:  
 $S_{\rho} \ge 0.655 \, (I.3-0.45 \, \frac{G_{\rho}}{b_{\rho}^{2}}) \, \frac{G_{\rho}}{2} \sqrt{\frac{10.92^{A_4} \, P \, oot}{\psi_{\rho} \, E_{\rho}}}$  her repyraoù demetru:  
3mecs  $A_4 = \frac{I}{\lambda_{\rho}} + \frac{1.3 - 0.7 \, \lambda_{\rho}}{I.3 + 0.7 \, \lambda_{\rho}^{2}}$ ;  $\lambda_{\rho} = \frac{f_{\rho}}{G_{\rho}}$ ;

 $Q_{p}, b_{p}$  — расстояная между осями крайних труб на меньшей и большей стороне прямоугольной решетки ( черт.6);

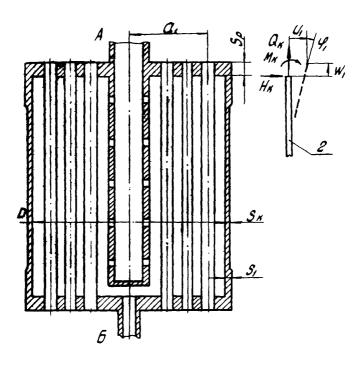
 $\psi_{\rho}, \psi_{\rho}$  - коэффициенты прочности и жесткости трубной решетки. Принимаются по п.2 приножения I.

І.З.З. Для решетки, выполненной заодно с фланцем, принятая толщина должна быть не менее толжины кольца ответного фланца. Допускается уменьшение толжины решетки по сравнению с толжиной кольца ответного фланца при условии подтверждения плотности и прочности фланцевого ссединения расчетом по п.1.8.

І.4. Расчет нагрузок

I.4.I. Гранцая камера погружного типа (черт.7)

Такая камера состоят из двух трубных решеток (I), соединенных между собей теплообменным трубами и комухом (2). Камера помещается внутри выпарного аппарата. Грерший пар поступает в нее через штуцер А. Через штуцер Б сливают конденсат. Помимо расчета характеристик трубной решетки по п.2 приложения I производится ресчет коэффициентов  $B_{II}$ ,  $B_{I2}$ ,  $B_{22}$  по п.3 приложения I при  $S = S_1$ , R = C.


Нагрузки , М. Н определяются при решении системы жинейных алгебранческих уравнений:

The 
$$Q_{11}Q_{12}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}Q_{13}$$

ж Допускается применение решеток меньшей тожщини при использовании специальных приемов вальцевания труб, препятствующих выпучиванию (потере устойчивости) трубных решеток.

## Греющая камера погружного типа





черт. 7

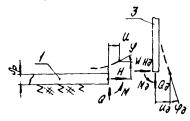
$$\begin{split} \alpha_{II} &= \overline{I}_{II} + P_{I,I} \alpha_{I2} = \alpha_{2I} = \overline{I}_{I2}; w_{T} = \frac{1}{K} (\alpha_{I} P_{M} - \alpha P_{I}) + \frac{0.3 L}{4 E_{T} S_{T}} (d_{T} P_{M} - d_{B} P_{I}); \\ P_{I} &= [\alpha_{K} (t_{K} - t_{O}) - \alpha_{T} (t_{T} - t_{O}) - \frac{2W_{I}}{L}] \frac{D_{P} L}{2\alpha^{2}} + (0.3 P_{I} - \overline{I}_{I3}) (P_{T} - P_{M}) \alpha^{2}; \\ \alpha_{22} &= \overline{I}_{22} + P_{2} B_{II,I}^{K}; \alpha_{23} = -P_{2} (B_{I2}^{K} + P_{3} B_{II}^{K}); P_{2} = \overline{I}_{23} (P_{M} - P_{T}) \alpha^{2}; \\ \alpha_{3I} &= 0.3; \alpha_{32} = B_{I2}^{K} + P_{3} B_{II}^{K}; \alpha_{33} = -B_{22}^{K} - \frac{E_{K} \alpha \overline{I}_{33}}{E_{P} S_{P}} - P_{3} (2B_{I2}^{K} + P_{3} B_{II}^{K}); \\ P_{3} &= (\alpha_{P} - \alpha_{K}) (t_{K} - t_{O}) E_{K} S_{I} \alpha + (P_{T} - P_{M}) \alpha^{2}. \end{split}$$

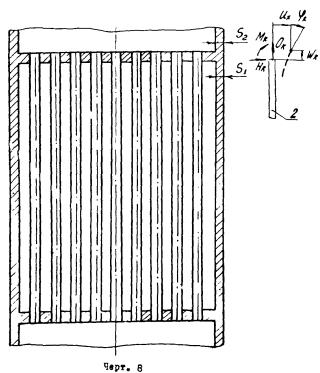
Нагрузки остальных деталей определяются по формулам:

$$Q_{\nu} = -Q$$
; Mr = M - 0.5  $HS_{\rho}$ ; Hr = -H.

1.4.2. Гревщая камера с решетками, вваренными в кожуж (черт. с )

Рассматриваемая греющая камера состоит из двух трубных решеток (I) колуха (2) и дниц, или других деталей выпарного аппарата (3). Помимо - расчета карактеристик трубной решетки по п.2 приложения I произво — дится расчет коэффициентов  $B_{II}^{\kappa}$ ,  $B_{I2}^{\kappa}$ ,  $B_{22}^{\kappa}$ ,  $K_{\rho}$ , по п.3 приложения I при  $S = S_{I}$ , R = Q. Значения коэффициентов  $B_{II}^{\partial}$ ,  $B_{I2}^{\partial}$ ,  $B_{22}^{\partial}$  принимаются по п.3 приложения I при  $S = S_{I}$ , R = Q.


Нагрузки Q , M, H определяются при решении системы линейных алгебраических уравнений:


$$\begin{array}{c}
a_{11} Q_{\alpha} + a_{12} M = P_{1}, \\
a_{21} Q_{\alpha} + a_{22} M + a_{23} H S_{1} = P_{2}; \\
a_{31} Q_{\alpha} + a_{32} M + a_{33} H S_{1} = P_{3},
\end{array}$$

$$\begin{array}{c}
CDP \\
P_{1} = \frac{D_{P} L}{2E_{K} S_{K} \alpha^{3}}; \quad P_{2} = \frac{D_{P}}{E_{K} S_{1}^{2} \alpha}; \quad P_{3} = \frac{S_{P}}{2S_{1}};
\end{array}$$

$$P_{4} = \frac{E_{K} S_{1}}{E_{\theta} S_{2}}; \quad P_{5} = \frac{S_{P}}{2S_{2}};$$

Грекцая камера с решетками, вваронними в кожух



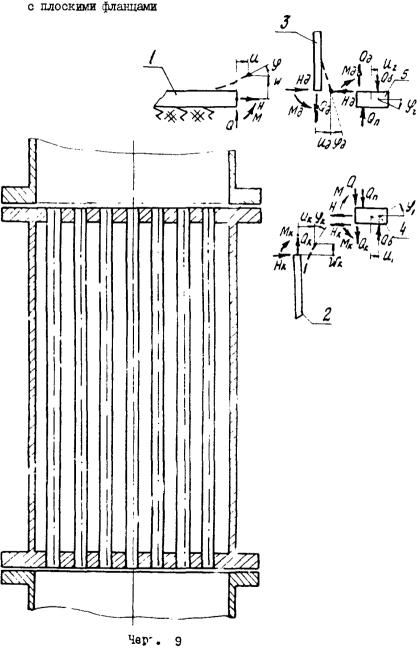


$$\begin{split} & \mathcal{B}_{II}^{K} = \mathcal{B}_{II}^{K} + \mathcal{G}_{A} \frac{S_{I} \mathcal{B}_{II}^{II}}{S_{2}}; & \mathcal{B}_{I2}^{E} = \mathcal{G}_{I}^{E} - \mathcal{G}_{I} - \mathcal{G}_{I}^{E} - \mathcal{G$$

$$\begin{array}{ll} Q_{\kappa} = 0.5 p_{\tau} a - Q \; ; & M_{\kappa} = \Delta_{12} (0.3 Qa - P_{\star}) + \Delta_{2M} M + \Delta_{2M} Hs, \; ; \\ H_{\kappa} = \frac{1}{\bar{B}_{\kappa}^{K} S_{\tau}} (\bar{B}_{s}^{0} M + \bar{B}_{12}^{0} Hs_{s} - \bar{B}_{s}^{K} M_{\kappa}) \; ; & Q_{\delta} = \frac{p_{s} a}{2} \; ; \\ M_{\delta} = M_{\kappa} - H_{\kappa} S_{p} - M - 0.5 Hs_{p} \; ; & H_{\delta} = -H - H_{\kappa} \; . \end{array}$$

## І.4.3. Грепцая камера с решетками, выполненными заодно с плоскими фланцами (черт.9)

Такая камера состоят из трубных решеток (I), кожуха (2), дниц (3) и фланцев кожуха (4) и дница (5). Помимо расчета характерис тик трубной решетки по п.2 приложения I производится расчет коэффи иментов  $B_{II}^{K}$ ,  $B_{I2}^{K}$ ,  $B_{22}^{K}$ ,  $\mathcal{K}_{\mathcal{P}}$  по п.3 приложения I при  $\mathcal{S}=\mathcal{S}_{\mathcal{I}}$ ,  $\mathcal{R}=\mathcal{O}$ . Значения коэффициентов  $B_{II}^{\mathcal{O}}$ ,  $B_{I2}^{\mathcal{O}}$ ,  $B_{22}^{\mathcal{O}}$  принимаются по п. 3 приложения I при  $\mathcal{S}=\mathcal{S}_{\mathcal{I}}$ ,  $\mathcal{R}=\mathcal{O}$ .


Начальные значения  $Q^{\circ}$ ,  $M^{\circ}$ ,  $H^{\circ}$ , возникающие при затяжке болгов фианцевого разъема, определяются при решении системи линейных алгеб — раических уравнений

$$\begin{array}{ll} a_{,i} Q_{\alpha}^{\circ} + a_{,2} M^{\circ} &= 0, \\ a_{2i} Q_{\alpha}^{\circ} + a_{22} M^{\circ} + a_{23} H^{\circ} S_{i} &= 0, \\ a_{3i} Q_{\alpha}^{\circ} + a_{32} M^{\circ} + a_{33} H^{\circ} S_{i} &= \frac{R_{\delta} - R_{\alpha}}{\alpha} Q_{\delta}^{\circ} R_{\delta}. \end{array}$$

Прирашения нагрузок Q', M', H', возникающие при разогреве и подаче давлений в трубное и межтрубное пространства, определяются при решении системы линейных алгебранческих уравнений:

$$\begin{array}{c} a_{,l}Q_{\alpha}' + a_{,2}M' & , = P_1 \ a_{2l}Q_{\alpha}' + a_{2l}M' + a_{2l}HS, = P_2 \ , \\ \bar{a}_{3l}Q_{\alpha}' + \bar{a}_{3l}M' + \bar{a}_{3l}HS, = P_3 \ . \end{array} \right\}$$
   
 Since 
$$\begin{array}{c} \beta_{,l} = \frac{DPL}{2E_{K}S_{K}a^{3}}, P_{2}\frac{D_{P}}{E_{K}S_{,}^{2}a}; P_{3} = \frac{S_{P}}{2S_{l}}, P_{4} = \frac{h_{2}}{2S_{2}}; \\ P_{5} = 1 + \frac{b_{,l}h_{,l}}{R_{,l}S_{P}}T_{33}, P_{6} = \frac{E_{p}b_{,l}h_{,l}^{3}}{12R_{,l}D_{P}}; P_{7} = \frac{E_{p}2b_{z}h_{z}^{3}}{12E_{g}R_{z}S_{,}^{2}a'}P_{8} = \frac{E_{g}R_{z}a}{E_{g_{z}}b_{z}h_{z}}, \end{array}$$

Грекцая камера с решетнами, выполнение ми заодно с плоскими фланцами



 $a_n = T_n + P_1 K_q$ ,  $a_{12} = T_{12}$ ,  $w_r = \frac{1}{K} (\alpha_1 P_{r1} - \alpha_1 P_1) + \frac{0.3 L}{0.6 C} (a_r P_{r1} - a_r)$ P,=[ax(tx-ta)-ax(tx-ta)-2w]-Del+7x(Px-Px)a2+P,(05KgPx-03M  $d_{51} = \frac{1}{R^{K} + RR^{K}}, \quad d_{53} = a_{5} \left[ \frac{E_{K} a_{53}}{E_{5}} + P_{5} \left( \frac{R^{K} + RR^{K}}{R^{K}} \right) \right],$  $P_5 = Q_{51}[(\alpha_P - \alpha_K)(f_K - f_0)E_KS, \alpha + (Q_15P_7 - P_M)\alpha^2], \alpha_{21} = T_{12} - Q_3P_5E_1$  $q_{22} = T_{22}$ ;  $q_{23} = P_2 (B_{11}^{\kappa} a_{53}^{-})_5^{-} B_{12}^{\kappa})$ ;  $P_2 = T_{23} (P_{11} - P_1) a^2 - P_2 B_{11}^{\kappa} P_5$  $q_{3} = \int_{\mathcal{E}} T_{12} + Q_{3} q_{51}, \quad q_{32} = 1 + \int_{\mathcal{E}} T_{22}, \quad q_{33} = -\left(a_{53} + \int_{\mathcal{E}} \frac{h_{1}}{2C_{5}}\right);$ P3 = P6 T23(PM-Pr) 02+ (Rn+ b1 -R1) Pra + P5 ;  $\sigma_{W} = \frac{B_{12}^{2} + P_{4} B_{11}^{2}}{B_{22}^{2} + P_{6} B_{22}^{2} + P_{6}^{2}}; \quad P_{6} = \frac{(\alpha_{\Phi \overline{L}} \alpha_{B})(f_{\theta} - f_{\phi})E_{\overline{L}} A_{22}(f_{\theta})(f_{\theta} - f_{\phi})E_{\overline{L}} A_{22}(f_{\theta} - f_{\phi})E_{\overline{L}} A_{22}(f$  $Q_{45} = \frac{1}{1 + \int_{7} \left( B_{n}^{\frac{3}{2}} Q_{44} B_{n}^{\frac{3}{2}} \right) + \int_{9} Q_{44}} \cdot \int_{7} = Q_{45} \left( \left( B_{0}^{\frac{3}{2}} \frac{b_{2}}{2} - R_{2} \right) \frac{\beta_{2}^{2} Q_{4}}{2} + \left( \beta_{2} B_{n}^{\frac{3}{2}} \right) + \int_{9} Q_{45} B_{n}^{\frac{3}{2}} \left( B_{0}^{\frac{3}{2}} \frac{b_{2}}{2} - R_{2} \right) \frac{\beta_{2}^{2} Q_{4}}{2} + \left( \beta_{2} B_{n}^{\frac{3}{2}} \right) + \int_{9} Q_{45} B_{n}^{\frac{3}{2}} \left( B_{0}^{\frac{3}{2}} \frac{b_{2}}{2} - R_{2} \right) \frac{\beta_{2}^{2} Q_{4}}{2} + \left( \beta_{2} B_{n}^{\frac{3}{2}} \right) + \int_{9} Q_{45} B_{n}^{\frac{3}{2}} \left( B_{0}^{\frac{3}{2}} \frac{b_{2}}{2} - R_{2} \right) \frac{\beta_{2}^{2} Q_{4}}{2} + \left( \beta_{2} B_{n}^{\frac{3}{2}} \frac{b_{2}^{2} Q_{4}}{2} + B_{n}^{\frac{$  $\Delta_t = \alpha_p h_i(f_0 - f_0) + \alpha_{p2} h_i(f_0 = f_0) - \alpha_{\delta}(h_i + h_2)(f_{\delta} - f_0);$ 

$$\begin{split} & \Delta_{1} = \alpha_{p} \, h_{1} \Big( \left\{ \phi_{1} \stackrel{t}{-} h_{2} \right\} + \left( \lambda_{p_{2}} h_{2} \right) - \left( \lambda_{g} \left( 1 \right) - \left( \lambda_{g} \left( 1 \right) + \lambda_{g} \right) \right) + \frac{2 \pi \alpha \left( y_{6} + y_{6} \right)}{R_{0} - \lambda_{p_{2}}} + \lambda_{p_{2}} \left[ 1 - \alpha_{45} \left( 1 + \beta_{q} \ a_{44} \right) \right] + \frac{2 \pi \alpha \left( y_{6} + y_{6} \right)}{R_{0} - \lambda_{p_{2}}} + \lambda_{p_{2}} \left[ 1 - \alpha_{45} \left( 1 + \beta_{q} \ a_{44} \right) \right] + \frac{\lambda_{p_{2}}}{R_{0}} \left( \alpha_{53} + \beta_{2} \frac{h_{2}}{L_{1}} \right) \\ & \alpha_{q_{1}} = \frac{\alpha_{3} \lambda_{p_{1}}}{\lambda_{p_{2}}} \left( \alpha_{53} + \beta_{2} \right) + \lambda_{p_{2}} \left( R_{0} + \frac{b_{2}}{2} - R_{2} \right) \right] - \lambda_{p_{1}} R_{5} + \lambda_{p_{2}} \left[ R_{1} + \beta_{2} \left( R_{0} + \alpha_{4} + \beta_{2} \right) \right] \right\}, \, R_{3} = \overline{R_{3}} + R_{4}; \\ & \overline{R_{3}} = \alpha_{31} - \alpha_{41}, \, \overline{R_{3}} = \alpha_{32} - \alpha_{42}, \, \overline{R_{3}} = \alpha_{33} + \alpha_{43} \end{split}$$

Приращение нагрузки болгов фланцевого разъема определяется по формуле

$$Q_{\delta}' = \frac{\alpha}{R_{\delta} (R_{\delta} - R_{\alpha})} \left( P_{4} + \alpha_{4}, Q_{\alpha}' + \alpha_{42} M' - \alpha_{43} H' S_{\gamma} \right) .$$

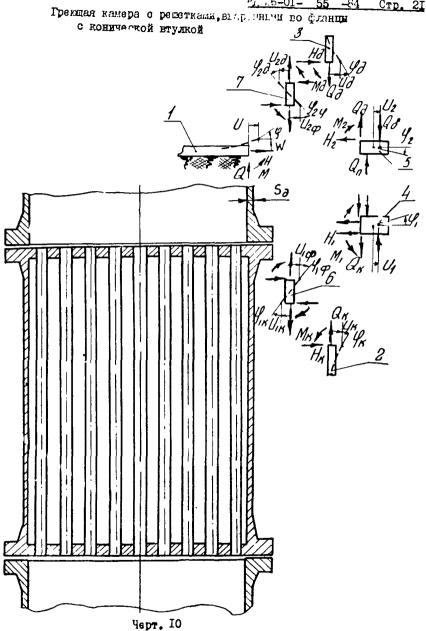
В расчетном состоянии нагрузки Q, M , H ,Qd определяются го pop-мулам:

$$Q = Q' + Q'$$
  $M = M' + M'$ ;  $H = H' + H'$ ;  $QQ = QQ' + QQ'$ 

Нагрузки остальных деталей в расчетном состоянии, их начальные значения или прирашения определяются по формулам:

$$\begin{aligned} Q_{n} &= \frac{1}{Rn} \left( Q_{\delta} R_{\delta} - Q_{5} P_{\tau} \alpha^{2} \right), & Q_{\kappa} &= Q_{5} P_{\tau} \alpha - Q; \\ M_{\kappa} &= P_{5} - Q_{5} Q_{5}, Q_{\alpha} + a_{53} H S_{1}, & H_{\kappa} &= -P_{5}, H_{1} \\ Q_{\partial} &= Q_{5} P_{\tau} \alpha_{1}, & M_{\partial} &= -\left( P_{7} + a_{45} \frac{R_{\delta} - R_{\alpha}}{\alpha} Q_{\delta} R_{\delta} \right); \\ H_{\partial} &= \frac{1}{S_{2}} \left( P_{6} - a_{44} M_{\partial} \right). \end{aligned}$$

Угин поворота фланцев определяются по формулам:


$$\mathscr{Y}_{l} = -\frac{1}{E_{\kappa} S_{l}^{2}} \left( \mathcal{B}_{ll}^{\kappa} \mathcal{M}_{\kappa} + \mathcal{B}_{l2}^{\kappa} \mathcal{H}_{\kappa} S_{l} \right), \quad \mathscr{Y}_{2} = -\frac{1}{E_{\partial} S_{2}^{2}} \left( \mathcal{B}_{ll}^{\partial} \mathcal{M}_{\partial} + \mathcal{B}_{l2}^{\partial} \mathcal{H}_{\partial} S_{2} \right).$$

.I.4.4. Греющая камера с решетками, вваренными во ўланцы с конической втулкой (черт. IO)

Данная камера состоит из трубных решеток ( I ) , кожуха (2), днищ ( 3 ) , фланца кожуха ( 4 ), фланца днища ( 5 ) и втулок (6,7), выполненных заодно с фланцами. Помимо расчета характеристик трубной решетки по п. 2 приложения I производится расчет коэффициентов  $\mathbf{B}_{II}^{K}$ ,  $\mathbf{B}_{I2}^{K}$ ,  $\mathbf{B}_{22}^{K}$ ,  $K_{g}$ ,  $K_{g}$ , по п. 3 приложения I при  $\mathcal{S} = \mathcal{S}_{K}$ , R = a.

Энечения коэффициентов  $B_{II}$ ,  $B_{I2}$ ,  $B_{I3}$ ,  $B_{I4}$ ,  $B_{22}$ ,  $B_{24}$  принимаются по п. 3 приможения I при  $\mathcal{S}=\mathcal{S}_2\mathcal{R}=\mathcal{A}$ ,  $\mathcal{L}=\mathcal{L}_{g_7}$ ,  $\mathcal{R}=\mathcal{A}$ , Значения коэффициентов  $B_{II}^g$ ,  $B_{I2}^g$ ,  $B_{22}^g$  принимаются по п. 3 приложения I при  $\mathcal{S}=\mathcal{S}_d$ ,  $\mathcal{R}=\mathcal{A}$ .

Начальные значения  $QR^0$ ,  $MR^0$ ,  $HR^0$ ,  $MI^0$ ,  $HI^0$ ,  $M_2^0$ ,  $H_2^0$ ,  $M_2^0$ ,  $H_2^0$ ,  $H_2^$ 



Прирашения нагрузок  $Q_R$ ,  $E_R'$ ,  $H_R'$ ,  $H_I'$ ,  $E_I'$ ,  $E_2'$ ,  $E_2$ ,  $E_3$ ,  $E_4'$ ,  $E_4'$ ,  $E_5'$ ,  $E_6'$ ,  $E_8'$ ,  $E_$ 

$$\begin{array}{lll} \alpha_{1,1} = (T_n + P_1 N_0) \alpha_i; & \alpha_{1,0} = -T_{12} & P_1 = [03 P_1 N_0 - T_{13} + P_2 S_T + P_3 N_1] P_1 \alpha_i^2 \\ & + (\frac{T_{i1}}{2} + T_{13} - P_2 \frac{d_0}{5_T} - P_3 N_1) P_1 \alpha_i^2 + [\alpha_T (t_T - t_0) - \alpha_K (t_K - t_0)] \frac{D_0}{2\alpha_i^2}; \\ \alpha_{2,2} = B_n + P_0 B_n^4 \frac{S_2}{5_R}; & \alpha_{2,3} = [B_{12} - P_0 B_n^4] S_3; & \alpha_{2,4} = B_{13}; & \alpha_{2,5} = B_{14} S_3; \\ \alpha_{3,1} = 0.3(1 - P_0) \alpha_i; & \alpha_{3,2} = B_{12} - P_0 B_{12}^4; & \alpha_{3,3} = B_{22} S_3 + P_0 B_{22}^4 S_6; & \alpha_{3,4} = B_{44} S_3; \\ \alpha_{3,5} = B_{24} S_3; & P_3 = (1 - P_0) P_{14} \alpha_i^2 + (\alpha_{24} - \alpha_K) (t_K - t_0) E_{24} \alpha_i S_3; \end{array}$$

a+2=B15, a+3=B145; a+4=B1+85; a+5=B125-8, 11:00=-85; Os=0,30; Osz=Bu+Bu 250; Os3=BuSo+Bu 2: Os+=Bu+Bu+Bu 150; 055 - Br Sy + Be 2 + 6, h; Os. 11 = 0 h. Sy; P = -P, 0 + P, ROS. (h. 5) ace = Bn + Pc; ac1 = Bn S3 - Pc 12; ace = Bn; ac9 = Bn S3; an= Bn+Bn 253, an= Br2 S3+Br2 2+ ans 3, ar= Bn+Bn 253;  $a_{29} = b_{24} S_9 + b_{44} \frac{h_2}{2}; \quad \beta_3 = -a_3 s_3 \rho_r a^2 + \frac{a_2 a_3 S_9}{b_2} \rho_r;$ as = Bis; as = Bro S3; as= Bro + 97 Bro 53; as = (Bro - 97 Bro)S3; ag = Bu; ag = Bu Sg, ag = Bu - 9, Biz, ag = Bu Sg + 8, Biz Sg; Po=0,85(1-9) Pr 02+(apz-da)(ta-to) Eq. 05a. an = - [20; an = - 90; ans = 90 to an = 122 + 90; an = - 90 ho-50  $Q_{mn} = -\frac{Q_0}{2} \int_{R_0}^{R_0} \frac{R_0 - R_0}{\alpha}, \quad P_0 = \frac{Q_0}{2} \left( \frac{d}{2} + R_0 - R_0 \right) \frac{d}{2} P_r - \frac{T_{12}}{2} P_r \alpha^2 - I_{13} \left( P_r - P_m \right) \alpha^2;$ an = -9, Taa, ans = 9,00; an = 9, Tez; an = (1, 9,0) a; Por = (don - do)(to to) Eo a So - 90 Tes Praz - 90 Tes (Pr - Pm) a + 90 (h, 5) Pra;  $\begin{array}{ll} \sigma_{e,v} = \lambda_{\varphi r i}, \ \alpha_{e,s} = -\frac{\lambda_{\varphi r} h_i}{2}; \quad \alpha_{e,s} = \lambda_{\varphi e}, \quad \alpha_{e,r} = -\frac{\lambda_{\varphi r} h_i}{2}; \quad \alpha_{e,w} = \lambda_{\varphi r i}, \\ \alpha_{e,u} = \lambda_{\varphi r}; \quad \frac{h_i \cdot \Sigma_r}{2}; \quad \alpha_{e,u} = \left[2\pi (y_s \cdot y_u), \frac{K_s \cdot R_u}{2}\right] \wedge (\lambda_{\varphi r} \cdot \lambda_{\varphi z}) \right] K_s ; \end{array}$  $\begin{array}{l} P_{12}[2\pi\alpha y_{\alpha}-\lambda_{\phi_{1}}(\frac{\delta t}{2}+R_{\alpha}R_{t})-\lambda_{\phi_{2}}(\frac{\delta t}{2}+R_{\alpha}R_{t})]\frac{\partial}{\partial t}P_{t}A_{\phi_{1}}h_{t}(t_{\phi_{1}}-t_{\phi})+\\ +c_{\phi_{2}}h_{t}(t_{\phi_{2}}-t_{\phi})-c_{\phi_{2}}(h_{t}+h_{t})(t_{\phi}-t_{\phi}),\\ Q_{1}=\frac{\partial}{\partial L_{t}}\frac{\partial}{\partial x^{\alpha}};\qquad Q_{2}=\frac{\alpha_{3}}{4C_{t}}\frac{\partial}{\partial x^{\alpha}};\qquad Q_{3}=\frac{D_{\phi}}{Ru^{2}}, \end{array}$  $Q_5 = \frac{12 R \cdot \sigma S_2^2}{h \cdot h^3}, \qquad Q_6 = \frac{12 R \cdot \sigma S_2^2}{h \cdot h^3},$ 94 = Eas 50;  $Q_{g} = \frac{E_{\rho} S_{\rho} a (h_{i} - S_{\rho})}{2 n_{\rho}};$ Q= 12 Re Do ; Q= Eq. S.;

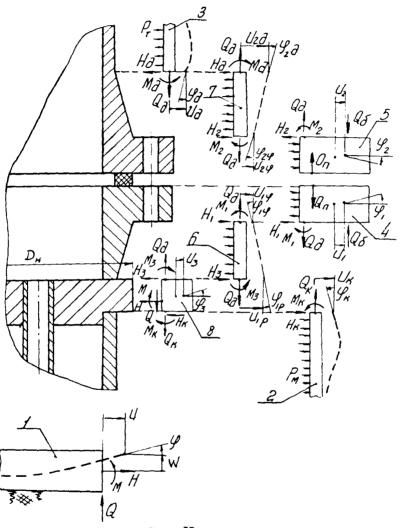
Нагрузки остальних дсталей в расчетном состочнии, их начальные зн зенил или прирамения определяются по Тормулам:

$$Q = \frac{P_T q}{2} - Q_K$$
,  $Q_{\partial} = \frac{P_T q}{2}$ ,  $Q_n = \frac{Q_{\delta} R_{\delta}}{R_n} - \frac{P_T q^2}{2R_n}$ .

Углы поворота ў ланцев комума и днища определяются по сормулам

$$\Psi_{i} = \frac{12R_{i}\alpha}{E_{\varphi i}b_{i}h_{i}^{3}} \left[ M_{i} - M + \frac{b_{i}}{2} \left( Q_{k}^{+}Q \right) - \frac{h_{i}}{2}H_{i} + \frac{h_{i} - S_{e}}{2}H_{i} + \frac{R_{i} - R_{n}}{\alpha} Q_{n}R_{n} + \frac{R_{\delta} - R_{i}}{\alpha} Q_{\delta}R_{\delta} \right],$$

$$\Psi_{2} = \frac{12R_{2}\alpha}{E_{\alpha e}b_{n}h_{\delta}^{3}} \left( M_{2} + \frac{b_{2}}{2}Q_{\delta} - \frac{h_{2}H_{i}}{2} + \frac{R_{2} - R_{n}}{\alpha} Q_{n}R_{n} + \frac{R_{\delta} - R_{2}}{\alpha} Q_{\delta}R_{\delta} \right).$$


## I.4.5. Греюшая камера с фланцами с конической втулкой, припаренными втавр к решетке ( черт. II )

Такая камера состоит из решеток (1), кожуха (2), дниша (3), фланцав (4,5) со втулками (6,7). В месте соединения решетки, кожуха и јланца ві делнется тонкое кольцо (8). Ісомимо расчета вспомогательних величин и п.2 приложения I, произволится расчет коэфјициентов  $B_{II}$ ,  $B_{I2}$ ,  $B_{22}$ ,  $M_{K_0}$ , г. п.3 приложения I при  $S = S_K$ ,  $R = \alpha$  . Значения коэфјициентов  $B_{II}$ ,  $B_{I2}$ ,  $B_{22}$ ,  $B_{23}$ , принимаются по п.3 приложения I при  $S = S_{3}$ ,  $R = \alpha$ , а значени коэ исиентов  $B_{II}$ ,  $B_{I2}$ ,  $B_{I3}$ ,  $B_{I4}$ ,  $B_{22}$ ,  $B_{24}$  принимаются при  $S = S_{3}$ ,  $L = C_{37}$ 

Начальные значения @к, мк, нк, мо, но, мо, мо, мо, мо, мо, но, мо, но

$$\begin{array}{lll}
d_{1,1}Q_{K}^{*} & + Q_{1,4}M^{\circ} & = 0, \\
d_{2,1}Q_{K}^{*} + Q_{2,2}M_{K}^{*} + Q_{2,3}H_{K}^{*} & = 0, \\
d_{3,1}Q_{K}^{*} + Q_{3,2}M_{K}^{*} + Q_{3,3}H_{K}^{*} & + Q_{3,5}H^{\circ} & + Q_{3,7}H_{3}^{\circ} & = 0, \\
d_{4,1}Q_{K}^{*} + Q_{4,2}M_{K}^{*} + Q_{4,3}H_{K}^{*} + Q_{4,4}M^{*} + Q_{4,5}H^{*} + Q_{4,6}M_{3}^{*} + Q_{4,7}H_{3}^{\circ} & = 0, \\
d_{5,1}Q_{K}^{*} & + Q_{5,3}H_{K}^{*} + Q_{5,4}M^{*} + Q_{5,5}H^{\circ} + Q_{5,7}H_{3}^{\circ} & = 0, \\
d_{5,1}Q_{K}^{*} & + Q_{5,3}H_{K}^{*} + Q_{5,4}M^{*} + Q_{5,5}H^{*} + Q_{6,6}M_{3}^{*} + Q_{5,7}H_{3}^{*} + Q_{6,8}M_{1}^{*} + Q_{6,9}H_{1}^{*} & = 0, \\
d_{6,2}M_{K}^{*} + Q_{6,3}H_{K}^{*} + Q_{6,4}M^{*} + Q_{6,5}H^{*} + Q_{6,6}M_{3}^{*} + Q_{7,7}H_{3}^{*} + Q_{6,8}M_{1}^{*} + Q_{7,9}H_{1}^{*} & = 0, \\
d_{7,5}H_{K}^{*} & + Q_{7,5}H^{*} + Q_{7,6}M_{3}^{*} + Q_{7,7}H_{3}^{*} + Q_{7,8}M_{1}^{*} + Q_{7,9}H_{1}^{*} & = 0, \\
d_{8,6}M_{3}^{*} + Q_{8,7}H_{3}^{*} + Q_{8,8}M_{1}^{*} + Q_{7,9}H_{1}^{*} & = -Q_{8,6}Q_{5}^{\circ}
\end{array}$$

Элементи греющей камеры, имеющей фланцы с конической втулкой, приваренные втавр к решетке



Wepr. II

Прирешения нагрузок  $Q_{\mathbf{K}}'$ ,  $\mathbf{M}_{\mathbf{K}}'$ ,  $\mathbf{H}_{\mathbf{K}}'$ ,  $\mathbf{M}_{\mathbf{A}}'$ ,  $\mathbf{H}_{\mathbf{A}}'$ ,  $\mathbf{M}_{\mathbf{A}}'$ ,  $\mathbf{H}_{\mathbf{A}}'$ ,  $\mathbf{M}_{\mathbf{I}}'$ ,  $\mathbf{H}_{\mathbf{I}}'$ ,  $\mathbf{H}_{\mathbf{I}$ 

Сдесь;

O, + (T,+ P, Kg)0; a++-Ti; P=(039,Kp-Tn+Q=5++Q,a,Pno+ + ( 1 + 1 - 02 de - 03 a) for 1 = [ar(t, -t) - de (t, -t)] [ 202 ; au = Toga; azz = Q. B., az = - Q. B. Se; Oza = - Toz; A = Tr. Pra2+ Tr. (Pr-Pm) a2; 33,1 = -030, 032 = -B, - P, - Spe, 035 = (B2 + Q5) Sh + B2 2 , 0,5 - Q5 Sx; a57 = Q5 Sx; P= (ap-an)(tr-to)En Sxa-Pma2; ag= 1/20; ag=-Qs; ag=-Qs = 12; as=-Qs - 1,2. as=-Qs = 3; a = - 0; a, = 0, So; P = T12 P, a2+ T23 (P, -Pm) a2; OS1 = Q, T2 0; OLS = Q.O; OS4 = -Q, T22; OS5 = (Q+ + T55) 0; an = O. a, P. = O. T. P. a. + T. (P. -P.) o.]; Obe = 1; Clas = 50, Obu = 1; Clas = 50-500; Obe = 1 + QBD, ; Clas = QBB 5-501 a. = 9, Bis; a. = - P. E. S. Ozz = Po So; Ozz = Po So; Ozz = Bozz, +Bp; Ozz = (Bz, + Po) So + Bz Sp; a., = B1 - 25, + B1 : a. F - B2 5 - B2 - S2; K- (40-d4) (10-t) (4 5,0-485 f, d) noc= Bis; an= Bis So; as = Qri+ Bis arg = On 1/2 - Bis So;  $n_{e,u} = -Q_n R_\delta \frac{R_\delta - R_0}{\sigma};$   $P_e = \left(\frac{b_0}{2} + R_n - R_m\right) \frac{a}{2} P_r P_{H,i}$ ac= Bu+ Bo 250; Con= Bos So+ Bu to; ac= Bo+ Bo 250; 029=-(B2+Q2)53-Be 2; P=(0,850'-92/05)1P,; an = 9 + Bn ; Can = 9 - 1 - Ca - Ca So; an = Cas an = En So; an = - Quel Richa; Po = ( bo + Ro - Ro) 2 Prg11; ane = Ba + Bn 753; ann = -(Qa + Bz) 5, -Ba 12, ana = Bn + B1 253;

 $b_2 = \frac{D_N - D}{2} .$ 

Нагрузки остальных деталей в расчетном состоянии, их начальные значения или прирашения определяются по формулам:

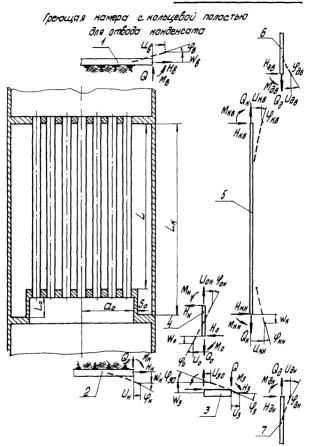
 $R_{a} = \frac{D_{H} + D}{L} ;$ 

$$Q = \frac{P_T \sigma}{2} - Q_R$$
,  $Q_{\bar{\sigma}} = \frac{P_T \sigma}{2}$ ,  $Q_{\bar{n}} = \frac{Q_{\bar{\sigma}} R_{\bar{n}}}{R_{\bar{n}}} - \frac{P_T \sigma^2}{2R_{\bar{n}}}$ .

Угли поворота фланцов опроволяются по формулам;

 $Q_{15} = \frac{E_{\phi}S_{3}}{E_{3}S_{3}};$ 

$$V_{1} = \frac{12R_{\varphi}\alpha}{F_{\varphi}b_{\varphi}k_{\varphi}^{3}} \left( \frac{R_{\delta}-R_{\varphi}}{a} Q_{\delta}R_{\delta} + \frac{R_{\varphi}-R_{\eta}}{a} Q_{\eta}R_{\eta} + \frac{b_{\varphi}}{2} Q_{\delta} - \frac{h_{\varphi}}{2} H_{i} - M_{i} \right) I$$


$$V_2 = \frac{12R\varphi C}{E_{\varphi}b_{\varphi}h_{\varphi}^3} \left( \frac{R_{\delta}-R_{\varphi}}{\sigma} Q_{\delta}R_{\delta} + \frac{R_{\varphi}-R_{\Omega}}{\sigma} Q_{\Omega}R_{\Omega} + \frac{b\varphi}{2}Q_{\varphi} - \frac{h\varphi}{2}H_2 - M_2 \right).$$

# I.4.6. Грекцая камера с кольцевой полостью для отвода конденсата (черт. I2)

Камера состоит из трубных решеток (I,2) кольцевой плестины (3) и цилиндрических оболочек (4...7). Для такой камеры необходимо определить характеристики трубной решетки по п.2 приложения I для верхней решетнии при  $\beta_n = \frac{\sigma_i}{\sigma_a}$  ) и нижней решетки (при  $\beta_n = \frac{\sigma_i}{\sigma_a}$  ) раздельно . Кроме того, по п.1 приложения I определяются характеристики кольцевой пластины  $A_{II}$ ,  $A_{I3}$ ,  $A_{I4}$ ,  $A_{22}$ ,  $A_{23}$ ,  $A_{24}$ ,  $A_{33}$ ,  $A_{34}$  при  $\beta_n = \sigma_o/\sigma$ .

По формулам п.3 приложения I вычисляются  $B_{II}$ ,  $B_{I2}$ ,  $B_{I3}$ ,  $B_{I4}$ ,  $B_{22}$ ,  $B_{24}$  при  $\mathcal{L} = \mathcal{L}_o$ ,  $\mathcal{R} = \mathcal{Q}_o$ ,  $\mathcal{S} = \mathcal{S}_o$ ;  $B_{II}$ ,  $B_{I2}$ ,  $B_{22}$  при  $\mathcal{S} = \mathcal{S}_o$ ;  $\mathcal{R} = \mathcal{Q}$  и  $B_{II}$ ,  $B_{I2}$ ,  $B_{22}$  при  $\mathcal{S} = \mathcal{S}_o$ ,  $\mathcal{R} = \mathcal{Q}_o$ .

Нагрузки  $Q_K$ ,  $M_{KB}$ ,  $H_{KB}$ ,  $M_{\partial B}$ ,  $H_{\partial B}$ ,  $M_{\partial H}$ ,  $H_{\partial H}$ ,  $M_{KH}$ ,  $H_{KH}$ ,  $M_0$ ,  $H_0$ ,  $M_H$ ,  $H_H$  определяются при решении системы линейных алгебраических уравнений:



Зпосъ

au=(Tn+PnT,+20,Kg+Q+Q+QoAn)a, ac=-Ta; acs=Ta Que To; Que = To \$ ; Que le ha; Que - Geha \$ ; Que = - GeA 10; Que fo ho 2 Octo fo has Que - lo ha Zi Que - fo To Que - fo To San Que - fo has Que - fo To San Zi Qu D= To 0 P, + 0,6 P, No P, 0 + (fo To + Vo + Vo An) (0 0 0 p + 0 0 p) H=1, I's + 1, 1, -0.3 p, Q + A, Q/A-P, 0+29, 04 d, P - 5, P) + (To+P, To-0.3 p, Q + A, Q/A-P, 0+29, 04 d, P) - 5, P) + +20,0'(a, Pa-a P.)-[ax(tx-t)/2-(a, L+d. L)/tx-to]] az= -Ta a; az= Tu+ b. l'; az= lobe S-To So; az= -To; az = To Sp; Po = Tos (Pn-Pr) de- To 2 Pr. as1 = -0,30; as2= Ba+ Bu 25; as= (B2+ P. Tos) S.+ Ba 50; 035= Po T35 Si, P3=(ap-ax)/tx-to) Ex Sia-Pros; Dez = Bn; de3 = BoSi de4 = 98 Bn; de5 = 90 BoSs; ass = 95 To Sz; asu = Be+ Bi Zo; ass = (Bu+ 95 Tos) Sz+ Bi - So Ps=(a0-a)/ta-ta) Fa Sou-0,85 Ad; O. 6 = 9 8 8 1 0 1 = 9 8 8 52; 068 = 8"; 069 = 8" 5. az = 80 + 60 = 500; az = (80 + 90 Az) S + 80 2; az = 90 Az 5. an = - On Ass So; Po = (da da)(to-to)(5 So + Po Ass So Soft - Q858 pc az = Asa; az = Ass; az = -Ass \frac{Sas}{2}; az = -[Ass + Qa Bas]; OLO = Ass \(\frac{S\_0}{2} - P\_1 B\_1 S\_1 \) Dew = Ass, Qen = Ass \(\frac{S\_0}{2} + P\_2 = P\_1 + \frac{Q\_2}{2} P\_1 + \frac{Q\_2}{2} P\_1 \) As \(\frac{P\_2}{2} + P\_2 = P\_1 + P\_2 = P\_1 + P\_2 = P\_1 = P\_2 = P\_1 = P\_2 = P\_2 = P\_2 = P\_1 = P\_2 = a==-030; a== Pa Ass Si; a== 80 80 50 75; a== 80 4 80 80; A== 80 4 80 80; A== 80 agn=- Por Azz Si; Po= Ha= alta-to) E Sa+ Por hes SSaft-Paa2:

Нагрузки остальних деталей определяются по формулам:

$$Q = \frac{g}{2} P_{r} - Q_{x}; \qquad Q_{\theta} = \frac{g}{2} P_{r};$$

$$Q_{\theta} = \frac{g}{2a_{\theta}} (P_{m} - P_{r}) + \frac{g}{a_{\theta}} Q_{r}; \qquad Q_{\theta} = \frac{g}{a_{r}} Q_{r} + \frac{g^{2} - g_{r}^{2}}{2a_{r}} (P_{m} - P_{r})_{r};$$

$$M_{\theta} = M_{m_{\theta}} - M_{\partial \theta} + \frac{S_{\theta}}{2} (H_{\partial \theta} - H_{\partial \theta}); \qquad H_{\theta} = -(H_{\partial \theta} + H_{\partial \theta})_{r};$$

$$M_{\theta} = M_{M_{\theta}} - M_{\partial \theta} - \frac{S_{\theta}}{2} (H_{M_{\theta}} - H_{\partial \theta})_{r}; \qquad H_{\theta} = -(H_{\partial \theta} + H_{M_{\theta}})_{r};$$

$$M_{\theta}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{m}^{\theta} Q_{\theta} Q_{r} + A_{e_{\theta}}^{\theta} M_{\theta} + A_{e_{\theta}}^{\theta} (P_{r} - P_{r}) Q_{r}^{2}]_{r};$$

$$M_{\theta}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{m}^{\theta} Q_{\theta} Q_{r} + A_{e_{\theta}}^{2} M_{\theta} + A_{e_{\theta}}^{\theta} (P_{r} - P_{r}) Q_{r}^{2}]_{r};$$

$$H_{\theta}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{m}^{\theta} Q_{\theta} Q_{r} + A_{e_{\theta}}^{2} M_{\theta} + A_{e_{\theta}}^{2} (P_{r} - P_{r}) Q_{r}^{2}]_{r};$$

$$H_{\theta}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{m}^{\theta} Q_{\theta} Q_{r} + A_{e_{\theta}}^{2} M_{\theta} + A_{e_{\theta}}^{2} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r} Q_{r} + A_{e_{\theta}}^{2} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r}^{2} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r}^{2} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r}^{2} + P_{r}^{2} P_{r}^{\theta} M_{\theta}^{2}]_{r};$$

$$M_{r}^{\theta} = \frac{1}{A_{e_{\theta}}^{2}} [A_{r}^{\theta} Q_{r}^{2} Q_{r}^{2} + P_{r}^{2$$

## I.5. Pacyer TOVOHAX Demotor

### I.5. I. Рас ют прочности трубных решеток

Расчет нагряженей, возникающих в области закрепления труб и в мосте среденения решетии с кожухом или бланцем, производится по Фор- $= S = S_{p} - C \text{ EAR } S = S_{p} - C$ мулем п.2.3 поиложения I пои

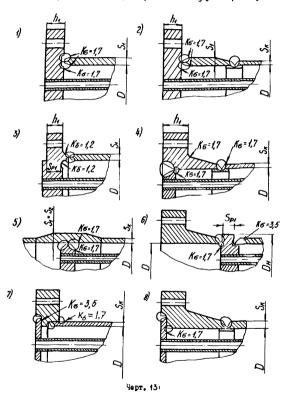
Условия прочносте трубных решеток

$$\mathcal{O}_{M} \leq 1,3[\mathcal{O}], \qquad \mathcal{O} \leq 2.5[\mathcal{O}]$$
The  $\mathcal{O} = \max\{\mathcal{O}_{1}\}; \qquad \mathcal{O}_{1} = \mathcal{O}_{M} + \mathcal{O}_{M}$ 

Для конструкций 4,5,7 (черт. I3) требуется проверка условия прочности приварки решетки к кожуху или фланцу по формуле

Опенка малопакловой прочности трубной решетки в зоне соещинения ее с кожуком или фланцем произволится по ГОСТ 25859-83 при  $O_1 = O_M + O_M$ ,  $O_2 = O_3 = O$ . Значения К, принимаются по черт. 13.

I.5.2. Расчет жесткости трубной решетки


Условие жесткости трубной решетки 
$$W \le [W]$$
  $W \le [W]$   $W \le [W]$   $W = MCIX \{[W_1]; [W_0]; [W_1+W_0]\}; [W] = Q2S_P; W_1 = \frac{Q^2}{D_P} \{[W_1+W_0], [W_1+W_0]\}; [W] = Q2S_P; W_2 = 0 - если  $\{[U_1+V_2], [W_1+V_2], [W_1+V_2], [W_1+V_2]\}; W_2 = 0 - если  $\{[U_1+V_2], [W_2+V_2], [W_1+V_2], [W_2+V_2]\}; W_2 = \frac{X_B}{Q} - если  $\{[U_1+V_2], [W_2+V_2], [W_2+V_2]\}; W_3 = \frac{X_B}{Q} - если  $\{[U_1+V_2], [W_2+V_2], [W_1+V_2]\}; W_4 = \frac{X_B}{Q} - eсли  $\{[U_1+V_2], [W_2+V_2], [W_3+V_2]\}; W_4 = \frac{X_B}{Q} - ecли \{[U_1+V_2], [W_2+V_2]\}; W_5 = 0$$$$$$ 

Значения коэффициента Ф принимаются по таби. І в зависимости

OT 
$$\alpha_e = \frac{A_5 \, \Omega_1}{S_P} \sqrt{\frac{L_B}{S_P}},$$

THE  $A_5 = \sqrt{\frac{10.92 \, ^{1}4 \, P \, oot}{\psi_P \, E_P}}.$ 

# Схемы присоединения трубных решеток к пожулу или фоланцу



## РИ 26-01- 55 -84 Стр. 36

Таблица І

#### Коэффициенты Ф

| ∝e | 0,1    | 0,2   | 0,3   | 0,4   | 0,5  | 0,6  | 0,7  | 0,8  |
|----|--------|-------|-------|-------|------|------|------|------|
| Φ  | 259,34 | 64,34 | 28,23 | I5,59 | 9,74 | 6,56 | 4,65 | 3,41 |

#### Продолжение табл. І

| O/e | 0,9   | 1,0   | I,I   | 1,2   | 1,3   | 1,4   | I,5   | 1,6   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Φ   | 2,555 | I,947 | I,498 | 1,157 | 0,892 | 0,683 | 0,515 | 0,378 |

#### Продолжение табл. І

| $\alpha_e$ | 1,7   | 1,8    | 1,9    | 2,0    | 2,02   | 2,04    | 2,048   | <b>≥</b> 2,05 |
|------------|-------|--------|--------|--------|--------|---------|---------|---------------|
| Φ.         | 0,265 | 0,1725 | 0,0943 | 0,0284 | 0,0165 | 0,00498 | 0,00047 | 0             |

В тех случаях , когда к жесткости трубных решеток предъявляются дополнительные требования , определение [W] проязводится по ОСТ 26-1185-81.

### І.6. Расчет теплообменных труб

Помимо давления в трубном и межтрубном пространствах на теллооб — менные труби воздействуют осевая нагрузка  $N_T$  и изгибающий момент МT, максимальные ( по абоолитной величине ) значения которых определяются по формудам :

$$N_r = f_i \left( \alpha_i P_n - \alpha_i P_r \right) + \frac{f_i}{a_i} \left( \varphi_i Q_a^{\dagger} + \varphi_i \beta_a^{\dagger} M_a \right), \quad M_r = \frac{E_r J_r \beta_i}{K a_i l_{np}} \left( \varphi_i Q_a^{\dagger} + \varphi_i^{\dagger} \beta_a^{\dagger} M_a \right).$$

I.6.I. Расчет прочности теплообменных труб

$$\mathcal{O}_{MI} = \frac{[N_T]}{f_T} ; \qquad \mathcal{O}_{M2} = \frac{(d_B + S_T) [P_T - P_M]}{2S_T} ;$$

$$\mathcal{O} = \frac{[N_T]}{f_T} + \frac{d_T [M_T]}{2J_T}$$

Оценка малоцивловой прочности теплообменных труб производител по ГОСТ 25859-83 при

$$O_1 = \frac{[N_T]}{f_T} + \frac{d_T[M_T]}{2J_T}$$
,  $O_2 = O_3 = 0$ ,  $K_{\sigma} = 1$ 

І.6.2. Расчет же откости теплообменных труб.

При  $N_{7} < 0$  производится оценка жесткости теплообменных труб по формулам:

r**ae** 

$$y \leq [y] , \qquad \lambda \leq 1 , 
\lambda = \frac{[N_T] \binom{2}{n_P}}{E_T \binom{1}{T}} ; \qquad y = A_6 \frac{[M_T]}{[N_T]} ; 
A_6 = \frac{1 - \cos \sqrt{\lambda}}{\cos \sqrt{\lambda}} .$$

Значения коэффициентов Ас приведени в табл. 2.

Таблица 2

## Коэффициенты A<sub>6</sub>

| λ          | 0,1  | 0,2  | 0,3  | 0,4  | 0,5  | 0,6  | 0,7  | 0,8  | 0,9  | 1,0  |
|------------|------|------|------|------|------|------|------|------|------|------|
| <b>A</b> 6 | 0,05 | 0,11 | 0,17 | 0,24 | 0,32 | 0,40 | 0,49 | 0,60 | 0,72 | 0,85 |
|            |      |      |      |      |      |      |      |      |      |      |

Допускается изготовление греющих камер, у которых не выполняется условие жесткости теплосоменных труб. В этом сдучае толина репетка должна быть не менее

$$S_{\rho} \gg \frac{D}{4,2} \sqrt{\frac{f P_{\nu} - P_{\tau} f}{\varphi_{\rho}[\sigma]}} + C,$$

гда Рм. Рт в  $[\sigma]$  принимается для того расчетного режима, в котором не выполнено условие жесткости теплообыенных труб-

I.6.3. Расчет плотности крепления теплообменных труб способом развальцовки

Если Ры >0, производится оценка плотности крепления теплообменных труб по формуле:

The Copyright:
$$P_{r,t} \leq [P_M], \quad A_{r,t} = \frac{A_{r,t} (A_{r,t} - A_{r,t})^{2}}{2.4 (1 + A_{r,t} A_{r,t})}; \quad A_{r,t} = \frac{A_{r,t} (A_{r,t} - S_{r,t})^{2}}{4 d_{r,t} S_{r,t}};$$

$$A_{r,t} = \frac{1.82 A_{r,t}}{\lambda_{r,t}^{2} - 1}; \quad A_{r,t} = 0.3 A_{r,t};$$

$$A_{r,t} = \frac{1}{Q_{l} B_{r,t}} + \frac{E_{r,t}}{E_{r,t}} B_{r,t}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1}{2.4 (1 + A_{r,t} A_{r,t})}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = E_{r,t} (a_{r,t} - a_{r,t}) (f_{r,t} - f_{r,t});$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}};$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}};$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}};$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}};$$

$$P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}}; \quad P_{r,t} = \frac{1.82 A_{r,t}}{A_{r,t}};$$

Значения козффициентов Ат принимаются по табл. 3.

Таблица 3

## Коэффициенты А<sub>І</sub> Раз меры ме

| Способ развальцовки | Томина | Коэффици | ом джа- |       |       |
|---------------------|--------|----------|---------|-------|-------|
| трубы               | труби  | метре    |         |       |       |
|                     |        | 20       | 25      | 38    | 57    |
| Без канавок         | I,5    | I,000    | I,000   | I,000 | I,000 |
|                     | 2,0    | I,000    | I,000   | I,000 | I,000 |
| С одной кананкой    | I,5    | 0,785    | 0,802   | 0,834 | 0,846 |
|                     | 2,0    | 0,825    | 0,843   | 0,878 | 0,894 |
| С двумя и более     | I,5    | 0,208    | 0,255   | 0,354 | 0,437 |
| Kahaerame           | 2,0    | 0,282    | 0,333   | 0,429 | 0,504 |

# I.6.4. Расчет прочности крепления теплообменных труб способом развальцовки

Оценка прочности крепления труб производится по формула:

$$/N_r/\leq [N_r]$$

где

$$\begin{bmatrix} N_T \end{bmatrix} = N_0 + \Omega_K N_K; \qquad N_K = \min \left\{ N_{cm} ; N_{cp} \right\};$$

$$N_{cn} = \pi \left( d_0 + \frac{\Lambda_A}{2} \right) h_K [\sigma]; \qquad N_{cp} = Q.5 \pi d_0 b_K [\sigma];$$

$$N_0 = \frac{A_2}{2.4} \left( P_{ocr} + A_f P_f + A_T P_T - A_5 P_m \right).$$

$$IIDE \qquad N_T > 0:$$

$$A_2 = \frac{\pi d_0 S_T}{0.3 A_f} \left( I - \bar{e}^{\omega_0^*} \right); \qquad W_T = \frac{0.3 \ \Omega_{TP} A_f L_0}{S_T};$$

$$A_3 = A_m W_T \frac{\left( W_T + W_0 \right) \left( e^{\omega_T} + \frac{\omega_0}{2} \cos \omega_0 \right) + W_0 e^{-\omega_0}}{\left( e^{\omega_T} + \frac{\omega_0}{2} \right) \left( W_T + W_0 \right)^2 + W_0^2}; \qquad W_0 = \frac{I \cdot 2.55 \ L_0}{\sqrt{\left( d_0 - S_T \right) S_T}};$$

 $\mathcal{O}_{Tp}=0.4+0.5$  - при развальцовке стальных труб в стальные решетки;  $\mathcal{O}_{Tp}=0.1$  +0.15- при развал цотке латунных труб в стальные или латунные решетки.

IIpi 
$$N_7 < 0$$
:
$$A_2 = \frac{\pi d_0 S_7}{0.3 \text{ Ar}} (e^{\omega_7} - 1);$$

$$A_3 = A_m \omega_T \frac{(\omega_T - \omega_B) e^{(\omega_T - \omega_B)}}{(e^{\omega_T}) [(\omega_T - \omega_B)^2 + \omega_B^2]}$$

I.6.5. Расчет прочности крепления теплообменных труб способом приварки

Оценка статической прочности крепления труб способом приварки производится по формуле:

$$T \leq [T],$$

$$T = \frac{|N_r|d_r + 4|N_r|}{\pi d_r^2 \delta}, \quad [T] = 0.5 [0].$$

Оценка малоцикловой прочности крепления труб способом приварки производится по формуле

$$\mathcal{T}_a \leq [\mathcal{T}_a],$$

$$\mathcal{T}_a = \frac{1}{2}/\mathcal{T} - \mathcal{T}_o/; \quad [\mathcal{T}_a] = \frac{\mathscr{Y}_c}{2}[\mathcal{O}];$$

где

 — напряжение в сварном соединение при максимальной нагрузке цикла, МІа;

пикла, Міа;
 напряжение в сварном соединении при минимальной нагрузке пикла, Міа;

 $\mathcal{G}_c$  — коэффициент уменьшения пяклической прочности сварных соеди — нений труб с решетками. При  $N \le 50000$  вычисляется по формуле  $\mathcal{G}_c = 0.95 - 0.2 \ \mathcal{G}_c$  .

ЕСЛИ НЕСКОЛЬКО РАСЧЕТНЫХ РЕЖИМОВ ЦИКЛИЧЕСКИ ПОВТОРЯЮТСЯ, ДОЛЖНО ВЫПОЛНЯТЬСЯ УСЛОВИЕ

$$\frac{N_1}{[N_1]} + \frac{N_2}{[N_2]} \cdots \leqslant 1,$$

где N,  $N_2$ ,... — чесло цеклов нагружения каждого типа ;  $[N,], [N_2],...$  допускаемое число циклов нагружения каждого типа. Принимается  $[N] \le 50000$  по формуле  $[N] = 5 \ (0.95 - \frac{To}{[O]})$ 

## І.6.6. Расчет прочности крепления теплообменных труб способом приварки с развальцовкой

Оценка прочности крепления труб способом приварки с развальцовкой производится по формуле

$$\frac{[\mathcal{T}]}{\mathcal{T}} + 0.6 \frac{[N_T]}{[N_T]} \ge 1.$$

І.7. Расчет прочности обечаем

где

TIME

Расчет напряжений, возникающих в цилиндрических оболочках 2 (wepr.7), 2,3 (wepr.8,9), 2,3,6,7 (wepr.IO\_II),4,5,6,7 (wepr.I2), производится по формулам п. 3.3 приложения І с учетом фактического направления действия нагрузок и толмины  $S=S_i$ -С. где  $S_i$ -толмина соответствующей обожочки.

Помимо расчета прочности обечает по ГОСТ 14249-30 или пругой аналогичной ру ководящей нормативной документации, производится оценка прочности соединения обечеек с решеткой, фленцем или другими поталями по формулам:

$$O_{M} \leq 1.3[O]$$
  $O \leq 2.5[O]$ 
 $O_{M} = \max\{[O_{MX}]; [O_{MY}]; [O_{MX}]; [O$ 

 $T \leq Q5/O/$  0.5 ся по формула

Опенка малоцикловой прочности производится по ГОСТ 25859-83 при  $\mathcal{O}_1 = \mathcal{O}_{MX} + \mathcal{O}_{MX}$ ,  $\mathcal{O}_2 = \mathcal{O}_{MAD} + \mathcal{O}_{MD}$ ,  $\mathcal{O}_3 = \mathcal{O}$ . Значения К принимаются по черт. 13,18 в зависимости принятого конструктивного исполнения.

І.8. Расчет детажей фланцевого разъема

I.S.I. Условие прочности болгов или инилек 
$$\mathcal{O}_{\delta}^{f} \leq [\mathcal{O}]_{\delta}^{f}$$
, гле  $\mathcal{O}_{\delta}^{f} = \frac{2\pi R_{\delta} Q_{\delta}}{R_{\delta} f_{\delta}}$ 

I.8.2. Условие прочности прокладки

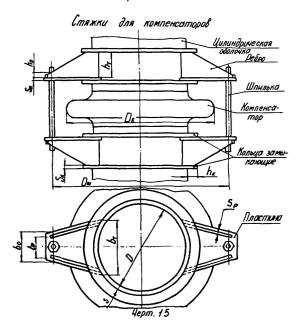
.2. Условие прочности прокладки 
$$q_{max} \le [q]$$
,  $q_{max} = max \{q_o, q_o\}$ ,  $q_o = \frac{Q_o}{b_o}$ ;  $q_n = \frac{Q_n}{b_n}$ .

# PI 26-01- 55 -84 CTD. 42

1.6.3. Условие предварительного обжатия прокладки

1.8.4. Условие плотности фланцевого соединения

 $q_{\pi} \gg m \; \rho_{\tau} \; .$  I.8.5. Условие жесткости фланцев


$$\varphi_{max} \leq 0.013$$
 ,

#### 2. PACHET OCEBЫХ КОМПЕНСАТОРОВ

- 2. І. Исходине данню
- внутренний пивметр пелендраческой оболочки, на которой уста новлен компенсатор, мм 1
- внутренний дияметр компенсатора (черт. 14) .мм :
- наружный дваметр компенсатора,мм ;
- расчетное давление ( абсолютное значение). МПа:
- давление при испытаниях, МПа ;
- толимна компенсатора (уточелется при расчете). мм :
- сумма необходимых прибавок к расчетной толщине на возможные утонения при изготовлении и эксплуатации, мм :
- молуль пропольной упругости при расчетной температуре. МІв. Принимается по ГОСТ 14249-80 или другой руководящей норматив-HOR MORVMOHTSHEE :
- коэффициент Пуассона ( ) =0,3 ); предел текучести при расчетной температуре, МПа; допускаемое наприжение при расчетной температуре, МПа. Принимается по ГОСТ I4249-80 или другой руководящей нормативной документации для каждой из рассчитываемых деталей ;
- VECEO HEREOB HATTYESHER ROMISHCSTODA :
- свето сменение которое необходемо скомпенсировать данным KOMIGHCATODOM ( ACCONDING SHAVENIE ), MA:
- $n_{\text{NOM}}$  число воли компенсатора ( уточилется при расчете );
- // число впилек ( стяжек) линзового компенсатора (черт. I5) ;
- внутренняй дваметр резьби впильки, мм. Принимается по TOCT 11708-66:
- $D_{\mu\nu}$  дваметр окружности расположения ипилек. мм :
- толивна цилиндрической оболочки в месте установки стяжек, мм; Jan Ja Ja - Tormena hractur, peder a koren, ma :
- $b_{\mu}$  ,  $b_{\tau}$  ,  $b_{\mu}$  -инфина пластины в месте установки инимек, в месте приварни и трубопроводу и расстояние между осями ребер в месте VCTAHOREM MILESK, MM :



4epm. 14



 $h_0$ :  $h_7$  ,  $h_K$  - высота ребра в месте установка впилек, в месте приварка к трубопроводу и высота колец, мм.

2.2. Расчет жинзовых компенсаторов

rie

2.2.І. Расчетная толишна компенсатора  $\delta_R$  определяется по дав – лению при испытаниях  $P_u$  и соответствующей температуре (20 °C) по формуле:

$$\delta_{R} = \lambda d_{K} \sqrt{\frac{1,1 P_{U}}{O_{T}}},$$

$$\lambda = \sqrt{\frac{(1-\beta_{K})(1-\beta_{K}^{2})}{8\beta_{K}^{2}(3+\beta_{K})}}, \quad \beta = \frac{d_{K} + \delta_{K}}{D_{K} - \delta_{K}}.$$

Исполнительная толимна компенсатора  $\int_{\mathcal{K}}$  (черт. I4) назначается с учетом прибавки C по формуле

$$\delta_{\kappa} \geqslant \delta_{R} + C$$

2.2.2. Компенсирующая способность одной волны компенсатора при - нимается в зависимости от расчетного числа циклов нагружения N по формуле

$$\Delta_{1} = \frac{2\mathcal{E}d_{K}^{2}}{A_{1}\delta_{K}},$$

$$\Gamma_{R} = A_{1} = \frac{8\sqrt{1-\sqrt{1+\sqrt{2}}}}{3(1-\sqrt{2})} \cdot \frac{\beta_{K}^{2}(1-\beta_{K}^{2}) + 2\beta_{K}^{4}(1-\beta_{K})}{(1-\beta_{K}^{2})^{2} - 4\beta_{K}^{2}(1-\beta_{K}^{2})} \qquad \text{IDM} \beta_{K} \leq 0.9;$$

$$A_{r} \approx \frac{4\sqrt{1-\sqrt{1+\sqrt{1+2}}}}{(1-\sqrt{1+2})(1-\beta_{K})^{2}} \left[1-\frac{7}{3}(1-\beta_{K})+\frac{97}{60}(1-\beta_{K})^{\frac{2}{4}/1}(1-\beta_{K})^{\frac{3}{4}}\right] \qquad \text{npm} \beta > 0.9;$$

$$\mathcal{E} = \frac{0.0225}{K_C \sqrt[4]{N}};$$

Кс - коэффициент запаса. Для углеродистых и инэколегированных сталей и тигановых сплавов Кс = I,5, для легированных сталей аустепитного класса Кс = I,I.

Если в расчете должна учитываться ползучесть материала или в условиях эксплуатации недопустима расста материала линэн в области пластических деформаций, или в исходных данных для расчета не оговорено число циклов нагружения, допускаемую желинтуду интенсивности до -

формаций  $\xi$  необходимо огреничить величиной  $\xi = 1.3 \frac{\int J}{\xi}$ . 2.2.3. Числю вели исмпенсатора определяется по формула  $n = \frac{\Delta}{2}$ . Если при эксплуатации будет вметь место только скатие компенсато-

ра, то при установке рекомендуется предварительно растянуть его на величину $\bigwedge_{n} \cong \bigwedge/2$  . Если только растяжение – предварительно скать на эту же величину.

2.2.4. Условие примению сти формул  $\mathcal{E}_{max} \leq 0.002$ ,

THE 
$$\xi_{max} = \frac{\Delta \delta_K A_I}{2 \eta_{max} d_K^2} + \frac{P d_K^2 B_I}{E (\delta_K - C)^2}$$
;

TES

$$\begin{split} \mathcal{B}_{i} &= \frac{3\sqrt{l-V+V^{2}}}{64\beta_{K}^{2}} \left[ 2 - \left( 1 - \beta_{K}^{2} \right) \frac{2\beta_{K}^{2} (3+\beta_{K}^{2}) \ln \beta_{K} + \left( 1 - \beta_{K}^{2} \right) \left( 1 + 3\beta_{K}^{2} \right)}{\left( 1 - \beta_{K}^{2} \right)^{2} - 4\beta_{K}^{2} \ln \beta_{K}} \right] & \text{ for } \beta_{K} \leqslant 0.9 ; \\ \mathcal{B}_{i} &\approx \frac{\sqrt{l-V+V^{2}}}{16} \left( 1 - \beta_{K} \right)^{2} \left[ 1 + \frac{9}{5} \left( 1 - \beta_{K} \right) + \frac{3l}{12} \left( 1 - \beta_{K} \right)^{2} + \frac{35333}{1050} \left( 1 - \beta_{K} \right)^{3} \right] & \text{ fight } \beta_{K} > 0.9 . \end{split}$$

2.2.5. Жеоткость компенсатора  $K_{\kappa}$  (усилие, возникающее при осевом рестяжении или скатии его на единицу длины) определяется по формуле:

$$K_{K} = \frac{E \int_{R_{COM}}^{8} \frac{A_{2}}{A_{2}}, \\ A_{E} = \frac{8\pi}{3(1-V^{2})} \frac{\beta_{K}^{2}(1-\beta_{K}^{2})}{(1-\beta_{E}^{2})^{2} - 4\beta_{K}^{2}(\frac{1}{2}\beta_{K})} \qquad \text{nom } \beta_{K} \leq 0.9.$$

$$A_{2}^{\approx} \frac{4\pi}{(1-V^{2})(1-\beta_{K})^{3}} \left[1-\frac{5}{2}(1-\beta_{K})+\frac{6!}{30}(1-\beta_{K})^{2}-\frac{1!}{20}(1-\beta_{K})\right]_{\text{trans}}^{3} \beta_{K} > 0.9.$$

2.2.6. Температурный распор компенсатора  $P_{T}$  ( абосмитисе значения) определяются по формуле:

 $P_{i} = K_{i}(\Delta - \Delta_{n})$ 

2.2.7. Усилие в компенса-торе, вызванное воздействием давления на линзу компенсатора  $P_2$  (абоолютное значение), определяется по формуле  $P_2 \approx \frac{\mathcal{H}(D_K^2 - d_K^2)P}{8}.$  2.2.8. Значения кезфениветов  $\lambda$ ,  $A_{I}$ ,  $B_{I}$ ,  $A_{2}$  при V =0,3 примеде-

ви в таби. 4.

# 

| βκ   | λ      | AI    | BI      | A <sub>2</sub> |
|------|--------|-------|---------|----------------|
| 0,65 | 0,1280 | II,8  | 0,01490 | 113            |
| 0,66 | 0,1230 | 13,0  | 0,01350 | 128            |
| 0,67 | 0,1170 | 14,3  | 0,01270 | 145            |
| 0,68 | 0,1120 | 15,6  | 0,01170 | 164            |
| 0,69 | 0,1080 | 17,3  | 0,01040 | 188            |
| 0,70 | 0,1030 | 18,9  | 0,01010 | 212            |
| 0,71 | 0,0980 | 21,1  | 0,00872 | 245            |
| 0,72 | 0,0935 | 23,3  | 0,00792 | 281            |
| 0,73 | 0,0891 | 25,9  | 0,00719 | 324            |
| 0,74 | 0,0847 | 28,9  | 0,00650 | 375            |
| 0,75 | 0,0805 | 32,I  | 0,00586 | 436            |
| 0,76 | 0,0764 | 35,9  | 0,00527 | 509            |
| 0,77 | 0,0724 | 40,3  | 0,00473 | 597            |
| 0,78 | 0,0684 | 45,4  | 0,00423 | 704            |
| 0,79 | 0,0646 | 51,3  | 0,00376 | 834            |
| 0,80 | 0,0608 | 58,2  | 0,00333 | 996            |
| 0,81 | 0,0572 | 66,4  | 0,00294 | 1200           |
| 0,82 | 0,0536 | 76,I  | 0,00258 | 1450           |
| 0,83 | 0,0501 | 87,7  | 0,00225 | 1770           |
| 0,84 | 0,0466 | 102,0 | 0,00195 | 2190           |
| 0,85 | 0,0433 | 119,0 | 0,00168 | 2740           |
| 0,86 | 0,0400 | 140,0 | 0,00143 | 3460           |
| 0,87 | 0,0367 | 167,0 | 0,00121 | 4450           |
| 0,88 | 0,0336 | 202,0 | 0,00101 | 5820           |
| 0,89 | 0,0305 | 246,0 | 0,00083 | 7770           |
| 0,90 | 0,0274 | 306,0 | 0,00067 | 10600          |
|      | 1      | ı     | 1       | 1              |

#### 2.3. Расчет стяжек для линзовых компенсаторов

В отдельных случаях для предотвращения растякония компенсатора пои испытаниях устанавливают специальные стярки ( черт. 5). расчет которых произведится для условий испытаний при соответствующей темпера-TYDE.

## 2.3.1. Расчет шпилек

Условие прочности шпиле:  $O_{u} = \frac{4 N_{u}}{\pi d^{2}}; \qquad N_{u} = \frac{\pi \left(D_{\kappa}^{2} + D^{2}\right) P_{u}}{8 \Omega_{u}}; [6] = \frac{\delta_{\tau}}{2}.$ THE

2.3.2. Расчет пластины и ребра

С имино выяснения максимальных напряжений расчет производится для HECKONDEREX COMMENT IDE  $0 < X \leq L_{\alpha}$ :

EXECUTE BY THE CONTINUES BUTHER CHINES BY THE CONTINUES BY THE CONTINUES BUTHER CHINES BUTHER CHINES BY THE CONTINUES 
$$h_{\rho} = h_{\rho} + \frac{h_{r} - h_{o}}{l_{o}} \times ;$$

$$f_{\rho} = h_{\rho} + \frac{h_{r} - h_{o}}{l_{o}} \times ;$$

$$f_{\rho} = h_{\rho} + \frac{h_{r} - h_{o}}{l_{o}} \times ;$$

$$f_{\rho} = h_{\rho} + \frac{h_{r} - h_{o}}{l_{o}} \times ;$$

$$f_{\rho} = h_{\rho} + \frac{h_{r} - h_{o}}{l_{o}} \times ;$$

$$f_{\rho} = \frac{h_{\rho} + h_{\rho}}{2(2f_{\rho} + F_{n})} ;$$

$$f_{\rho} = \frac{h_{\rho} + h_{\rho}}{2(2f_{\rho} + h_{\rho})} ;$$

$$f_{\rho} = \frac{h_{\rho}$$

$$\mathcal{O}_{\rho}^{\text{mox}} = \max \{|\mathcal{O}_{\rho}|\} \leq [\mathcal{O}].$$
 Условие прочисоти пластины

$$O_n^{max} = max \{ |O_n| \} \leq [O].$$

Граници применимости формул

$$h_7 \leqslant 20 \, S_P \, . \qquad b_P \leqslant 20 \, S_D \, .$$

2.3.3. Расчет колеп замикающих

Силы, действующие на кольцо, определяются по формуле

$$N_K = \frac{Nw \ln n}{2h}$$

THE  $h = h_{\tau} + S_{\Omega} + S_{\kappa}$ .

Вспомогательные величины

$$\begin{aligned} & \mathcal{L}_{o} = \min\left\{h \; ; \; \left(S_{\kappa} + l, \; l \sqrt{DS}\right)\right\}; \\ & \mathcal{F}_{\kappa} = S_{\kappa} h_{\kappa} \; ; & \mathcal{F}_{o} = S \mathcal{L}_{o}; \\ & \mathcal{Z}_{o} = \frac{(h_{\kappa} + S) \mathcal{F}_{\kappa}}{2(\mathcal{F}_{\kappa} + \mathcal{F}_{o})}; & \mathcal{R}_{\kappa} = \frac{D + S}{2} + \mathcal{Z}_{o} \; : \\ & \operatorname{Ipm} \; \mathcal{F}_{o} \geqslant \mathcal{F}_{\kappa} \; : \\ & \mathcal{Z} = \frac{\mathcal{F}_{o} + \mathcal{F}_{\kappa}}{2\mathcal{L}_{o}}; & \mathcal{W}_{\kappa} = \mathcal{F}_{\kappa} \left(\frac{h_{\kappa}}{2} + S - \mathcal{Z}\right) + \frac{\mathcal{L}_{o}}{2} \left[\mathcal{Z}^{2} + \left(S - \mathcal{Z}\right)^{2}\right]. \\ & \operatorname{Ipm} \; \mathcal{F}_{\kappa} \geqslant \mathcal{F}_{o} \; : \\ & \mathcal{Z} = \frac{\mathcal{F}_{o} + \mathcal{F}_{\kappa}}{2\mathcal{S}_{\kappa}}; & \mathcal{W}_{\kappa} = \frac{\mathcal{S}_{\kappa}}{2} \left[\left(h_{\kappa} - \mathcal{Z}\right)^{2} + \mathcal{Z}^{2}\right] + \mathcal{F}_{o} \left(\frac{\mathcal{S}}{2} + h_{\kappa} - \mathcal{Z}\right). \end{aligned}$$

Условие прочности кольца  $\mathcal{O}_{\kappa} \leq [\mathcal{O}]$ ,

где

$$O_{\kappa} = \frac{N_{\kappa} R_{\kappa}}{2.2 W_{\kappa}} \left( 1 - \frac{D_{\tau}}{2 R_{\kappa}} \right) .$$

### 2.4. Расчет и конструирование пружинных компенсаторов

## 2.4. І. Описание конструкция

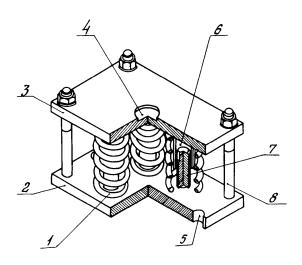
Компенсатор пружинний (черт. 16) "устанавливаемый под опору-дапу, состоит из нескольких винтовых цилиндрических пружин (I) "устанавливаемых между опорной (2) и нажимной (3) плитами. Опоры-лапы устанавливаются на нажимные плиты компенсаторов так, чтобы отжимные винты попадали в поседочные гнезда (4). Опорная плита устанавливается на проектную отметку так, чтобы было обеспечено полное прилегание, и крепится двумя болтами через отверствя (5). К нажимой плите привариваются ся ограничительние втулки (6), а в опорную плиту заворачиваются направляющие стерине (7). Втулки (6) служит для ограничения макси — мального слатия пружин и контроля остаточной деформации пружин путем замера расстояния между нижним торцом втулки и плоскостью опорной плити в рабочем состояния. Перед установкой аппарата на пружиние компенсаторы не допускается сжимать пружини мпильками (8). Они предназначены для сборки самих пружиных компенсаторов и демонтажа одного из них при эксплуатация.

Пружиние компенсаторы используются в тех сдучаях, когда по усло - виям эксплуатации нельзя применить линзовые или волнистие компенсаторы. Кроме того, они позволяют более равномерно распределить нагрузку между всеми опорами-лапами. Границы применимости пружинных компенсаторов соответствуют границам применимости винтовых цилиндрических пружин по гост 13764-88.

#### 2.4.2. Определение размеров

Определение размеров винтовых цилиндрических пружив производится по ГОСТ 13765-68. Исходными величинами являются рабочий ход h , рав — ный разности температурных удлинений, которую необходимо скомпенсировать. Сима пружины при предварительной деформации  $P_{\mathbf{I}}$  определяется по формуле

$$P_{I} = \frac{G_{n}}{n_{on} n_{on}} ,$$


где  $G_{M}$  - вес аппарата, устанавливаемого на пружинные опоры при монтаже:

 $n_{n}$  — число пружин в каждом пружинном компенсаторе.

Чтоби скомпенсировать заданную разность температурных удлинений h необходию, чтобы сила пружины при рабочей деформации  $P_2$  была Ae близка к значению, опрежимому по формуле

$$P_2 = \frac{G_P}{\rho_{on} \rho_{on}}.$$

# Компенсатор пружинный



черт. 16

гдв  $G_{
ho}$  - вес аппарата в рабочем состояния с учетом веса обрабативаемого продукта.

Размеры пружин подбираются такими, чтобы

$$P_3 \approx (1.5...2.0) P_2; n \geqslant 2.5; H_0 \leq 5(D-d),$$

где Но - вноота пружини в свободном состоянии ;

// - число рабочих витков пружины ;

Р<sub>3</sub>, d , D - свиа пружини при максимальной деформации, днаметр проволоки и наружный диаметр пружини ( принимаются по ГОСТ 13766-68 ... ГОСТ 13776-68 ).

Висот у ограничительной втулки (6 ) выбирают такой, чтобы предотвратить сопримосновение витков при максимальном сжатии:

$$H_B \gg H_0 - n f_3$$
.

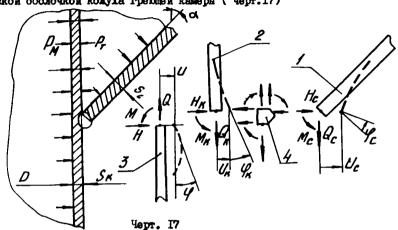
где  $H_{\delta}$  – высота ограничительной втудки 6 ( черт. I6 ) ;

- намольший прогио одного витка ( принимется по гост 13766-68... гост 13776-68 ).

жесткость опорного устройства, состоящего из пружинных компенсаторов, устанавливаемых под все опоры мапы, определяется по формуме

$$Z_{on} = Z n_{on} N_n$$

$$Z = \frac{Z}{n}.$$


Z - жесткость одной пружины ;

Z, - жесткость одного витка пружины ( принимется по гост 13766-68... гост 13776-68 );

Z<sub>00</sub>- жеоткость опорного устройства ( сили, под действием которой аппарет проседает на пружинной опоре на единицу длини).

## 3. PACYET MECT HEPECEYERIUS OCECHAMETPUSHO НАГРУЖЕННЫХ ОБОЛОЧЕК ВРАШЕНИЯ

3.1. Место пересечения конической оболочки сепаратора с пилинарической оболочкой кожуха грекцей камеры ( черт. 17)



3. І. І. Исходные данные

 $D_{j}S_{k}^{-}$  внутренний диаметр и толщина цилиндрической оболочки кожуха грепцей камеры, мм ;

∫с - толщина конической оболочки сепаратора, мм ;
 − половина угла при вершине конической оболочки, град ;

ф - расчетная температура. °C :

 $f_a$  - начальная температура, °C ( $f_a$  = 20 °C);

 $\chi_{\mu}$ ,  $\alpha_{\Gamma}'$  — коэффициент линейного расширения материалов кожуха и сепаратора. I/OC :

 $\mathcal{E}_{\kappa}$ ,  $\mathcal{E}_{\mathcal{C}}$  – модули продольной упругости материалов кожука и сепаратоpa , Mla ;

 $ho_{7}^{
ho}$  — давление в трубном и межтрубном пространствах, МІа;  $Q_{\kappa}$  — осевые нагрузки кожуха и сепаратора, отнесенные к единике длины рассматриваемого сечения, Н/мм;

ГОТ - допускаемое напряжение , МІа. Принимается по ГОСТ 14249-80 шли другой руководящей нормативной докумен-TAHWE BAR KANDON HS DACCUNTURBOMIN NOTABOR.

#### 3.1.2. Вопомогательные величины

З.І.2.І. Для приминираческой оболочия

$$R = \frac{D + S_{R}}{2} ; \qquad S = S_{R} ; \qquad \omega = \sqrt[4]{\frac{2.73R^{2}}{5^{2}}} ;$$

$$B_{N} = \frac{4S}{R} \omega^{3} \qquad B_{Q} = 2\omega^{2} ; \qquad B_{ZZ} = \frac{2R}{5} \omega$$

3.1.2.2. ILER ROHERECKON OGO DO THE 
$$R_{1} = \frac{D}{2} + S_{K} + \frac{S_{c} L_{dS} d}{2}; \qquad S = S_{c}; \qquad \omega_{1} = \sqrt[4]{\frac{2,73}{S^{2}}};$$

$$B_{M} = 4\sqrt{\frac{2,73}{L_{OS} a}}; \qquad B_{M2} = 2; \qquad B_{22} = 2\sqrt{\frac{L_{OS} a}{2,73}};$$

$$C_{M} = B_{M} \omega_{1}; \qquad C_{12} = C_{21} = B_{22} \omega_{1}^{2}; \qquad C_{15} = \frac{1}{5}\alpha \left(\frac{1}{L_{OS} a} + C_{12}\right);$$

$$C_{K} = -\frac{2R_{1} t_{2} d}{SL_{OS} a}; \qquad C_{22} = B_{22} \omega_{1}^{3}; \qquad C_{25} = \frac{1}{5}\alpha L_{22} - \frac{0.3R_{1}}{SL_{OS} a};$$

$$C_{26} = \frac{R_{1}^{2}}{S^{2}L_{OS} cd}.$$

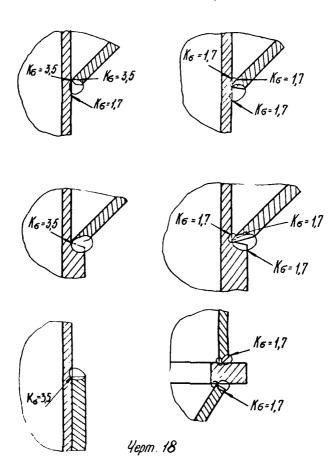
#### З.І.З. Ногоузки

3.1.3.1. Для определения  $\Pi_{\mathbf{c}}$ ,  $\Pi_{\mathbf{c}}$ ,  $\Pi_{\mathbf{k}}$ ,  $\Pi_{\mathbf{k}}$  необходимо решить онстолу живейных алгебранческих уровнений

$$\begin{aligned} & \mathcal{Q}_{22} = \mathcal{C}_{22} \; ; \quad \mathcal{Q}_{23} = -\mathcal{A}_{2} \Big( \mathcal{B}_{12} + \mathcal{A}_{3} \; \mathcal{B}_{11} \Big) \; ; \quad \mathcal{Q}_{24} = -\mathcal{A}_{2} \Big( \mathcal{B}_{22} + \mathcal{A}_{3} \; \mathcal{B}_{12} \Big) \; ; \\ & \mathcal{D}_{2} = \big( \alpha_{K}^{-} \alpha_{C}^{-} \big) \big( f - f_{0} \big) f_{c} \; \mathcal{L}_{K}^{-} \mathcal{Q}_{2} \mathcal{J}_{K}^{-} \mathcal{Q}_{C} \; \mathcal{L}_{C}^{-} \mathcal$$

3.1.3.2. Остальные нагрузки определяться по формулам

$$\begin{split} \mathcal{M} &= -\mathcal{M}_{K} + \frac{S_{C} H_{K}}{sin\alpha} - \frac{R_{I}}{R} \mathcal{M}_{C} + \left(\frac{R_{I}}{R sin\alpha} - \frac{R_{I} sin\alpha}{2R}\right) S_{C} H_{C} + \frac{R_{I}}{R} (R_{I} - R) Q_{C} , \\ \mathcal{H} &= -\mathcal{H}_{K} - \frac{R_{I}}{R} \mathcal{H}_{C} ; \\ Q &= Q_{K} + \frac{R_{I}}{R} Q_{C} . \end{split}$$


### 3 1 4. Расчет прочности

Расчет напряжений, возникающих в конической оболочке (I), производится ис формулам и.4.3., а в цилиндрических оболочнах (2.3) — по формулам и.3.3 приложения I с учетом кактического направления действия нагрузок и толщины S = Si = C.

Оценка прочности обечаек производится по формулам п. І. 7.

Значения коэффициентов  $K_{\sigma}$  принимаются по черт. І8 в зависимости от принятого конструктивного исполнения.

# Схемы соединения оболочек вращения



3.2. Место пер. меняя конической оболочки сепаратора с цилиндрической оболочкой кожужа грекщей камеры, подкрепленное ступенчатой цилиндрической оболочком ( черт. 19 )

На кожуже грепией камери  ${\it Q}$  установлено опорное кольно  ${\it \delta}$  , к которому приваривается нижняя часть сепаратора  ${\it \delta}$  .При расчете грочности этого узла виделени отдельные элементи  ${\it I...9}$  .

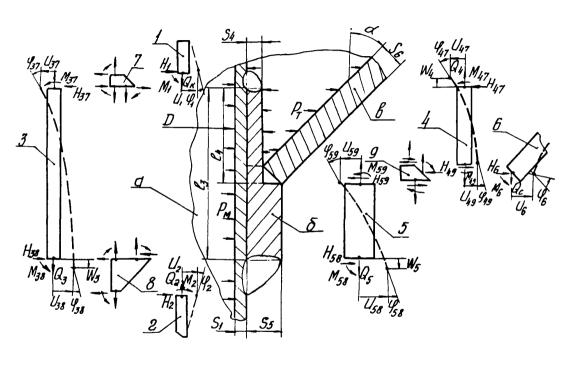
#### 3.2.1. Исходные данные

D — внутренний диаметр кожуха гревщей камеры, мм;  $\int_{1} \cdot \int_{4} \cdot \int_{5} \cdot \int_{6}$  — толщины оболочек кожуха, верхней и нижней члотей, опорного кольца и сепаратора в месте соединенья с кожухом, мм;

 $\ell_3$  .  $\ell_4$  .  $\ell_5$  — высота опорного кольца, его верхней и нюжней частей,

О - половина угла при вершине конической обечайки сепаратора, град :

 $P_{m}$ ,  $P_{T}$  - давления в межтрубном и в трубном пространствах , MIa ;


 $t_{\kappa}$  ,  $t_{g}$  ,  $t_{c}$  ,  $t_{o}$  — средные температуры стенок кожуха, опорного кольца и сепаратора и начальная температура. °C , ( $t_{o}$   $\approx$  20 °C );

 $C(_{K},C(_{Y},C(_{C}$ - коэффициенты линейного расмирения материалов кожух $\tau$ , опорного кольца и сепаратора,  $I/^{C}$ ;

 $E_{\kappa} \cdot E_{g} \cdot E_{c}$  — модули продольной упругости материалов кожуха, опорного кольца и сепаратора, МІа;

 $Q_{\kappa}$  .  $Q_{c}$  - осерью нагрузки кожука и сепаратора, распределенные по срединным окружностям, Н/мм ;

[ 0] - допускаемое напряжение, МПа. Принимается по 10СТ 14249-80 или другой руководящей нормативной документации для каждой из рассчитиваемых деталей.



4epm 19

#### 3.2.2. Вспомогательные величины

3.2.2.I. Для шилиндрических оболочек ( 
$$i = 1.2$$
 )

$$R_{\rm I} = R_2 = \frac{D + S_1}{2}$$
;  $S_1 = S_2$ ;  $\omega_i = \frac{4}{S_1^2} \sqrt{\frac{2.73 R_i^2}{S_i^2}}$ ;

$$\beta_{11}^{(i)} = \frac{4S_i}{R_i} \omega_i^{J}$$
 :  $\beta_{12}^{(i)} = 2\omega_i^2$ :  $\beta_{22}^{(i)} = \frac{2R_i}{S_i} \omega_i$ .

3.2.2.2. Для цил:ндрических оболочек ( /=3.4.5 )

$$R_3 = R_1$$
;  $S_3 = S_1$ ;

$$R_4 = \frac{D_{+2}S_{l} + S_{0}}{2}$$
;  $R_5 = \frac{D_{+2}S_{l} + S_{5}}{2}$ ;

$$B_{II} = \frac{4 \sin \alpha_i^2}{R_i} \varphi_N^{(i)}$$
;  $B_{I2} = 2 \omega_i^2 \varphi_M^{(i)}$ ;

$$B_{I3} = \frac{4 S_i \omega_i^3}{R_i} p_{i3}^{(i)} \qquad B_{I4} = 4 \omega_i^2 p_{i4}^{(i)} \quad .$$

$$B_{22} = \frac{2 R_i \omega_i}{C_i} \varphi_{22}^{(i)}; \quad B_{24} = \frac{2 R_i \omega_i}{S_i} \varphi_{24}^{(i)},$$

rae 
$$\omega_{i} = \sqrt[4]{\frac{2.73 R_{i}^{2}}{S_{i}^{2}}}; \quad \lambda_{i} = l_{i} \sqrt[4]{\frac{2.73}{R_{i}^{2} S_{i}^{2}}}$$

$$\varphi_{11}^{(i)} = \frac{sh\lambda_{i} \, ch\lambda_{i} + Sin\lambda_{i} \, Cas\lambda_{i}}{sh\lambda_{i} - Sin^{2}\lambda_{i}} \qquad : \quad \varphi_{12}^{(i)} = \frac{sh^{2}\lambda_{i} + Sin^{2}\lambda_{i}}{sh^{2}\lambda_{i} - Sin^{2}\lambda_{i}}$$

$$\omega_{13}^{(i)} = \frac{sh\lambda_i \cos\lambda_i + ch\lambda_i \sin\lambda_i}{sh^2\lambda_i - f_{i0}^2\lambda_i}; \quad \omega_{14}^{(i)} = \frac{sh\lambda_i - \sin\lambda_i}{sh^2\lambda_i - f_{i0}^2\lambda_i};$$

$$c_{22} = \frac{sh\lambda_i ch\lambda_i - sin \lambda_i cos\lambda_i}{sh^2\lambda_i - sin^2\lambda_i}$$

$$\frac{D}{24} = \frac{ch\lambda_i \sin \lambda_i - \sinh \lambda_i \cos \lambda_i}{\sinh^2 \lambda_i - \sin^2 \lambda_i} .$$

3.2.2.3. Для конической оболочки ( j = 6 )

$$R = \frac{D}{2} + S_1 + S_5 \cdot \frac{S_0 \cos \alpha}{2} :$$

$$\begin{split} &\omega_{s} = \sqrt[4]{\frac{273R_{o}^{2}}{S_{e}^{2}}}; \qquad B_{H} = 4\sqrt{\frac{273}{Cos\alpha}} \; ; \qquad B_{H} = 2 \; ; \\ &B_{22} = 2\sqrt{\frac{Cos\alpha}{273}} \; ; \qquad C_{H} = B_{H}\omega_{e} \; ; \qquad C_{22}^{(6)} = C_{24}^{(6)} = B_{12}\omega_{e}^{2} \; ; \\ &C_{5}^{(6)} = b_{5}\alpha\left(\frac{1}{Cos\alpha} + C_{12}\right); \quad C_{5}^{(6)} = \frac{2R_{e}t\alpha\alpha}{S_{e}Cos\alpha}; \qquad C_{22}^{(6)} = B_{22}\omega_{e}^{3} \; ; \\ &C_{23}^{(6)} = t_{5}\alpha C_{22} - \frac{O_{3}R_{e}}{S_{e}Cos\alpha} \; ; \qquad C_{24}^{(6)} = \frac{R_{e}^{2}}{S_{e}^{2}Cos\alpha} \; . \end{split}$$

#### 3.2.3. Нагрузки

Для определения нагрузок  $M_1$ .  $M_1$ .  $M_2$ .  $M_2$ .  $M_3$ .  $M_{37}$ .  $M_{38}$ .  $M_{38}$ .  $M_{38}$ .  $M_{47}$ ,  $M_{47}$ .  $M_{49}$ .  $M_{59}$ .  $M_{59}$ .  $M_{58}$ .  $M_{58}$ .  $M_{6}$ .  $M_{6}$ .  $M_{6}$ .  $Q_3$ .  $Q_4$ .  $Q_5$  необходимо решить систему инойных алгеораических уравнения, состоящую из 21 урагнения:

) 
$$M_{1} + M_{37} - S_{0}H_{37} + M_{47} - S_{0}H_{47} + (R_{0} - R_{1})Q_{0} = 0$$
;  
)  $H_{1} - H_{37} - H_{47} = S_{4}(P_{24} - P_{7})$ ;  
)  $M_{2} - M_{38} + S_{5}H_{38} - M_{58} + S_{5}H_{58} + (R_{5} - R_{2})Q_{5} = 0$ ;  
)  $H_{2} + H_{38} + H_{58} = S_{5}P_{M}$ ;  
)  $\frac{B_{11}^{(1)}}{S_{1}^{2}}M_{1} + \frac{B_{12}^{(1)}}{S_{1}^{2}}H_{1} - \frac{B_{12}^{(1)}}{S_{3}^{2}}M_{37} - \frac{B_{13}^{(2)}}{S_{3}^{2}}H_{37} - \frac{B_{13}^{(3)}}{S_{3}^{2}}M_{38} - \frac{B_{14}^{(3)}}{S_{3}^{2}}H_{38} = 0$ ;  

$$(\frac{B_{12}^{(1)}}{S_{1}^{2}} + \frac{B_{12}^{(1)}}{S_{1}^{2}})M_{1} + (B_{12}^{(1)} + \frac{B_{12}^{(2)}}{S_{1}^{2}})H_{1} + \frac{B_{12}^{(2)}}{S_{3}^{2}}M_{37} + B_{22}^{(3)}H_{37} + \frac{B_{14}^{(3)}}{S_{3}^{2}}M_{38} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{24} + \frac{B_{12}^{(3)}}{S_{3}^{2}}M_{37} + \frac{B_{14}^{(3)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}M_{38} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} = 0$$
;  

$$(\frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{2}^{2}}H_{2} + \frac{B_{12}^{(3)}}{S_{3}^{2}}M_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}M_{38} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} = 0$$
;  

$$(\frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{2}^{2}}H_{2} + \frac{B_{12}^{(2)}}{S_{3}^{2}}M_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} = 0$$
;  

$$(\frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{2}^{2}}H_{2} + \frac{B_{12}^{(2)}}{S_{3}^{2}}M_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} = 0$$
;  

$$(\frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{2}^{2}}H_{2} + \frac{B_{12}^{(2)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} = 0$$
;  

$$(\frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{37} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} + \frac{B_{12}^{(3)}}{S_{3}^{2}}H_{38} = 0$$
;  

$$(\frac{B_{12}^{(2)}}{S_{2}^{2}} + \frac{B_{12}^{(2)}}{S_{3}^{2}} + \frac{B_{12}^{(2)}}{S_{3}^{2}} + \frac{B_{12}^{(3)}}{S_{3}^{2}} + \frac{B_{12}^{(3)}}{S_{3}^{2}} + \frac{B_{12}^{(3)}}{S_{3}^{2}} + \frac{B_{12}^{(3)}}{S_{3}^{2}} + \frac{B_{12}^{(3)}}{S_{3}^$$

9) 
$$\frac{E_y B_n^{(n)}}{E_x S_n^{(n)}} M_1 + \frac{E_y B_n^{(n)}}{E_x S_n^{(n)}} H_1 - \frac{B_n^{(n)}}{S_n^{(n)}} M_{n7} - \frac{B_n^{(n)}}{S_n^{(n)}} H_{n7} - \frac{B_n^{(n)}}{S_n^{(n)}} H_{n9} - \frac{B_n^{(n)}}{S_n^{(n)}} M_{n9} = 0$$
;

10) 
$$\left(\frac{B_{11}^{00}}{S_{11}^{00}} + \frac{B_{11}^{00}S_{1}}{S_{11}^{00}}\right) \frac{E_{2}}{E_{1}}M_{1} + \frac{B_{11}^{00}}{S_{11}^{00}} \frac{E_{2}}{S_{11}^{00}}M_{1} + \frac{B_{2}^{00}}{S_{11}^{00}}M_{10} + \frac{B$$

11. 
$$\frac{C_{H}E_{y}}{\xi^{2}E_{c}}M_{c} + \frac{C_{u}E_{y}}{\xi^{2}E_{c}}H_{c} + \frac{B_{u}^{N}}{\xi^{2}}M_{u} + \frac{B_{u}^{N}}{\xi^{2}}H_{u} - \frac{B_{u}^{N}}{\xi^{2}}M_{u} - \frac{B_{u}^{N}}{\xi^{2}}H_{u} - \frac{C_{u}E_{y}}{\xi^{2}E_{c}}Q_{c} - \frac{C_{u}E_{y}}{E_{c}}P_{c},$$

12) 
$$\left(\frac{C_{2a}^{\alpha}}{J_{a}}\frac{S_{a}-S_{b}}{2J_{a}^{2}}(L_{a}^{\alpha})\frac{E_{b}}{E_{c}}M_{a}+J_{ca}^{\alpha}-\frac{S_{a}-S_{b}}{2S_{b}}(L_{a}^{\alpha})\frac{E_{b}}{E_{c}}J_{b}-\frac{B_{a}^{\alpha}}{J_{a}^{\alpha}}M_{a}-J_{a}^{\alpha}J_{b}-J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^{\alpha}J_{b}+J_{a}^$$

13) 
$$\frac{\int_{M}^{M} E_{y}}{\int_{s}^{2} \frac{L_{c}}{L_{c}}} M_{s} + \frac{\int_{M}^{M} E_{y}}{\int_{s}^{2} \frac{L_{c}}{L_{c}}} M_{s} - \frac{\int_{M}^{M}}{\int_{s}^{2} \frac{L_{c}}{L_{c}}} M_{s} - \frac{\int_{M}^{M} E_{y}}{\int_{s}^{2} \frac{L_{c}}{L_{c}}} M_$$

$$\begin{array}{ll} \text{(3)} & \left(\frac{C_{24}}{S_{\pi}} + \frac{S_{\pi}}{2S_{\pi}} - \frac{S_{\pi}}{S_{\pi}} - \frac{S_{\pi}}{E_{\pi}} M_{\pi} + \left(C_{22}^{23} + \frac{S_{\pi}}{2S_{\pi}} C_{\pi}^{23}\right) \frac{E_{\pi}}{E_{\pi}} H_{\pi} + \frac{E_{\pi}}{S_{\pi}} M_{\pi} + E_{\pi}^{23} H_{29} + \\ & + \frac{B_{\pi}^{23}}{S_{\pi}^{23}} M_{\pi} + E_{\pi}^{23} H_{\pi} + \frac{B_{\pi}^{23}}{S_{\pi}^{23}} U_{\pi} = \left(\frac{S_{\pi}}{2S_{\pi}} - \frac{S_{\pi}}{S_{\pi}} + C_{22}^{23}\right) \frac{E_{\pi}}{E_{\pi}} U_{\pi} - \\ & - \left(\frac{S_{\pi}}{S_{\pi}} - \frac{S_{\pi}}{S_{\pi}} + C_{22}^{23}\right) \frac{E_{\pi}}{E_{\pi}} V_{\pi} + \frac{S_{\pi}^{23}}{E_{\pi}} P_{\pi} + \left(\frac{S_{\pi}}{S_{\pi}} - \frac{S_{\pi}}{S_{\pi}} + C_{22}^{23}\right) \frac{E_{\pi}}{E_{\pi}} V_{\pi} - \\ & - \left(\frac{S_{\pi}}{S_{\pi}} - \frac{S_{\pi}}{S_{\pi}} + \frac{S_{\pi}}{S$$

15) 
$$\frac{B_{11}}{S_{2}^{2}} \frac{E_{Y}}{E_{Y}} M_{2} + \frac{B_{12}}{S_{2}} \frac{E_{Y}}{E_{K}} H_{2} + \frac{B_{13}}{S_{5}^{2}} M_{59} + \frac{B_{14}}{S_{5}} H_{59} + \frac{B_{11}}{S_{5}^{2}} M_{58} + \frac{B_{12}}{S_{5}} H_{58} = 0;$$

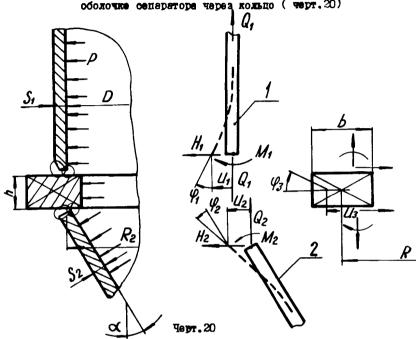
$$\begin{array}{l}
16) \left( \frac{B_{12}}{S_{2}} + \frac{B_{11}^{(2)}S_{5}}{S_{2}^{2}} \right) \stackrel{E_{Y}}{E_{K}} M_{2} + \left( B_{22}^{(2)} + \frac{B_{12}S_{5}}{S_{2}} \right) \stackrel{E_{Y}}{E_{K}} H_{2} - \frac{B_{14}^{(5)}}{S_{5}} M_{59} - B_{24}^{(5)} H_{59} - \frac{B_{12}S_{5}}{S_{5}} M_{59} - \frac{B_{12}S$$

(8) 
$$H_{49} - H_{59} + H_6 = 0$$

19) 
$$\frac{l_3 E_Y}{S_3 E_K} Q_3 - \frac{l_4}{S_4} Q_4 - \frac{l_5}{S_5} Q_5 = Q_3^2 \left( \frac{l_3 R_3 E_Y}{S_3 E_K} P_{n_0} + \frac{l_4 R_4}{S_4} P_7 \right) + \left[ \alpha_n(t_r - t_0) - \alpha_n(t_R - t_0) \right] S_{L_4}^2$$

20) 
$$R_3 Q_3 + R_4 Q_4 = R_4 Q_{K_i}$$

21) 
$$R_5Q_5 - R_4Q_4 = R_6Q_C$$
.  
 $Q_2 = Q_K + \frac{Q_CR_6}{R_4}$ .


З 2 4. Расчет прочности

Растет напряжений, возникающих в цилиндрических оболочках I,2, 3,4.5 ( терт. I9), производится по формулам п.3.3, а в конической 6— по формулам п.4.3. приложения I с учетом фактического напревления действия нагрузок и толивны  $S = S_i - C$ .

Оценка прочности обечаем произволится по формуле п.1.7.

Значения коэффициента  $K_{\mathcal{J}}$  принимаются по черт. 18 в зависимости от принятого конструктивного исполнения.

3.3. Место препления конической оболочки к цилиндрической оболочке сеператора через кольпо (черт. 20)



3.3.1. Исходиме данные

 $\mathcal{O}_{j}$   $\mathcal{S}_{1}$  — внутренний диаметр и толимна цилипарической оболочки комуха гревией камери, ми;

 $\mathcal{S}_2$  - толимы конической оболочки сепаратора, ми:

половена угла пре вершене конической оболочки,

 $R_2$  — радмус срединной поверхи. Оти в основания конической обо-

 $Q_{t}$  — осевая нагрузка цилиндрической оболочки, отнесенная к единице дляни рассматриваемого сечения, и/мм;

//, //, //, — высота, ширина и срединный радиус кольца, мм ;
— расчетная температура, ос;

 $f_o$  - начальная температура, °C (  $f_o = 20$  °C);

 $d_u$   $\cdot d_c$   $\cdot d_\kappa$  — коэффициенты линейного распирения материалов цилиндри ческой оболочки, конической оболочки, сепаратора и кольца,

 $E_{\prime\prime\prime}$ ,  $E_{C}$ ,  $E_{K}^{\prime\prime}$  - модуле продольной упругоста материалов цилиндрической оболочки, конической оболочки сепаратора и кольца, Ма;

Р - расчетное давление, МПа;

[O]- допускаемое напряжение "МIа. Принимается по ГОСТ 14249-80 или другой руководящей нормативной документации для каждой из

рассчитываемых детелей. 3.3.2. Вспомогательные величины 3.3.2.1. Для цилиндрической оболочки I:

$$R_{\rm I} = \frac{D + S_t}{2}$$
;  $\omega_{\rm I} = \sqrt[4]{\frac{2.73 R_t^2}{S_t^2}}$ ;

$$B_{II} = \frac{4 - S_t}{R_t} \omega_t^3$$
;  $B_{I2} = 2 \omega_t^2$ ;  $B_{2I} = B_{I2}$ ;  $B_{22} = \frac{2 R_t}{S_t} \omega_t$ .

3.3.2.2. Для коншческой оболючки 2 :

$$\omega_{z} = \sqrt[4]{\frac{2.73 R_{z}^{2}}{S_{z}^{2}}}; \quad C_{33} = 4\omega_{z} \sqrt{\frac{2.73}{\cos \alpha}}; \qquad C_{34} = 2\omega_{z}^{2};$$

$$\bar{C}_{35} = (C_{34} + \frac{1}{\cos \alpha}) t_{g} \alpha; \quad \bar{C}_{36} = \frac{2R_{z} t_{g} \alpha}{S_{z} \cos \alpha}; \qquad C_{44} = 2\omega_{z}^{3} \sqrt{\frac{\cos \alpha}{2.73}};$$

$$\bar{C}_{45} = C_{44} t_{g} \alpha + \frac{0.3 R_{z}}{S_{z} \cos \alpha}; \quad \bar{C}_{46} = \frac{R_{z}^{2}}{S^{2} \cos \alpha}$$

3.3.3. Harmyarm

3.3.3.1. Для определения  $\mathbb{H}_1$ .  $\mathbb{H}_2$ .  $\mathbb{H}_1$ .  $\mathbb{H}_2$  необходимо решить систему линойных алгебраических уразнаний :

$$a_{11} M_1 + a_{12} M_2 + a_{13} H_1 S_1 + a_{14} H_2 S_2 = b_1$$
,  
 $a_{21} M_1 + a_{22} M_2 + a_{23} H_1 S_1 + a_{24} H_2 S_2 = b_2$ ,  
 $a_{31} M_1 + a_{33} H_1 S_1 + a_{34} H_2 S_2 = b_3$ ,

THE

$$\begin{aligned} a_{N} &= 1 + A_{1} B_{11}; & a_{12} &= -\frac{R_{2}}{R_{1}}; & a_{13} &= A_{1} B_{12} - \frac{h}{2S_{1}}; \\ a_{14} &= \frac{R_{2}h}{2R_{1}S_{2}}; & b_{1} &= (R_{1} - R_{2})(a_{1} - \frac{R_{1}^{2} - R_{2}^{2}}{4R_{1}}\rho); \\ a_{21} &= A_{2} B_{11}; & a_{22} &= C_{33}; & a_{23} &= A_{2} B_{12}; \\ a_{24} &= C_{34}; & b_{2} &= \frac{\overline{C}_{38} S_{2}}{R_{2}} a_{1} R_{1} - (\overline{C}_{36} + \frac{R_{1}^{2} - R_{2}^{2}}{2R_{2}S_{2}} \overline{C}_{35})\rho S_{2}^{2}; \\ a_{31} &= B_{12} + \frac{h}{2S_{1}} B_{11}; & a_{33} &= A_{3} + B_{22} + \frac{h}{2S_{1}} B_{12}; & a_{34} &= A_{3} \frac{R_{2}S_{1}}{R_{1}S_{2}}; \\ b_{3} &= E_{4} R_{1} S_{1}(a_{K} - c_{44})(t - t_{0}) + A_{3} \frac{2R - h}{2R_{2}} h S_{1}, & a_{44} &= A_{4} + C_{44} + \frac{h}{2S_{2}} C_{34}; \\ b_{4} &= E_{6} R_{2} S_{2}(a_{K} - c_{6})(t - t_{0}) + \frac{R_{1}S_{2}}{R_{2}}(\overline{C}_{45} + \frac{h}{2S_{2}} \overline{C}_{35})a_{1} + \\ &+ \left[A_{4} \frac{2R - h}{2R_{2}} \frac{h}{S_{2}} - \overline{C}_{46} - \frac{h}{2S_{2}} \overline{C}_{36} - \frac{R_{1}^{2} - R_{2}^{2}}{2R_{2}S_{2}}(\overline{C}_{45} + \frac{h}{2S_{2}} \overline{C}_{35})\right]\rho S_{2}^{2}; \\ A_{7} &= \frac{E_{8}bh^{3}}{2E_{4}R_{1}R_{2}S_{2}^{2}}; & A_{2} - \frac{E_{6}S_{2}^{2}}{E_{4}S_{1}^{2}}; & A_{3} - \frac{E_{4}R_{1}R_{1}}{E_{8}bh}; & A_{4} - \frac{E_{6}R_{1}R_{2}}{E_{8}bh}. \end{aligned}$$

3.3.3.2. **ОСТАЛЬНИЕ** НАГРУЗКИ 
$$Q_2 = \frac{R_1}{R_2} Q_1 - \frac{R_1^2 - R_2^2}{2R_2} P$$
.

3,3.4. Расчет прочности

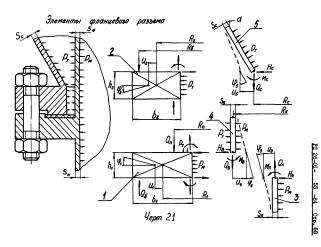
Расчет напримений, возникающих в цилиндрической оболочке I (черт.20), производится по формулам п.3.3, а в коншческой оболочке 2— по формулам п.4.3 приложения I с учетом фактического направления вействия нагрузок и толими S = Si - C.

# Р<u>Д 26-01- 55 -84 Стр. 66</u>

Оценка прочности обечаек производится по формулам п.1.7. Значения коэффициента К $_{\it ff}$  принимаются по черт. 18 в зависимости принятого конструктивного исполнения.

- 4. РАСЧЕТ ФЛАНЦЕВЫХ СОВЛИНЕНИЙ
- 4. I. Фланцевое соединение сепаратора с кожуком грекцей камеры ( черт. 2I )

При расчете на прочность виделяются кольца прямоугольного попе — речного сечения ( I,2 ), цилиндрические оболочки (3,4) и коническая оболочки (5).


4. І. І. Исходине дажине

 $R_1$ ,  $R_2$ ,  $R_6$ ,  $R_6$ ,  $R_6$  — средине радкуси фланцевых колец, прокладих, кожуха гревней камеры, вонической оболочки сепаратора в месте присоединения к фланцевску кельпу и радкус болговой окружности, соответственно, мад;

 $b_1, b_2$  - нирина фланцевых колон, мм ;

h. h. - micora фланцевых комец, мы ;

- $\int_K \int_C \cdot \int_B -$  толирива цилиндрической оболочки комуха (3),конической оболочки сопаратора (5) и верхней части комуха (4), разделяющей трубное и ментрубное пространства, ми;
  - половина угла при вериние конической оболочки сейаратора,
     град :
- $\mathcal{O}_1$   $\mathcal{O}_2$   $\mathcal{O}_3$   $\mathcal{O}_K$   $\mathcal{O}_C$   $\mathcal{O}_S$  коэффициенты инвейного распирения материадов фланцевых колец болгов или инилек, кожуха, сепаратора и верхней части кожуха,  $\mathbb{L}^{OC}$  ;
- $t_q$ ,  $t_s$ ,  $t_c$ ,  $t_c$ ,  $t_s$  расчетная температура фланцевых колец, болтов или впилек, колуха, сепаратора и верхней части колуха, °C;  $t_o$  начальная температура, °C (  $t_o$  = 20 °C );
  - $P_{T_2}$ —давление взонточное ( наружное со знаком минус) в трубном в ментрубном пространствах, МІа ;
  - $E_{i}$ ,  $E_{2}$ ,  $E_{K}$ ,  $E_{C}$ ,  $E_{B}$ ,  $E_{\delta}$  модуль продольной упругости материалов филиценых колец, водуха, сепаретора, верхней члоти колуха и белгор Міа. Принимается по ГОСТ 14249—80 или другой руководящей нормативной документации :



 $Q_g$  - Осевая нагрузка верхней части кожуха, Нумы. Спределяется при расчете гревшей камеры:

 $G_c$  - sec cemaparopa, H;

 $\int_{\mathcal{U}}$  – толинна прокладки, ми;

Б<sub>п</sub> - ширина прокладки в эсне сматия, мм. Для резиновых прокладок принимается приведенная ширина по ССТ 26-373-78;

En - модуль упругости материала прокладки, МПа. Принимается по ОСТ 26-373-78 или пругой руководищей нермативной докумен-

 $y_n$  - имнейная подативость прокладки, ми/н  $(y_n = S_n/2\pi R_n b_n E_n)$ ;

9, [9] - минимальное и допускаемое удельное жавление на прокладку, мпа. Принимается по ОСТ 26-373-78;

— прокладочный коэффициент. Принимается по ост 26-573-78;

//s - количество болтов или шпилек;

 $d_{\delta}$  - memery down war emersky, we:

 $l_{\delta}$  - расчетная динна болта ( $l_{\delta} = h_1 + h_2 + S_n + 0.3 d_{\delta}$ ) ими

 $\int_{\delta}$  — иношадь поперечного сечения болта или инильки, мм<sup>2</sup>, определяется по внутреннему диаметру резьои;

 $y_{\delta}$  — линейная подативьость солтов или шпалек, мм/н ( $y_{\delta}$  =  $-\frac{1}{2} f_{\epsilon} f_{\epsilon} n_{\delta}$ );

[0] допускаемое наприжение для материала болтов или шишлек при температуре 20° С и при расчетной температуре, мім. Принимается по ОСТ 26-373-78 или другой руководищей нормативной документации;

 $Q_{\delta}^{o}$  - yourse sateric contob, H/MM ( $Q_{\delta} \le N \delta f_{\delta} [O]_{\delta}^{20} / 2 \pi R \delta$  );

[0] - допускаемое наприжение, МІа. Принимется по ГОСТ 14249-80 или другой руководимей нормативной документации для кандой из рассчиты насеми деталей.

4.1.2. Помямо расчета коэффициентов  $B_{II}^{K}, B_{I2}^{K}, B_{22}^{K}$  при  $R = R_{K}$ .  $S = S_{K}$ , коэффициентов  $B_{II}, B_{I2}, B_{22}$  при  $R = R_{K}$ .  $S = S_{R}$  по п. приложения I и коэффициентов С<sub>II</sub>, С<sub>I2</sub>, С<sub>I5</sub>, С<sub>I6</sub>, С<sub>2I</sub>, С<sub>22</sub>, С<sub>25</sub>, С<sub>26</sub> по п.4 приложения I при  $R=R_C$ ,  $S=S_C$ , производится вычисление вспомога -

$$\begin{split} J_{1} &= \frac{b_{1}h_{1}}{12}; & F_{1} &= b_{1}h_{1}; \\ J_{2} &= \frac{b_{2}h_{2}}{12}; & F_{2} &= b_{2}h_{2}; \\ A_{3} &= l + \frac{E_{1}F_{1}}{E_{K}R_{K}R_{I}} \left[ B_{2}^{\frac{K}{2}} \frac{\left( B_{2}^{K} \right)^{2}}{B_{0}^{K}} \right]; & A_{2} &= l + \frac{E_{1}F_{1}}{E_{B}R_{K}R_{I}} \left[ B_{2}^{\frac{B}{2}} \frac{\left( B_{12}^{B} \right)^{2}}{B_{0}^{B}} \right]; \\ A_{3} &= l + \frac{E_{2}F_{2}}{E_{C}R_{C}R_{2}} \left( C_{22} \frac{C_{12}}{C_{11}} \right); & B_{1} &= l + \frac{2B_{12}^{K}S_{K}}{B_{11}^{K}h_{I}}; \\ B_{3} &= l + \frac{2C_{2}S_{C}}{C_{11}h_{2}}; & B_{2} &= l + \frac{2B_{12}^{B}S_{0}}{B_{11}^{B}h_{I}}; C_{1} &= \frac{B_{1} + A_{1}B_{2}}{l - A_{1}A_{2}}; \\ C_{2} &= \frac{B_{2} + A_{2}B_{1}}{l - A_{1}A_{2}}; & R_{3} &= \frac{R_{C} + R_{K}}{2}; \\ J_{1np} &= J_{1} \left[ l - \frac{F_{1}h_{1}}{4J_{1}} \left( B_{1}C_{2} + B_{2}C_{1} \right) + \frac{R_{1}R_{K}}{E_{1}J_{1}} \left( \frac{E_{K}S_{K}}{B_{K}^{K}} + \frac{E_{0}S_{0}^{2}}{B_{11}^{B}} \right) \right]; \\ J_{2np} &= J_{2} \left[ l + \frac{F_{2}h_{2}^{2}B_{3}}{4J_{2}A_{3}} \left( l + \frac{2C_{12}S_{C}}{C_{11}h_{2}} \right) + \frac{E_{C}R_{C}S_{C}}{E_{2}J_{2}C_{11}} \right]; \\ \lambda_{Snp} &= 2\pi l J_{0}^{+} \left( R_{S}^{-}R_{n} \right) \left[ \frac{R_{1}(R_{1}^{2}R_{1})}{E_{1}J_{1}np} + \frac{R_{2}(R_{0}^{2}-R_{0})}{E_{2}J_{2}np} \right]. \end{split}$$

# 4.1.3. Расчет нагрузок

4. I. 3. I. При затяжие болгов фланцевого разъема  $Q_c = -\frac{G_c}{2\pi R_c}$ ,  $Q_\kappa = -\frac{G_c}{2\pi R_\kappa}$ ;  $M = -\frac{G_c(R_1 - R_\kappa)}{2\pi R_o}$ ;  $M = -\frac{G_c(R_2 - R_c)}{2\pi R_o}$ ;

1.1.3.2. Приражения нагрузок в расчетном состоянии

$$\begin{array}{ll} Q_{c}^{\prime} = \frac{R_{c}P_{c}}{2}; & Q_{x}^{\prime} = Q_{0} + \frac{R_{c}P_{c}}{2}; \\ M_{\overline{D}} = \frac{R_{c}^{\prime}(R_{1}-R_{c})P_{1}}{2R_{c}}; & M_{\overline{B}} = \frac{R_{c}P_{c}}{2R_{c}}(R_{c}-R_{c}) + \frac{R_{c}P_{c}}{R_{c}}(R_{c}-R_{c})(R_{c}-R_{c}); \\ H_{II} = \frac{E_{i}F_{i}}{R_{i}}(Q_{x}-Q_{x})(I_{c}^{*}-I_{c}) - \frac{Q_{i}E_{i}F_{i}}{E_{c}}Q_{x}^{*} + \left(\frac{E_{i}F_{i}R_{x}}{E_{c}}-I_{h}\right)P_{M}; \\ H_{\underline{D}} = \frac{E_{i}F_{c}}{R_{i}}(Q_{\overline{c}}Q_{x})(I_{\overline{b}}^{*}-I_{\overline{c}}) - \frac{E_{i}F_{i}}{E_{\overline{c}}}(Q_{\overline{c}}Q_{0}^{*}-R_{c}P_{M}+R_{c}P_{c})-I_{h}P_{H}; \\ H_{\underline{D}} = \frac{H_{U}-A_{c}}{I-A_{c}}; & H_{\underline{D}} = \frac{A_{2}H_{1}+H_{2}}{I-A_{c}}; \end{array}$$

$$\begin{split} H_{comp} &= \frac{1}{A_3} \{ \frac{E_2 E_2}{R_2} (d_2 d_2) (t - t_1) - \frac{E_2 E_2}{E_c R_c R_2} (t_2 C_2 C_3) Q_c' \left[ \frac{E_1 R_2}{E_c R_c R_3} (c_2 C_2 C_3) - h_2 \right] P_c^2 \right\}; \\ M_{12} &= M_{11} - \frac{R_8 h_1}{2R_1} (B_2 H_{aup}^+ B_1 H_{Kap}); \triangle_{\overline{+}}^- (h_1 h_1 H_2 h_2 h_3) H_{comp}]; \\ M_{22} &= M_{21} - \frac{R_6 L_3}{R_2} \left[ \frac{G_1}{G_1} Q_c' + \frac{G_1}{G_1} P_1 S_c + \left( \frac{G_1 a_1}{G_1 a_2} + \frac{h_2}{2S_c} \right) H_{comp} \right]; \\ Q_0' &= \frac{\Delta_1 + \lambda_{aup}}{R_2} \frac{E_c^2 H_2}{2} - \left( \frac{R_3 R_3}{R_3} \frac{R_1^2 M_{10}}{E_1 h_{0p}} + \frac{R_2^2 h_{12}}{E_2 J_{2ap}} \right); Q_1' &= \frac{R_3 Q_3'}{R_3} - \frac{R_c^2 P_1}{2R_1} , \\ M_{10p} &= \frac{R_3 Q_3'}{R_2} (R_3 - R_1) + \frac{R_3 Q_3'}{R_2} (R_1 - R_1) + M_{12} ; Q_2' - \frac{M_{10p} R_1^2}{E_2 J_{10p}}; \\ M_{20p} &= \frac{R_3 Q_3'}{R_2} (R_3 - R_2) + \frac{R_3 Q_3'}{R_2} (R_2 - R_3) + M_{22} ; Q_2' - \frac{M_{10p} R_2^2}{E_2 J_{10p}}; \\ H_{\kappa}' &= \frac{E_1 F_1 h_1 C_2}{2R_1 R_2} (h_1' + H_{Kap}); H_{\sigma}' - \frac{E_1 F_1 h_1 C_2}{2R_1 R_2} R_3' + H_{lomp}; M_{g}' - \frac{H_3'}{B_1'} (E_3 S_2^2 H_1' + B_3^2 H_3' S_3); \\ M_{\kappa}' &= -\frac{1}{G_1''} (E_5 S_4^2 H_1' + E_1 H_2' + H_3' K_3'). \end{split}$$

4.1.3.3. Значения нагрузок в расчетном состоянии определяются

IND POTENTIAM:
$$Q_{c} = Q_{c}^{o} + Q_{c}^{i}; \qquad Q_{\kappa} = Q_{\kappa}^{o} + Q_{\kappa}^{i};$$

$$Q_{\delta} = Q_{\delta}^{o} + Q_{\delta}^{i}; \qquad Q_{n} = Q_{n}^{o} + Q_{n}^{i};$$

$$H_{c} = H_{c}^{o} + H_{c}^{i}; \qquad H_{\kappa} = H_{\kappa}^{o} + H_{\kappa}^{i};$$

$$H_{g} = H_{g}^{o} + H_{g}^{i}; \qquad M_{c} = M_{c}^{o} + M_{c}^{i};$$

$$M_{\kappa} = M_{\kappa}^{o} + M_{\kappa}^{i}; \qquad M_{g} = M_{g}^{o} + M_{g}^{i}$$

4 1.3.4. Угим поворота фланцев в расчетном состоянии определяются по формулам:  $\varphi_{j}=\varphi_{j}+{\varphi_{j}}'$ 

 $\varphi_2 = \varphi_2^{\circ} + \varphi_2^{\prime}$ .

4 І.4. Расчет деталей фланцевого разъема производится по формулам п. І. 8.

4. І.5. Расчет прочности цилинпрических обечаск

Расчет напряжений, возникающих в цилипрической оболочке (3), производится по формулам п. 3. 3 приложения I при  $S = S_K - C$ ;

$$Q = Q_{K}$$
;  $M_1 = M_K$ ;  $H_1 = H_K$ ;  $P = P_M$ .

Расчет напряжений, возникающих в цилиндрической оболочке (1). производится по формулам п. 3. 3 приложения I при  $S = S_{e} - C$ 

$$Q = Q_B$$
;  $M_1 = -M_B$ ;  $H_2 = -H_B$ ;  $P = P_M - P_T$ 

 $Q = Q_{B}$ ,  $M_{I} = -M_{B}$ ;  $H_{I} = -H_{B}$ ;  $P = P_{M} - P_{T}$ . Расчет напряжений, возникающих в конической оболочке (5), произ водится по формулам п.4 3 приложения I при  $S = S_c - C$ :

$$Q_1 = Q_{C}$$
;  $M_1 = M_{C}$ ;  $H_1 = H_{C}$ ;  $\rho = \rho_T$ 

Опенка прочности обечаек произволится по формулам п. 1.7.

4 1 6. В случае приварки сепаратора к фланцу через цилиндрическую оболочку достаточно больной длины ( 3, черт. 22) изменится ряд расчетных формуя в приведенной више методике.

Джи цилиндрической оболочки 5 (черт. 22) по формулам п. 3 придожения І имеем:

$$\omega = \sqrt[4]{\frac{2,7JR_c^2}{S_u^2}} ; \quad \beta_{\parallel}^c = \frac{4Su}{R_c} \omega^3;$$

$$\beta_{n2}^c = 2\omega^2; \qquad \beta_{n2}^c = \frac{2Rc}{Su} \omega ;$$

Su - толимна цилиндрической оболочки 5.

Значения вспомогательных величин:

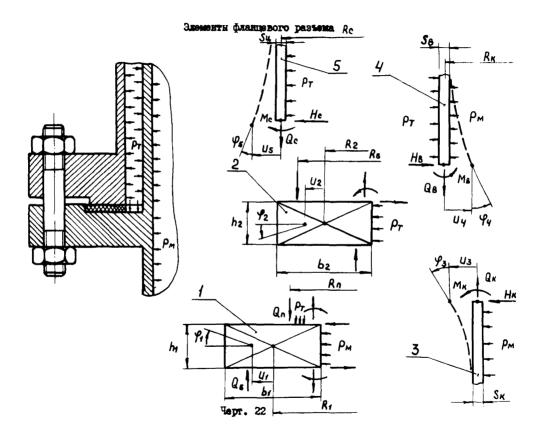
$$A_{3} = 1 + \frac{E_{2} F_{2}}{E_{c} R_{c} R_{2}} \left[ B_{22}^{c} - \frac{\left( B_{12}^{c} \right)^{2}}{B_{11}^{c}} \right] ;$$

$$B_{3} = 1 + \frac{2B_{12}^{c} S_{2}}{B_{11}^{c} \cdot h_{2}} ;$$

$$J_{2np} = J_{2} \left[ 1 + \frac{R_{c} R_{2} E_{c} S_{2}^{u}}{E_{2} \cdot B_{11}^{u} \cdot J_{2}} + \frac{F_{2} \cdot h_{2}^{2} \cdot B_{3}^{2}}{4 \cdot A_{3} \cdot J_{2}} \right] .$$

Расчет нагрузок при затяжие болтов фланцевого соединения производится по формулам:

$$H_{c.np.} = \frac{0.3 E_2 \cdot F_2}{A_3 E_c \cdot S_4 R_2} Q_c^o ;$$


$$M_{22} = M_{21} - \frac{R_c \cdot h_2 \cdot B_3}{2 R_2} H_{c.np.} ;$$

$$M_c^o = -\frac{1}{B_{II}^c} \left( E_c \cdot S_4^2 \cdot \varphi_2^o + B_{I2}^c \cdot H_c^c \cdot S_4 \right) .$$

Приращения нагрузок в расчетном состоянии определяются по фор мулам

$$H_{cnp} = \frac{1}{A_3} \left[ \frac{E_2 F_2}{R_2} (\alpha_2 - \alpha_c) (f_c - f_o) + \frac{0.3 E_2 F_2}{E_c \cdot S_u \cdot R_2} \cdot Q_c' + \left( h_2 - \frac{E_2 \cdot F_2 \cdot R_c}{R_2 \cdot E_c \cdot S_u} \right) \cdot P_T \right] ;$$

$$M_{22} = M_{21} - \frac{R_c \cdot h_2 \cdot B_3}{2R_2} H_{cnp} ;$$



2[ 26-0] - 55 - 84 Crp.7

$$M_{c}' = -\frac{1}{B_{\mu}^{c}} \left( E_{c} S_{\mu}^{2} \varphi_{2}' + B_{r2}^{c} H_{c}' S_{\mu} \right)$$

Остальные расчетные формулы совпадают с ранее приведенными.

4.I.7. В случае приварки сепаратора к фланцу через короткую ци — линдрическую оболочку ( черт. 23), в приведенной методике изменяются отдельные расчетные формулы и вводится ряд дополнительных величин.

Для короткой целиндрической оболочки 6:

$$\omega = \sqrt[4]{\frac{2.73 \, R_c^2}{S_{\mathcal{U}}^2}}$$
 ,  $\lambda = \angle \sqrt[4]{\frac{2.73}{R_c^2 \, S_{\mathcal{U}}^2}}$  , где  $S_{\mathcal{U}}$  ,  $\angle$  — толимна стенки и высота рассматриваемой ци — линдрической оболочки.

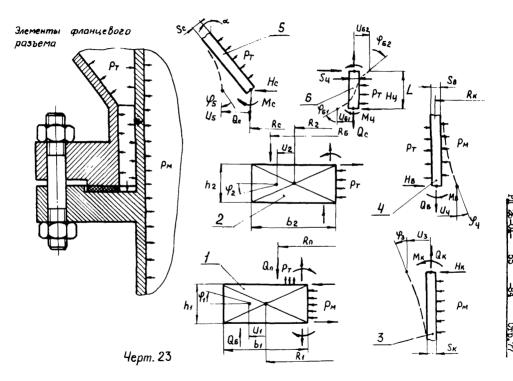
Π**рж** 0.3 ≤ λ ≤ 3 :

$$B_{ii}^{4} = \frac{4S_{ii}\omega^{3}}{Rc} \varphi_{ii} ; \qquad B_{i2}^{4} = 2\omega^{2} \varphi_{i2} ;$$

$$B_{i3}^{4} = \frac{4S_{ii}\omega^{3}}{Rc} \varphi_{i3} ; \qquad B_{i4}^{4} = 4\omega^{2} \varphi_{i4} ;$$

$$B_{22}^{4} = \frac{2Rc\omega}{C_{ii}} \varphi_{22} ; \qquad B_{24}^{4} = \frac{2Rc\omega}{S_{ii}} \varphi_{24} .$$

Значения коэффициентов  $\Phi_{11}, \Phi_{12}, \Phi_{13}, \Phi_{14}, \Phi_{22}, \Phi_{24}$  приведены в га.л. 6 приложения I.


Значения вспомогательных величин :

$$\bar{B}_{11}^{u} = -B_{11}^{u} - C_{11} \frac{Su^{2}}{S_{c}^{2}} : \bar{B}_{12}^{u} = B_{12}^{u} - C_{12} \frac{Su}{S_{c}};$$

$$\bar{B}_{21}^{u} = -B_{12}^{u} + C_{21} \frac{Su}{S_{c}}; \bar{B}_{22}^{u} = B_{22}^{u} + C_{22};$$

$$B_{15}^{u} = C_{15} \frac{S_{u}^{u}}{S_{c}^{2}R_{c}}; B_{16}^{u} = C_{16} \frac{S_{u}^{2}}{R_{c}^{2}};$$

$$B_{25}^{u} = Q_{3} + C_{25} \frac{Su}{R_{c}}; B_{26}^{u} = 1 - C_{26} \frac{SuS_{c}}{R_{c}^{2}};$$



$$\begin{split} \bar{B}_{13}^{u} &= \frac{-g_{3}^{d}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{12}^{u} + g_{4}^{u}}{\bar{g}_{12}^{u}} \frac{\bar{g}_{2}^{u}}{\bar{g}_{1}^{u}} \cdot \bar{g}_{2}^{u}}{\bar{g}_{1}^{u}} \bar{g}_{2}^{u} - \bar{g}_{12}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{13}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} - g_{2}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{13}^{u}} \cdot \bar{g}_{22}^{u}} \cdot \bar{g}_{2}^{u}} \cdot \bar{g}_{1}^{u}} + g_{13}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} - g_{2}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{2}^{u}} + g_{22}^{u}} \cdot \bar{g}_{2}^{u}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} - g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{22}^{u}} + g_{22}^{u}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} - g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{1}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{22}^{u}} + g_{22}^{u}} \frac{\bar{g}_{22}^{u}}{\bar{g}_{22}^{u}} + g_{22}^{$$

$$A_{2}^{*} = B_{12}^{u} - B_{13}^{u} \bar{B}_{14}^{u} + B_{14}^{u} \bar{B}_{24}^{u} ,$$

$$A_{3}^{*} = -B_{13}^{u} \bar{B}_{15}^{u} + B_{14}^{u} \bar{B}_{25}^{u} ;$$

$$A_{4}^{*} = -B_{13}^{u} \bar{B}_{16}^{u} + B_{14}^{u} \bar{B}_{26}^{u} ;$$

$$A_{3} = I + \frac{E_{2} F_{2}}{E_{c} R_{c} R_{2}} \left( \bar{A}_{2} - \frac{\bar{A}_{1} A_{2}^{*}}{A_{1}^{*}} \right) ;$$

$$B_{3} = I + \frac{2\bar{A}_{1} S_{4}}{A_{1}^{*} h_{2}} ;$$

$$J_{2np} = J_{2} \left[ I + \frac{E_{c} S_{4}^{2} R_{c} R_{2}}{E_{2} J_{2} A_{1}^{*}} + \frac{F_{2} h_{2}^{2} B_{3}}{4 A_{3} J_{2}} \left( \frac{2A_{2}^{*} S_{4}}{A_{1}^{*} h_{2}} + I \right) \right] .$$

Расчет нагрузок при загляже болгов фланцевого соединения произво дится по формулам:

$$\begin{split} H_{unp} &= \frac{E_{2} F_{2}}{A_{3} E_{c} S_{u_{1}} R_{2}} \left( \frac{\bar{A_{1}} A_{3}^{*}}{A_{1}^{*}} - \bar{A_{3}} \right) Q_{c}^{\circ} ; \\ M_{22} &= M_{21} - \frac{R_{c}}{R_{2}} \left[ \frac{A_{3}^{*} R_{c}}{A_{1}^{*}} Q_{c}^{\circ} + \left( \frac{A_{2}^{*} S_{u}}{A_{1}^{*}} + \frac{h_{2}}{2} \right) H_{unp} \right]; \\ H_{u}^{\circ} &= \frac{E_{2} F_{2} h_{2} B_{3}}{2 R_{2} R_{c} A_{3}} Q_{c}^{\circ} + H_{unp}; \\ M_{u}^{\circ} &= -\frac{I}{A_{1}^{*}} \left( E_{c} S_{u}^{2} Q_{2}^{\circ} + A_{2}^{*} H_{u}^{\circ} S_{u} + A_{3}^{*} Q_{c}^{\circ} R_{c} \right); \\ H_{c}^{\circ} &= \frac{I}{S_{u}} \left( \bar{B}_{23}^{u} M_{u}^{\circ} + \bar{B}_{24}^{u} H_{u}^{\circ} S_{u} + \bar{B}_{25}^{u} Q_{c}^{\circ} R_{c} \right); \\ M_{c}^{\circ} &= \bar{B}_{I3}^{u} M_{u}^{\circ} + \bar{B}_{I}^{u} H_{u}^{\circ} S_{u} + \bar{B}_{I5}^{u} Q_{c}^{\circ} R_{c}. \end{split}$$

Прирадения нагрузок в расчетном состояния определяются по формулам.

$$H_{4\pi\rho} = \frac{1}{A_3} \left\{ \frac{E_2 F_2}{R_2} \left( \alpha_2 - \alpha_c \right) \left( f_c - f_o \right) + \frac{E_2 F_2}{E_c R_2 S_4} \left( \frac{A_1 A_2^*}{A_1^*} - \frac{A_2 F_2}{F_c R_2 S_4} \right) \right\} = \frac{1}{R_2} \left\{ \frac{E_2 F_2}{R_2 S_4} \left( \frac{A_1 A_2^*}{A_1^*} - \frac{A_2 F_2}{F_c R_2 S_4} \right) \right\} = \frac{1}{R_2} \left\{ \frac{E_2 F_2}{R_2 S_4} \left( \frac{A_1 A_2^*}{A_1^*} - \frac{A_2 F_2}{F_c R_2 S_4} \right) \right\} \right\}$$

$$\begin{split} -\bar{A}_{3} &) Q_{c}' + \left[ \frac{E_{2}F_{2}R_{c}}{E_{c}S_{u}R_{2}} \left( \frac{\bar{A}_{1}A_{4}^{*}}{A_{1}^{*}} - \bar{A}_{4} \right) + h_{2} \right] P_{T} \right]; \\ M_{22} &= M_{21} - \frac{R_{c}}{R_{2}} \left[ \frac{A_{3}R_{c}}{A_{1}^{*}} Q_{c}' + \frac{A_{4}R_{c}}{A_{1}^{*}} P_{T} + \left( \frac{A_{2}S_{u}}{A_{1}^{*}} + \frac{h_{2}}{2} \right) H_{unp} \right]; \\ H_{u}' &= \frac{E_{2}F_{2}h_{2}B_{3}}{2R_{2}R_{c}A_{3}} Q_{2}' + H_{unp}; \\ M_{u}' &= -\frac{1}{A_{1}^{*}} \left( E_{c}S_{u}^{2} Q_{2}' + A_{2}^{*} H_{u}' S_{u} + A_{3}^{*} Q_{c}' R_{c} + A_{u}^{*} P_{T}R_{c}^{2} \right); \\ H_{c}' &= \frac{1}{S_{u}} \left( \bar{B}_{23}^{u} M_{u}' + \bar{B}_{24}^{u} H_{u}' S_{u} + \bar{B}_{25}^{u} Q_{c}' R_{c} + \bar{B}_{35}^{u} P_{T} R_{c}^{2} \right), \\ M_{c}' &= \bar{B}_{13}^{u} M_{u}' + \bar{B}_{14}^{u} H_{u}' S_{u} + \bar{B}_{15}^{u} Q_{c}' R_{c} + \bar{B}_{16}^{u} P_{T} R_{c}^{2}. \end{split}$$

Остальные расчетные формулы совпадают с разве приведенными. 4.2. Двухопорное фланцевое соединение на инильках (черт. 24)

Рассматриваемая конструкция фланцевого соединения состоит из физиневых колен (1.2) с примыканивия к ним пилипарическими обожечкими и проклапки (3). закатой межку ними с помощью впимек (4).

4.2.1. Исходине данные

 $R_1$ ,  $R_2$ ,  $R_{K_2}$ ,  $R_{M}$ ,  $R_{M_2}$ ,  $R_{\delta}$  —средняе раднусы планидряческих оболочек "Фланцевых колец, прокладок в местах их сматия и PARKYC CONTOROR CKDYMHOCTH, COOTROT CTROKED, MM ;

 $S_1$ ,  $S_2$ ,  $S_3$  — толиши циниципачноких оболочек, присоединенных и фланцевым кольцам и прокладки, ми;

 $b_1 \cdot b_2 \cdot b_{nl} \cdot b_{m2}$  -ширина первого и второге фланцевых колец и кро-KARIOK B MOCTAX WX CHATRE, MM ;

 $h_1, h_2, h_K$  — висота колец и канавки на кольце для формирова ния плоскостей общатия прокладок, мм ;

 $d_{\delta}$  — двеметр инильки, мм  $//\delta$  — количество инильки,  $f_{\delta}$  — площедь поперечного сечения инильки,  $f_{\delta}$  Определяется по нутреннему дваметру резьбы ;

 $f_1$ ,  $f_2$ ,  $f_{K1}$ ,  $f_{K2}$ ,  $f_{\delta}$ ,  $f_{\delta}$  — расчетвые температуры целиндрических соолочек, фланцевых колец, пинлек и начальная температура ( $f_{\delta} = 20$  °C), соответственно, °C;

PI 26-01- 55 -84 CTD-81 Двухопорное фисинивое соединение на шпильнах Raz Q.,

*Черт.* 24

 $\mathcal{O}_{i}$ .  $\mathcal{O$ вов пеленирических оболочек фланцевых ко-MAII M MINEMAR. I/OC :

 $E_{i}$ ,  $E_{j}$ ,  $E_{Kl}$ ,  $E_{K2}$ ,  $E_{\delta}$  — модуди продольной упругости материалов цилиндрических оболочек. Фланцевых колеп M MINERAR. MIla :

— нолумь упругости материала прокладки, МІа ;

P — расчетное давление, MIA ;  $[O]_{S}^{20}[O]_{S}^{T}$  допускаемое напряжение для материала шимек при темпера туре 20 °С и при расчетной температуре, МПа. Принимается по ОСТ 26-373-78 жиж другой руководящей нормативной до -EVMORTALIES 1

[q] - допускаемое удельное давление на прогнадку, Міа. Принимается по ОСТ 26-373-78 з

- минимальное удельное давление, необходимое для обжатия прокдалки, MIa. Принимается по ОСТ 26-373-78 :

прокладочный коэффициент. Принимается по ОСТ 26-373-78;

[d] - допускаемое напряжение, MIa. Принимается по ГОСТ 14249-80 или другой руководящей нормативной документации для каждой ER DROCTETHEROMEN HOTERED.

4.2.2. Вичисление вспомогательных величих

Для пеленгонческой оболочки примежающей и фланцу I.

$$\omega_{i} = \sqrt[4]{\frac{2.73R_{i}^{2}}{\int_{i}^{2}}}; \qquad \qquad B_{II}' = \frac{4S_{i}\omega_{i}^{3}}{R_{i}};$$

$$B_{I2}' = 2\omega_{i}^{2}; \qquad \qquad B_{22}' = \frac{2R_{i}\omega_{i}}{S_{i}}.$$

Ден инжинариче свой оболочки, применканцей к фланцу 2, 
$$\omega_2 = \sqrt{\frac{2.73\,R_3^3}{S_z^2}}; \qquad B_{II} = \frac{4\,S_z\,\omega_2}{R_z};$$
 
$$B_{I2} = 2\,\omega_2^2; \qquad B_{22} = \frac{2\,R_z\,\omega_2}{S_z}.$$
 Дея колеці, и 2 
$$I_1 = \frac{b_1\,h_1}{I_2}; \qquad F_1 = b_1\,h_1;$$
 
$$I_2 = \frac{b_2\,h_2}{I_2}; \qquad F_2 = b_2\,h_2.$$
 Для шимен 
$$I_3 = \frac{b_2\,h_2}{I_2}; \qquad I_4 = \frac{b_2\,h_2}{I_2}; \qquad I_5 = \frac{b_3\,h_2}{I_5}.$$
 Для прок малок 
$$I_5 = \frac{S_R}{I_5} + \frac$$

волится по формулам:

$$Q_1 = \frac{R_1 P}{2};$$

$$Q_{n_1} = Q_{n_{10}} + Q_{n_{11}};$$

$$Q_{n_2} = Q_{n_{20}} + Q_{n_{21}};$$

$$Q_{n_3} = Q_{n_{20}} + Q_{n_{21}};$$

Значения прирешений нагрузов Об. Опи. Опи. И . Н. . М. . Н. . Воз никапыну при переходе фланцевого разъема из состояния затяжки в расчетное осотояние, определяются при решении следующей системы линей ... них алгебранческих уравнений:

1) 
$$Q_{5}$$
,  $R_{5}$  -  $Q_{n_{H}}R_{n_{1}}$  -  $Q_{n_{21}}R_{n_{2}} = \frac{PR_{2}^{2}}{2}$ ,  
2)  $(A_{2}+A_{3})Y_{5}Q_{5}$ ,  $R_{5}+A_{2}Y_{n_{1}}Q_{n_{11}}R_{n_{1}}+A_{3}Y_{n_{2}}Q_{n_{21}}R_{n_{2}}=-\frac{A_{2}+A_{3}}{2J_{1}}\Delta_{+}$ ;

3) 
$$-A_3 \times_6 Q_5 R_5^2 -A_5 \times_{R_2} Q_{122} R_5^2 B_{11}' M_1 + B_{12}' H_2 S_1 - A_5 B_{11}' M_2 + A_6 B_{12}' H_2 S_2 - A_5 \Delta_6 \sqrt{2_{JJ}}$$
;

4) 
$$\frac{R_{2}-R_{2}}{R_{1}}Q_{2}R_{3} - \frac{R_{2}-R_{2}}{R_{1}}Q_{111}R_{3} + \frac{R_{2}-R_{2}}{R_{1}}Q_{221}R_{22} + (1+A_{2}B_{11}')M_{1} + (A_{2}B_{2}'-R_{3})H_{1}S_{1} = \frac{R_{1}-R_{2}}{R_{1}}PR_{1}$$

5) 
$$(B'_{12} + A_0 B'_{13})M_1 + (B'_{22} + A_0 B'_{14} + \frac{A_0 R_1}{S_1})^2 + S_1 = E_1 R_1 S_1 (\alpha_{K1} - \alpha_1)(t_1 - t_0) + + (A_0 \frac{(2R_{K1} - t_0)^2}{2R_1^2} + 2R_0 S_1 / 2R_2^2) + \frac{1}{S_1} (\alpha_{K1} - \alpha_2)(t_1 - t_0) + \frac{1}{S_1} (\alpha_{K1} - \alpha_2)(t_1 - \alpha_2)(t$$

6) 
$$\frac{R_{00}-R_{0}}{R_{0}}(l_{0}, R_{0} + \frac{R_{00}-R_{00}}{R_{0}^{2}}(l_{DH}R_{0} - \frac{R_{00}-R_{00}}{R_{0}}(l_{DH}R_{00} + (l_{1} + R_{0} l_{0}^{2})M_{0} + (l_{2} - R_{0} l_{0}^{2})R_{0}l_{0} - \frac{R_{00}-R_{0}}{2}PR_{0} - PR_{0}}{2}PR_{0}$$

7) 
$$(B_{aa}^{2} + I_{b}B_{ab}^{2})M_{a} - (B_{aa}^{2} + I_{b}B_{aa}^{2} + \frac{I_{b}T_{c}R_{a}}{J_{b}})II_{a}J_{a} =$$

$$-E_{a}R_{a}S_{a}(0(-\alpha_{co})(I_{a} - I_{b}) + [Q_{b}S - I_{b}]\frac{(L^{2}R_{co} - J_{b})}{J_{c}}I_{b} - [P_{c}R_{a}^{2}]$$

The 
$$\Delta_t = |\alpha_s(t_s - t_o) - \alpha_{\kappa_s}(t_{n_s} - t_o)|h_s$$
;  $A_t = \frac{E_t S_t^2}{E_t S_t^2}$ ;

$$A_2 = \frac{F_1 S_1^2}{R_2 - G_2} 2\pi ; \qquad A_3 = \frac{F_1 S_1^2}{R_2 - G_2} 2\pi ;$$

$$A_{i} = \frac{E_{K_{i}}I_{i}}{F_{K_{i}}F_{K_{i}}}; \qquad A_{i} = \frac{E_{i}S_{i}R_{K_{i}}}{F_{K_{i}}F_{K_{i}}};$$

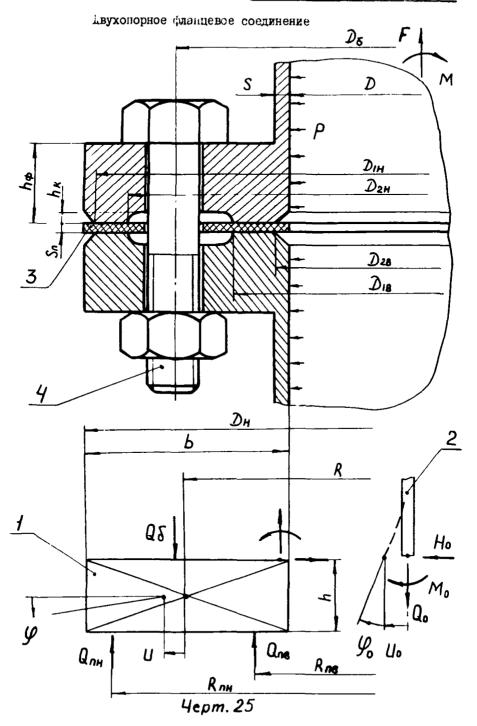
$$A_6 = \frac{E_{K_0} I_2}{F_0 E_0 E_0}; \qquad A_7 = \frac{E_0 S_2 R_{K_0}}{F_0 E_0};$$

$$A_0 = \frac{h_1}{2S} \qquad \qquad Exe I = \frac{h_2}{2S}$$

$$A_0 = \frac{h_2}{2S} \qquad \qquad A_0 = \frac{h_2}{2S} \qquad \qquad Exe I = \frac{h_2}{2S} \qquad \qquad Exe$$

4.3. Двухопорное фланцевое соединение на болтах (черт. 25)

Рассматриваемая конструкция фланцевого соединения состоит из фланцевых колец (I) с присоединенными к ним пилиндрическими оболочками (2) и прокладки (3), зажатой между кольцами с помощью болтов (4).


#### 4.3.1. Исходние данные

О.О., О.Н. О.О.Н. О.В. О.В. О.Б. - внутренний диаметр цилиндрической оболочки, наружний диаметр фланцевого кольца, наружний и внутренний диаметры наружной опорной части прокладки, наружный и внут - ренний диаметры внутренней опорной части прокладки и диаметр болтовой окружности, соответственно, мм;

S ,  $S_n$  — толимна имлиндрической оболочки и прокладки, мм ;  $h_\phi$  ,  $h_\kappa$  — высота фланца и кананки в нем, мм ;  $d_\delta$  — диалетр болта, мм ;

t ,  $t_{\varphi}$  ,  $t_{\delta}$  .  $t_{o}$  - расчетная температура цилиндрической оболочки, фланца, болтов и начальная температура.  $^{\circ}$ C (  $t_{o}$  = 20  $^{\circ}$ C ) ;

- X,  $X_{\varphi}$ .  $X_{\delta}$  коэффициенты линейного расширения материалов цилинд—рической оболочки, фланца и болтов,  $I/{}^{\circ}C$ :
- Е , Εφ. Ες , Επ модули продольной упругости материалов цилиндрической оболочки, фланца, болтов и прокладжи, МПа . Принимаются по ГОСТ 14249-80,ОСТ 26-373-78 или другой руководящой нормативной документации :
- [0] , [0] , допускаемое напряжение для материала болгов при температуре 20 °C и при расчетной температуре, МПа.Прини мается по ОСТ 26-373-78 или другой руководящей норма тивной документации;
  - [О] допускаемое напряжение. МПа. Принимается по
    гост 14249-80 или другой руководящей нормативной документации для каждой из рассчитываемых деталей:



9, [9] - минимальное и допускаемое удельное давление на прокладку, МПа. Принимается по ОСТ 26-373-78;

прокладочний коэффициент. Принимается по ОСТ 26-373-76;

расчетное давление, МПа;

внешняя нагрузка, растягивающая фланцевое соединение
 ( схимающая со знаком минус ), Н;

 — внешний изгибающий момент, действующий на фланцевое соединение. Н•мм.

#### 4.3.2. Рекоменлации по конструированию

ири выборе наружного диаметра и толщини фланцевых колец необходимо удовлетворить следующее условия:

$$\frac{D_{H}}{D} \leqslant 2 , \qquad \frac{h}{b} \geqslant 0.25 .$$

$$h = h_{\varphi} - h_{K} , \qquad b = \frac{D_{H} - D}{2} .$$

При выборе болтов и площади прокладки, неходящейся в зоне сжатия, необходимо удовлетворить следующие условия:

$$\frac{Q_{\delta} R_{\delta}}{R_{RB} b_{RB} + R_{RH} b_{RH}} \geqslant q , \quad \frac{Q_{\delta} R_{\delta}}{R_{RB} b_{RB} + R_{RH} b_{RH}} \leqslant [q] ,$$

$$Q_{\delta} \leqslant \frac{n_{\delta} f_{\delta} [O]_{\delta}^{20}}{2\pi R_{\delta}} ; \quad f_{\delta} = \frac{\pi d_{\delta}^{2}}{4} ; \quad R_{\delta} = \frac{D_{\delta}}{2} ;$$

$$R_{RB} = \frac{D_{IB} + D_{2B}}{4} ; \quad b_{RB} = \frac{D_{IB} - D_{2B}}{2} ;$$

$$R_{RH} = \frac{D_{IH} + D_{2H}}{4} ; \quad b_{RH} = \frac{D_{IH} - D_{2H}}{2} .$$

- 4.3.3. Расчет нагрузок
- 4.3.3.1. При затяжке болтов нагрузки составных деталей фланцевого ссединения определяются по формулам:

$$Q = 0$$
,  $H_0 = P_2 ES \Psi^{\circ}$ ,  $M_0 = -P_4 ES R_0 \Psi^{\circ}$ ,

$$\begin{split} Q_{nB}^{\circ} &= \frac{b_{nB}}{R_{nB}b_{nB} + R_{nN}b_{nN}} \left[ Q_{b}^{\circ} R_{b}^{\circ} - \frac{2E_{o} (R_{nN}B_{nB})R_{nN}b_{nN}}{S_{n}} (\rho^{\circ})^{\circ} \right], \\ Q_{nN}^{\circ} &= \frac{b_{nN}}{R_{nB}b_{nB} + R_{nN}b_{nN}} \left[ Q_{b}^{\circ} R_{b}^{\circ} + \frac{2E_{o} (R_{nN}-R_{nB})R_{nB}b_{nB}}{S_{n}} (\rho^{\circ})^{\circ} \right], \\ R &= \frac{b_{nN}}{4} ; \quad R_{o} = \frac{D+S}{2} ; \quad \omega = \sqrt[4]{\frac{2}{2} \frac{73R_{o}^{2}}{S^{2}}}; \\ P_{t} &= \frac{h\omega}{R_{o}} ; \quad P_{z} &= \frac{ERS}{E_{o}R_{o}b} ; \quad P_{z} &= \frac{P_{c} (1+P_{c})}{2\omega^{2} (P_{t}+P_{c})} , \\ P_{q} &= \frac{P_{c} (2+P_{c}) + P_{c}}{4(\omega^{3} (P_{t}+P_{c})} ; \quad A_{o} &= \frac{3P_{c}}{P_{o}^{3}} \frac{2P_{c} + 2P_{c}^{2} + P_{c}^{3} + P_{c}}{P_{c} + P_{c}} ; \\ A_{n}^{\circ} &= \frac{24E_{n}R(R_{nN}-R_{nB})R_{nB}b_{nB}R_{nB}b_{nB}R_{nB}b_{nB}}{R_{nB}b_{nB}^{3} + R_{nB}b_{nB}}; e_{\delta} &= R_{\delta} - \frac{R_{nB}^{2}b_{nB}^{4} + R_{nB}b_{nB}}{R_{nB}b_{nB}^{2} + R_{nB}b_{nB}} , \\ \varphi^{\circ} &= \frac{12RRSE_{c}}{E_{o}bR_{c}^{3} (1+A_{o}+A_{n})}. \end{split}$$

4.3.3.2. Приращения нагрузов вызванные внешники воздействиями на фланцевое соединение, определяются по формулам:

$$\begin{split} Q_{o}^{'} &= \frac{\rho_{no}}{2R_{o}} \frac{0}{\epsilon}, \qquad H_{o}^{'} = \frac{\rho_{s}}{2} ES\Psi^{'} + \frac{\rho_{s}}{2} \left[ 0.3Q_{o}^{'} - (1-P_{o}^{2})PR_{o}^{+}Q_{+} \right], \\ M_{o}^{'} &= -P_{o}ESR_{o}\Psi^{'} + P_{o}\left[ (1-P_{o}^{2})PR_{o}^{2} - 0.3Q_{o}^{'}R_{o} - Q_{c}R_{o} \right], \\ Q_{ab}^{'} &= \frac{b_{ab}}{f_{ab}} \left( \frac{\Delta_{t} - 2e_{o}\Psi^{'}}{2\pi Y_{b}^{2}} - Q_{o}^{'}R_{o} \right), \quad Q_{ab}^{''} &= \frac{b_{ab}}{f_{ab}} \left( \frac{\Delta_{t} + 2e_{o}\Psi^{'}}{2\pi Y_{b}^{2}} - Q_{o}^{'}R_{o} \right), \\ Q_{b}^{'} &= \frac{\Delta_{t} - 2(R_{o} - R_{no})\Psi^{'}}{2\pi Y_{b}^{2}R_{o}^{2}} - \frac{f_{bo}}{R_{o}} \frac{Q_{ab}^{'}}{R_{o}^{2}}, \end{split}$$

The 
$$P_{np} = P + \frac{1}{\Re D^{2}} (F + \frac{2M}{R_{o}}); \quad Q_{+} = (\alpha_{\varphi} - \alpha)(f - f_{o}) ES;$$

$$\Delta_{+} = 2h_{\varphi} [O_{\varphi}(f_{\varphi} - f) - O_{\delta}(f_{\delta} - f_{o})]; \quad l_{\delta} = 2h_{\varphi} + S_{n} + Q_{\beta} O_{\delta};$$

$$Y_{\delta} = \frac{l_{\delta}}{E_{\delta} f_{\delta}} N_{\delta}; \quad f_{n} = \frac{S_{n}}{2\Re Y_{\delta} E_{\sigma}}; \quad f_{np} = f_{\delta n} + R_{nB} b_{nB} + R_{nH} b_{nH};$$

$$C_{e} = R_{\delta} - R_{nB} + \frac{R_{nM} - R_{nB}}{f_{\delta n}} R_{nM} b_{nH}; \quad C_{H} = R_{nH} - R_{\delta} + \frac{R_{nH} - R_{nB}}{f_{\delta n}} R_{nB} b_{nB};$$

$$C_{o} = \frac{R_{nB} b_{nB} f_{nM}^{2} b_{nH} + R_{\delta} f_{\delta n}}{f_{np}} - R_{o}; \quad \overline{C}_{\delta} = \frac{R_{nB} b_{nB} (R_{\delta} - R_{nB}) - R_{nH} b_{nH} (R_{nH} - R_{\delta})}{f_{np}};$$

$$A_{\delta} = \frac{24R_{\delta} [R_{nB} b_{nB} (R_{\delta} - R_{nB}) + R_{nB} b_{nB} (R_{\delta} - R_{nB})}{f_{n}};$$

$$P_{\delta} = \frac{P_{n}}{R_{o}} (P_{n} + P_{2}); \qquad P_{\delta} = \frac{Q_{\delta}}{2W^{2}} (P_{n} + P_{2});$$

$$M' = P_{\delta} (1 + P_{\delta}) [(1 - P_{\delta}) PR_{\delta} - Q_{\delta} - Q_{\delta} - Q_{\delta} Q_{\delta}'] R_{\delta}^{2} + \frac{\overline{C}_{\delta} \Delta_{\delta}}{2\pi Y_{\delta}} + Q_{\delta}' R_{\delta} C_{\delta},$$

$$Q' = \frac{12RM'}{F_{\delta} b_{\delta} h^{3} (1 + A_{\delta} + \overline{A}_{n} + A_{\delta})}.$$

4.3.3.3. Нагрузки деталей фланцевого соединения в расчетном состоянии определяются по формулам:

$$Q_{\delta} = Q_{\delta}^{\circ} + Q_{\delta}^{\prime}; \qquad Q_{n\theta} = Q_{n\theta} + Q_{n\theta}; \qquad Q_{nH} = Q_{nH} + Q_{nH};$$

$$Q_{o} = Q_{o}^{\prime}; \qquad H_{o} = H_{o} + H_{o}^{\prime}; \qquad M_{o} = M_{o}^{\circ} + M_{o}^{\prime}.$$

Угод поворота фланца определяется по формуле

$$\varphi = \varphi^{\bullet} + \varphi'$$

4.3.4. Расчет прочности излинарической оболочки производится по формулам п.1.7. Расчет деталей фланцевого соодинения — по формулам п.1.8 при Рт = Р.

### 55 -84

#### TEMPOREHUR. Обязательное

#### XRILATEIL XIMEYEAROIDIN B RUHEMRITAH N NIVILAMINOGEIL

#### I. Кольцевая пластина ( черт. I )



I.I. EBODMATINE:
$$W = \frac{R^2}{D} (A_H Q R + A_{I2} M + A_{I3} M_1 + A_{I4} \rho R_1^2) ,$$

$$\varphi = \frac{R}{D} (A_{I2} Q R + A_{22} M + A_{23} M_1 + A_{24} \rho R_1^2) ,$$

$$\varphi_1 = \frac{R}{D} (A_{I3} Q R + A_{23} M + A_{33} M_1 + A_{34} \rho R_1^2) ,$$

$$U = \frac{R}{D_{M}} (A_{22} H + A_{23} H_1) ,$$

$$U_1 = \frac{R}{D_{M}} (A_{23} H + A_{33} H_1) .$$

#### 1.2. Вспомогательные величины:

$$A_{H} = \frac{(1-\beta_{n}^{2})(3+1)(1-1)(\beta_{n}^{2}+4\beta_{n}^{2})}{8(1-1)^{2}(\beta_{n}^{2}+4\beta_{n}^{2})}; \quad A_{H2} = \frac{(1-1)(\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2})}{2(1-1)^{2}(\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2}-2\beta_{n}^{2}};$$

$$A_{13} = \frac{1 - y - 2An}{2(1 - y^{2})\beta_{n}^{2}}; A_{14} = \frac{(1 - \beta_{n}^{2})[(1 - y)[5 + y - (7 + 3y)]\beta_{n}^{2}] - 4An(3 + y + 4An)}{64(1 - y^{2})\beta_{n}^{2}};$$

$$A_{22} = \frac{1 + y + (1 - y)\beta_{n}^{2}}{(1 - y^{2})(1 - \beta_{n}^{2})}; A_{23} = \frac{2}{(1 - y^{2})(1 - \beta_{n}^{2})};$$

$$A_{24} = \frac{3 + y - (1 - y)\beta_{n}^{2} + 4An}{8(1 - y^{2})}; A_{33} = \frac{1 - y + (1 + y)\beta_{n}^{2}}{(1 - y^{2})(1 - \beta_{n}^{2})};$$

$$A_{34} = \frac{1 - y + \beta_{n}^{2}(1 + 3y + 4An)}{8(1 - y^{2})\beta_{n}^{2}}; A_{n} = \frac{(1 + y)\beta_{n}^{2}L_{n}\beta_{n}}{1 - \beta_{n}^{2}};$$

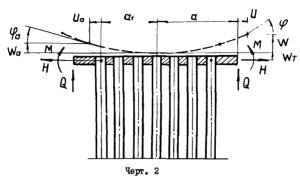
$$D = \frac{ES^{3}}{12(1 - y^{2})}; D_{M} = \frac{ES}{1 - y^{2}}; \beta_{n} = \frac{R}{R}.$$

Значения коэффициентов  $\Lambda_{11}$ ,  $\Lambda_{12}$ ,  $\Lambda_{13}$ ,  $\Lambda_{14}$ ,  $\Lambda_{22}$ ,  $\Lambda_{23}$ ,  $\Lambda_{24}$ ,  $\Lambda_{33}$ ,  $\Lambda_{34}$  $\gamma = 0$  3 приведени в таби. I. ΠD#

- І.З. Расчет напряжений, возникающих на наружном и внутреннем контурах пластины, производител по формулам:
- мембрениме напряжения в радиальном напревленив  $\mathcal{O}_{M} = \frac{\mathcal{H}_{2}}{S}$ ; — мемограния  $G_M = -\frac{II}{S}$ ,  $G_M = -\frac{II}{S}$ — взгисние непряжения на верхней и нижней  $G_U = \frac{1}{7}\frac{G}{S^2}$ ,  $G_U = \frac{1}{7}\frac{G}{S^2}$
- $O_{u} = \pm \frac{\delta M}{52}$ :

- касательные напряжения на торцах 
$$\mathcal{T} = \frac{Q}{S}$$
,  $\mathcal{T} = \frac{Q}{S}$ .

Знесь  $Q_1 = \frac{R}{R}$ ,  $Q_2 + \frac{R_1^2 - R^2}{2R}$ .


Тебянца I Значения коэффициентов  $A_{II}, A_{I2}, A_{I3}, A_{I4}, A_{22}, A_{23}, A_{24}, A_{33}, A_{34}$ 

| $\beta_n$                            | A II                                           | A 12                                      | A I3                                      | A <sub>I4</sub>                                          | A <sub>22</sub>                          | A <sub>23</sub>                          | A <sub>24</sub>                                     | A 33                                      | A <sub>34</sub>                                     |
|--------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| Extension I ,00                      | <u>I-β</u> ,<br>0.9Ι                           | <u>I</u><br>0.9I                          | I<br>0.9I                                 | $\frac{(I-\beta_0)^2}{I.82}$                             | $\frac{I}{0.9I(I-\beta_n)}$              | <br>0.9Ι(Ι- <b>β.)</b>                   | <u>I-β</u> ,<br>I,82                                | <u>Ι</u><br>0,9Ι(Ι-βπ                     | <u>Ι - β</u> ,<br>Ι .82                             |
| 0.99                                 | 0.0112                                         | 1,106                                     | I,II4                                     | 0,000055                                                 | 109,70                                   | 110,40                                   | 0,00549                                             | 111,20                                    | 0,00553                                             |
| 0,98                                 | 0,0227                                         | 1,113                                     | 1,129                                     | 0,000223                                                 | 54,70                                    | 55,50                                    | 0,01097                                             | 56,30                                     | 0,01113                                             |
| 0,97                                 | 0,0345                                         | 1,121                                     | I,145                                     | 0,000506                                                 | 36,40                                    | 37,20                                    | 0,01645                                             | 38,00                                     | 0,01680                                             |
| 0,96                                 | 0,0467                                         | I 128                                     | 1,161                                     | 0,000908                                                 | 27,30                                    | 28,00                                    | 0,02190                                             | 28,90                                     | 0 02260                                             |
| 0,95                                 | 0,0593                                         | r 136                                     | I,178                                     | 0,001430                                                 | 21,80                                    | 22,50                                    | 0,02740                                             | 23,40                                     | 0,02840                                             |
| 0.94                                 | 0,0723                                         | I,I44                                     | 1 195                                     | 0,002080                                                 | 18,10                                    | 18,90                                    | 0 03280                                             | 19,80                                     | 0,03430                                             |
| 0 93<br>0 92<br>0 91<br>0 90<br>0 88 | 0,0957<br>0,0996<br>0,1139<br>0,1287<br>0,1597 | I 152<br>I 160<br>I 168<br>I 177<br>I 194 | I 212<br>I 230<br>I 248<br>I 267<br>I 306 | 0,002850<br>0,003760<br>0,004800<br>0,005970<br>0,008760 | 15,50<br>13,50<br>12,00<br>10,80<br>8,97 | 16,30<br>14,30<br>12,80<br>11,60<br>9,74 | 0 03830<br>0 04370<br>0 04920<br>0 05460<br>0 06540 | 17,20<br>15,20<br>13,70<br>12,50<br>10,70 | 0,04030<br>0,04640<br>0,05260<br>0,05890<br>0,07170 |
| 0,86                                 | 0,1928                                         | 1,212                                     | 1,347                                     | 0,012140                                                 | 7,67                                     | 8,44                                     | 0,07620                                             | 9,48                                      | 0,08500                                             |
| 0,84                                 | 0 2283                                         | 1,231                                     | 1,391                                     | 0,016170                                                 | 6,70                                     | 7,46                                     | 0.08700                                             | 8,56                                      | 0 09880                                             |
| 0,82                                 | 0,2662                                         | 1,250                                     | I.437                                     | 0,020870                                                 | 5,94                                     | 6,71                                     | 0,09770                                             | 7,85                                      | 0,11300                                             |
| 0,80                                 | 0,3069                                         | 1,270                                     | I,486                                     | 0,026300                                                 | 5,34                                     | 6,11                                     | 0,10840                                             | 7,31                                      | 0,12790                                             |

Продолжение табл. І

| $eta_{\it n}$ | AII   | A <sub>I2</sub> | <b>A</b> 13 | A <sub>I4</sub> | A <sub>22</sub> | A <sub>23</sub> | A <sub>24</sub> | A 33 | A <sub>34</sub> |
|---------------|-------|-----------------|-------------|-----------------|-----------------|-----------------|-----------------|------|-----------------|
| 0,78          | 0,351 | 1,291           | 1,539       | 0,0325          | 4,84            | 5,61            | 0.119           | 6,88 | 0,143           |
| 0.76          | 0,398 | 1,313           | I,594       | 0,0395          | 4,43            | 5,20            | 0,130           | 6,53 | 0,159           |
| 0.74          | 0,448 | 1,335           | I.653       | 0.0474          | 4.09            | 4,86            | 0,140           | 6,26 | 0,176           |
| 0,72          | 0,503 | 1,359           | 1,716       | 0,0563          | 3,79            | 4,56            | 0,151           | 6,05 | 0,194           |
| 0.70          | 0.562 | 1,384           | I,784       | 0,0662          | 3,54            | 4 3I            | 0,161           | 5.88 | 0.515           |
| 0,68          | 0.626 | I.409           | I.857       | 0 0773          | 3,32            | 4,09            | 0,172           | 5,75 | 0,232           |
| 0.66          | 0,695 | 1,436           | I,935       | 0,0895          | 3,12            | 3,89            | 0,182           | 5,66 | 0,253           |
| 0,64          | 0,771 | I 464           | 2,019       | 0,1031          | 2,95            | 3,72            | 0 193           | 5,60 | 0,275           |
| 0 62          | 0_853 | 1,494           | 2,110       | 0,1182          | 2,80            | 3,57            | 0,203           | 5 57 | 0,298           |
| 0 60          | 0 943 | 1,525           | 2,209       | 0,1348          | 2,66            | 3,43            | 0,213           | 5 57 | 0,323           |
| 0.58          | 1.041 | I_557           | 2,316       | 0,1533          | 2,54            | 3,31            | 0 224           | 5,60 | 0,350           |
| 0,56          | 1,149 | 1,591           | 2,433       | 0,1738          | 2,43            | 3 20            | 0,234           | 5,65 | 0,378           |
| 0,54          | 1,269 | I,627           | 2,562       | 0,1965          | 2,33            | 3 10            | 0,244           | 5,74 | 0,410           |
| 0.52          | 1,400 | 1,665           | 2,703       | 0,2217          | 2 24            | 3,01            | 0 254           | 5,86 | 0,443           |
| 0.50          | 1,547 | 1,705           | 2,859       | 0,2498          | 2,16            | 2,93            | 0 264           | 6,01 | 0,481           |

2. Трубная решетка ( черт. 2 )



2. І. Деформации наружного контура:

$$W = \frac{a^{2}}{D_{P}} \left[ T_{H} Q \alpha + T_{I2} M + T_{I3} (P_{T} - P_{H}) \alpha^{2} \right], \quad u = \frac{T_{33} H \alpha}{E_{P} S_{P}},$$

$$Q = \frac{a}{D_{P}} \left[ T_{I2} Q \alpha + T_{22} M + T_{23} (P_{T} - P_{H}) \alpha^{2} \right];$$

на расстоянии  $\mathcal{Q}_{t}$  от центра:

$$W_{a} = \frac{1}{K\alpha_{I}} \left( \varphi_{I} Q_{\alpha} + \varphi_{I} \beta M_{\alpha} \right) , \qquad U_{a} = \frac{\left( I - V \right) H_{0} \alpha_{I}}{\Psi_{P} E_{P} S_{P}} ,$$

$$\Psi_{\alpha} = \frac{\beta}{K\alpha_{I}} \left( \varphi_{I} Q_{\alpha} + \varphi_{I} \beta M_{\alpha} \right) ;$$

трубного пучка :

$$W_T = \frac{1}{K} (\alpha, P_M - \alpha P_T) + \frac{VL}{4E_T S_T} (d_T P_M - d_B P_T).$$

$$\int_{T} = \frac{\mathcal{I}}{64} \left( d_{T}^{4} - d_{B}^{4} \right) \qquad \qquad \mathcal{O}_{P} = \frac{\mathcal{E}_{P} \mathcal{S}_{P}^{3}}{10,92}.$$

Значения коэффиционтов  $\psi_o$  приведени в табл. 2

Таблица 2

## Коэффициенты $\psi_o$

| α J.4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 (               | 0,8 0  | ,85  |
|-------------------------------------------------------|--------|------|
|                                                       |        |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0,59 0 | ),68 |

$$K = \frac{2E\tau f_{\tau}}{Lf_{i}}, \quad \beta = \sqrt[4]{\frac{K}{\psi_{\rho}D_{\rho}}}, \quad \omega = \beta a_{t}.$$

Коэ рфициенты  $\mathcal{P}_{l}$ ,  $\mathcal{P}_{d}$ ,  $\mathcal{P}_{d}$  вычисляются по следующим формулам:

$$\varphi_{i} = \frac{\omega}{T} \left[ ber^{2}\omega + bej^{2}\omega + \frac{\alpha7}{\omega} \left( ber'\omega \cdot bei\omega - bej'\omega \cdot ber\omega \right) \right],$$

$$\varphi_{2} = \frac{\omega}{T} \left( ber\omega \cdot ber'\omega + bej\omega \cdot bej'\omega \right), \quad \varphi_{3} = \frac{\omega}{T} \left( ber'\omega^{2} + bej'\omega^{2} \right),$$

T=berw-bej'w-bejw-ber'w-
$$\frac{0.7}{\omega}$$
(ber'\var2\w+bej'\var2\w);

$$ber\omega = 1 - \frac{1}{(2!)^2} \left(\frac{\omega}{2}\right)^4 + \frac{1}{(4!)^2} \left(\frac{\omega}{2}\right)^8 - \cdots bei\omega =$$

$$= \left(\frac{\omega}{2}\right)^2 \frac{1}{(3!)^2} \left(\frac{\omega}{2}\right)^6 \frac{1}{(5!)^2} \left(\frac{\omega}{2}\right)^{10} - \cdots$$

$$ber'\omega = \frac{1}{2!} \frac{(\omega)^3}{2!} + \frac{1}{3!4!} \frac{(\omega)^2}{2!} - \frac{1}{5!6!} \frac{(\omega)^{11}}{2!} + \cdots; bei'\omega = \frac{\omega}{2} - \frac{1}{2!3!} \frac{(\omega)^5}{2!} + \frac{1}{4!5!} \frac{(\omega)^9}{2!} - \frac{1}{2!3!} \frac{(\omega)^5}{2!} + \frac{1}{4!5!} \frac{(\omega)^9}{2!} - \frac{1}{2!3!} \frac{(\omega)^5}{2!} + \frac{1}{4!5!} \frac{(\omega)^9}{2!} - \frac{1}{2!3!} \frac{(\omega)^9}{2!} + \frac{1}{4!5!} \frac{(\omega)^9}{2!} - \frac{1}{2!3!} \frac{(\omega)^9}{2!} + \frac{1}{4!5!} \frac{(\omega)^9}{2!} - \frac{1}{2!3!} \frac{(\omega)^9}{2!} + \frac{1}{4!5!} \frac{(\omega)^9}{2!} - \frac{1}{4!5!} \frac{(\omega)^9}{2!} + \frac{1}{4!5!} \frac$$

Значения коэффицкентов  $\varphi_1$  ,  $\varphi_2$  ,  $\varphi_3$  приведени в табл. 3 .

# PI 26-01- 55 - 84 CTD. 97

Таблица 3

Коэффициенты  $\Phi_{\rm I}$ ,  $\Phi_{\rm 2}$ ,  $\Phi_{\rm 3}$ 

|                     | , , , , , |                                    | · · · · · · · · · · · · · · · · · · ·                  |                   | ·                      |                                   |                                                 |                               |
|---------------------|-----------|------------------------------------|--------------------------------------------------------|-------------------|------------------------|-----------------------------------|-------------------------------------------------|-------------------------------|
| ω                   | 0         | 0.5                                | 1.0                                                    | 15                | 2.0                    | 2.5                               | 3,0                                             | 3.5                           |
| $\Phi_{\mathbf{I}}$ | 2         | 2,00                               | 2,06                                                   | 2,28              | 2,79                   | 3,58                              | 4,50                                            | 5,39                          |
| Φ2                  | 0         | 0,02                               | 0,19                                                   | 0,62              | 1,32                   | 2,16                              | 2,94                                            | 3,59                          |
| Φ3                  | 0         | 0,19                               | 0,76                                                   | I,65              | 2,75                   | 3,76                              | 4,65                                            | 5,36                          |
|                     |           |                                    |                                                        |                   | Про                    |                                   | табл. 3                                         |                               |
| ω                   | 4         | 5                                  | 6                                                      | 7                 | 8                      | 9                                 | IO                                              | 10                            |
| $\Phi_{\mathrm{I}}$ | 6,19      | 7 65                               | 9,08                                                   | 10,51             | 11,94                  | 13,36                             | 14,78                                           | 2                             |
| Φ2                  | 4,13      | 5 13                               | 6,15                                                   | 7,17              | 8,19                   | 9,20                              | 10.21                                           |                               |
| Φ3                  | 6,03      | 7,38                               | 8,81                                                   | 10,24             | II,66                  | 13,08                             | 14,50                                           | 2                             |
|                     | Ā,, -     | An+ Up a                           | <del>]</del>                                           | •                 | Ā                      | -An-                              | $\frac{\mathcal{D}_2}{\omega^3}$                |                               |
|                     | Ā22-      | A22+ 1/pC                          | <u>,</u>                                               |                   | <i>T<sub>H</sub></i> = | β <sub>n</sub> (Ā <sub>n</sub> -) | $\bar{q}_{n} \frac{\bar{A_{n}}}{\bar{A_{22}}}$  | ;                             |
|                     | T12 = /   | Bn (An-)                           | $(Q_{23}\frac{\overline{A}_{12}}{\overline{A}_{22}});$ |                   | T <sub>15</sub> = 1    | $\beta_n^4(A_n-A_n)$              | $\left(\frac{\overline{A_{12}}}{A_{22}}\right)$ | $\frac{1-\beta_n^2}{2}T_{Hj}$ |
|                     | Tzz = /   | B <sub>n</sub> (A <sub>33</sub> -A | 1 <sub>23</sub> <u>A23</u> );                          |                   | S, 4 (A34-A2           | •                                 |                                                 |                               |
|                     | Ts = 0    | Q. 91β <sub>n</sub> (A.            | 133 - A <sub>23</sub>                                  | $\bar{A}_{23}$ ); | $ar{A}_{23}$           | $= \frac{A}{A_{22}+}$             | $\frac{7_{23}}{\frac{1}{474}}$                  | ,                             |

Коэффициенти  $A_{II}$ ,  $A_{I2}$ ,  $A_{I3}$ ,  $A_{I4}$ ,  $A_{22}$ ,  $A_{23}$ ,  $A_{24}$ ,  $A_{33}$ ,  $A_{34}$  вичисляются по формулам п. I приложения при  $\beta_n = C_1/C$ 

- 2.3. Расчет напряжений, возникающих на наружном контуре и в области закрепления труб, производител по формулам:
  - мембранние напримении в ради альном направлении

$$O_{M} = \frac{H}{S_{P}}$$
,  $O_{M} = \frac{H_{U}}{V_{Q}S_{P}}$ ;

CHOR N HERHOR HOPEDXHOCTEX  $C_U = \frac{6M_{max}}{100} + \frac{4p \, \text{CM}_p \, E_p}{13 \, \text{M}_p} \left(t_{pT} - t_{pM}\right);$ Ou = 7 6M

$$T = \frac{Q}{S_{p}}$$
,  $T = \frac{Q_{q}}{Q \cdot S_{p}}$ .

 $npm - 0.7 \le Mp = \frac{\beta Mq}{\Omega_{-}} \le 1;$ Зжесь М<sub>тах</sub> = Д <u>Да</u>

 $0 \le \sqrt{\rho} = \frac{Q\sigma}{\rho_{AA}} < f_{i}$ 

$$\begin{aligned} &Q_0 = \frac{1}{d_1} \left[ Q_{c0} + \frac{d^2 - d_1^2}{2} (P_{nr} - P_r) \right] , & H_0 = \bar{A}_{23} H , \\ &M_0 = \frac{1}{\bar{A}_{22}} \left[ \bar{A}_{22} Q_{c0} d_1 + \bar{A}_{23} M + \bar{A}_{24} (P_r - P_{nr}) a_1^2 \right] \end{aligned}$$

Козффиционти В и А представляют собой максимальные по абсолютной величине значения функций:

B = 0.91 [No[f,tw]beix-f,sw]-berx]+berw berx+beiw-beix],

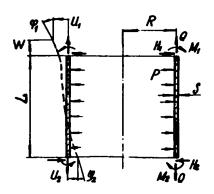
A = 491/filw) beix-f2(w) berx+mp(berw berx+beiw beix]

t.(ω)-47 berω+beiω; [ε(ω)-47 beiω-berω; ber x = -beix - berx ; bei x = berx - bei'x .

Максимум отнохивается в шитервале 0 ≤ X ≤ ω .  $\omega > 3 - B$  merepasse ( $\omega - 3$ )  $\leq X \leq \omega$ .

Значения коэффициентов В приведени в табл. 4. А - в табл. 5. Таблица 4

Козфонциянты В


|     |      | Ко   | эффициент: | и В пу | <sub>pm</sub> ω |      |      |                         |
|-----|------|------|------------|--------|-----------------|------|------|-------------------------|
| Πp  | 0,5  | 1,0  | F,5        | 2,0    | 3,0             | 4,0  | 5,0  | 10,0<br>n <b>Song</b> 6 |
| 0,9 | 0,82 | 0,93 | 1,00       | 0,95   | 0,94            | 1,00 | 1,04 | 1,08                    |
| 0,8 | 0,80 | 0,91 | 0,96       | 0,91   | 10,01           | 0,97 | 1,01 | 1,05                    |
| 0,7 | 0,79 | 0,88 | 0,92       | 0,87   | 0,88            | 0,54 | 0,98 | 1,02                    |
| 0,6 | 0,78 | 0,86 | 0,88       | 0,84   | 0,86            | 0,92 | 0,95 | 0,93                    |
| 0,5 | 0,76 | 0,62 | 0,84       | 0,80   | 0,84            | 0,89 | 0,52 | 0,96                    |
| 0,4 | 0,75 | 0,80 | 0,80       | 0,78   | 0,82            | 0,87 | 0,90 | 0,94                    |
| 0,3 | 0,74 | 0,77 | 0,76       | 0,75   | 0,80            | 0,85 | 0,88 | 0,91                    |
| 0,2 | 0,73 | 0,74 | 0,73       | 0,74   | 0,79            | 0,84 | 0,86 | 0,90                    |
| 0,1 | 0,71 | 0,72 | 0,71       | 0,73   | 0,78            | 0,82 | 0,85 | 0,88                    |
| 0   | 0,70 | 0,70 | 0,71       | 0,72   | 0,78            | 0,81 | 0,84 | 0,87                    |
|     | [    |      |            |        |                 |      |      |                         |
|     |      |      |            |        |                 |      |      |                         |
|     | I    | ı    | l          |        | '               |      |      |                         |

# PR 26-01 - 55 -64 CTP 104 Таблица 5

Коэффициенты А

|                      |      | Ков  | й <b>оши</b> ен | H A III | ωω   |      |      |      |
|----------------------|------|------|-----------------|---------|------|------|------|------|
| <i>M<sub>P</sub></i> | 0,5  | 1,0  | I,5             | 2,0     | 3,0  | 4,0  | 5,0  | IO,0 |
| -0,7                 | 0,52 | 0,54 | 0,57            | 0,60    | 0,63 | 0,64 | 0,64 | 0,64 |
| -0,6                 | 0,45 | 0,47 | 0,50            | 0,52    | 0,55 | 0,55 | 0,55 | 0,55 |
| -0,5                 | 0,38 | 0,40 | 0,43            | 0,45    | 0,47 | 0,47 | 0,47 | 0,46 |
| -0,4                 | 0,31 | 0,33 | 0,36            | 0,38    | 0,40 | 0,39 | 0,39 | 0,38 |
| -0,3                 | 0,24 | 0,26 | 0,29            | 0,31    | 0,32 | 0,31 | 0,30 | 0,29 |
| -0,2                 | 0,17 | 0,19 | 0,27            | 0,35    | 0,31 | 0,27 | 0,29 | 0,31 |
| -o.I                 | 0,10 | 0,20 | 0,34            | 0,40    | 0,34 | 0,32 | 0,34 | 0,36 |
| 0                    | 0,13 | 0,27 | 0,40            | 0,45    | 0,38 | 0,37 | 0,39 | 0,41 |
| 0,1                  | 0,20 | 0,34 | 0,46            | 0,51    | 0,42 | 0,43 | 0,45 | 0,47 |
| 0,2                  | 0,27 | 0,41 | 0,53            | 0,56    | 0,47 | 0,48 | 0,51 | 0,54 |
| 0,3                  | 0,34 | 0,48 | 0,59            | 0,61    | 0,52 | 0,55 | 0,58 | 0,60 |
| 0.4                  | 0,41 | 0,55 | 0,66            | 0,67    | 0,58 | 0,61 | 0,64 | 0,67 |
| 0,5                  | 0,48 | 0,62 | 0,72            | 0,72    | 0,64 | 0,68 | 0,71 | 0,74 |
| 0,6                  | 0,65 | 0,68 | 0,78            | 0,78    | 0,71 | 0,72 | 0,73 | 18,0 |
| 0,7                  | 0,62 | 0,75 | 0,85            | 0,83    | 0,76 | 0,81 | 0,85 | 0,89 |
| 0,8                  | 0,69 | 0,82 | 0.91            | 0,88    | 0,83 | 0,88 | 0,92 | 0,96 |
| 0,9                  | 0,76 | 0,89 | 0,98            | 0,94    | 0,90 | 0,96 | 1,00 | 1,04 |
| 1,0                  | 0,83 | 0,96 | 1,04            | 0,99    | 0,96 | 1.03 | 1,07 | 1,12 |
|                      |      |      |                 |         |      |      |      |      |
|                      |      |      |                 |         |      |      |      |      |
|                      |      |      |                 |         |      |      | 1    |      |
|                      | 1    | 1    | 1               | 1       | ı    | ı    | ,    | •    |

#### 3. Цилиндрическая оболочка (черт. 3)



Sept. 3

#### 3.1. Деформитми:

$$\begin{split} & q_1 = \frac{1}{ES^2} \left( B_{11} M_1 + B_{12} H_1 S + B_{13} M_2 + B_{14} H_2 S \right) , \\ & \mathcal{U}_1 = \frac{1}{ES} \left( B_{12} M_1 + B_{22} H_1 S + B_{14} M_2 + B_{24} H_2 S - \nu Q R + \rho R^2 \right) , \\ & q_2 = \frac{1}{ES^2} \left( B_{13} M_1 + B_{14} H_1 S + B_{14} M_2 + B_{12} H_2 S \right) , \\ & \mathcal{U}_2 = \frac{1}{ES} \left( B_{14} M_1 + B_{24} H_1 S + \nu B_{12} M_2 + B_{22} H_2 S + \nu Q R - \rho R^2 \right) , \\ & \mathcal{W} = \frac{L}{ES} \left( K_q Q - V K_\rho \rho R \right) . \end{split}$$

#### 3.2. Вопомогательные величини:

$$\omega = \sqrt[4]{\frac{2.73 R^2}{S^2}}, \qquad \lambda = l \sqrt[4]{\frac{2.73}{R^2 S^2}}.$$

$$\text{Для очень короткой оболючки} \qquad \lambda < 0.3$$

$$B_{II} = B_{I3} = \frac{12 R^2 S}{l^3}; \qquad B_{I2} = B_{I4} = \frac{6 R^2}{l^2};$$

$$B_{22} = \frac{4 R^2}{l S}; \qquad B_{24} = \frac{2 R^2}{l S}.$$

The roportion odorover 
$$0.3 \le \lambda \le 3$$
:

$$B_{II} = \frac{4S\omega}{R} \oint_{\mathcal{H}} \oint_{\mathcal{H}} B_{I2} = 2\omega^{2} \oint_{\mathcal{D}_{2}},$$

$$B_{I3} = \frac{4S\omega^{3}}{R} \oint_{\mathcal{D}_{3}} \Phi_{I3} . \qquad B_{I4} = 4\omega^{2} \oint_{\mathcal{D}_{4}}.$$

$$B_{22} = \frac{2R\omega}{S} \oint_{\mathcal{D}_{2}} \Phi_{22}; \qquad B_{24} = \frac{2R\omega}{S} \oint_{\mathcal{D}_{4}}.$$

$$\Phi_{II} = \frac{Sh\lambda \cdot Ch\lambda + Sin\lambda \cdot Cos\lambda}{Sh^{2}\lambda - Sin^{2}\lambda} : \qquad \Phi_{I2} = \frac{Sh^{2}\lambda + Sin^{2}\lambda}{Sh^{2}\lambda - Sin^{2}\lambda} :$$

$$\Phi_{I3} = \frac{Sh\lambda \cdot Cos\lambda + ch\lambda \cdot Sin\lambda}{Sh^{2}\lambda - Sin^{2}\lambda} : \qquad \Phi_{I4} = \frac{Sh\lambda \cdot Sin\lambda}{Sh^{2}\lambda - Sin^{2}\lambda} :$$

$$\Phi_{22} = \frac{Sh\lambda \cdot Ch\lambda - Sin\lambda \cdot Cos\lambda}{Sh^{2}\lambda - Sin^{2}\lambda} : \qquad \Phi_{24} = \frac{Ch\lambda \cdot Sin\lambda - Sh\lambda \cdot Cos\lambda}{Sh^{2}\lambda - Sin^{2}\lambda} :$$

$$B_{II} = \frac{4S}{R} \omega^{3}, \qquad B_{I2} = 2\omega^{2}$$

$$B_{I3} = B_{I4} = B_{24} = 0.$$

Эмечения коэффициентов  $\Phi_{II}$ ,  $\Phi_{I2}$ ,  $\Phi_{I3}$ ,  $\Phi_{I4}$ ,  $\Phi_{22}$ ,  $\Phi_{24}$  приведени в таби.6. Для оболючик без компенсатора  $Kq=K_{p^{-}}$  I. Если на цилиндрической оболючие установлен компенсатор

$$K_Q = I + \frac{2KRES}{LK_K}; \qquad K_P = I - \frac{K(D_K^2 - d_K^2)ES}{24LRK_K},$$

гда жесткость компенсатора  $K_K$  принимеется по руководящей нормативной документации на компенсаторы. Допускается значение  $K_K$  принимать по раздаду 2.

3.3. Ресчет напряжений, вознакающих в верхнем и нажнем сеченаях, производится по формулам:

— мембраниме соемие напряжения 
$$G_{M\chi} = \frac{1}{S}$$
; — мембраниме окружние напряжения  $G_{M\chi} = \frac{U}{S}$ ;  $G_{M\psi} = VG_{M\chi} + \frac{U_1 E}{R}$ ;  $G_{M\psi} = VG_{M\chi} - \frac{U_2 E}{R}$ ;

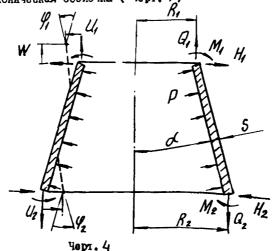
 $\frac{\text{PI 26-OI-} 55-84 \text{ CTD.IO3}}{\text{Таблица 6}}$  Коэффициенты  $^{\Phi}_{\text{II}}, ^{\Phi}_{\text{I2}}, ^{\Phi}_{\text{I3}}, ^{\Phi}_{\text{I4}}, ^{\Psi}_{\text{22}}$  ,  $^{\Phi}_{\text{24}}$ 

| λ   | $\Pi_{\bar{\Phi}}$ | Φ12             | Ф13            | <sup>Ψ</sup> I4 | Φ22    | Φ24    |
|-----|--------------------|-----------------|----------------|-----------------|--------|--------|
| 0,3 | 111,2200           | 33,3430         | 111,0700       | 16,6640         | 6,6672 | 3,3329 |
| 0,4 | 47,0240            | 18,7670         | 46,8240        | 9,3700          | 5,0012 | 2,4991 |
| 0,5 | 24,1860            | 12,0260         | 23,9360        | 5,9923          | 4,0024 | I,9982 |
| 0,6 | 14,1120            | 8,3710          | 13,8120        | 4,1555          | 3,3374 | 1,6636 |
| 0,7 | 9,0061             | 6,1737          | 8,6566         | 3,0461          | 2,8637 | 1,4237 |
| 0,8 | 6,1560             | 4,7544          | 5,7569         | 2,3240          | 2,5097 | 1,2427 |
| 0,9 | 4,4487             | 3,7882          | 4,0003         | 1,8269          | 2,2360 | 8001,1 |
| 1,0 | 3,3700             | 3,1042          | 2,8727         | I,4693          | 2,0189 | 0,9858 |
| 1,1 | 2,6602             | 2,6050          | 2,1146         | 1,2027          | 1,8433 | 0,8503 |
| 1,2 | 2,1783             | 2,2324          | I,585I         | 0,9379          | 1,6991 | 1608'0 |
| 1,3 | 1,8431             | 1,9493          | 1,2031         | 0,8366          | 1,5795 | 0,7386 |
| 1.4 | I,6057             | 1,7315          | 0,9202         | 0,7067          | 1,4795 | 0,6764 |
| 1,5 | I,4354             | I,5 <b>6</b> 23 | 0,7056         | 0,6002          | 1,3955 | 0,6205 |
| 1,6 | 1,3121             | 1,4303          | <b>0,5</b> 398 | 0,5113          | 1,3247 | 0,5697 |
| 1,7 | 1,2226             | 1,3269          | ე,4096         | 0,4361          | 1,2650 | 0,5229 |
| 8,1 | I,1574             | I ,246I         | 0,3059         | 0,3717          | 1,2148 | 0,4793 |
| 1,9 | 1,1102             | 1,1830          | 0,2225         | 0,3160          | 1,1727 | 0,4385 |
| 2,0 | 1,0762             | I,134I          | 0,1551         | 0,2675          | 1,1376 | 0,3999 |
| 2,1 | 1,0520             | 1,0966          | 0,1003         | 0,2250          | 1,1085 | 0,3634 |
| 2,2 | 1,0350             | I,0680          | 0,0557         | 0,1876          | 1,0845 | 0,3288 |
| 2,3 | 1,0233             | I,0467          | 0,0197         | 0,1546          | 1,0650 | 0,2958 |
| 2,4 | 1,0154             | 1,0310          | -0,0094        | 0,1255          | 1,0493 | 0,2646 |
| 2,5 | 1,0104             | 1,0198          | -0,0325        | 0,0999          | 1,0368 | 0,2350 |
| 2,6 | I,0072             | 1,0119          | -0,0504        | 0,0775          | 1,0270 | 0,2071 |
| 2,7 | 1,0054             | 1,0067          | -0,0641        | 0,0579          | 1,0195 | 0,1809 |
| 2,8 | I,0044             | 1,0033          | -0,0739        | 0,0410          | 1,0138 | 0,1565 |
| 2,9 | I,0039             | 1,0014          | -0,0807        | 0,0264          | 1,0096 | 0,1338 |
| 3,0 | 1,0038             | 1,0004          | -0,0847        | 0,0141          | 1,0066 | 0,1130 |

- изгибные осевне на наружной и внутренней поверхностях

$$\mathcal{O}_{Ux} = \pm \frac{\beta M_t}{S^2} \quad ; \qquad \qquad \mathcal{J}_{Ux} = \pm \frac{\beta M_2}{S^2} \quad ;$$

- изгибные окружные на наружной и внутренней поверхностях


$$\mathcal{O}_{U\varphi} = \mathcal{V}\mathcal{O}_{Ux}$$
;  $\mathcal{O}_{U\varphi} = \mathcal{V}\mathcal{O}_{Ux}$ ;

- насательные напряжения на торцах

$$\tau = \frac{|H_i|}{S} \quad ;$$

 $\tau = \frac{/H_2/C}{C}$ 

4. Коническая оболочка (черт. 4)



# 4. І. Пеформация:

$$\begin{split} & \varphi_1 = \frac{1}{ES^2} \left( C_{11} M_1 + C_{12} H_1 S + C_{13} M_2 + C_{14} H_2 S + C_{15} Q_1 S + C_{16} P S^2 \right) \\ & U_1 = \frac{1}{ES} \left( C_{21} M_1 + C_{22} H_1 S + C_{23} M_2 + C_{24} H_2 S + C_{25} Q_5 + C_{26} P S^2 \right) \\ & \varphi_2 = \frac{1}{ES^2} \left( C_{31} M_1 + C_{32} H_1 S + C_{33} M_2 + C_{34} H_2 S + C_{35} Q_5 + C_{36} P S^2 \right) \\ & U_2 = \frac{1}{ES} \left( C_{41} M_1 + C_{42} H_1 S + C_{43} M_2 + C_{44} H_2 S + C_{45} Q_1 S + C_{46} P S^2 \right) \\ & W = \frac{1}{ES} \left( C_{51} M_1 + C_{52} H_1 S + C_{53} M_2 + C_{54} H_2 S + C_{55} Q_5 + C_{56} P S^2 \right). \end{split}$$

Пли неусеченной концческой оболочки:

$$Q_2 = \frac{1}{F.S^2} (C_{33} M_2 + C_{34} H_2 S + \bar{C}_{35} Q_2 S - \bar{C}_{36} P S^2)$$

Uz = 1/ES (C34 Mz + C4+ HzS + C46 QS - C46 PS2).

4.2.Вопомогатальные величины

$$\omega_{i} = \sqrt[4]{\frac{3(I-v^{2})R_{i}^{2}}{S^{2}}}$$

$$\omega_{2} = \sqrt[4]{\frac{3(I-v^{2})R_{i}^{2}}{S^{2}}} ;$$

$$\lambda = \frac{2\sqrt{Los\alpha}}{Sin\alpha} (\omega_{2}-\omega_{i}); \qquad \lambda_{0} = \frac{R_{c}^{2}-R_{c}^{2}}{2R_{c}S};$$

$$Q_{2} = \frac{R_{c}}{R_{c}} Q_{i} + \lambda_{0}\rho S;$$

$$C_{H} = B_{H} \omega_{i}; \quad C_{H^{2}} = C_{2I} - B_{H^{2}} \omega_{i}^{2}; \qquad C_{13} = B_{I3} \omega_{i};$$

$$C_{H^{2}} = C_{2I} - B_{H^{2}} \omega_{i}^{2}; \qquad C_{13} = B_{I3} \omega_{i};$$

$$C_{22} = B_{22} \omega_{i}^{3}; \quad C_{23} - B_{H^{2}} \omega_{i}^{2}; \qquad C_{24} = B_{24} \omega_{i}^{2} \omega_{2};$$

$$C_{25} = b_{12} \omega_{i}^{3}; \quad C_{23} - B_{H^{2}} \omega_{i}^{2}; \qquad C_{24} = B_{24} \omega_{i}^{2} \omega_{2};$$

$$C_{25} = b_{13} \omega_{2}; \quad C_{33} = B_{H^{2}} \omega_{2}; \qquad C_{26} = \lambda_{0} C_{24} \ b_{14} + \frac{R_{i}^{2}}{S^{2}Cos\alpha};$$

$$C_{31} = B_{33} \omega_{2}; \quad C_{33} = B_{H^{2}} \omega_{2}; \qquad C_{34} = B_{22} \omega_{2}^{2};$$

$$C_{35} = b_{14} (C_{12} + \frac{R_{1}}{R_{2}} C_{34}) + \frac{R_{1}}{R_{2}Cos\alpha}; \qquad C_{34} = B_{22} \omega_{2}^{2};$$

$$C_{35} = b_{14} (C_{12} + \frac{R_{1}}{R_{2}} C_{34}) + \frac{R_{1}}{S^{2}Cos\alpha}; \qquad C_{44} = B_{22} \omega_{2}^{3};$$

$$C_{44} = B_{44} \omega_{2}^{2}; \qquad C_{42} = B_{24} \omega_{4} \omega_{2}^{2}; \qquad C_{44} = B_{22} \omega_{2}^{3};$$

$$C_{45} = b_{14} (C_{12} + \frac{R_{1}}{R_{2}} C_{44}) + \frac{NR_{1}}{S^{2}Cos\alpha}; \qquad C_{45} = \lambda_{0} C_{44} \ b_{14} - \frac{(2-3)R_{2}^{2} + N_{1}^{2}}{2S^{2}Cos\alpha};$$

$$C_{45} = b_{16} (C_{12} + \frac{R_{1}}{R_{2}} C_{44}) + \frac{NR_{1}}{S^{2}Cos\alpha}; \qquad C_{45} = \lambda_{0} C_{44} \ b_{14} + \frac{NR_{1}}{S^{2}Cos\alpha};$$

$$C_{45} = b_{16} (C_{12} + \frac{R_{1}}{R_{2}} C_{44}) + \frac{NR_{1}}{S^{2}Cos\alpha}; \qquad C_{47} = B_{22} \omega_{2}^{3};$$

$$C_{45} = b_{16} (C_{12} + \frac{R_{1}}{R_{2}} C_{44}) + \frac{NR_{1}}{S^{2}Cos\alpha}; \qquad C_{47} = B_{22} \omega_{2}^{3};$$

$$C_{55} = b_{16} (C_{12} + \frac{R_{1}}{R_{2}} C_{54}) + \frac{NR_{1}}{S^{2}Cos\alpha}; \qquad C_{55} = b_{16} (B_{22} \omega_{2}^{2} + B_{24} \omega_{2}^{2}) \omega_{1};$$

$$C_{55} = b_{16} (C_{55} + \frac{R_{1}}{R_{2}} C_{57}) + \frac{R_{1}}{S^{2}Cos\alpha}; \qquad C_{57} = b_{17} C_{57} C_{5$$

$$\bar{C}_{35} = (C_{344} + \frac{1}{Cosa}) \log a ; \qquad \bar{C}_{36} = \frac{2R_2 \log a}{SCosa} ; \\
\bar{C}_{45} = C_{44} \log a + \frac{y}{SCosa} ; \qquad \bar{C}_{46} = \frac{R_2^2}{S^2Cosa} .$$
I.e. outher rodothor odopother  $\lambda < 0, 3$ ;  $\beta_{11} = \beta_{12} = \frac{12}{\lambda^3} \sqrt{\frac{3(1-y^2)}{Cosa}} ; \qquad \beta_{12} = \beta_{14} = \frac{6}{\lambda^2} ; \\
\beta_{22} = \frac{4}{\lambda} \sqrt{\frac{Cosa}{3(1-y^2)}} ; \qquad \beta_{24} = \frac{2}{\lambda} \sqrt{\frac{Cosa}{3(1-y^2)}} .$ 
I.e. rodothor odopother  $0, 3 < \lambda < 3$ :
$$\beta_{11} = 4\phi_{11} \sqrt{\frac{3(1-y^2)}{Cosa}} ; \qquad \beta_{12} = 4\phi_{13} \sqrt{\frac{3(1-y^2)}{Cosa}} ; \qquad \beta_{13} = 4\phi_{14} \sqrt{\frac{3(1-y^2)}{Cosa}} ; \qquad \beta_{14} = 4\phi_{14} ; \qquad \beta_{14} = 2\phi_{12} \sqrt{\frac{Cosa}{3(1-y^2)}} ; \qquad \beta_{24} = 2\phi_{24} \sqrt{\frac{Cosa}{3(1-y^2)}} .$$

$$\beta_{22} = 2\phi_{22} \sqrt{\frac{Cosa}{3(1-y^2)}} ; \qquad \beta_{24} = 2\phi_{24} \sqrt{\frac{Cosa}{3(1-y^2)}} .$$

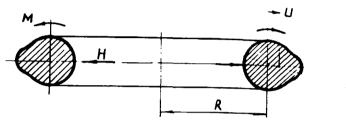
Расчетные формулы для определения поэффисментов  $\Phi_{II}$ ,  $\Phi_{I2}$ ,  $\Phi_{I3}$ ,  $\Phi_{I4}$   $\Phi_{22}$ ,  $\Phi_{24}$  приведени в п.3

Пля дленной оболочин 
$$\lambda > 3$$

$$B_{ij} = 4\sqrt{\frac{3(1-v^2)}{\cos \alpha}}; \qquad B_{22} = 2\sqrt{\frac{\cos \alpha}{3(1-v^2)}};$$

$$B_{22} = 2; \qquad B_{23} = B_{24} = B_{24} = 0.$$

4.3. Расчет напрямений, вознажающих в верхнем и нижнем сечениям, произволится по формулам:

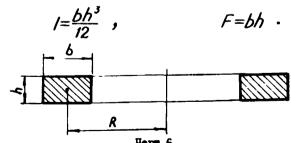

- меморанние осевье напряжения 
$$O_{MX} = \frac{1}{S} (Q_{COS}\alpha - H_{I} \sin \alpha);$$
  $O_{MX} = \frac{1}{S} (Q_{COS}\alpha - H_{2} \sin \alpha);$  - меморанние окружние напряжения  $O_{MQ} = VO_{MX} + \frac{U_{L}E}{R_{I}}$ ,  $O_{MQ} = VO_{MX} - \frac{U_{2}E}{R_{2}}$ ; - изгибные осевые на наружной и внутренней поверхностях  $O_{LX} = \frac{6M_{1}}{S^{2}}$ ,  $O_{LX} = \frac{6M_{2}}{S^{2}}$  - изгибные окружной на наружной и внутренней поверхностях

$$O_{u\varphi} = VO_{ux}$$
,  $O_{u\varphi} = VO_{ux}$ ;

- касательные напряжения на торцах

$$T = \frac{H_1 \cos\alpha + Q_1 \sin\alpha}{S}$$
,  $T = \frac{H_2 \cos\alpha + Q_2 \sin\alpha}{S}$ .

5. ТОНКОЕ КОЛЬЦО ( черт. 5,6 )




Tepr.5

5. І. Деформации:

$$\varphi = \frac{MR^2}{EI}$$
,  $u = \frac{HR^2}{FF}$ ,

- где М.Н. крутящий момент, Н. и радвальная нагрузка. Н/мм. отнесенные к единице длины срединной окружности кольца радкусом R 2
  - I,F минимальный момент инерции,мм<sup>4</sup>,и площадь,мм<sup>2</sup> поперечного осчения кольца.
  - 5.2. Для тонкого кольца прямоугольной форми (черт.6) вмеем:



Траници применимости расситных формул:

$$\frac{2R+b}{2R-b}\leqslant 2 , \qquad \frac{h}{h}\geqslant 0.25$$

#### ПРИЛОЖЕНИЕ 2 АЛГОРИТМЫ ДЛЯ ВЫЧИСЛЕНИЯ КОЭФ\_ИПИЕНТОВ СПРОВОЧНОЕ

I. Коэффициенти Ф, приведенные в табл. I, вычисляются по формуле

$$\varphi = \frac{\int_{0}^{-} \frac{Q_{1}^{7}}{\alpha_{e}} \int_{1}^{1}}{1 - \int_{0}^{1}},$$

$$\int_{0}^{+} \frac{1 - \left(\frac{\alpha_{e}}{2}\right)^{2} + \frac{1}{(1 - 2)^{2}} \left(\frac{\alpha_{e}}{2}\right)^{4} - \frac{1}{(1 - 2 - 3)^{2}} \left(\frac{\alpha_{e}}{2}\right)^{6} + \cdots}$$

$$\int_{0}^{+} \frac{\alpha_{e}}{2} \left[1 - \frac{1}{1 - 2} \left(\frac{\alpha_{e}}{2}\right)^{2} + \frac{1}{(1 - 2)^{2} - 3} \left(\frac{\alpha_{e}}{2}\right)^{4} - \frac{1}{(1 - 2 - 3)^{2} - 4} \left(\frac{\alpha_{e}}{2}\right)^{6} + \cdots\right].$$

 Коэффициенти А<sub>I</sub>, приведенные в табл. 3, принимаются равными единице, если развальцовка теплообменных труб производится в отверстия без канавок.

Если развальцовка труб производится в отверстие  ${\cal C}$  одной канавкой, то коэффициент  ${\bf A}_{\rm T}$  вычисляется по формуле

$$A_{r} = \frac{(I+B_{4}C_{5})(I+2C_{r}+C_{2}) - B_{4}C_{4}(C_{2}+C_{3})}{(I+C_{r})(I+C_{3}) - 0.5(I-C_{2})^{2}},$$

$$R_{r} = \frac{I}{2}(d_{o}-S_{r}), \quad R_{\kappa} = R_{r} + 0.5h_{\kappa}, \quad \beta = \sqrt[4]{\frac{2.73}{R_{r}^{2}S_{r}^{2}}};$$

$$\omega_{\kappa} = \beta b_{\kappa}, \quad F_{\kappa} = b_{\kappa}(h_{\kappa}+S_{r}), \quad J_{\kappa} = \frac{b_{\kappa}(h_{\kappa}+S_{r})^{3}}{R_{r}^{2}S_{r}^{2}};$$

$$B_{r} = \frac{I0.92J_{\kappa}}{\beta S_{r}^{3}R_{r}R_{\kappa}}; \quad B_{2} = \frac{2\beta R_{r}F_{\kappa}}{S_{r}R_{\kappa}}; \quad B_{3} = \frac{b_{\kappa}(d_{o}+2h_{\kappa})}{2R_{r}d_{o}} - \frac{d_{o}F_{\kappa}}{4R_{r}S_{r}R_{\kappa}};$$

$$B_{4} = \frac{8\beta R_{r}^{2}}{d_{o}}; \quad B_{0} = (I+B_{r})(2+B_{2}) + B_{2}(I+\omega_{\kappa})^{2};$$

$$C_{1} = \frac{2+B_{2}}{B_{o}}; \quad C_{2} = \frac{1}{B_{o}}[2+(4+B_{2})\omega_{\kappa}];$$

$$C_{3} = \frac{1}{B_{o}}[I+B_{4} + 0.5B_{2}\omega_{\kappa}^{2} + (I+2\omega_{\kappa})^{2}], \quad C_{4} = \frac{2B_{3}}{B_{o}}(I+\omega_{\kappa}),$$

$$C_{5} = \frac{B_{3}}{B_{o}}[I+B_{r} + (I+\omega_{\kappa})(I+2\omega_{\kappa})].$$

Если развальномка труб производится в отворотия с двумя или солов канавилия, то коэффиционт А<sub>Т</sub> вичислются по формуле

$$A_{i} = \frac{2b_{i}}{\Delta_{0i}} \left[ \left( C_{2} - 2c_{ik} C_{i} \right) \Delta_{ii} + \left( C_{3} - \omega_{R} C_{2} \right) \Delta_{2i} \right],$$

$$P_{i} = \frac{h^{2} \lambda + \sin^{2} \lambda}{sh^{2} \lambda - \sin^{2} \lambda}; \quad \mathcal{Q}_{i} = \frac{sh\lambda \cdot ch\lambda + sin\lambda \cdot cos\lambda}{sh^{2} \lambda - \sin^{2} \lambda};$$

$$\mathcal{Q}_{i} = \frac{sh\lambda \cdot sin\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad \mathcal{Q}_{i} = \frac{sh\lambda \cdot ch\lambda - sin\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda};$$

$$\mathcal{Q}_{i} = \frac{sh\lambda \cdot sin\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad \mathcal{Q}_{i} = \frac{sh\lambda \cdot ch\lambda - sin\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda};$$

$$\mathcal{Q}_{i} = \frac{ch\lambda \cdot sin\lambda - sh\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad a_{i} = 2\left(C_{i} + \mathcal{Q}_{ii}\right);$$

$$\mathcal{Q}_{i} = \frac{ch\lambda \cdot sin\lambda - sh\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad a_{i} = 2\left(C_{i} + \mathcal{Q}_{ii}\right);$$

$$\mathcal{Q}_{i} = \frac{ch\lambda \cdot sin\lambda - sh\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad a_{i} = 2\left(C_{i} + \mathcal{Q}_{ii}\right);$$

$$\mathcal{Q}_{i} = \frac{ch\lambda \cdot sin\lambda - sh\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad a_{i} = 2\left(C_{i} + \mathcal{Q}_{ii}\right);$$

$$\mathcal{Q}_{i} = \frac{ch\lambda \cdot sin\lambda - sh\lambda \cdot cos\lambda}{sh^{2} \lambda - sin^{2} \lambda}; \quad a_{i} = 2\left(C_{i} + \mathcal{Q}_{ii}\right);$$

$$\mathcal{Q}_{i} = C_{2} - \mathcal{Q}_{i}; \quad a_{i,3} = 2\mathcal{Q}_{i,3}; \quad a_{i,4} = -2\mathcal{Q}_{i,4};$$

$$\Delta_{i} = a_{i,2} + \mathcal{Q}_{i,4} - a_{i,3} \cdot a_{i,2}; \quad \Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,2};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,3} \cdot a_{i,2}; \quad \Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,2};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,2} \cdot a_{i,4} - a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

$$\Delta_{i} = a_{i,4} \cdot a_{i,4} \cdot a_{i,4} \cdot a_{i,4};$$

# PI 26-01- 55 -84 Crp. 110

# СОДЕРЖАНИЕ

| I.        | Расчет гревин камер                                                                                        | 2         |
|-----------|------------------------------------------------------------------------------------------------------------|-----------|
|           | І.І. Исходиме данные                                                                                       | 2         |
|           | I.2. Определение возможности развальцовки труб в                                                           |           |
|           | pemetre                                                                                                    | 8         |
|           | І.З. Определение минимельной тодишни трубной решетки                                                       | 9         |
|           | I.4. Pacter marpysom                                                                                       | II        |
|           | І.5. Расчет трубных решеток                                                                                | 34        |
|           | І.6. Расчет тецнообменных труб                                                                             | 36        |
|           | І.7. Расчет прочности обечаек                                                                              | <b>4I</b> |
|           | І.8. Расчет деталей фланцевого раззема                                                                     | <b>4I</b> |
| <b>?.</b> | Расчет осевых компенсаторов                                                                                | 43        |
|           | 2. І. Исходине данные                                                                                      | 43        |
|           | 2.2. Расчет жинзовых компенсаторов                                                                         | 45        |
|           | 2.3. Расчет стяжек для линзовых компенсаторов                                                              | 48        |
|           | 2.4. Расчет и конструирование пружинных компенсаторов                                                      | 49        |
| з.        | Расчет мест пересечения осесиместрично нагруженных                                                         |           |
|           | канешвен моголоро                                                                                          | _ 53      |
|           | 3. I. Место пересечения конической оболочки сепаратора с<br>циминдрической оболочкой комуха гревией камеры | . 53      |
|           | 3.2. Место пересечения конической обожочки сепаратора с                                                    |           |
|           | цилиндрической оболочкой кожуха грепцейамеры.                                                              |           |
|           | подкрепленное ступенчатой цилиндрической оболочкий.                                                        | 57        |
|           | 3.3. Место препления конической оболочки к цилиндрическо оболочки сепаратора через кольцо                  |           |
| 4.        | . Расчет фланцевых соединений                                                                              | 67        |
|           | 4. I. Фланцевое соединение сепаратора с кожуком гревией камеры                                             | 67        |
|           | 4.2. Двухопориое фланцевое соединение на ипильках                                                          |           |
|           | 4.3. Двухопорное фланцевое соеджнение на солтах                                                            | 85        |

# <u>Ри 26-0I- 55 -64 Стр. I</u>

Π.Φ.Cepó

| Приложение І. Обязательное. Деформаци | и и напряжения  |
|---------------------------------------|-----------------|
| в используемых деталях                | 91              |
| Приложение 2 . Справочное .Алгоритмы  | пинекомина вид  |
| коэффициентов                         | 108             |
| Verillelerracion                      |                 |
| Укріпил импаш                         |                 |
| Зам. директора к.т.н.                 | Л.П.Перцев      |
| Зав. отделом стандартизации           | В.И. Лтанденко  |
| Зав. отделом прочности                | В. П. Стогний   |
| Руководитель разработки               |                 |
| K.T.H.                                | 7 П.С.Марченко  |
| Исполнители                           | - Н.Д. Шарапова |
| Howai                                 | ∑В.н. Нелио́а   |
|                                       | Ц.Г.Ряузов      |
| согласовано:                          |                 |
| ниих и лиаш                           |                 |
| Зам. двректора                        | II.Φ.Cepσ       |

Лист решстрации изменений - 55 -84 Стр. II2

| IN USMERIEN- NOUSE |          | Лист решстрации |           |         |                                                  |                     | USMEHEHÜÜ        |                                        |              |                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-----------|---------|--------------------------------------------------|---------------------|------------------|----------------------------------------|--------------|--------------------------------------------------|--|
| Mesic Neue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /see     |                 |           |         | OHHURIDA.                                        | Nucmab<br>(cmpanuu) | usbeusenus<br>N° | м° сопрово-<br>дительного<br>дакуманта | No3n         | lama                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | Merce           |           | H006/3C | BONHERC                                          | JORYM               |                  | u dama                                 |              | ├                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Π        |                 |           |         |                                                  |                     |                  |                                        |              | <u> </u>                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | ļi        |         |                                                  |                     |                  |                                        |              | Ī                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        |              | <b>├</b>                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        | l            |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | <b></b>   |         |                                                  |                     |                  |                                        |              | ł                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | <b> </b>                                         | ļ <u> </u>          |                  |                                        |              | <del>                                     </del> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  | ļ                                      | <del> </del> | ├                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        |              | L                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$ |                 |           |         |                                                  |                     |                  |                                        |              | l                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                 |           |         |                                                  |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш        |                 |           |         | ļ                                                |                     |                  |                                        | <del> </del> | <del>                                     </del> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | L                                                |                     | L                |                                        |              | <b>!</b>                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                 |           |         | <del>                                     </del> | <del></del>         |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щ        |                 | <b></b>   |         | <b></b>                                          |                     | ļ                | <b></b>                                | <del> </del> | <del>                                     </del> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        | <b></b>      | <b>↓</b>                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        |              | l                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | <del> </del>                                     |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н        |                 |           |         | <del> </del>                                     | <del></del>         |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |                 |           |         |                                                  |                     |                  | <b></b>                                |              | ┼                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  | l                   |                  |                                        |              | <b>-</b>                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        | l            | ł                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | <del> </del>                                     |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           | l       | ļ                                                |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     | L                | <b></b>                                | <del> </del> | ┼                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | ]                                                |                     |                  |                                        |              | <del> </del>                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | П        |                 | 1         |         | T                                                |                     |                  |                                        | 1            | 1                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$ |                 | -         |         | <del> </del>                                     |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щ        |                 |           |         | <b></b>                                          |                     |                  |                                        | ├            | <del> </del>                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | 1                                                |                     |                  |                                        |              | <b></b>                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | 1                                                |                     |                  |                                        |              | L                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$ |                 | †         |         | <del> </del>                                     |                     |                  |                                        |              |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | <del> </del>                                     | <b> </b>            | <b></b>          | <del> </del>                           | <del> </del> | $\vdash$                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | ļ         | L       | ļ                                                |                     | ļ                |                                        | <del> </del> | <del> </del>                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         | l _                                              |                     |                  |                                        | L            | <u> </u>                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |         |                                                  |                     |                  |                                        |              | į                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | <del></del>     | 1         | 7 7     |                                                  |                     |                  |                                        |              | Tuen                                             |  |
| // la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                 |           |         |                                                  |                     |                  |                                        |              |                                                  |  |
| (by Acco N decym, Pagn, Acco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/4      | Ace N'à         | Kur. Pag. | 7. Kama |                                                  |                     |                  |                                        |              |                                                  |  |

#### перечень

#### документов, на которые даны ссылки в руководящем техническом материале

ГОСТ 14249-80 . Сосуды и аппараты. Нормы и методы расчета на прочность.

ГОСТ 13764-68- ГОСТ 13776-68. Пружины винтовые, цилиндрические скатия и растяжения из стали круглого сечения.

ГОСТ 25859-83. Сосуди и анпарати стальние. Нормы и методи расчета на прочность при малоцикловых имтружениях.

OCT 26-291-79. Сосуды и аппараты стальные свариме. Технические гребования.

ОСТ 26-373-78. Сосуды и аппараты. Нормы и методы расчета на прочность фланцевых соединений.

ОСТ 26-01-II2-79. Аппарати выпарные трубчатые стальные. Общие тех. нические условия.

ОСТ 26-II85-81.Сосуды и аппараты. Нормы и методы расчета на проч ность. Элементы теплообменных аппаратов.

ОСТ 26-17-01-83. Аппараты теплообменные и аппараты воздушного охлаждения стандартные. Технические требования к развальцовке труб с ограниченным крутицим моментом.

Заказ № 312 Тираж 100 экз. Ротапринт УкрНИИхиммаша, г.Харьков, ул. Маршала Конева, 21