ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ Всероссийский научно-исследовательский институт расходометрии (ФГУП «ВНИИР»)

РЕКОМЕНДАЦИЯ

Государственная система обеспечения единства измерений Ультразвуковые преобразователи расхода Методика поверки

комплектом трубопоршневой поверочной установки, поточного преобразователя плотности и счетчиков-расходомеров массовых

MU 3312-2011

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНА ФГУП «ВНИИР»

ИСПОЛНИТЕЛИ: Груздев Р.Н.

РАЗРАБОТАНА OOO «ИМС Индастриз»

ИСПОЛНИТЕЛИ: Аблина Л.В., Каррамов И.Р., Ремеева А.Ф., Усманов Р.Х.

2 УТВЕРЖДЕНА ФГУП «ВНИИР» 22.10.2010

3 ЗАРЕГИСТРИРОВАНА ФГУП «ВНИИМС» 21.03.2011

4 ВВЕДЕНА ВПЕРВЫЕ

Настоящая рекомендация не может быть полностью или частично воспроизведена, тиражирована и распространена без разрешения ООО «ИМС Индастриз» и (или) ФГУП «ВНИИР».

СОДЕРЖАНИЕ

1 Ооласть применения	1
2 Нормативные ссылки	1
3 Термины, определения и сокращения	1
4 Операции поверки	2
5 Средства поверки	2
6 Требования безопасности	3
7 Условия поверки	4
8 Подготовка к поверке	5
9 Проведение поверки	6
9.1 Внешний осмотр	6
9.2 Опробование	6
9.3 Определение метрологических характеристик	6
10 Обработка результатов измерений	9
11 Оформление результатов поверки	16
Приложение А Форма протокола определения коэффициентов преобразования СРМ	И18
Приложение Б Форма протокола поверки УПР с помощью ПУ, ПП и СРМ	20
Приложение В Определение коэффициентов преобразования СРМ	22
Приложение Г Определение коэффициентов СТL и CPL	29
Г.1 Определение коэффициента CTL	29
Г.2 Определение коэффициента CPL	29
Г.3 Определение коэффициента β	30
Г.4 Определение плотности ρ ₁₅	30
Приложение Д Методика анализа результатов измерений на наличие промахов	32
Приложение Е Справочные материалы	34
Е.1 Квантиль распределения Стьюдента	34
Е 2 Коэффициенты расширения и молули упругости	34

РЕКОМЕНДАЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА	
ИЗМЕРЕНИЙ	
Ультразвуковые преобразователи расхода. Методика поверки комплек-	МИ 3312 - 2011
том трубопоршневой поверочной установки, поточного преобразовате-	
ля плотности и счетчиков-расходомеров массовых	

1 Область применения

Настоящая рекомендация распространяется на ультразвуковые преобразователи расхода, применяемые в системах измерений количества нефти, сырой нефти и нефтепродуктов и устанавливает методику первичной и периодической поверок в условиях эксплуатации при помощи трубопоршневой поверочной установки, поточного преобразователя плотности и счетчиков-расходомеров массовых.

Поверка проводится по каналу измерений объема.

Интервал между поверками – не более одного года.

2 Нормативные ссылки

В настоящей рекомендации использованы ссылки на следующие нормативные документы:

РМГ 29-99 ГСИ. Метрология. Основные термины и определения.

ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения.

ГОСТ 1756-2000 Нефтепродукты. Методы определения давления насыщенных паров.

ПР 50.2.006-94 ГСИ. Порядок проведения поверки средств измерений.

МИ 2153-2004 ГСИ. Плотность нефти. Методика выполнения измерений ареометром при учетных операциях.

МИ 3002-2006 ГСИ. Правила пломбирования и клеймения средств измерений и оборудования, применяемых в составе систем измерений количества и показателей качества нефти и поверочных установок.

СНиП П-4-79 Естественное и искусственное освещение. Нормы проектирования.

3 Термины, определения и сокращения

В настоящей рекомендации приняты следующие термины, их определения и сокращения:

ИВК – измерительно-вычислительный комплекс, в том числе вычислители расхода, измерительные контроллеры;

ИЛ – измерительная линия;

ПП – преобразователь плотности;

ПУ – трубопоршневая поверочная установка;

Рабочая жидкость - нефть, сырая нефть или нефтепродукты;

СИ – средства измерений;

СИКН – система измерений количества и показателей качества нефти;

СИКНП – система измерений количества нефтепродуктов;

СИКНС – система измерений количества и параметров нефти сырой;

СКО – среднее квадратическое отклонение;

СРМ – счетчик-расходомер массовый;

УПР – ультразвуковой преобразователь расхода.

4 Операции поверки

4.1 При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1 - Операции поверки

Наименование операций	Номер пункта документа по поверке
Внешний осмотр	9.1
Опробование	9.2
Определение метрологических характеристик	9.3
Обработка результатов измерений	10

5 Средства поверки

5.1 При проведении поверки применяют средства поверки, приведенные в таблице 2.

Таблица 2 - Средства поверки и их метрологические характеристики

	PART II III III III II II II II II II II II
Средства поверки	Метрологические характеристики
ПУ 2-го разряда	Пределы допускаемой относительной погрешности ± 0,1 %.
Счетчик-расходомер массовый	СКО результатов измерений при определении коэффициента преобразования \pm 0,05 %.
Поточный ПП	Пределы допускаемой абсолютной погрешности $\pm 0.3 \text{кг/м}^3$
Преобразователи избыточного давления с унифицированным выходным сигналом	Пределы допускаемой приведенной погрешности ± 0,5 %

Средства поверки	Метрологические характеристики				
Термопреобразователи сопротивления с унифицированным выходным сигналом	Пределы допускаемой абсолютной погрешности ± 0,2 °C				
Манометр	Класс точности 0,6				
Термометр ртутный стеклянный	Пределы допускаемой абсолютной погрешности $\pm~0.2~^{\circ}\mathrm{C}$				
ИВК	Пределы допускаемой относительной погрешности преобразования параметров входных электрических сигналов в значение коэффициента преобразования \pm 0,05 %				

- 5.2 Используемые средства поверки должны быть поверены и иметь действующие свидетельства о поверке или знаки поверки.
- 5.3 Допускается применять средства поверки с лучшими метрологическими характеристиками.

6 Требования безопасности

- 6.1 При проведении поверки соблюдают требования безопасности, определяемые следующими документами:
 - Трудовой Кодекс Российской Федерации;
 - ПБ 08-624-03 «Правила безопасности в нефтяной и газовой промышленности»;
- «Правила технической эксплуатации электроустановок потребителей» (утверждены приказом № 6 Минэнерго РФ от 13.01.03 г.);
- ПОТ Р М-016-2001, РД 153-34.0-03.150-00 (с изм. 2003) «Межотраслевые правила по охране труда (правилами безопасности) при эксплуатации электроустановок»;
 - «Правила устройства электроустановок (ПУЭ) потребителей» (6-е изд., 7-е изд.);
- ПБ 03-585-03 «Правила устройства и безопасной эксплуатации технологических трубопроводов»;
- ВППБ 01-03-96 «Правила пожарной безопасности для предприятий АК «Транснефтепродукт»;
- ВППБ 01-05-99 «Правила пожарной безопасности при эксплуатации магистральных трубопроводов АК «Транснефть»;
- правила безопасности при эксплуатации средств поверки, приведенные в эксплуатационной документации;
 - инструкции по охране труда, действующие на объекте и СИКН (СИКНС, СИКНП).

- 6.2 Наибольшее давление рабочей жидкости при поверке не должно превышать значения, указанного в эксплуатационной документации на оборудование и применяемые СИ. Использование элементов монтажа или шлангов, не прошедших гидравлические испытания, запрещается.
- 6.3 На трубопроводах, заполненных рабочей жидкостью, должны применяться приборы взрывозащищенного исполнения, на которых нанесены четкие надписи и маркировка, подтверждающие безопасность их применения.
- 6.4 К средствам поверки и используемому при поверке оборудованию должен быть обеспечен свободный доступ. При необходимости должны быть предусмотрены лестницы и площадки, соответствующие требованиям безопасности.
- 6.5 Освещенность в СИКН (СИКНС, СИКНП) должна соответствовать санитарным нормам согласно СНиП П-4-79.
- 6.6 Управление оборудованием и средствами поверки должны производить лица, прошедшие обучение и проверку знаний требований безопасности и допущенные к обслуживанию СИКН (СИКНС, СИКНП).
- 6.7 При появлении течи рабочей жидкости, загазованности и других ситуаций, нарушающих процесс поверки, поверка должна быть прекращена.

7 Условия поверки

- 7.1 При проведении поверки УПР соблюдают следующие условия:
- 7.1.1 Поверку проводят на месте эксплуатации в комплекте с элементами ИЛ.
- 7.1.2 Отклонение объемного (массового) расхода рабочей жидкости от установленного значения в процессе поверки не должно превышать $\pm 2,5$ %.
- 7.1.3 Изменение температуры рабочей жидкости на входе и выходе ПУ, в ПП, в СРМ и в поверяемом УПР за время измерения не должно превышать ± 0.2 °C.
- 7.1.4 Температура, влажность окружающей среды и физико-химические показатели рабочей жидкости должна соответствовать условиям эксплуатации СИКН (СИКНС, СИКНП)
- 7.1.5 Диапазоны рабочего давления и объемного расхода должны определяться в соответствии с типоразмером поверяемого УПР и технологическими требованиями.
 - 7.1.6 Объемная доля воды в рабочей жидкости не должна превышать 5 %.
 - 7.1.7 Содержание свободного газа не допускается.
- 7.1.8 Для обеспечения бескавитационной работы избыточное давление в трубопроводе после СРМ или поверяемого УПР, P_{min} , МПа, должно быть не менее вычисленного по формуле

$$\mathbf{P}_{\text{min}} = 2.06 \cdot \mathbf{P}_{\text{HII}} + 2 \cdot \Delta \mathbf{P}, \tag{1}$$

- где P_{НП} давление насыщенных паров, определенное в соответствии с ГОСТ 1756 при максимально возможной температуре рабочей жидкости, МПа;
 - ΔР перепад давления на СРМ или поверяемом УПР, указанный в технической документации, МПа.
- 7.2 Регулирование объемного расхода через СРМ и поверяемый УПР проводят при помощи регуляторов расхода, расположенных на выходе ИЛ. Допускается вместо регуляторов расхода использовать запорную арматуру.

8 Подготовка к поверке

- 8.1 Проверяют наличие действующих свидетельств о поверке или знаков поверки на все средства поверки.
 - 8.2 Проверяют правильность монтажа средств поверки и поверяемого УПР.
 - 8.3 Подготавливают средства поверки согласно указаниям технической документации.
 - 8.4 Проводят чистку фильтров на ИЛ.
- 8.5 Вводят в память ИВК или проверяют введенные ранее данные, необходимые для обработки результатов поверки.
- 8.6 Проверяют отсутствие свободного газа в ИЛ с поверяемым УПР, в ИЛ с СРМ и ПУ, а также в верхних точках трубопроводов. Для этого устанавливают расход рабочей жидкости в пределах рабочего диапазона измерений и открывают краны, расположенные в высших точках ИЛ и ПУ. Проводят 1-3 раза запуск поршня, удаляя после каждого запуска газ. Считают, что газ (воздух) отсутствует полностью, если из кранов вытекает струя рабочей жидкости без газовых пузырьков.
- 8.7 При рабочем давлении проверяют герметичность системы, состоящей из поверяемого УПР, ПУ, ПП и СРМ. При этом не допускается появление капель или утечек рабочей жидкости через сальники, фланцевые, резьбовые или сварные соединения при наблюдении в течение 5 мин.
- 8.8 Проверяют герметичность задвижек, через которые возможны утечки рабочей жидкости, влияющие на результаты измерений при поверке.
- 8.9 Проверяют герметичность устройства пуска и приема поршня ПУ в соответствии с технической документацией.
- 8.10 Проверяют стабильность температуры рабочей жидкости. Температуру рабочей жидкости считают стабильной, если ее изменение в ПУ, в ПП, в СРМ и в поверяемом УПР не превышает $0.2~^{\circ}$ С за время измерения.

9 Проведение поверки

9.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие поверяемого УПР следующим требованиям:

- комплектность соответствует указанной в технической документации;
- отсутствуют механические повреждения и дефекты, препятствующие применению;
- надписи и обозначения на поверяемом УПР четкие и соответствуют требованиям технической документации.

9.2 Опробование

- 9.2.1 Опробование поверяемого УПР проводят совместно со средствами поверки.
- 9.2.2 Устанавливают объемный расход рабочей жидкости в пределах рабочего диапазона измерений расхода поверяемого УПР.
 - 9.2.3 Наблюдают на дисплее ИВК значения следующих параметров:
 - объемного расхода рабочей жидкости в поверяемом УПР;
 - частоты выходного сигнала поверяемого УПР;
 - температуры и давления рабочей жидкости в поверяемом УПР;
 - температуры и давления рабочей жидкости на входе и выходе ПУ;
 - плотности, температуры и давления рабочей жидкости в ПП;
 - массового расхода рабочей жидкости в СРМ:
 - частоты выходного сигнала СРМ.
- 9.2.4 Запускают поршень ПУ. При прохождении поршня через первый детектор наблюдают за началом отсчета импульсов выходного сигнала СРМ, при прохождении поршня через второй детектор за окончанием отсчета импульсов. Для двунаправленных ПУ проводят те же операции при движении поршня в обратном направлении.

9.3 Определение метрологических характеристик

- 9.3.1 При поверке УПР определяют следующие метрологические характеристики:
- коэффициент преобразования УПР в рабочем диапазоне измерений объемного расхода или коэффициенты преобразования УПР в точках рабочего диапазона измерений объемного расхода;
- границу относительной погрешности УПР в рабочем диапазоне измерений объемного расхода.

- 9.3.2 Определение метрологических характеристик поверяемого УПР проводят не менее чем в трёх точках рабочего диапазона измерений объемного расхода. Значения объемного расхода (точки рабочего диапазона) выбирают с интервалом не более 20 % от максимального значения объемного расхода поверяемого УПР. В каждой точке рабочего диапазона измерений объемного расхода проводят не менее пяти измерений.
 - 9.3.3 Последовательность выбора точек расхода может быть произвольной.
- 9.3.4 Для каждой выбранной точки объемного расхода из рабочего диапазона измерений объемного расхода, определяют необходимое для поверки количество СРМ и значение массового расхода через СРМ для обеспечения заданного объемного расхода через поверяемый УПР.
- 9.3.5 Определяют коэффициенты преобразования выбранных СРМ при выбранных значениях массового расхода. При каждом выбранном значении массового расхода проводят не менее пяти измерений.

Устанавливают выбранное значение массового расхода через выбранные СРМ по показаниям выбранного СРМ и проводят предварительное измерение для уточнения значения установленного массового расхода.

После стабилизации массового расхода в соответствии с 7.1.2 и стабилизации температуры рабочей жидкости в соответствии с 7.1.3 проводят необходимое количество измерений.

Запускают поршень ПУ. При прохождении поршнем первого детектора ИВК начинает отсчет импульсов выходного сигнала СРМ и времени прохождения поршня между детекторами, при прохождении второго детектора – заканчивает.

Если количество импульсов выходного сигнала CPM за время прохождения поршня ПУ между детекторами меньше 10000, то ИВК должен определять количество импульсов с долями импульсов.

Для определения средних значений за время измерения ИВК периодически фиксирует значения следующих параметров:

- температуры рабочей жидкости на входе и выходе ПУ;
- давления рабочей жидкости на входе и выходе ПУ;
- плотность рабочей жидкости, измеренную ПП;
- температуру рабочей жидкости в ПП;
- давление рабочей жидкости в ПП.

При использовании термометров и манометров с визуальным отсчетом допускается фиксировать температуру и давление один раз за время прохождения поршня.

Для однонаправленной ПУ прохождение поршня от одного детектора до другого принимают за одно измерение.

Если для двунаправленной ПУ определена вместимость калиброванного участка как сумма вместимостей в обоих направлениях, то за одно измерение принимают движение поршня в прямом и обратном направлении, количество импульсов и время прохождения поршня в прямом и обратном направлениях суммируют.

Если для двунаправленной ПУ определена вместимость калиброванного участка для каждого направления, то за одно измерение принимают движение поршня в каждом направлении.

При наличии у ПУ второй пары детекторов допускается использовать обе пары детекторов.

Результаты измерений заносят в отдельные протоколы для каждого СРМ. Рекомендуемая форма протокола определения коэффициента преобразования СРМ приведена в приложении А. Допускается в таблицах протокола удалять ненужные и добавлять необходимые столбцы и строки.

Полученные коэффициенты преобразования СРМ устанавливают в ИВК.

- 9.3.6 Для определения коэффициента преобразования поверяемого УПР устанавливают выбранное значение объемного расхода по показаниям выбранных СРМ. Значение массового расхода рабочей жидкости через выбранные СРМ должно откланяться не более 2,5 % от расхода, при котором были определены коэффициенты преобразования СРМ.
- 9.3.7 После стабилизации объемного расхода в соответствии с 7.1.2 и стабилизации температуры рабочей жидкости в соответствии с 7.1.3 проводят необходимое количество измерений.
- 9.3.8 Начинают измерение. ИВК одновременно начинает отсчет импульсов выходных сигналов выбранных СРМ и поверяемого УПР. При достижении заданного количества импульсов выходного сигнала от поверяемого УПР или заданного объема рабочей жидкости или истечении заданного времени измерения, ИВК одновременно заканчивает отсчет импульсов выходных сигналов выбранных СРМ и поверяемого УПР.

Если количество импульсов выходного сигнала выбранных CPM или поверяемого УПР за время измерения меньше 10000, то ИВК должен определять количество импульсов с долями.

Для определения средних значений за время измерения ИВК периодически фиксирует значения следующих параметров:

- температуры рабочей жидкости в поверяемом УПР;

- давления рабочей жидкости в поверяемом УПР;
- плотность рабочей жидкости, измеренную ПП;
- температуру рабочей жидкости в ПП;
- давление рабочей жидкости в ПП.

При использовании термометров и манометров с визуальным отсчетом допускается фиксировать температуру и давление один раз за время измерения.

- 9.3.9 Результаты измерений заносят в протокол. Рекомендуемая форма протокола поверки приведена в приложении Б. Допускается в таблицах протокола удалять ненужные и добавлять необходимые столбцы и строки.
- 9.3.10 При заполнении протоколов, полученные результаты измерений и вычислений округляют в соответствии с таблицей 3.

Таблица 3 - Точность представления результатов измерений и вычислений

Параметр	Единица измерения	Количество цифр после запятой	Количество значащих цифр, не менее
Объем	M ³	-	6
Macca	Т	-	6
Объемный расход	м ³ /ч	1	-
Массовый расход	т/ч	1	-
Температура	°C	2	-
Давление	МПа	2	-
Плотность	кг/м³	2	_
Количество импульсов	имп	-	5
Интервал времени	С	2	-
Погрешность, СКО	%	3	-
Коэффициент преобразования УПР	имп/м ³	-	5
Коэффициент преобразования СРМ	имп/т	-	5
Коэффициент объемного расширения	1/°C	6	-

 Π р и м е ч а н и е – если количество цифр в целой части числа больше рекомендованного количества значащих цифр, то число округляют до целого.

10 Обработка результатов измерений

 $10.1~{
m O}$ бъем рабочей жидкости, прошедшей через поверяемый УПР за время i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, V_{μ} , M^3 , вычисляют по формулам

$$V_{ji} = \frac{M_{ji} \cdot CTL_{TIIIji} \cdot CPL_{TIIIji}}{\rho_{TIIIi} \cdot CTL_{YIIPii} \cdot CPL_{YIIPii}} \cdot 1000,$$
 (2)

$$M_{ji} = \sum_{k=1}^{n_k} M_{jik} , \qquad (3)$$

$$M_{jik} = \frac{N_{jik}}{K_{IINfik}},$$
 (4)

где M_{ji} — масса рабочей жидкости, прошедшей через поверяемый УПР за время і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, т;

СТL_{ппіл} — коэффициент, учитывающий влияние температуры на объем рабочей жидкости, определенный для температуры рабочей жидкости в ПП для i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода (вычисляют по приложению Г):

 ${
m CPL}_{{
m IIII}_{
m II}}$ — коэффициент, учитывающий влияние давления на объем рабочей жидкости, определенный для давления рабочей жидкости в ПП для і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода (вычисляют по приложению Γ);

 $\rho_{\Pi\Pi J1}$ – плотность рабочей жидкости в ПП за время і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, кг/м³;

 CTL_{YTIPJI} — коэффициент, учитывающий влияние температуры на объем рабочей жидкости, определенный для температуры рабочей жидкости в поверяемом УПР для і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода (вычисляют по приложению Γ);

 ${\rm CPL_{\rm VIIP_{JI}}}$ – коэффициент, учитывающий влияние давления на объем рабочей жидкости, определенный для давления рабочей жидкости в поверяемом УПР для і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода (вычисляют по приложению Γ);

 M_{jik} — масса рабочей жидкости, прошедшей через k-й CPM за время i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, т;

 N_{jik} – количество импульсов от k-го CPM за время i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, имп;

 $K_{\Pi M j k}$ – коэффициент преобразования k-го CPM, определенный для j-ой точки рабочего диапазона измерений объемного расхода (вычисляют по приложению B), имп/т;

 ${
m n}_{
m k}$ – количество СРМ, участвующих в измерениях, в j-ой точке рабочего диапазона измерений объемного расхода.

Вычисление объема рабочей жидкости, прошедшей через поверяемый УПР за время измерения, допускается проводить согласно алгоритму, реализованному в ИВК, прошедшему испытания в целях утверждения типа.

10.2 Массовый расход рабочей жидкости через k-й CPM, соответствующий j-ой точке рабочего диапазона измерений объемного расхода при i-ом измерении, Q_{jik} , т/ч, вычисляют по формуле

$$Q_{jik} = \frac{M_{jik}}{T_{ii}} \cdot 3600,$$
 (5)

где $M_{\mu k}$ – масса рабочей жидкости, прошедшей через k-й CPM за время i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, т;

 T_{ji} – время і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, с.

10.3 Объемный расход рабочей жидкости через поверяемый УПР за время i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, Q_{ji} , M^3/v , вычисляют по формуле

$$Q_{\mu} = \frac{V_{\mu}}{T_{\mu}} \cdot 3600, \tag{6}$$

где V_{j_1} – объем рабочей жидкости, прошедшей через поверяемый УПР за время і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, м³;

 T_{ji} – время і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, с.

10.4 Объемный расход рабочей жидкости через поверяемый УПР в j-ой точке рабочего диапазона измерений объемного расхода, $Q_{\rm J}$, м³/ч, вычисляют по формуле

$$Q_{J} = \frac{\sum_{i=1}^{n_{J}} Q_{Ji}}{n_{I}},$$
 (7)

где Q_{ji} – объемный расход рабочей жидкости через поверяемый УПР за время i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, м³/ч;

 ${
m n_{j}}$ – количество измерений в j-ой точке рабочего диапазона измерений объемного расхода.

10.5 Частоту выходного сигнала поверяемого УПР для і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, f_{ii} , Γ_{ii} , вычисляют по формуле

$$f_{\mu} = \frac{N_{\mu}}{T_{\mu}},\tag{8}$$

где N_{ji} – количество импульсов от поверяемого УПР за время і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, имп;

 T_{ji} – время і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, с.

10.6 Частоту выходного сигнала поверяемого УПР в j-ой точке рабочего диапазона измерений объемного расхода, f₁, Гц, вычисляют по формуле

$$\mathbf{f}_{j} = \frac{\sum_{i=1}^{n_{j}} \mathbf{f}_{ji}}{n_{i}}, \tag{9}$$

где f_{ji} – частота выходного сигнала поверяемого УПР для і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, Γ ц;

 n_{j} – количество измерений в j-ой точке рабочего диапазона измерений объемного расхода.

10.7 Коэффициент преобразования поверяемого УПР в j-ой точке рабочего диапазона измерений объемного расхода, K₁ имп/м³, вычисляют по формулам

$$K_{j} = \frac{1}{n_{1}} \sum_{i=1}^{n_{j}} K_{ji} , \qquad (10)$$

$$K_{\mu} = \frac{N_{\mu}}{V_{\mu}},\tag{11}$$

где K_{ji} – коэффициент преобразования поверяемого УПР для і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, имп/м 3 ;

 N_{ji} – количество импульсов от поверяемого УПР за время і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, имп;

 $V_{\rm JI}$ — объем рабочей жидкости, прошедшей через поверяемый УПР за время і-го измерения в j-ой точке рабочего диапазона измерений объемного расхода, м³.

10.8 Коэффициент преобразования поверяемого УПР в рабочем диапазоне измерений объемного расхода, К, имп/м 3 , вычисляют по формуле

$$K = \frac{1}{m} \sum_{i=1}^{m} K_{j}, \qquad (12)$$

где K_J – коэффициент преобразования поверяемого УПР в j-ой точке рабочего диапазона измерений объемного расхода, имп/м 3 ;

m – количество точек объемного расхода в рабочем диапазоне измерений объемного расхода.

10.9 СКО результатов измерений в j-ой точке рабочего диапазона измерений объемного расхода, S₁, %, вычисляют по формуле

$$S_{j} = \sqrt{\frac{\sum_{i=1}^{n_{j}} (K_{ji} - K_{j})^{2}}{n_{j} - 1}} \cdot \frac{1}{K_{j}} \cdot 100,$$
 (13)

где K_j – коэффициент преобразования поверяемого УПР в j-ой точке рабочего диапазона измерений объемного расхода, имп/м 3 ;

 K_{ji} – коэффициент преобразования поверяемого УПР для і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, имп/м 3 ;

 n_{j} – количество измерений в j-ой точке рабочего диапазона измерений объемного расхода.

10.10 Границу неисключенной систематической погрешности поверяемого УПР в рабочем диапазоне измерений объемного расхода, Θ_{Σ} , %, вычисляют по формулам

$$\Theta_{\Sigma} = 1.1 \cdot \sqrt{\Theta_{\rm M}^2 + \Theta_{\rho}^2 + \Theta_{\rm A}^2 + \Theta_{\rm t}^2 + \Theta_{\rm MBK}^2}$$
 (14)

$$\Theta_{M} = \max(\delta_{k}), \tag{15}$$

$$\Theta_{\rho} = \frac{\Delta \rho_{\text{IIII}}}{\rho_{\text{IIII}-min}} \cdot 100, \tag{16}$$

$$\rho_{\Pi\Pi \min} = \min(\rho_{\Pi\Pi_{j_1}}), \tag{17}$$

$$\Theta_{\rm A} = \begin{cases} \max \left(0.5 \cdot \left| \frac{{\rm K_{_{\rm J}}} - {\rm K_{_{\rm J+1}}}}{{\rm K_{_{\rm J}}} + {\rm K_{_{\rm J+1}}}} \right| \cdot 100 \right) & \text{при кусочно- линейной апроксимации} \\ \max \left(\left| \frac{{\rm K_{_{\rm J}}} - {\rm K}}{{\rm K}} \right| \cdot 100 \right) & \text{при постоянном коэффициенте преобразования} \end{cases}$$
 (18)

$$\Theta_{t} = \beta_{\text{max}} \cdot 100 \cdot \sqrt{\Delta t_{\text{III}}^{2} + \Delta t_{\text{YIIP}}^{2}}, \qquad (19)$$

$$\beta_{\max} = \max(\beta_{ji}), \tag{20}$$

$$\Theta_{\text{MBK}} = \delta_{\text{MBK}}, \qquad (21)$$

где $\Theta_{\rm M}$ – граница неисключенной систематической погрешности определения массы рабочей жидкости с помощью СРМ, %;

 δ_k — граница относительной погрешности k-го CPM (берут из протоколов определения коэффициента преобразования CPM), %;

- Θ_{ρ} граница неисключенной систематической погрешности, обусловленной погрешностью ПП, %;
- $\Delta \rho_{\rm IIII}$ предел допускаемой абсолютной погрешности ПП (берут из свидетельства о поверке преобразователя плотности), кг/м³;
- $ho_{\Pi\Pi min}$ минимальное значение плотности рабочей жидкости за время поверки, $\kappa \Gamma/m^3$;
- $\rho_{\Pi\Pi J1}$ плотность рабочей жидкости за время і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, кг/м³;
- $\Theta_{\rm A}$ граница неисключенной систематической погрешности, обусловленной кусочно-линейной или линейной аппроксимацией градуировочной характеристики поверяемого УПР в рабочем диапазоне измерений объемного расхода, %;
- Θ_t граница неисключенной систематической погрешности, обусловленной погрешностью преобразователей температуры при измерениях температуры рабочей жидкости в ПП и поверяемом УПР. %:
- $\Theta_{\rm ИВK}$ граница неисключенной систематической погрешности, обусловленной погрешностью ИВК, %;
- δ_{ИВК} предел допускаемой относительной погрешности преобразования входных электрических сигналов в значение коэффициента преобразования ИВК (берут из свидетельства о поверке или протокола поверки ИВК), %;
- β_{max} максимальное значение коэффициента объемного расширения рабочей жидкости, 1/°C;
- β_{ji} коэффициент объемного расширения рабочей жидкости при температуре t_{IIIIjI} для i-го измерения в j-ой точке рабочего диапазона измерений объемного расхода (вычисляют по приложению Γ или определяют по МИ 2153), $1/^{\circ}$ C;
- $\Delta t_{\rm HII}$ предел допускаемой абсолютной погрешности преобразователя температуры, установленного около ПП (берут из свидетельства о поверке преобразователя температуры), °C;
- $\Delta t_{\rm УПР}$ предел допускаемой абсолютной погрешности преобразователя температуры, установленного около поверяемого УПР (берут из свидетельства о поверке преобразователя температуры), °C;
- K_{j} , K_{j+1} коэффициенты преобразования поверяемого УПР в j-ой и (j+1)-ой точ-ках рабочего диапазона измерений объемного расхода, имп/м³;
- K коэффициент преобразования поверяемого УПР в рабочем диапазоне измерений объемного расхода, имп/м³.

10.11 СКО среднего значения результатов измерений в j-ой точке рабочего диапазона измерений объемного расхода, S_0 , %, вычисляют по формуле

$$S_{0j} = \frac{S_{j}}{\sqrt{n_{j}}}, \qquad (22)$$

где S_{j} – СКО результатов измерений в j-ой точке рабочего диапазона измерений объемного расхода, %;

 $n_{\rm j}$ – количество измерений в j-ой точке рабочего диапазона измерений объемного расхода.

10.12 Границу случайной погрешности поверяемого УПР в рабочем диапазоне измерений объемного расхода при доверительной вероятности P=0,95, ϵ , %, вычисляют по формулам

$$\varepsilon = \max(\varepsilon_1),\tag{23}$$

$$\varepsilon_1 = \mathsf{t}_{0.951} \cdot \mathsf{S}_{01},\tag{24}$$

где ε_{j} – граница случайной погрешности в j-ой точке рабочего диапазона измерений объемного расхода, %;

 S_{0j} – СКО среднего значения результатов измерений в j-ой точке рабочего диапазона измерений объемного расхода, %;

 $t_{0.95J}$ — квантиль распределения Стьюдента для количества измерений n_J в j-ой точке рабочего диапазона измерений объемного расхода (определяют по таблице E.1 приложения E).

- 10.13 СКО среднего значения результатов измерений в рабочем диапазоне измерений объемного расхода S_0 принимают равным значению СКО среднего значения результатов измерений S_{0_J} в точке рабочего диапазона измерений объемного расхода с максимальным значением границы случайной погрешности ε_I .
- 10.14 Границу относительной погрешности поверяемого УПР в рабочем диапазоне измерений объемного расхода, δ , δ , определяют по формулам

$$\delta = \begin{cases} \varepsilon & \text{если} & \frac{\Theta_{\Sigma}}{S_0} < 0.8 \\ t_{\Sigma} \cdot S_{\Sigma} & \text{если} & 0.8 \leq \frac{\Theta_{\Sigma}}{S_0} \leq 8 \\ \Theta_{\Sigma} & \text{если} & \frac{\Theta_{\Sigma}}{S_0} > 8 \end{cases}$$
 (25)

$$t_{\Sigma} = \frac{\varepsilon + \Theta_{\Sigma}}{S_0 + S_{\Omega}},\tag{26}$$

$$S_{\Sigma} = \sqrt{S_{\Theta}^{2} + S_{0}^{2}}, \qquad (27)$$

$$S_{\Theta} = \sqrt{\frac{\Theta_{M}^{2} + \Theta_{\rho}^{2} + \Theta_{A}^{2} + \Theta_{t}^{2} + \Theta_{MBK}^{2}}{3}},$$
 (28)

- где ε граница случайной погрешности поверяемого УПР в рабочем диапазоне измерений объемного расхода, %;
 - Θ_{Σ} граница неисключенной систематической погрешности поверяемого УПР в рабочем диапазоне измерений объемного расхода, %;
 - t_{Σ} коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей;
 - S_{Σ} суммарное СКО результатов измерений в рабочем диапазоне измерений объемного расхода, %;
 - S_{Θ} СКО суммы неисключенных систематических погрешностей в рабочем диапазоне измерений объемного расхода, %;
 - S_0 СКО среднего значения результатов измерений в рабочем диапазоне измерений объемного расхода, %.
- 10.15 Оценивание относительной погрешности.

УПР допускается к применению, если относительная погрешность не превышают пределов допускаемой относительной погрешности, указанных в описании типа на УПР.

Если условие не выполняются, то рекомендуется:

- увеличить количество точек в рабочем диапазоне измерений объемного расхода;
- увеличить количество измерений в точках рабочего диапазона измерений объемного расхода;
 - увеличить время измерения.

При повторном невыполнении данных условий поверку прекращают.

11 Оформление результатов поверки

11.1 Результаты поверки УПР оформляют протоколом в двух экземплярах по рекомендуемым формам, приведенным в приложении Б.

При оформлении протоколов средствами вычислительной техники и вручную допускается формы протоколов представлять в измененном виде.

11.2 При положительных результатах поверки УПР оформляют свидетельство о поверке в соответствии с требованиями правил по метрологии ПР 50.2.006. В свидетельстве ука-

зывают, что УПР признан годным и допущен к применению, а также пределы допускаемой относительной погрешности.

- 11.3 Протокол поверки является обязательным приложением к свидетельству о поверке. Протоколы определения коэффициентов преобразования СРМ так же является обязательным приложением к свидетельству о поверке.
 - 11.4 Проводят пломбирование УПР в соответствии с МИ 3002.
- 11.5 При отрицательных результатах поверки УПР к эксплуатации не допускают, свидетельство о поверке аннулируют и оформляют извещение о непригодности в соответствии с ПР 50.2.006.

Приложение А

Форма протокола определения коэффициентов преобразования СРМ

определе	ния коэффи	циента преоб		и СРМ с помо	— ощью ПУ и 1	ПП по МИ	3312-2011
Место пров	ведения калі	ибровки:					
СРМ: Дат	чик:	Тип	3a	в. №	Лини	я №	
Пре	образовател	ть: Тип					
		Зав. №					
		Зав. №					
		Зав. №					
гаоочая жи	дкость						
Таблица А.	1- Исходны	е данные				T	ı
Детекторы	V_0	D,	S,	E,	α_t	Θ_{Σ_0} ,	Θ_{Vo} ,
	M	MM	MM	МПа	1/°C	%	%
1	2	3	4	5	6	7	8
Окончание	таблицы А. Т			T	٦		
$\Delta t_{\Pi \Sigma}$,	$\Delta t_{\Pi\Pi}$,	$\Delta \rho_{\Pi\Pi}$,	δ_{MBK} ,	ZS_k ,			
°C	°C	кг/м³	%	т/ч	_		
9	10	11	12	13	-		
		ты измерени		лений	T	1	I
№ точ / № изм	Q _{jik} , т/ч	Детекторы	T_{jik} , c	t _{∏Yjik} , °C	P _{ПУյік} , МПа	ρ _{ППյік} , кг/м ³	t _{IIIIjik} , °C
1	2	3	4	5	6	7	8
1/1							
m/n _m							
Окончание	таблицы А.	2				_	
№ точ./	$P_{\Pi\Pi j\imath k},$	β_{jik} ,	N_{jik} ,	$M_{\Pi Y_{J1k}}$,	$K_{\Pi M jik}$,		
№ изм.	МПа	1/°C	имп	Т	имп/т		
1	9	10	11	12	13]	
1/1						1	
						1	
m/n _m						J	

Таблица А.3 - Результаты измерений и вычислений в точках рабочего диапазона

№ точ.	Q _{Jk} , т/ч	К _{ПМյк} , имп/т	S _{Jk} , %	n_{jk}	S _{0jk} , %	t _{0 95jk}	$arepsilon_{ m jk}, \ \%$
1	2	3	4	5	6	7	8
1							
M							

Окончание таблицы А.3

№ точ.	Θ _{tk} ,	Θ _{ρk} ,	$\Theta_{Z_{J}k}, \ % \ % \ % \ % \ % \ % \ % \ % \ % \ $	$\Theta_{\Sigma_{ m j}k}, \ rac{9}{6}$	δ_{jk}	δ_k
1	9	10	11	12	13	14
1						
M						

Подпись лица, проводі	ившего измерения		/
		подпись	И О Фамилия
Дата «»	20 г.		

П р и м е ч а н и е – Столбец 13 таблицы А.1 заполняют при наличии дополнительной погрешности, обусловленной нестабильностью нуля СРМ.

Приложение Б

Форма протокола поверки УПР с помощью ПУ, ПП и СРМ

ПРОТОКОЛ № ____

поверки УПР с помощью ПУ, ПП и СРМ по МИ 3312-2011

Место пров	едения пове	ерки:					
УПР: Тип		Зав. №		_			
ПУ: Тип		Зав. №		-			
ПП: Тип		Зав. №		_			
СРМ 1: Да	тчик:	Тип		Зав. №	Лиі	ния №	
П	реобразоват	ель: Тип		Зав. №			
СРМ к: Да	тчик:	Тип		Зав. №	Лиг	ния №	
П	реобразоват			Зав. №			
ИВК: Тип	-	·					
Рабочая жи							
	- Исходные 		A 4	2]		
$\Theta_{ m M}$,	$\Delta t_{\Pi\Pi},$ $^{\circ}C$	$\Delta ho_{\Pi\Pi},$ кг/м 3	Δt _{УΠP} , °C	δ_{HBK} ,			
1	2	3	4	5			
Таблица Б.2	2 - Результат	гы измерени	й и вычи	слений, СРМ			
№ точ /	№ CPM	Q _{jik} ,	N _{jik} ,	K _{ΠΜյιk} ,	M _{jik} ,		
№ изм		т/ч	имп	имп/м ³	Т	-	
1	2	3	4	5	6		
	1						
1/1							
	q						
	1						
m/n _m							
	q						
Таблица Б.3	3 - Результат	гы измерени	й и вычи	слений, УПР			
№ точ /	Q_{ji} ,	T _{J1} ,	M_{j_1}	$ ho_{\Pi\Pi_{J^1}},$	t _{ΠΠյ1} ,	$P_{\Pi\Pi j\imath}$,	β _{J1} ,
№ изм	м ³ /ч	С	Т	кг/м ³	°C	МПа	1/°C
1	2	3	4	5	6	7	8
1/1							

 $m/n_{\rm m}$

Окончание таблицы Б.3

№ точ./ № изм.	tympji, °C	Р _{УПРу} , МПа	f _{յі} , Гц	N _{J1} , имп	K_{ji} , имп/м 3
1	9	10	11	12	13
1/1				-	
			•••		•••
m/n _m					

Таблица Б.4 - Результаты поверки в точках рабочего диапазона

№ точ.	Q _J , м ³ /ч	f _J , Гц	К _J , имп/м ³	S _J ,	n _j	S _{0j} ,	t _{0 951}	ε _յ , %
1	2	3	4	5	6	7	8	9
1								
m								

Таблица Б.5 - Результаты поверки в рабочем диапазоне

Q _{min} , м ³ /ч	Q _{max} , м ³ /ч	К, имп/м ³	S ₀ , %	ε,	Θ _A ,	Θ _t ,	Θρ,	Θ_{Σ} , %	δ, %
1	2	3	4	5	6	7	8	9	10

Заключение: УПР к дальнейшей эксплуа	атации		
	(годен, не годен)		
Подпись лица, проводившего поверку _	подпись	И О Фамилия	_
Дата проведения поверки «»	г.		

 Π р и м е ч а н и е — Столбец 3 таблицы Б.5 заполняют только при определении коэффициента преобразования УПР в рабочем диапазоне измерений объемного расхода.

Приложение В

Определение коэффициентов преобразования СРМ

В.1 Массу рабочей жидкости, прошедшей через k-й CPM за время i-го измерения в j-ой точке массового расхода, $M_{\Pi\Sigma_{jlk}}$, т, вычисляют по формулам

$$\mathbf{M}_{\Pi Y j j k} = \mathbf{V}_{0} \cdot \mathbf{CTS}_{j j k} \cdot \mathbf{CPS}_{j j k} \cdot \rho_{\Pi \Pi j j k} \cdot \frac{\mathbf{CTL}_{\Pi Y j j k} \cdot \mathbf{CPL}_{\Pi Y j k}}{\mathbf{CTL}_{\Pi \Pi j k} \cdot \mathbf{CPL}_{\Pi \Pi j k}} \cdot 10^{-3}, \tag{B.1}$$

$$K_{\text{tuk}} = 1 + 3 \cdot \alpha_{\text{t}} \cdot (t_{\Pi Y \text{nk}} - 20),$$
 (B.2)

$$\mathbf{K}_{\mathrm{P}_{\mathrm{J}k}} = 1 + 0.95 \cdot \frac{\mathbf{P}_{\mathrm{\Pi}^{\mathrm{Y}}\mathrm{J}k} \cdot \mathbf{D}}{\mathrm{E} \cdot \mathrm{S}},\tag{B.3}$$

$$t_{\Pi Y jik} = \frac{t_{Bx\Pi Y jik} + t_{Bax\Pi Y jik}}{2}, \tag{B.4}$$

$$P_{\text{IIVjik}} = \frac{P_{\text{BxIIVjik}} + P_{\text{BaxIIVjik}}}{2}, \tag{B.5}$$

где V_0 — вместимость калиброванного участка ПУ при стандартных условиях $(t=20~{\rm ^oC}~{\rm u}~P=0~{\rm M}\Pi a),~{\rm m}^3;$

 CTS_{jik} – коэффициент, учитывающий влияние температуры на вместимость ПУ, для i-го измерения в j-ой точке массового расхода;

 CPS_{jik} – коэффициент, учитывающий влияние давления на вместимость ПУ, для іго измерения в j-ой точке массового расхода;

 $\rho_{\Pi\Pi_{Jl}k}$ – плотность рабочей жидкости за время і-го измерения в ј-ой точке массового расхода, кг/м³;

 K_{tjik} — коэффициент, учитывающий влияние температуры на вместимость ПУ, для i-го измерения в j-ой точке массового расхода;

 $K_{P\mu k}$ — коэффициент, учитывающий влияние давления на вместимость ПУ, для і-го измерения в j-ой точке массового расхода;

 ${\rm CTL_{IIY}_{Jik}}$ – коэффициент, учитывающий влияние температуры на объем рабочей жидкости, определенный для температуры рабочей жидкости в ПУ для і-го измерения в ј-ой точке массового расхода (вычисляют по приложению Γ);

 ${\rm CPL}_{\Pi\Sigma_{J}{\rm i}k}$ – коэффициент, учитывающий влияние давления на объем рабочей жидкости, определенный для давления рабочей жидкости в ПУ для i-го измерения в j-ой точке массового расхода (вычисляют по приложению Γ);

 $CTL_{\Pi\Pi\mu k}$ – коэффициент, учитывающий влияние температуры на объем рабочей жидкости, определенный для температуры рабочей жидкости в ПП для і-го измерения в ј-ой точке массового расхода (вычисляют по приложению Γ);

- СРС_{ППінк} коэффициент, учитывающий влияние давления на объем рабочей жидкости, определенный для давления рабочей жидкости в ПП для i-го измерения в j-ой точке массового расхода (вычисляют по приложению Г);
- α_t коэффициент линейного расширения материала стенок калиброванного участка ПУ (берут из технической документации на ПУ или определяют по таблице Е.2 приложения Е), $1/^{\circ}$ С;
- $t_{\Pi Y j j k}$ температура рабочей жидкости в ПУ за время і-го измерения в j-ой точке массового расхода, °C;
- $t_{\text{ВмПУјиk}}$, $t_{\text{ВыхПУјиk}}$ температура рабочей жидкости на входе и выходе ПУ за время іго измерения в ј-ой точке массового расхода, °C;
- $P_{\Pi\Sigma jik}$ давление рабочей жидкости в ПУ за время і-го измерения в ј-ой точке массового расхода, МПа;
- $P_{Bx\Pi Yjlk}$, $P_{Bbix\Pi Yjlk}$ давление рабочей жидкости на входе и выходе ПУ за время і-го измерения в ј-ой точке массового расхода, МПа;
- D внутренний диаметр калиброванного участка ПУ (берут из технической документации на ПУ), мм;
- S толщина стенок калиброванного участка ПУ (берут из технической документации на ПУ), мм;
- Е модуль упругости материала стенок калиброванного участка ПУ (берут из технической документации на ПУ или определяют по таблице Е.2 приложения Е), МПа.

Вычисление массы рабочей жидкости, прошедшей через k-й CPM за время измерения, допускается проводить согласно алгоритму, реализованному в ИВК, прошедшему испытания в целях утверждения типа.

B.2 Массовый расход рабочей жидкости через k-й CPM за время i-го измерения в j-ой точке массового расхода, $Q_{\mu k}$, т/ч, вычисляют по формуле

$$Q_{jik} = \frac{M_{IINjik}}{T_{iik}} \cdot 3600,$$
 (B.6)

где $M_{\Pi\Sigma jik}$ – масса рабочей жидкости, прошедшей через k-й CPM за время i-го измерения в j-ой точке массового расхода, т;

 T_{ttk} – время і-го измерения в ј-ой точке массового расхода, с.

В.3 Массовый расход рабочей жидкости через k-й CPM в j-ой точке массового расхода, Q_{ik} , $\tau/ч$, вычисляют по формуле

$$Q_{jk} = \frac{\sum_{i=1}^{n_{jk}} Q_{jik}}{n_{jk}},$$
 (B.7)

где Q_{jik} — массовый расход рабочей жидкости через k-й CPM за время i-го измерения в j-ой точке массового расхода, т/ч;

 n_{ik} – количество измерений в j-ой точке массового расхода.

B.4 Минимальное значение массового расхода k-го CPM, Q_{mink} , т/ч, вычисляют по формуле

$$Q_{mink} = min(Q_{1k}), (B.8)$$

где Q_{jk} – массовый расход рабочей жидкости через k-й CPM в j-ой точке массового расхода, т/ч.

В.5 Коэффициент преобразования k-го CPM за время i-го измерения в j-ой точке массового расхода, $K_{\Pi M_1 ik}$, имп/т, вычисляют по формуле

$$K_{\Pi M j l k} = \frac{N_{j l k}}{M_{\Pi Y l l k}}, \qquad (B.9)$$

где N_{jik} – количество импульсов от k-го CPM за время i-го измерения в j-ой точке массового расхода, имп;

 $M_{\Pi \Sigma_{Jik}}$ – масса рабочей жидкости, прошедшей через k-й CPM за время i-го измерения в j-ой точке массового расхода, м³.

B.6 Коэффициент преобразования k-го CPM в j-ой точке массового расхода, $K_{\Pi M j k}$, имп/т вычисляют по формуле

$$K_{\Pi M jk} = \frac{\sum_{i=1}^{n_{jk}} K_{\Pi M j jik}}{n_{jk}},$$
(B.10)

где $K_{\Pi M j \imath k}$ – коэффициент преобразования k-го CPM для i-го измерения в j-ой точке массового расхода, имп/т;

 n_{ik} – количество измерений в j-ой точке массового расхода.

В.7 Оценка СКО результатов измерений

СКО результатов измерений в j-ой точке массового расхода, S_{jk} , %, вычисляют по формуле

$$S_{jk} = \sqrt{\frac{\sum_{i=1}^{n_{jk}} (K_{\Pi M i jik} - K_{\Pi M i jk})^{2}}{n_{jk} - 1}} \cdot \frac{1}{K_{\Pi M i jk}} \cdot 100,$$
 (B.11)

где $K_{\Pi M j k}$ – коэффициент преобразования k-го CPM в j-ой точке массового расхода, имп/т;

 $K_{\Pi M \mu k}$ – коэффициент преобразования k-го CPM для i-го измерения в j-ой точке массового расхода, имп/т;

 n_{jk} – количество измерений в j-ой точке массового расхода.

Проверяют выполнение следующего условия

$$S_{,k} \le 0.05\%$$
 (B.12)

При выполнении данного условия продолжают обработку результатов измерений.

При невыполнении данного условия выявляют наличие промахов в полученных результатах вычислений, согласно приложению Д. Выявленный промах исключают и проводят дополнительное измерение. При отсутствии промахов выясняют и устраняют причины, обуславливающие невыполнение данного условия и повторно проводят измерения.

В.8 Границу неисключенной систематической погрешности k-го CPM в j-ой точке массового расхода, $\Theta_{\Sigma_{1k}}$, %, вычисляют по формулам

$$\Theta_{\Sigma jk} = 1, 1 \cdot \sqrt{\Theta_{\Sigma o}^{2} + \Theta_{Vo}^{2} + \Theta_{tk}^{2} + \Theta_{\rho k}^{2} + \Theta_{Zjk}^{2} + \Theta_{UBK}^{2}},$$
(B.13)

$$\Theta_{tk} = \beta_{k \max} \cdot 100 \cdot \sqrt{\Delta t_{\Pi Y}^2 + \Delta t_{\Pi \Pi}^2}, \qquad (B.14)$$

$$\beta_{k \max} = \max(\beta_{jk}), \tag{B.15}$$

$$\Theta_{\rho k} = \frac{\Delta \rho_{\text{IIII}}}{\rho_{\text{IIII min } k}} \cdot 100, \qquad (B.16)$$

$$\rho_{\Pi\Pi \min k} = \min(\rho_{\Pi\Pi j i k}), \tag{B.17}$$

$$\Theta_{Z_{jk}} = \frac{ZS_k}{Q_{jk}} \cdot 100, \qquad (B.18)$$

$$\Theta_{\text{MBK}} = \delta_{\text{MBK}}, \qquad (B.19)$$

где Θ_{Σ_0} – граница суммарной неисключенной систематической погрешности ПУ (берут из свидетельства о поверке ПУ), %;

 Θ_{Vo} – граница неисключенной систематической погрешности определения среднего значения вместимости ПУ (берут из свидетельства о поверке ПУ; для ПУ с двумя парами детекторов берут наибольшее значение), %;

 Θ_{tk} – граница неисключенной систематической погрешности, обусловленной погрешностью преобразователей температуры при измерениях температуры рабочей жидкости в ПУ и ПП, %;

- Θ_{pk} граница неисключенной систематической погрешности, обусловленной погрешностью ПП, %;
- Θ_{Z_Jk} граница неисключенной систематической погрешности, обусловленной нестабильностью нуля k-го CPM, в j-ой точке массового расхода (при отсутствии или компенсации дополнительной погрешности, обусловленной нестабильностью нуля CPM, принимают равной нулю), %;
- $\Theta_{\rm ИВК}$ граница неисключенной систематической погрешности, обусловленной погрешностью ИВК, %;
- ZS_k стабильность нуля k-го CPM (берут из технической документации на CPM), т/ч;
- Q_{jk} массовый расход рабочей жидкости через k-й CPM в j-ой точке массового расхода, т/ч;
- $\delta_{\text{ИВК}}$ предел допускаемой относительной погрешности преобразования входных электрических сигналов в значение коэффициента преобразования ИВК (берут из свидетельства о поверке или протокола поверки ИВК), %;
- β_{kmax} максимальное значение коэффициента объемного расширения рабочей жидкости, 1/°C;
- β_{jik} коэффициент объемного расширения рабочей жидкости при температуре $t_{\Pi Yjik}$ для i-го измерения в j-ой точке массового расхода (вычисляют по приложению Γ или определяют по МИ 2153), $1/{}^{\circ}$ C;
- $\Delta t_{\Pi \Sigma}$ предел допускаемой абсолютной погрешности преобразователей температуры, установленных в ПУ (берут из свидетельства о поверке преобразователя температуры), °С;
- $\Delta t_{\rm HII}$ предел допускаемой абсолютной погрешности преобразователя температуры, установленного около ПП (берут из свидетельства о поверке преобразователя температуры), °C;
- $\Delta \rho_{\rm IIII}$ предел допускаемой абсолютной погрешности ПП (берут из свидетельства о поверке преобразователя плотности), кг/м³;
- $ho_{IIIImink}$ минимальное значение плотности рабочей жидкости за время определение коэффициента преобразование СРМ, кг/м³;
- $ho_{\Pi\Pi I j i k}$ плотность рабочей жидкости за время і-го измерения в j-ой точке рабочего диапазона измерений массового расхода, кг/м³.
- В.9 СКО среднего значения результатов измерений в j-ой точке массового расхода, S_{0jk} , %, вычисляют по формуле

$$S_{0jk} = \frac{S_{jk}}{\sqrt{n_{jk}}},$$
 (B.20)

где S_{jk} – СКО результатов измерений в j-ой точке массового расхода, %;

 n_{jk} – количество измерений в j-ой точке массового расхода.

В.10 Границу случайной погрешности k-го CPM в j-ой точке массового расхода при доверительной вероятности P=0.95, ε_{tk} , %, вычисляют по формуле

$$\varepsilon_{1k} = t_{0.951k} \cdot S_{01k} \,, \tag{B.21}$$

где S_{0jk} – СКО среднего значения результатов измерений в j-ой точке массового расхода, %;

 $t_{0.95jk}$ — квантиль распределения Стьюдента для количества измерений n_{jk} в j-ой точке массового расхода (определяют по таблице Е.1 приложения Е).

В.11 Границу относительной погрешности k-го CPM в j-ой точке массового расхода, δ_{tk} , %, определяют по формулам

$$\delta_{jk} = \begin{cases} \epsilon_{jk} & \text{если} & \frac{\Theta_{\Sigma jk}}{S_{0jk}} < 0,8 \\ \\ t_{\Sigma jk} \cdot S_{\Sigma jk} & \text{если} & 0,8 \leq \frac{\Theta_{\Sigma jk}}{S_{0jk}} \leq 8 \\ \\ \Theta_{\Sigma jk} & \text{если} & \frac{\Theta_{\Sigma jk}}{S_{0jk}} > 8 \end{cases} \tag{B.22}$$

$$t_{\Sigma_{jk}} = \frac{\varepsilon_{jk} + \Theta_{\Sigma_{jk}}}{S_{0ik} + S_{\Theta_{ik}}},$$
(B.23)

$$S_{\Sigma_{1k}} = \sqrt{S_{\Theta_{1k}}^{2} + S_{0_{1k}}^{2}}, \qquad (B.24)$$

$$S_{\Theta_{J}k} = \sqrt{\frac{\Theta_{\Sigma_{0}}^{2} + \Theta_{V_{0}}^{2} + \Theta_{tk}^{2} + \Theta_{\rho k}^{2} + \Theta_{Z_{J}k}^{2} + \Theta_{MBK}^{2}}{3}},$$
(B.25)

где ε_{jk} – граница случайной погрешности k-го CPM в j-ой точке массового расхода, %; $\Theta_{\Sigma jk}$ – граница неисключенной систематической погрешности k-го CPM в j-ой точке массового расхода, %;

 $t_{\Sigma jk}$ — коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей в j-ой точке массового расхода;

 $S_{\Sigma_{jk}}$ — суммарное СКО результатов измерений в j-ой точке массового расхода, %;

 $S_{\Theta jk}$ — СКО суммы неисключенных систематических погрешностей в j-ой точке массового расхода, %;

- S_{0jk} СКО среднего значения результатов измерений в j-ой точке массового расхода, %.
- В.12 Границу относительной погрешности k-го СРМ, δ_k , %, определяют по формуле $\delta_k = \max \Bigl(\delta_{_{1k}} \Bigr) \eqno(B.26)$
- где δ_{jk} граница относительной погрешности k-го CPM в j-ой точке массового расхода, %.

Приложение Г

Определение коэффициентов CTL и CPL

Г.1 Определение коэффициента CTL

Значение коэффициента СТL, учитывающего влияние температуры на объем рабочей жидкости для диапазона плотности рабочей жидкости (при t=15 °C и P=0 МПа) от 611 до 1164 кг/м³ определяют по формулам

$$CTL = \exp[-\alpha_{15} \cdot \Delta t \cdot (1 + 0.8 \cdot \alpha_{15} \cdot \Delta t)], \qquad (\Gamma.1)$$

$$\alpha_{15} = \frac{K_0 + K_1 \cdot \rho_{15}}{\rho_{15}^2}, \qquad (\Gamma.2)$$

$$\Delta t = t - 15, \tag{\Gamma.3}$$

где ρ_{15} – значение плотности рабочей жидкости при t = 15 °C и P = 0 МПа, кг/м³;

t – значение температуры рабочей жидкости, °С;

 α_{15} – значение коэффициента объемного расширения рабочей жидкости при t=15

 ${}^{\circ}C \text{ }_{\text{H}} P = 0 \text{ M}\Pi a, 1/{}^{\circ}C;$

 K_0, K_1 – коэффициенты выбираются из таблицы $\Gamma.1$.

Таблица Γ .1 - Значения коэффициентов K_0 и K_1 в зависимости от типа рабочей жидкости

Тип рабочей жидкости	ρ ₁₅ , κγ/m ³	K_0	K ₁
Нефть	611 - 1164	613,97226	0,00000
Нефтепродукты:			
Бензины	611 - 779	346,42278	0,43884
Реактивные топлива	779 - 839	594,54180	0,00000
Нефтяные топлива	839 - 1164	186,96960	0,48618

 Π р и м е ч а н и е — Для нефтепродуктов коэффициенты K_0 , K_1 выбираются не по названию типа рабочей жидкости, а в зависимости от значения ρ_{15} .

Г.2 Определение коэффициента СРЬ

Значение коэффициента СРL, учитывающего влияние давления на объем рабочей жидкости для диапазона плотности рабочей жидкости (при t=15 °C и P=0 МПа) от 611 до 1164 кг/м³ определяют по формулам

$$CPL = \frac{1}{1 - b \cdot P \cdot 10}, \qquad (\Gamma.4)$$

$$b = 10^{-4} \cdot \exp\left(-1,62080 + 0,00021592 \cdot t + \frac{0,87096 \cdot 10^6}{\rho_{15}^2} + \frac{4,2092 \cdot 10^3 \cdot t}{\rho_{15}^2}\right),\tag{\Gamma.5}$$

где ρ_{15} – значение плотности рабочей жидкости при t = 15 °C и P = 0 МПа, кг/м³; t – значение температуры рабочей жидкости, °C;

Р – значение избыточного давления рабочей жидкости, МПа;

10 - коэффициент перевода единиц измерения давления МПа в бар.

Г.3 Определение коэффициента В

Значение коэффициента объемного расширения рабочей жидкости, β, 1/°C:

$$\beta = \alpha_{15} + 1.6 \cdot \alpha_{15}^{2} \cdot (t - 15), \tag{\Gamma.6}$$

где α_{15} – значение коэффициента объемного расширения рабочей жидкости при 15 °C, 1/°C;

t – значение температуры рабочей жидкости, при которой определяется коэффициент объемного расширения рабочей жидкости, °C.

Г.4 Определение плотности р₁₅

Значение плотности рабочей жидкости при t=15 °C и P=0 МПа, ρ_{15} , кг/м³ определяют по формуле

$$\rho_{15} = \frac{\rho_{\Pi\Pi}}{\text{CTL}_{\Pi\Pi} \cdot \text{CPL}_{\Pi\Pi}}, \qquad (\Gamma.7)$$

где $\rho_{\Pi\Pi}$ – значение плотности рабочей жидкости в ПП, кг/м³;

 ${\rm CTL_{IIII}}$ – коэффициент, учитывающий влияние температуры на объем рабочей жидкости, определенный для $t_{\rm IIII}$ и ρ_{15} ;

 CPL_{IIII} — коэффициент, учитывающий влияние давления на объем рабочей жидкости, определенный для t_{IIII} , P_{IIII} и ρ_{15} .

Для определения ρ_{15} необходимо определить значения $CTL_{\Pi\Pi}$ и $CPL_{\Pi\Pi}$, а для определения $CTL_{\Pi\Pi}$ и $CPL_{\Pi\Pi}$, в свою очередь, необходимо определить значение плотности при стандартных условиях ρ_{15} . Поэтому значение ρ_{15} определяют методом последовательного приближения.

- 1) Определяют значения $CTL_{\Pi\Pi(1)}$ и $CPL_{\Pi\Pi(1)}$, принимая значение ρ_{15} равным значению $\rho_{\Pi\Pi}$.
 - 2) Определяют значения $\rho_{15(1)}$, кг/м 3 :

$$\rho_{15(1)} = \frac{\rho_{\Pi\Pi}}{\text{CTL}_{\Pi\Pi(1)} \cdot \text{CPL}_{\Pi\Pi(1)}}$$
 (Γ.8)

- 3) Определяют значения $CTL_{\Pi\Pi(2)}$ и $CPL_{\Pi\Pi(2)}$, принимая значение ρ_{15} равным значению $\rho_{15(1)}$.
 - 4) Определяют значение $\rho_{15(2)}$, кг/м³:

$$\rho_{15(2)} = \frac{\rho_{\text{IIII}}}{\text{CTL}_{\text{IIII}(2)} \cdot \text{CPL}_{\text{IIII}(2)}}$$
 (Γ.9)

5) Аналогично пунктам (3) и (4), определяют значения $CTL_{\Pi\Pi(1)}$, $CPL_{\Pi\Pi(1)}$ и $\rho_{15(1)}$ для і-го цикла вычислений и проверяют выполнение условия:

$$\left| \rho_{15(1)} - \rho_{15(1-1)} \right| \le 0,001,$$
 (\Gamma.10)

где $\rho_{15(1)}$, $\rho_{15(1-1)}$ — значения ρ_{15} , определенные, соответственно, за последний и предпоследний цикл вычислений, кг/м 3 .

Процесс вычислений продолжают до выполнения данного условия. За значение ρ_{15} принимают последнее значение $\rho_{15(1)}$.

Приложение Д

Методика анализа результатов измерений на наличие промахов

Д.1 Проверка результатов измерений на один промах по критерию Граббса при определении коэффициента преобразования k-го CPM.

СКО результатов измерений в j-ой точке расхода, S_{jk} , имп/т, определяют по формуле

$$S_{jk} = \sqrt{\frac{\sum_{i=1}^{n_{jk}} (K_{\Pi N I j i k} - K_{\Pi N i j k})^{2}}{n_{ik} - 1}},$$
(Д.1)

где $K_{\Pi M j k}$ – коэффициент преобразования k-го CPM в j-ой точке массового расхода, имп/т;

 $K_{\Pi M_J ik}$ – коэффициент преобразования k-го CPM для i-го измерения в j-ой точке массового расхода, имп/т;

 n_{ik} – количество измерений в j-ой точке массового расхода.

 Π р и м е ч а н и е – Π ри $S_{tk} < 0.001$ принимаем $S_{tk} = 0.001$.

Наиболее выделяющееся соотношение U:

$$U = \max\left(\left|\frac{K_{\Pi \Lambda Ijk} - K_{\Pi \Lambda Ijk}}{S_{jk}}\right|\right),\tag{Д.2}$$

Если значение U больше или равно значению h, взятому из таблицы Д.1, то результат измерения должен быть исключен как промах.

Д.2 Проверка результатов измерений на один промах по критерию Граббса при определении коэффициента преобразования поверяемого УПР.

СКО результатов измерений в j-ой точке рабочего диапазона измерений объемного расхода, S_1 , имп/ m^3 , определяют по формуле

$$S_{j} = \sqrt{\frac{\sum_{i=1}^{n_{j}} (K_{ji} - K_{j})^{2}}{n_{j} - 1}},$$
(Д.3)

где K_j – коэффициент преобразования поверяемого УПР в j-ой точке рабочего диапазона измерений объемного расхода, имп/м 3 ;

 K_{ji} — коэффициент преобразования поверяемого УПР для і-го измерения в ј-ой точке рабочего диапазона измерений объемного расхода, имп/м 3 ;

 n_{j} – количество измерений в j-ой точке рабочего диапазона измерений объемного расхода.

 Π р и м е ч а н и е — Π ри S_{J} < 0,001 принимаем S_{J} = 0,001.

Наиболее выделяющееся соотношение U:

$$U = \max\left(\left|\frac{K_{ji} - K_{j}}{S_{j}}\right|\right),\tag{Д.4}$$

Если значение U больше или равно значению h, взятому из таблицы Д.1, то результат измерения должен быть исключен как промах.

Таблица Д.1 - Критические значения для критерия Граббса

14	ОЛИЦ	4 24.1 19	Jiiiii iook	ne sna iei	тил дли к	phitophii.	paocea				
	n	3	4	5	6	7	8	9	10	11	12
	h	1,155	1,481	1,715	1,887	2,020	2,126	2,215	2,290	2,355	2,412

Приложение Е

Справочные материалы

Е.1 Квантиль распределения Стьюдента

Значения квантиля распределения Стьюдента $t_{0.95}$ при доверительной вероятности P=0,95 в зависимости от количества измерений приведены в таблице E.1.

Таблица E.1 - Значения квантиля распределения Стьюдента при доверительной вероятности P=0.95

n-1	1	2	3	4	5	6	7	8	9	10	11
t _{0,95}	12,706	4,303	3,182	2,776	2,571	2,447	2,365	2,306	2,262	2,228	2,201

Е.2 Коэффициенты расширения и модули упругости

Значения коэффициентов линейного расширения и модули упругости материалов стенок калиброванного участка ПУ, материала планки крепления детекторов в зависимости от материала приведены в таблице Е.2.

Таблица Е.2 - Коэффициенты линейного расширения и модули упругости материалов стенок

калиброванного участка ПУ

Материал	α _t , 1/°C	Е, МПа
Сталь углеродистая	$1,12 \times 10^{-5}$	$2,07 \times 10^5$
Сталь нержавеющая 304	$1,73 \times 10^{-5}$	$1,93 \times 10^5$
Сталь нержавеющая 316	1,59 × 10 ⁻⁵	$1,93 \times 10^{5}$
Сталь нержавеющая 17-4	1,08 × 10 ⁻⁵	$1,97\times10^5$