

Федеральная служба по экологическому, технологическому и атомному надзору

РУКОВОДСТВА ПО БЕЗОПАСНОСТИ

УТВЕРЖДЕНО приказом Федеральной службы по экологическому, технологическому и атомному надзору от 30 декабря 2013 г. № 655

РЕКОМЕНДАЦИИ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРИ ВОЗВРАТЕ ПРОДУКТОВ ПЕРЕРАБОТКИ ОБЛУЧЁННЫХ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК В ГОСУДАРСТВО ИХ ПОСТАВЩИКА РБ-092-13

Введено в действие с 30 декабря 2013 г.

РЕКОМЕНДАЦИИ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРИ ВОЗВРАТЕ ПРОДУКТОВ ПЕРЕРАБОТКИ ОБЛУЧЁННЫХ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК В ГОСУДАРСТВО ИХ ПОСТАВЩИКА (РБ-092-13)

Федеральная служба по экологическому, технологическому и атомному надзору

Москва, 2013

Руководство по безопасности при использовании атомной энергии «Рекомендации по обеспечению безопасности при возврате продуктов переработки облучённых тепловыделяющих сборок в государство их поставщика» разработано в соответствии со статьей 6 Федерального закона от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии» и постановлением Правительства Российской Федерации от 11 июля 2003 г. № 418 «О порядке ввоза в Российскую Федерацию облученных тепловыделяющих сборок ядерных реакторов» в целях содействия соблюдению требований следующих федеральных норм и правил в области использования атомной энергии:

«Правила безопасности при транспортировании радиоактивных материалов» (НП-053-04), утвержденных постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 4 октября 2004 г. № 5;

«Требования к планированию и обеспечению готовности к ликвидации последствий аварий при транспортировании ядерных материалов и радиоактивных веществ» (НП-074-06), утвержденных постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 12 декабря 2006 г. № 8.

Содержит рекомендации Федеральной службы по экологическому, технологическому и атомному надзору по обеспечению безопасности при транспортировании радиоактивных отходов от переработки отработавших тепловыделяющих сборок в государство их поставщика, а также по:

методике определения количества возвращаемых продуктов переработки отработавших тепловыделяющих сборок;

содержанию отчёта по обоснованию безопасности при обращении с радиоактивными отходами, полученными от переработки отработавших тепловыделяющих сборок при их транспортировании в государство их поставщика;

содержанию программы радиационной защиты при обращении с радиоактивными отходами от переработки отработавших тепловыделяющих сборок при их транспортировании в государство их поставщика.

Распространяется на деятельность по транспортированию продуктов переработки отработавших тепловыделяющих сборок в государство их поставщика.

Предназначено для применения специалистами центрального аппарата Ростехнадзора и его межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью, а также специалистами организаций, осуществляющих возврат продуктов переработки отработавших тепловыделяющих сборок в государство их поставщика.

Разработано с учетом отечественного опыта регулирования и обеспечения безопасности в области использования атомной энергии.

Выпускается впервые*.

^{*} Разработано коллективом авторов в составе: Строганов А.А., Курындин А.В., Шаповалов А.С. (ФБУ «НТЦ ЯРБ»).

І. Общие положения

- 1. Руководство по безопасности при использовании атомной энергии «Рекомендации по обеспечению безопасности при возврате продуктов переработки облучённых тепловыделяющих сборок в государство их поставщика» (РБ-092-13) (далее Руководство по безопасности) разработано в соответствии со статьей 6 Федерального закона от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии» и постановлением Правительства Российской Федерации от 11 июля 2003 г. № 418 «О порядке ввоза в Российскую Федерацию облученных тепловыделяющих сборок ядерных реакторов», в целях содействия соблюдению требований следующих федеральных норм и правил в области использования атомной энергии: «Правила безопасности при транспортировании радиоактивных материалов», утвержденных постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 4 октября 2004 г. № 5 (далее НП-053-04), «Требования к планированию и обеспечению готовности к ликвидации последствий аварий при транспортировании ядерных материалов и радиоактивных веществ», утвержденных постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 12 декабря 2006 г. № 8 (далее НП-074-06).
- 2. Настоящее Руководство по безопасности содержит рекомендации Федеральной службы по экологическому, технологическому и атомному надзору по обеспечению безопасности при транспортировании радиоактивных отходов (далее PAO) от переработки отработавших тепловыделяющих сборок (далее OTBC) в государство их поставщика, а также по:

методике определения количества возвращаемых продуктов переработки ОТВС;

содержанию отчёта по обоснованию безопасности при обращении с PAO, полученными от переработки ОТВС при транспортировании в государство их поставщика;

содержанию программы радиационной защиты при обращении с РАО от переработки ОТВС при их транспортировании в государство их поставщика.

- 3. Настоящее Руководство по безопасности распространяется на деятельность по транспортированию продуктов переработки ОТВС в государство их поставщика.
- 4. Настоящее Руководство по безопасности предназначено для применения специалистами центрального аппарата Ростехнадзора и его межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью, а также специалистами организаций, осуществляющих возврат продуктов переработки ОТВС в государство их поставщика.
- 5. Требования федеральных норм и правил в области использования атомной энергии, регламентирующих безопасность деятельности по возврату продуктов переработки ОТВС в государство их поставщика, могут быть выполнены с использованием иных подходов, чем те, которые содержатся в настоящем Руководстве по безопасности, при обоснованности выбранных подходов для обеспечения безопасности.

Рекомендации по методике определения количества возвращаемых продуктов переработки отработавших тепловыделяющих сборок

- Продукты переработки ОТВС рекомендуется возвращать в государство их поставщика в форме отвержденных (например остеклованных) высокоактивных РАО.
- 7. В качестве критерия, используемого при определении количества РАО, возвращаемых в государство поставщика ОТВС, рекомендуется использовать критерий равенства дозовых эквивалентов партий ввозимых ОТВС на момент возврата РАО и возвращаемых РАО.
- 8. Дозовые эквиваленты партий ввозимых ОТВС и возвращаемых РАО рекомендуется определять как суммы произведений активностей радионуклидов, содержащихся в них, на дозовые коэффициенты для населения при пероральном поступлении радионуклидов в организм, выраженные в единицах эффективной дозы, приходящейся на единичную активность, поступившую в организм.
- 9. Значения дозовых коэффициентов рекомендуется принимать равными дозовым коэффициентам при поступлении радионуклидов с пищей, установленным в СанПиН 2.6.1.2523 09 «Нормы радиационной безопасности (НРБ-99/2009)», утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 7 июля 2009 г. № 47 (зарегистрировано Министерством юстиции Российской Федерации 14 августа 2009 г., регистрационный № 14534; «Российская газета», 2009 г., № 171/1).

- 10. Дозовый эквивалент партии ввозимых ОТВС рекомендуется определять с использованием расчетных активностей радионуклидов, которые содержались бы в данной партии на момент возврата РАО в государство их поставщика в предположении естественного радиоактивного распада радионуклидов и технологического извлечения изотопов урана, плутония и нептуния.
- 11. Дозовый эквивалент партии возвращаемых РАО рекомендуется определять с использованием расчетных активностей радионуклидов на момент возврата РАО в государство их поставщика с учетом естественного радиоактивного распада радионуклидов за период временного технологического хранения РАО с момента их получения при переработке ОТВС до момента возврата в государство их поставщика.
- 12. При определении дозового эквивалента партии ввозимых ОТВС и возвращаемых РАО, помимо продуктов деления, продуктов активации и актиноидов, рекомендуется учитывать неизвлекаемую из отработавшего ядерного топлива часть изотопов урана, плутония и нептуния, зависящую от степени очистки, достигаемой используемой технологией извлечения. Используемые при определении дозового эквивалента партии ввозимых ОТВС значения, характеризующие степень очистки, должны быть подтверждены экспериментально.
- 13. При определении дозового эквивалента партии ввозимых ОТВС и возвращаемых РАО допускается не учитывать те радионуклиды, совокупный вклад которых в дозовый эквивалент составляет менее 1%.
- 14. Расчет количества РАО, возвращаемых в государство поставщика ОТВС, рекомендуется выполнять в соответствии с рекомендуемыми соотношениями для расчета активности радиоактивных отходов, возвращаемых в государство их поставщика, приведенными в приложении № 1 к настоящему Руководству по безопасности, в следующей последовательности:

расчет активности продуктов деления, актиноидов и продуктов активации во ввозимых ОТВС к моменту переработки;

расчет активности, содержащейся в OTBC с учетом извлечения изотопов урана, плутония и нептуния; расчет активности продуктов деления, актиноидов и продуктов активации в PAO, которые были бы получены от переработки ввезенных OTBC, на момент возврата;

расчет дозовых эквивалентов продуктов деления, актиноидов и продуктов активации, которые были бы получены от переработки ввезенных ОТВС, на момент их возврата в государство поставщика, и использование их для вычисления суммарного дозового эквивалента ввезенных ОТВС;

расчет дозового эквивалента остеклованных РАО, подлежащих возврату в государство поставщика; расчет активности подлежащих возврату РАО.

- 15. При расчетах активности радионуклидов, содержащихся в ОТВС, рекомендуется использовать обоснованные методы и аттестованные программные средства расчета.
- 16. Рекомендуется подтверждать принятые в расчетах значения активности радионуклидов, содержащихся в ОТВС, результатами радиохимического анализа в рамках аналитического контроля раствора, полученного при растворении ОТВС. Если измеренные значения активности радионуклидов превышают расчетные, при определении активности подлежащих возврату РАО рекомендуется использовать измеренные значения активности радионуклидов.

III. Рекомендации по обеспечению безопасности при транспортировании радиоактивных отходов

- 17. Рекомендуется организовывать обучение персонала (например в форме инструктажа), занятого при выполнении работ по обращению с упаковками РАО в ходе их приемки, загрузки, хранения, погрузки, разгрузки и транспортирования, приемам безопасного обращения с упаковками РАО каждый раз перед осуществлением транспортирования.
- 18. В рамках выполнения рекомендаций пункта 17 настоящего Руководства по безопасности рекомендуется осуществлять практическую отработку действий по Плану работ по ликвидации последствий аварий путем проведения учений.
- 19. При составлении Плана работ по ликвидации последствий аварий, разрабатываемого в соответствии с требованиями НП-074-06, рекомендуется учитывать опасные свойства РАО и упаковок с РАО, а также проанализировать возможность образования при транспортировании РАО продуктов,

образующихся в результате взаимодействия РАО или материалов упаковок РАО с атмосферным воздухом или водой и обладающих опасными свойствами.

- 20. Рекомендуется контролировать выполнение программ обеспечения качества на всех этапах деятельности по переработке ОТВС и возврату РАО в государство поставщика ОТВС.
- 21. При разработке отчёта по обоснованию безопасности при обращении с PAO от переработки ОТВС при транспортировании в государство их поставщика рекомендуется руководствоваться приложением № 2 к настоящему Руководству по безопасности.
- 22. Для целей разработки программы радиационной защиты при обращении с РАО от переработки ОТВС во время транспортирования в государство их поставщика рекомендуется руководствоваться приложением № 3 к настоящему Руководству по безопасности.
- 23. Рекомендуется избегать перегрузки РАО из упаковок и не предусматривать временное (транзитное) хранение упаковок на пути следования.
- 24. На транспортном средстве, предназначенном для перевозки РАО, рекомендуется предусматривать несъёмные крепления упаковок РАО, обеспечивающие надежное закрепление во избежание самопроизвольного перемещения и опрокидывания упаковок РАО при поворотах, толчках, торможении, качке и других воздействиях в нормальных условиях транспортирования.
- Транспортирование РАО по возможности рекомендуется осуществлять железнодорожным или морским транспортом.
- 26. При транспортировании РАО железнодорожным транспортом рекомендуется использовать специальные поезда прямого назначения, состоящие только из вагонов с РАО и, при необходимости, вагонов сопровождения.
- 27. При транспортировании РАО железнодорожным транспортом рекомендуется размещать сопровождающий персонал, в том числе охрану, в изолированных от груза служебных помещениях или в отдельных специально оборудованных для этих целей вагонах.
- 28. Маневры с железнодорожным подвижным составом, загруженным РАО, рекомендуется производить с особой осторожностью и не допускать пропуск такого состава через сортировочные горки без локомотивов, а также не допускать производство маневров толчками.
- 29. Лицам, сопровождающим радиоактивные материалы при транспортировании РАО железнодорожным транспортом, рекомендуется иметь при себе протоколы измерений радиационных характеристик транспортных упаковочных комплектов и железнодорожного подвижного состава, выполненных в соответствии с установленными требованиями.

ПРИЛОЖЕНИЕ № 1

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению безопасности при возврате продуктов переработки облучённых тепловыделяющих сборок в государство их поставщика», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 30 декабря 2013 г. № 655

Рекомендуемые соотношения для расчета активности радиоактивных отходов, возвращаемых в государство их поставщика

Изменение активности продуктов деления (далее – ПД) за время хранения ОТВС перед переработкой и РАО перед возвратом рекомендуется получать решением уравнений изотопной кинетики.

Для всех продуктов деления, за исключением короткоживущих радионуклидов, находящихся в

равновесии со своими предшественниками (90 Y, 93m Nb, 106 Rh, 125m Te, 137m Ba и т.д.), активность рекомендуется рассчитывать по соотношению:

$$A_i^{\Pi \mathcal{I}}(t) = A_i^{\Pi \mathcal{I}}(t_0) \cdot \exp(-\lambda_i^{\Pi \mathcal{I}} \cdot (t - t_0)), \qquad (1)$$

где $A_i^{\Pi \mathcal{I}}(t)$ – активность *i*-го радионуклида в ПД на момент времени t;

 $A_{i}^{\Pi \mathcal{I}}(t_{0})$ — активность i-го радионуклида в ПД на начальный момент времени t_{0} ;

 $\lambda_i^{\Pi \mathcal{I}}$ – постоянная распада i-го радионуклида в ПД.

Для короткоживущих радионуклидов, находящихся в равновесии со своими предшественниками (90 Y, 93 mNb, 106 Rh, 125 mTe, 137 mBa и т.д.), рекомендуется учитывать как убыль этих нуклидов в результате радиоактивного распада, так и их накопление в результате радиоактивного распада предшественников. Поскольку каждый из этих нуклидов имеет только одного (i-1)-го предшественника, то расчет активности короткоживущих ПД рекомендуется осуществлять по соотношению:

$$A_{i}^{\Pi\Pi}(t) = A_{i}^{\Pi\Pi}(t_{0}) \cdot \exp(-\lambda_{i} \cdot (t - t_{0})) + \frac{A_{i-1}^{\Pi\Pi}(t_{0}) \cdot I_{i-1} \cdot \lambda_{i} \cdot [\exp(-\lambda_{i} \cdot (t - t_{0})) - \exp(-\lambda_{i-1} \cdot (t - t_{0}))]}{\lambda_{i-1} - \lambda_{i}},$$
(2)

где I_{i-1} — относительная доля распадов (i-1)-го нуклида с образованием i-го нуклида;

 $\lambda_i, \, \lambda_{i-1}$ — постоянные распада i-го ПД и его предшественника, соответственно.

Изменение активности актиноидов (далее - AK) в результате радиоактивного распада рекомендуется описывать следующим соотношением:

$$A_{i}^{AK}(t) = A_{i}^{AK}(t_{0}) \cdot \exp(-\lambda_{i}^{AK} \cdot t) + \sum_{j=1}^{i-1} b_{ji} \cdot [A_{j}^{AK}(t_{0}) \cdot \exp(-\lambda_{i}^{AK} \cdot t) - A_{j}^{AK}(t)],$$
 (3)

где $A_i^{AK}(t)$ – активность *i*-го актиноида во всех ОТВС в момент времени t;

 $A_{i}^{AK}(t_{0})$ — активность i-го актиноида во всех ОТВС в момент времени t_{0} ;

$$b_{ji} = \lambda_{ji}^{AK} / (\lambda_j^{AK} - \lambda_i^{AK});$$

j = i - 1;

$$b_{ji} = (\lambda_{ji}^{AK} + \sum_{l=j+1}^{i-1} b_{li} \cdot \lambda_{jl}^{AK}) / (\lambda_{j}^{AK} - \lambda_{i}^{AK});$$

 $1 \le j \le i - 1$;

 $\lambda_i^{AK}, \lambda_i^{AK}$ — постоянные распада i-го и j-го радионуклидов, соответственно;

$$\lambda_{ji}^{AK} = \lambda_{j}^{AK} \cdot I_{ji};$$

 I_{ji} — относительная доля распадов j-го нуклида с образованием i-го нуклида.

В случае если у i-го актиноида имеется только один (i-1)-й предшественник, для расчета его активности рекомендуется принимать следующее соотношение:

$$A_{i}^{AK}(t) = A_{i}^{AK}(t_{0}) \cdot \exp(-\lambda_{i} \cdot (t - t_{0})) + \frac{A_{i-1}^{AK}(t_{0}) \cdot I_{i-1} \cdot \lambda_{i} \cdot [\exp(-\lambda_{i} \cdot (t - t_{0})) - \exp(-\lambda_{i-1} \cdot (t - t_{0}))]}{\lambda_{i-1} - \lambda_{i}}$$
(4)

где I_{i-1} — относительная доля распадов (i-1)-го нуклида с образованием i-го нуклида.

Изменение активности продуктов активации (далее – ΠA) в зависимости от времени рекомендуется определять по формуле:

$$A_i^{\Pi A}(t) = A_i^{\Pi A}(t_0) \cdot \exp(-\lambda_i^{\Pi A} \cdot (t - t_0)), \tag{5}$$

где $A_i^{\Pi A}(t)$ – активность i-го радионуклида в ПА на момент времени t;

 $A_{i}^{\Pi A}(t_{0})$ – активность *i*-го радионуклида в ПА на начальный момент времени t_{0} ;

 $\lambda_i^{\Pi A}$ – постоянная распада *i*-го радионуклида в ПА.

Если дочерний изотоп распада ПА также радиоактивен и значение его периода полураспада сравнимо с периодом полураспада материнского изотопа, то расчет активности дочернего изотопа рекомендуется проводить по формуле, аналогичной (2).

Суммарный дозовый эквивалент ОТВС рекомендуется определять с учетом извлечения целевых продуктов переработки и распада радионуклидов за время технологического хранения ОТВС и РАО по формуле:

$$E^{OTBC}(t_B) = \sum_{i=1}^k A_i^{\Pi A}(t_B) \cdot B_i^{\Pi A} + \sum_{i=1}^m A_i^{AK}(t_B) \cdot B_i^{AK} + \sum_{i=1}^n A_i^{\Pi A}(t_B) \cdot B_i^{\Pi A}, \tag{6}$$

 $A_i^{\Pi\!\Pi}(t_B)$, $A_i^{AK}(t_B)$, $A_i^{\Pi\!A}(t_B)$ – активности радионуклида i на момент вывоза t_B , являющегося

продуктом деления, актиноидом или продуктом активации, соответственно;

актиноидом или продуктом активации, соответственно;

k, m, n – число учитываемых ПД, АК и ПА.

В качестве радионуклидного состава РАО рекомендуется принимать значения, рассчитанные по формуле:

$$a_i^{PAO}(t_{II}) = \frac{C_i^{PAO}}{100\%} \cdot a_{y,II}^{PAO}, \tag{7}$$

где C_i^{PAO} – среднестатистические значения соотношения активности радионуклидов в РАО, определенные по результатам аналитического контроля жидких РАО перед остекловыванием за последние несколько лет и выраженные в процентах от активности каждого из радионуклидов;

 $t_{_{II}}$ – время с момента ввоза ОТВС до момента переработки;

 a_{yJ}^{PAO} — полная удельная активность остеклованных РАО.

Изменение удельной активности нуклидов, содержащихся в РАО, за время хранения РАО от момента переработки до момента возврата рекомендуется рассчитывать по формулам, аналогичным формулам

$$(1)$$
 – (5) , с заменами t , t_0 , A_i^{AK} , $A_i^{\Pi\Pi}$ и $A_i^{\Pi A}$ на t_B , t_Π , $a_i^{PAO,AK}$, $a_i^{PAO,\Pi A}$, $a_i^{PAO,\Pi A}$, соответственно.

Суммарный удельный дозовый эквивалент активности подлежащих возврату РАО на момент возврата рекомендуется рассчитывать по формуле:

$$e^{PAO}(t_B) = \sum_{i=1}^{l} a_i^{PAO,\Pi IJ}(t_B) \cdot B_i^{\Pi IJ} + \sum_{i=1}^{s} a_i^{PAO,AK}(t_B) \cdot B_i^{AK} + \sum_{i=1}^{d} a_i^{PAO,\Pi IA}(t_B) \cdot B_i^{\Pi A},$$
 (8)

где $e^{PAO}(t_B)$ – удельный дозовый эквивалент активности i-го радионуклида в РАО на момент

возврата $t_{\scriptscriptstyle B}$;

$$a_i^{\it PAO,\Pi J}(t_{\it B})$$
, $a_i^{\it PAO,AK}(t_{\it B})$, $a_i^{\it PAO,\Pi A}(t_{\it B})$ – удельная активность в РАО *i*-го радионуклида,

являющегося продуктом деления, актиноидом или продуктом активации, соответственно;

l, s, d – число учитываемых ПД, АК и ПА.

Активность подлежащих возврату РАО рекомендуется рассчитывать по формуле:

$$A^{PAO} = \frac{E^{OTBC}(t_B)}{e^{PAO}(t_B)} \cdot a_{y,\chi}^{PAO}. \tag{9}$$

ПРИЛОЖЕНИЕ № 2

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению безопасности при возврате продуктов переработки облучённых тепловыделяющих сборок в государство их поставщика», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 30 декабря 2013 г. № 655

Рекомендации по содержанию отчёта по обоснованию безопасности при обращении с радиоактивными отходами от переработки облучённых тепловыделяющих сборок при транспортировании в государство их поставщика

В состав отчёта по обоснованию безопасности при обращении с РАО от переработки облучённых тепловыделяющих сборок при транспортировании в государство их поставщика рекомендуется включить следующие разделы.

- 1. Введение.
- Общее описание объектов, на которых осуществляется погрузка, выгрузка и транзитное хранение РАО.
 - 3. Описание технологической схемы транспортирования РАО.
 - 4. Управление технологическим процессом.
 - 5. Радиационная безопасность.
 - 6. Осуществление заявленной деятельности.
 - 7. Анализ нарушений и аварий.

В разделе «Введение» рекомендуется привести общую характеристику организации, осуществляющей обращение с РАО при их транспортировании.

В разделе «Общее описание объектов, на которых осуществляется погрузка, выгрузка и транзитное хранение РАО», рекомендуется привести:

общее описание объектов, на которых осуществляется погрузка, выгрузка и (в случае необходимости) транзитное хранение PAO;

перечень используемых упаковок (транспортных упаковочных комплектов) для перевозки РАО с указанием реквизитов сертификатов-разрешений и сроков их действия;

перечень используемых транспортных средств для перевозки упаковок с РАО с указанием реквизитов санитарно-эпидемиологических заключений и сроков их действия;

допустимые уровни радиоактивного загрязнения площадок, оборудования, упаковок с РАО и транспортных средств.

В разделе «Описание технологической схемы транспортирования PAO» рекомендуется:

описать технологическую схему осуществления заявленной деятельности;

привести перечень всех технологических процессов (операций) при осуществлении заявленной деятельности (контроль порожних упаковок, погрузка, выгрузка, проверка упаковок после загрузки или выгрузки радиоактивного содержимого).

В разделе «Управление технологическим процессом» рекомендуется привести:

обоснование достаточности объёма технического обслуживания и технического контроля;

описание систем и средств контроля радиационной обстановки;

описание систем пожаротушения;

описание систем предупредительного и аварийного оповещения персонала, а также средств связи, предназначенных для оповещения.

В разделе «Радиационная безопасность» рекомендуется:

привести критерии обеспечения радиационной безопасности персонала и населения (основные пределы доз, допустимые уровни поверхностного загрязнения и т.д.) при нормальных условиях осуществления заявленной деятельности и при авариях;

привести радиационные характеристики транспортируемых РАО;

провести оценку доз при нормальных условиях осуществления заявленной деятельности и при авариях с указанием исходных данных, описанием методов и моделей расчета и принятых допущений;

показать, что при нормальных условиях осуществления заявленной деятельности и при авариях индивидуальные дозы облучения персонала не превысят установленных, а поступление в окружающую среду радиоактивных веществ не превысит допустимого;

описать организационные и административные меры по обеспечению радиационного контроля;

привести сведения о подразделениях, оснащенных техническими средствами, предназначенными для проведения радиационного контроля;

изложить и обосновать объем радиационного контроля (достаточность радиационного контроля для определения и оценки эффективных доз облучения персонала и населения во всем диапазоне возможных уровней радиационных воздействий, создаваемых при нормальных условиях осуществления заявленной деятельности, а также при авариях).

В разделе «Осуществление заявленной деятельности» рекомендуется:

представить квалификационные требования к персоналу и порядок организации его подготовки; привести мероприятия, направленные на поддержание уровня квалификации персонала;

привести сведения о наличии у персонала разрешений Ростехнадзора на право ведения работ в области использования атомной энергии;

привести перечень всей документации (инструкций, регламентов и т.д.), используемой при транспортировании РАО;

привести информацию о наличии Плана работ по ликвидации последствий аварий, разработанного в соответствии с НП-074-06.

В разделе «Анализ аварий» рекомендуется:

привести перечень возможных аварий, анализ их последствий, меры по их ликвидации, а также информацию о наличии оборудования для снижения тяжести аварии и её последствий;

описать методы и средства дезактивации, методы и средства оказания первой помощи облученным лицам;

привести перечень имевших место ранее нарушений условий нормального транспортирования и аварий при осуществлении аналогичной деятельности, а также результаты анализа причин их возникновения.

ПРИЛОЖЕНИЕ № 3

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению безопасности при возврате продуктов переработки облучённых тепловыделяющих сборок в государство их поставщика», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 30 декабря 2013 г. № 655

Рекомендации по содержанию программы радиационной защиты при обращении с радиоактивными отходами от переработки облучённых тепловыделяющих сборок при их транспортировании в государство их поставщика

В состав программы радиационной защиты рекомендуется включить следующие разделы.

- 1. Область действия программы.
- 2. Распределение обязанностей и ответственности за выполнение программы.
- 3. Оценка доз, дозовые ограничения, снижение дозовых нагрузок в соответствии с принципом оптимизации.
 - 4. Радиационный контроль.
 - 5. Защитные мероприятия.
 - 6. Мероприятия при аварии.
 - 7. Подготовка персонала.
 - 8. Порядок подготовки и оформления программы радиационной защиты.
 - В разделе «Область действия программы» рекомендуется указать:

тип, агрегатное состояние и объем транспортируемых РАО, тип упаковок, используемых для транспортирования;

операции, осуществляемые при транспортировании PAO, на которые распространяется программа радиационной защиты (например погрузка, временное хранение и перемещение упаковок с PAO, осмотр и техническое обслуживание упаковок и т.п.);

количество лиц, участвующих в операциях по транспортированию PAO, возможные места их нахождения, расстояния между ними и PAO в процессе транспортирования;

ожидаемые величины доз вследствие транспортирования РАО.

В разделе «Распределение обязанностей и ответственности за выполнение программы» рекомендуется перечислить ответственных лиц с указанием конкретных пунктов, разделов или требований программы радиационной защиты, за выполнение которых они отвечают.

В разделе «Оценка доз, дозовые ограничения, снижение дозовых нагрузок в соответствии с принципом оптимизации» рекомендуется представить результаты предварительной оценки возможных доз облучения персонала и, при необходимости, населения вследствие транспортирования РАО в нормальных условиях и в случае аварий. Если ожидаемые дозы облучения персонала вследствие транспортирования РАО превышают 1 мЗв/год, в данном разделе рекомендуется указать порядок осуществления дозиметрического контроля и оценки доз облучения. В случае если ожидаемые дозы облучения персонала вследствие транспортирования РАО превышают 5 мЗв/год, в программе радиационной защиты рекомендуется указать порядок осуществления индивидуального дозиметрического контроля. В данном разделе также рекомендуется привести дозовые пределы для персонала, указать контрольные уровни, установленные дополнительно с целью гарантированного непревышения дозовых пределов. Если получаемые при транспортировании РАО дозы облучения персонала пренебрежимо малы, установление контрольных уровней облучения не требуется. В данном разделе также рекомендуется указать принятые организационно-технические меры, направленные на снижение дозы облучения персонала и населения до минимального разумно достижимого уровня.

В разделе «Радиационный контроль» рекомендуется привести порядок и объем радиационного контроля поверхностного радиоактивного загрязнения рабочих помещений, транспортных средств, оборудования и упаковок с РАО, в том числе указать критерии, используемые при оценке приемлемости поверхностного радиоактивного загрязнения (например допустимые уровни радиоактивного загрязнения поверхности транспортных средств в соответствии с таблицей 8.10 СанПиН 2.6.1.2523 − 09 «Нормы радиационной безопасности (НРБ-99/2009)», утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 7 июля 2009 г. № 47 (зарегистрировано Министерством юстиции Российской Федерации 14 августа 2009 г., регистрационный № 14534; «Российская газета», 2009 г., № 171/1)).

В разделе «Защитные мероприятия» рекомендуется указать принятые меры по изоляции РАО при транспортировании (например порядок размещения упаковок с РАО на транспортном средстве) и временном хранении (если таковое предусмотрено), а также, в случае необходимости, меры по дополнительной защите персонала и населения (например защита кабины водителя).

В разделе «Мероприятия при аварии» рекомендуется указать первоочередные действия персонала в случае аварии при транспортировании, в том числе порядок передачи информации об аварии, а также привести ссылку на План работ по ликвидации последствий аварий, разработанный в соответствии с НП-074-06.

В разделе «Подготовка персонала» рекомендуется привести сведения о подготовке всех участвующих в транспортировании РАО лиц, в том числе о получении ими специальных знаний, необходимых для выполнения их функций, и об отработке соответствующих навыков, а также о прохождении противоаварийных тренировок.

В разделе «Порядок подготовки и оформления программы радиационной защиты» рекомендуется показать, что программа радиационной защиты является неотъемлемой частью системы обеспечения качества, а также привести порядок ее разработки, утверждения и периодического пересмотра.