МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **ΓΟCT** 32463—2013

НЕФТЕПРОДУКТЫ

Определение температуры потери текучести методом автоматического наклона

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИНП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 ноября 2013 г. № 61-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004–97	Код страны по МК (ИСО 3166) 004–97	Сокращенное наименование национального органа по стандартизации
Армения ————————————————————————————————————	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. № 688-ст межгосударственный стандарт ГОСТ 32463—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
- 5 Настоящий стандарт идентичен стандарту ASTM 5950—02(2007) «Стандартный метод определения температуры текучести нефтепродуктов (метод автоматического наклона)» [«Standard test method for pour point of petroleum products (automatic tilt method)», IDT].

Стандарт разработан комитетом по стандартизации ASTM D 02 «Нефтепродукты и смазочные материалы», и непосредственную ответственность за метод несет подкомитет D 02.07 по свойствам текучести.

Наименование настоящего межгосударственного стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5—2001 (подраздел 3.6).

Официальные экземпляры стандарта ASTM, на основе которого подготовлен настоящий межгосударственный стандарт, и стандартов ASTM, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Декабрь 2016 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru).

© Стандартинформ, 2016

Введение

В настоящем стандарте приведен альтернативный метод определения температуры текучести нефтепродуктов с использованием автоматического аппарата.

НЕФТЕПРОДУКТЫ

Определение температуры потери текучести методом автоматического наклона

Petroleum products. Determination of pour point of automatic tilt method

Дата введения — 2015—01—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод определения температуры потери текучести нефтепродуктов с помощью автоматического прибора, который наклоняет испытательную пробирку в процессе охлаждения и фиксирует движение поверхности испытуемого образца с использованием оптического устройства.
- 1.2 Настоящий метод испытания предназначен для температур в диапазоне от минус 57°C до плюс 51 °C; в программе межлабораторных испытаний 1992 г. испытания проводили при температурах в диапазоне от минус 39 °C до плюс 6 °C, а в межлабораторной программе испытаний 1998 г. при температурах в диапазоне от минус 51 °C до минус 11 °C (см. раздел 13).
- 1.3 Результаты, полученные по данному методу испытаний, можно определять с интервалами 1 °C или 3 °C.
 - 1.4 Настоящий метод испытания не используют для анализа сырой нефти.

П р и м е ч а н и е 1 — Возможность применения настоящего метода для испытания образцов остаточных топлив не проверялась. Дополнительная информация по использовании метода приведена в 13.4.

- 1.5 Значения, указанные в системе СИ, должны рассматриваться в качестве стандартных.
- 1.6 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения)¹⁾.

2.1 Стандарты ASTM

ASTM D 97 Test method for pour point of petroleum products (Метод определения температуры текучести нефтепродуктов)

ASTM D 4057 Standard practice for manual sampling of petroleum and petroleum products (Стандартная практика ручного отбора проб нефти и нефтепродуктов)

ASTM D 4177 Standard practice for automatic sampling of petroleum and petroleum products (Стандартная практика автоматического отбора проб нефти и нефтепродуктов)

2.2 Стандарт энергетического института

IP 15 Test method for pour point of petroleum products (Метод определения температуры текучести нефтепродуктов)

¹⁾ Ссылки на стандарты ASTM можно уточнить на сайте ASTM website, www.astm.org или в службе поддержки клиентов ASTM service@astm.org, а также в информационном томе ежегодного сборника стандартов ASTM (Website standard's Document Summary).

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 Определения:
- 3.1.1 **температура текучести** (pour point): Минимальная температура нефтепродуктов, при которой наблюдается течение испытуемого образца при установленных условиях испытания.
 - 3.2 Определения терминов, специфических для настоящего стандарта:
- 3.2.1 температура потери текучести (no-flow point): Температура испытуемого образца нефтепродуктов, при которой образование кристаллической структуры парафина и/или увеличение вязкости затрудняют движение поверхностного слоя испытуемого образца при установленных условиях испытания.

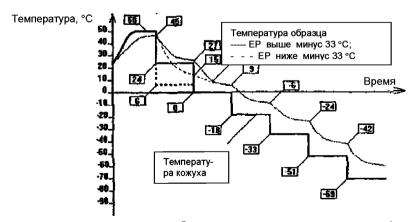
3.2.1.1 Пояснение

Температура потери текучести наблюдается, когда при охлаждении образование кристаллических структур парафина или увеличение вязкости, или и то и другое достигают момента, при котором применяемое детектирующее устройство больше не регистрирует движение при установленных условиях испытания. Температура предшествующего наблюдения, при которой последний раз наблюдалось течение образца, является температурой текучести.

3.2.2 **наклон** (tilting): Способ движения, при котором испытательная пробирка отклоняется от вертикального положения к горизонтальному, что вызывает движение образца.

3.2.2.1 Пояснение

Когда испытательная пробирка наклоняется и удерживается в горизонтальном положении в течение 5 с без детектирования движения образца, регистрируется температура потери текучести и испытание завершается.


4 Сущность метода

4.1 Помещают предварительно нагретый испытуемый образец в автоматический аппарат для определения температуры текучести. После начала выполнения программы испытания охлаждают образец в соответствии с профилем (условиями) охлаждения, указанным в таблице 1, и регистрируют температуру с интервалами 1 °C или 3 °C. За температуру текучести принимают минимальную температуру, при которой автоматическое оборудование регистрирует движение образца.

П р и м е ч а н и е 2 — Если автоматический аппарат по определению температуры текучести имеет функцию предварительного нагревания, помещают испытуемый образец в аппарат. После начала выполнения программы испытаний аппарат будет автоматически выполнять предварительное нагревание.

Таблица1 — Профиль температуры охлаждения кожуха и образца

Температура образца, °С	Температура кожуха, °С
Выше плюс 9 до плюс 27 включ. (+27 ≥ ST > +9)	0 ± 0,5
Выше минус 6 до плюс 9 включ. (+9 ≥ ST >–6)	- 18,0 ± 0,5
Выше минус 24 до минус 6 включ. (-6 ≥ ST > -24)	- 33,0 ± 0,5
Выше минус 42 до минус 24 включ. (–≥24 ≥ ST >-42)	- 51,0 ± 0,5
Выше минус 58 до минус 42 включ.(–42 ≥ ST > -58)	- 69,0 ± 0,5

Автоматическое охлаждение образца и кожуха в соответствии с профилем охлаждения

5 Назначение и применение

- 5.1 Температура текучести нефтепродукта минимальная температура, при которой нефтепродукт используют для определенных целей. Значения характеристик течения, например температуры текучести, могут быть важными для надежной эксплуатации смазочных систем, топливных систем и трубопроводов.
 - 5.2 Операции смешивания нефтепродуктов требуют точного определения температуры текучести.
- 5.3 Настоящий метод испытания обеспечивает определение температуры текучести испытуемого образца с точностью до 1,0 °C.
 - 5.4 Результаты настоящего метода испытания можно определять с интервалами 1 °С или 3 °С.
- 5.5 Настоящий метод испытания обеспечивает определение температуры текучести аналогично ASTM D 97/IP 15, если результаты регистрируют с интервалами 3 °C.

П р и м е ч а н и е 3 — Поскольку некоторым пользователям необходимо записывать результаты, аналогичные полученным по ASTM D 97 (с интервалами 3 °C), прецизионность была получена для значений температур, округленных до интервалов 3 °C. Информацию по отклонению настоящего метода относительно ASTM D 97 см. 13.3.

5.6 По результатам программы межлабораторных испытаний 1998 г. установлено, что настоящий метод испытаний имеет лучшие показатели повторяемости и воспроизводимости по сравнению с ASTM D 97 (см. раздел 13).

6 Аппаратура

- 6.1 Автоматический аппарат определения температуры текучести с оптической системой детектирования состоит из микропроцессорного контроллера, обеспечивающего управление одной или несколькими испытательными ячейками. Аппарат должен обеспечивать независимый контроль температуры в каждой ячейке в соответствии с заданным профилем охлаждения, постоянный контроль температуры образца и детектирование любого движения образца в процессе наклона (см. рисунок 1). Эксплуатацию прибора в соответствии с инструкциями производителя.
- 6.2 Датчик температуры IEC 751 класс A: Δ T = \pm (0,15 + 0,002 |T|), обеспечивающий измерение температуры в диапазоне от плюс 70 °C до минус 80 °C. Датчик температуры помещают в центр испытательной пробирки, при этом верхняя часть платинового наконечника должна быть погружена на 3 мм ниже уровня поверхности нефтепродукта.
- 6.3 Испытательная цилиндрическая пробирка из прозрачного стекла наружным диаметром $(34,0\pm0,1)$ мм, внутренним диаметром $(31,0\pm0,3)$ мм, высота $(120,0\pm0,5)$ мм, толщиной дна не более 2,4 мм с плоским дном. Для указания уровня заполнения на внутренней поверхности испытательной пробирки нанесена отметка на высоте $(54,0\pm0,5)$ мм от внутренней поверхности дна.
- 6.4 Латунный цилиндрический кожух высотой (113,0 ± 0,2) мм, внутренним диаметром (45,0 ± 0,1) мм плоским дном. Кожух должен охлаждаться в соответствии с заданным профилем охлаждения.

 $^{^{2)}}$ Применяют аппараты модели ISL CPP 97-6 и ISL CCP 97-2, которые выпускает компания ISL SA, BP 40, 14790 Verson, France.

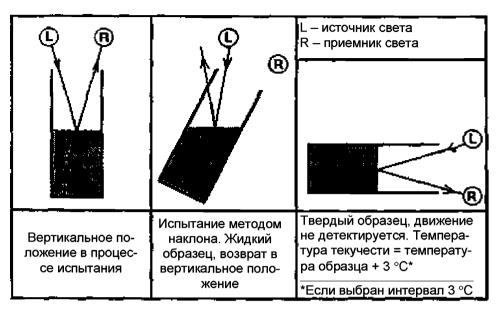
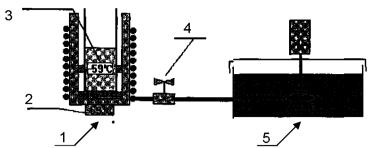


Рисунок 1 — Оптическая система детектирования

- 6.5 Охлаждающая баня, оборудованная циркуляционным насосом, и обеспечивающая поддержание температуры не менее чем на 10 °C ниже последнего значения температуры кожуха (см. таблицу 1 и рисунок 2).
- 6.6 Корковая пробка высотой (6,0 ± 0,2) мм для установки в кожух. Можно использовать пробку из фетра, не содержащего влагу. Перед проведением испытания пробку из фетра сушат.
- 6.7 Корковое кольцо для установки в испытательную пробирку и испытательную ячейку, изолирующее испытательную пробирку и охлаждающий кожух.


7 Реактивы и материалы

- 7.1 Обезвоженный метиловый спирт, используемый в качестве охлаждающей среды в циркуляционной бане.
- 7.2 Очищающие растворители, пригодные для очистки и осушки испытательной пробирки и испытательной головки, например нафта и гексан. (Предупреждение Гексан легковоспламеняющаяся жидкость. Вызывает химические ожоги глаз. Пары опасны для здоровья. Может вызвать смертельный исход или потерю зрения при проглатывании или вдыхании).

8 Отбор проб

- 8.1 Отбор проб по ASTM D 4057 или ASTM D 4177.
- 8.2 Для переноса пробы очень вязких веществ можно нагревать, при этом пробу не нагревают больше, чем это необходимо. В пробирку переносят пробу, имеющую температуру не выше 70 °C. Не рекомендуется нагревать пробу выше указанной температуры.

П р и м е ч а н и е 4 — При нагревании пробы выше этой температуры ее охлаждают, пока ее температура перед переносом не станет ниже температуры испытания.

1 — ячейка для автоматического определения температуры текучести; 2 — температура кожуха; 3 — температура образца; 4 — устройство контроля температуры кожуха; 5 — охлаждающая циркуляционная баня

Рисунок 2 — Схема испытательной ячейки для определения температуры текучести и охлаждающей циркуляционной бани

9 Подготовка аппарата

- 9.1 Готовят аппарат для проведения испытания в соответствии с инструкциями производителя.
- 9.2 Очищают и осушают испытательную головку и испытательную пробирку соответствующими растворителями в соответствии с рекомендациями производителя аппарата.
- 9.3 Устанавливают циркуляционную охлаждающую систему на соответствующую температуру для охлаждения кожухов до требуемых температур (см. таблицу 1).

П р и м е ч а н и е 5 – Для большинства анализов циркуляционную охлаждающую систему следует устанавливать на минимальную рабочую температуру.

10 Калибровка и проверка

- 10.1 Калибровку, проверку и эксплуатацию аппарата выполняют в соответствии с инструкциями производителя аппарата.
- 10.2 Для калибровки оборудования используют имитатор испытательной головки (номер по каталогу V02306). В имитаторе испытательной головки для калибровки кожуха и электронных систем измерения температуры образца вместо датчика температуры РТ 100 используют прецизионные резисторы. Калибровку выполняют в соответствии с инструкциями производителя.
- 10.3 Для проверки рабочих характеристик аппарата можно использовать образец с подтвержденной температурой текучести. Альтернативно можно использовать образец, который использовали в при проведении межлабораторных испытаний по определению температуры текучести.

11 Проведение испытания

- 11.1 Заливают образец в испытательную пробирку до нанесенной метки. При необходимости нагревают образец в водяной бане или термостате до жидкого состояния для переноса в испытательную пробирку. Образцы с предполагаемой температурой текучести выше 36 °С или образцы, которые находятся в твердом состоянии при температуре окружающей среды, можно нагревать выше 45 °С но не выше 70 °С (см. примечание 4).
- 11.2 Предварительно обрабатывают образец или используют функцию автоматического нагрева прибора.
- Примечание 6 Установлено, что остаточные топлива чувствительны к термической обработке. При испытании образца остаточного топлива образцы готовят по ASTM D 97.
- 11.2.1 Если известно, что предполагаемая температура текучести (EP) ниже или равна минус 33 °C, нагревают испытуемый образец до 45 °C в бане или термостате, поддерживаемых при температуре 48 °C.
- 11.2.2 Если известно, что предполагаемая температура текучести (EP) выше минус 33 °C, нагревают испытуемый образец до предполагаемой температуры текучести (EP) 9 °C или не ниже 45 °C, но не выше 70 °C (см. примечание 4).
- 11.3 Устанавливают корковую пробку на дно кожуха в требуемую ячейку и корковое кольцо в испытательную пробирку. Корковое кольцо должно располагаться на расстоянии (25 ± 3) мм от дна

испытательной пробирки.

- 11.4 Устанавливают испытательную пробирку в выбранную испытательную ячейку. Устанавливают головку детектора в соответствии с инструкциями производителя.
 - 11.5 Выбирают требуемый измерительный интервал температуры (1 °C или 3 °C).
- 11.6 Вводят предполагаемую температуру текучести (EP). Если выбирают измерительный интервал 3 °C (см. 11.5), необходимо ввести предполагаемую температуру текучести, кратную 3 °C.
 - 11.7 Проводят испытание в соответствии с инструкциями производителя прибора.
- 11.8 На этом этапе прибор контролирует испытуемый образец с использованием оптического детектора, устанавливая температуру кожуха на первый уровень температуры (в соответствии с таблицей 1) и измеряя температуру образца. Прибор должен автоматически изменять температуру кожуха в соответствии с температурой образца (в соответствии с таблицей 1). Время перехода температуры кожуха с одного уровня на следующий более низкий уровень должно быть не более 90 с. Прибор должен наклонять испытательную пробирку с образцом (без удаления пробирки из кожуха) в предварительно установленном режиме, когда температура испытуемого образца будет на 9 °C выше предполагаемой температуры текучести. Если в процессе наклона наблюдается течение образца, температура потери текучести не достигнута и кожух возвращается в вертикальное положение. Испытание продолжают до тех пор, пока кожух не будет находиться полностью в горизонтальном положении и детектор не будет детектировать любое движение образца в течение 5 с. Эту температуру, т. е. температуру потери текучести (плюс 1 °С или 3 °С в зависимости от выбранного интервала измерения) принимают за температуру текучести нефтепродукта (см. рисунок 1). После определения температуры текучести и начинать предварительный нагрев испытуемого образца.
- 11.9 Если прибор детектирует температуру потери текучести на первом цикле наклона (EP + 9 °C), результат не учитывают и начинают испытание с 11.1, используя более высокую предполагаемую температуру текучести.
 - 11.10 Регистрируют результат как температуру текучести без дополнительной корректировки.
- Примечание 7 Установлено, что остаточные топлива чувствительных термической обработке. При испытании образца остаточного топлива образцы готовят по ASTM D 97.

12 Оформление результатов

12.1 Регистрируют температуру, полученную по 11.10, с указанием интервала измерения как температуру текучести в соответствии с настоящим методом испытания.

13 Прецизионность и смещение

13.1 Прецизионность

Прецизионность настоящего метода испытания установлена на основе статистической проверки результатов межлабораторных испытаний.

13.1.1 Температура текучести с интервалами измерения 3 °C

13.1.1.1 Повторяемость *r*

Расхождение между последовательными результатами испытания, полученными одним и тем же оператором на одном и том же аппарате при постоянных рабочих условиях на идентичном материале при нормальном и правильном выполнении настоящего метода испытания, может превышать 3.9 °C только в одном случае из двадцати.

13.1.1.2 Воспроизводимость R

Расхождение между двумя единичными и независимыми результатами испытания, полученными разными операторами в разных лабораториях на идентичном материале при нормальном и правильном выполнении настоящего метода испытания, может превышать 6,1 °C только в одном случае из двадцати.

13.1.2 Температура текучести с интервалами измерения 1 °C:

13.1.2.1 Повторяемость *r*

Расхождение между последовательными результатами испытаний, полученными одним и тем же оператором на одном и том же аппарате при постоянных рабочих условиях на идентичном материале при нормальном и правильном выполнении настоящего метода испытания, может превышать 2.7 °C только в одном случае из двадцати.

13.1.2.2 Воспроизводимость R

Расхождение между двумя единичными и независимыми результатами испытания, полученными разными операторами в разных лабораториях на идентичном материале при нормальном и

правильном выполнении настоящего метода испытания, может превышать 4,5 °C только в одном случае из двадцати.

13.2 Смещение

Смещение не определено, поскольку отсутствует аттестованный стандартный образец, который можно использовать для определения смещения по настоящему методу испытания.

13.3 Относительное отклонение

13.3.1 Значения температуры текучести, измеренные с интервалами 3 °C, сравнивали с результатами, полученными по ASTM D 97. Наблюдалось относительное отклонение³⁾ для отдельных образцов, которое не носило систематический характер. Возможны отклонения относительно ASTM D 97/IP 15 для типов образцов, не вошедших в программу межлабораторных сравнительных испытаний 1998 г.⁴⁾

Примечание 8 – При проведении межлабораторных сравнительных испытаний в 1998 г. образца зимнего дизельного топлива с высоким содержанием серы были получены разные результаты при использовании методики настоящего стандарта и ASTM D 97. После охлаждения в процессе выполнения испытания в образце образовывались тонкие но очень крупные кристаллы, похожие на крупные пластины. Кристаллы образовывались в месте контакта образца со стеклом, а также на верхней поверхности образца. Основной объем образца, за исключением этого тонкого слоя кристаллов, оставался жидким с кажущейся низкой вязкостью. При осторожном обращении с образцом при образовании кристаллов не наблюдали течения образца, однако при более грубом обращении разрушалась корка и наблюдалось течение образца. Пользователям настоящего метода следует проявлять осторожность при получении разных результатов при использовании разных методов испытаний, если в испытуемом образце возможно образование кристаллов.

13.3.2 Относительное отклонение результатов определения температуры текучести с интервалами измерения 1 °C и результатов определения температуры текучести с интервалами измерения 3 °C составило 1.1 °C.

13.3.2.1 Пояснение

Необходимо отметить, что при испытании образца с интервалами 1 °C статистические результаты были на 1 °C ниже результатов, полученных с интервалами измерения 3 °C. Это связано с интервалом испытания и записи результатов. Различия более 1 °C для некоторых образцов наблюдались по другой причине. В программе межлабораторных сравнительных испытаний при испытаниях с интервалами 1 °C были получены результаты определения температуры текучести в среднем на 1 °C ниже результатов, полученных при испытаниях с интервалами 3 °C.

13.4 Прецизионность и относительное отклонение установлены по результатам программы межлабораторных сравнительных испытаний, проведенных в 1998 г. Были проведены повторные испытания двух образцов дизельного топлива, пяти образцов базовых масел, трех образцов всесезонных смазочных масел и по одному образцу масла для гидравлических приводов и жидкости для автоматических коробок передач в температурном диапазоне от минус 51 °C до минус 11 °C. Восемь лабораторий использовали автоматические аппараты для испытания с интервалами 1 °C и 3 °C. Семь лабораторий использовали аппаратуру для ручного метода по ASTM D 97.

³⁾ Данные (программа 1992 г.) могут быть получены по запросу исследовательского отчета RR: D02-1312.

⁴⁾ Данные (программа 1998 г., включая информацию о типах образцов и среднеарифметических значениях температуры текучести) могут быть получены по запросу исследовательского отчета RR: D02-1499.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

ТаблицаДА1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ASTM D 97—12	_	*
ASTM D 4057—11	NEQ	ГОСТ 2517—2012 «Нефть и нефтепродукты. Методы отбора проб»
ASTM D 4177—10	-	*
IP 15	_	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного стандарта. Перевод данного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

УДК 665.61:006.354

MKC 75.100

IDT

Ключевые слова: нефтепродукты, температура текучести, метод автоматического наклона

Подписано в печать 14.12.2016. Формат 60x84¹/₈. Усл. печ. л. 1,40. Тираж 7 экз. Зак. 3310.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

⁻ NEQ – неэквивалентный стандарт.