ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

УТВЕРЖДАЮ

Директор ФБУ «Федеральный центр ана не оценки техногенного вородительной дентр А.Н.Кичемасов 2012 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ АТМОСФЕРНОГО ВОЗДУХА И ВЫБРОСОВ В АТМОСФЕРУ

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ ФОСФОРНОЙ КИСЛОТЫ И ФОСФОРНОГО АНГИДРИДА В ПРОМЫШЛЕННЫХ ВЫБРОСАХ В АТМОСФЕРУ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 13.1.61-2007 (ФР.1.31.2008.04876)

Методика допущена для целей государственного экологического контроля

МОСКВА 2007 г. (издание 2012 г.)

1 ВВЕДЕНИЕ

Настоящий документ устанавливает методику измерений массовых концентраций фосфорной кислоты и фосфорного ангидрида в промышленных выбросах в атмосферу фотометрическим методом с молибдатом аммония.

Диапазон измерений массовой концентрации фосфорной кислоты и фосфорного ангидрида от 0,03 до 10 мг/м³.

Определению мешают мышьяковая, мышьяковистая кислоты и их соли при содержании свыше 0,01 мг/м³.

2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ

Таблица 1 — Диапазон измерений, значения показателей повторяемости, правильности и точности

Диапазон	Показатель	Показатель	Показатель
измерений,	повторяемости	правильности	точности1
мг/м³	(относительное сред-	(границы относи-	(границы относи-
	неквадратическое от-	тельной система-	тельной погреш-
	клонение повторяе-	тической погреш-	ности при
ĺ	мости),	ности при Р≕0,95),	P=0,95),
	σ_r , %	±δ _c ,%	±δ,%
От 0,03 до 10 включ.	8	19	25

Значения показателя точности методики используют при:

- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории.

3 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

При выполнении измерений должны быть применены следующие средства измерений, стандартные образцы, вспомогательные устройства и реактивы.

¹ Соответствует расширенной стандартной неопределенности при коэффициенте охвата k = 2

3.1 Средства измерений и стандартные образцы

- Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны 540 нм
- Кюветы с толшиной поглошающего слоя 10 мм
- Секундомер, класс 3, цена деления 0,2 с
- Весы лабораторные специального или высокого класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008
- Гири по ГОСТ 7328-2001
- Барометр-анероид М67 по ТУ 25-04-1797-75
- Дифманометр-тягомер типа ДТмМП по ГОСТ 2405-88
- Термометр лабораторный шкальный, цена деления 1°С, предел 0-100°С по ГОСТ 29224-91
- Электроаспиратор типа M-822 по ТУ 64-1-862-82
- Колбы мерные (2-50-2; 2-100-2) по ГОСТ 1774-74
- Пипетки градуированные 2-го класса точности вместимостью 1, 2, 5, 10 cm^3 по ГОСТ 29227-91
- Цилиндры мерные вместимостью 25 см³ по ГОСТ 1770-74
- Пробирки мерные вместимостью 20 см³ по ГОСТ 1770-74
- ГСО с содержанием фосфат-иона с погрешностью аттестованного значения не более 1 % при P=0,95

3.2 Вспомогательные устройства

- Трубка пробоотборная по ТУ 95-743-80
- Фильтры АФА-ХП-10, АФА-ХП-20
- Фильтродержатель для фильтров АФА
- Силиконовые шланги
- Пористый стеклянный фильтр № 3 по ГОСТ 25336-82
- Баня водяная по ТУ 46-22-606-75
- Электрическая плитка с закрытой спиралью по ГОСТ 14919-83
- Стаканы стеклянные вместимостью 50 мл по ГОСТ 25336-82
- Насос водоструйный по ГОСТ 25336-82

Примечания.

- 1 Допускается применение иных средств измерений утвержденных типов, вспомогательных устройств и материалов, технические и метрологические характеристики которых не уступают указанным выше.
- 2 Средства измерений должны быть поверены в установленные сроки.

3.3 Реактивы

Аммоний молибденовокислый, х.ч. по ГОСТ 3765-78 Вода дистиллированная по ГОСТ 6709-72 Кислота аскорбиновая, х.ч. Кислота серная, х.ч. по ГОСТ 4204-77

Примечание.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

4 МЕТОД ИЗМЕРЕНИЙ

Определение основано на переводе фосфорного ангидрида в фосфорную кислоту и взаимодействии последней с молибдатом аммония в присутствии восстановителя (аскорбиновой кислоты). Образовавшееся комплексное соединение, окрашенное в синий цвет, фотометрируют при длине волны 540 нм в кювете с толщиной поглощающего слоя 10 мм.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

При работе в лаборатории необходимо соблюдать следующие требования техники безопасности.

- **5.1** При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.
- **5.2** Электробезопасность при работе с электроустановками соблюдается по ГОСТ Р 12.1.019-2009.
- 5.3 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
- 5.4 Организация обучения работающих безопасности труда производится по ГОСТ 12.0.004-90.
- 5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.
- 5.6 Работы на высоте следует проводить в соответствии с требованиями СНиП III 4-80.

При отборе проб должны соблюдаться общие правила безопасности для предприятий и организаций соответствующей отрасли.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке их результатов допускают специалистов, имеющих высшее или среднее специальное химическое образование или опыт работы в химической лаборатории, прошедших соответствующий инструктаж, освоивших метод в процессе тренировки и получивших удовлетворительные результаты при выполнении контроля процедуры измерений.

7 ТРЕБОВАНИЯ К УСЛОВИЯМ ИЗМЕРЕНИЙ

7.1 Условия выполнения измерений в лаборатории.

- температура воздуха (20 ± 10) °C; - атмосферное давление (84-106) кПа;

- влажность воздуха не более 80 % при температуре 25°C;

частота переменного тока (50±1) Γц;
напряжение в сети (220±22) В.

7.2 Условия измерения анализируемых газовых выбросов

у ротаметра в газоходе

Температура от 2°C до 35°C от 2°C до 50°C

Давление от 82,5 кПа до 106,7 кПа от 82,5 кПа до 106,7 кПа

Влажность относительная от 30-90 % от 30-90 %

8 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

При подготовке к выполнению измерений проводят следующие работы: подготовка прибора, приготовление вспомогательных растворов, построение градуировочного графика, контроль стабильности градуировочной характеристики, отбор проб.

8.1 Подготовка прибора

Подготовку спектрофотометра или фотоколориметра к работе и оптимизацию условий измерения проводят в соответствии с инструкцией по эксплуатации прибора.

8.2 Приготовление вспомогательных растворов

8.2.1 Приготовление раствора серной кислоты 1:4

К четырем объемам дистиллированной воды осторожно, при постоянном перемешивании добавляют один объем концентрированной серной кислоты.

Срок хранения 6 месяцев.

8.2.2 Приготовление раствора аскорбиновой кислоты с массовой долей 1%

Навеску 1 г аскорбиновой кислоты переносят в мерную колбу вместимостью 100 см³, растворяют в небольшом количестве дистиплированной воды. Объем доводят до метки дистиплированной водой.

Раствор применяют свежеприготовленным.

8.2.3 Приготовление раствора аммония молибденовокислого

Навеску 1 г молибдата аммония растворяют в 10 см³ дистиллированной воды и добавляют 50 см³ раствора серной кислоты (1:4).

Срок хранения 3 месяца.

8.2.4 Приготовление рабочего градуировочного раствора из ГСО с массовой концентрацией 10 мкг/см³

Для приготовления основного градуировочного раствора используют ГСО с аттестованным содержанием фосфат-ионов 1 мг/см³. Раствор готовят в соответствии с прилагаемой к образцу инструкцией.

1 см³ раствора должен содержать 10 мкг фосфат-ионов.

Раствор применяют свежеприготовленным.

8.3 Построение градуировочного графика

Для построения градуировочного графика необходимо приготовить образцы для градуировки, соответствующие содержанию фосфат-ионов от 2,0 до 20 мкг в пробе.

Условия проведения анализа должны соответствовать п.7.1. Состав и количество образцов для градуировки приведены в таблице 2.

Таблица 2 - Состав и количество образцов для градуировки

Номер образца	Аликвотная часть рабочего градуировочного раствора, помещенная в пробирку, см ³	Объем дистилли- рованной воды, см ³	Содержание фосфат-ионов в пробе, мкт
1	0	10,0	0
2	0,2	9,8	2,0
3	0,4	9,6	4,0
4	1,0	9,0	10,0
5	1,5	8,5	15,0
6	2,0	8,0	20,0

В каждую пробирку приливают по 1 см³ раствора молибдата аммония и по 0,5 см³ раствора аскорбиновой кислоты. Раствор перемешивают и пробирки помещают на 3 мин. в кипящую водяную баню. Охлаждают и измеряют оптическую плотность градуировочных растворов при длине волны 540 нм в кювете с толщиной поглощающего слоя 10 мм. Раствором сравнения служит холостая проба, которую готовят аналогично градуировочным растворам.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. Строят градуировочный график, откладывая по оси ординат значения оптической плотности, а по оси абсцисс - величину концентрации вещества в мкг.

8.4 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже 1 раза в квартал или при смене партии реактивов, после ремонта и поверки прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведённых в таблице 2).

Контроль также проводят перед каждым анализом серии рабочих проб. В этом случае контроль проводят по одной концентрации, значение которой приближается к определяемым величинам.

Градуировочную характеристику считают стабильной при выполнении следующего условия:

$$|X - C| \le 0.01 \cdot C \cdot K_{rp} \tag{4}$$

где X – результат контрольного измерения содержания фосфат-ионов в образце для градуировки, мкг;

С – аттестованное значение массовой концентрации фосфат-ионов в образце для градуировки, мкг;

 K_{rp} – норматив контроля стабильности градуировочной характеристики, %. (K_{rn} =13%).

Если условие стабильности градуировочной характеристики не выполняется только для одного образца, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины ее нестабильности. При повторном обнаружении нестабильности градуировочной характеристики строят новый график.

8.5 Отбор проб

Отбор проб следует проводить при установившемся технологическом режиме работы обследуемого источника выделения загрязняющих веществ в атмосферу.

Место для отбора проб выбирают на прямолинейном участке газохода, на достаточном удалении от вентиляторов, задвижек, отводов и других подобных устройств.

Пробу исследуемой газовоздушной смеси аспирируют через фильтр АФА-ХП, укрепленный в фильтродержателе, со скоростью 7-10 дм³/мин в течение 5 минут.

Объем газа, проходящего через газоход при рабочих и нормальных условиях, определяют согласно ГОСТ 17.2.4.06-90 «Охрана природы. Атмосфера. Методы определения скорости и расхода газопылевых потоков, отходящих от стационарных источников загрязнения».

Использованные фильтры складывают так, чтобы поверхность с отобранной пробой оказалась внутри, упаковывают в одноразовый полиэтиленовый пакет. Срок хранения в герметичной упаковке неограничен.

9 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Фильтр с пробой помещают в стакан и обрабатывают 10 см³ дистиллированной воды. Стакан помещают на электрическую плитку, покрытую асбестом, и слегка нагревают, помешивая раствор с фильтром стеклянной палочкой. Затем раствор выливают на воронку со стеклянным фильтром и отсасывают с помощью водоструйного насоса. Стакан и фильтр промывают 5 см³ дистиллированной воды. Фильтраты сливают в мерный цилиндр. и объем раствора доводят дистиллированной водой до 15 см³. В зависимости от предполагаемого содержания фосфорной кислоты и фосфорного ангидрида для анализа в колориметрическую пробирку берут аликвоту от 1 до 10 см³ исследуемого раствора и доводят дистиллированной водой до общего объема 10 см³, приливают 1 см³ раствора молибдата аммония и 0.5 см³ раствора аскорбиновой кислоты. Раствор перемешивают, и пробирки помещают на 3 мин в кипящую водяную баню. После охлаждения пробу фотометрируют в кюветах с толщиной поглощающего слоя 10 мм при длине волны 540 нм по сравнению с холостой пробой, которую готовят одновременно и аналогично пробам.

10 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1 Отобранный объем газа приводят к нормальным условиям по формуле

$$V_0 = V \frac{273 * (P \pm \Delta P)}{101,3 * (273 + t)}$$
 (5)

где:

 V_0 – объем газа, отобранного на анализ, приведенный к нормальным условиям, дм³.

Р - атмосферное давление, кПа;

ΔР – разрежение (избыточное давление) газа у ротаметра, кПа;

t - температура газа перед ротаметром, °С;

Р – атмосферное давление при отборе проб, кПа;

V - объем газа, отобранного на анализ, дм³.

$$V = T \cdot W \tag{6}$$

где:

Т – время пропускания газа через ротаметр, мин.;

W – расход газа, дм 3 /мин.

10.2 Массовую концентрацию фосфорного ангидрида и фосфорной кислоты X (мг/м³) при расчете по градуировочному графику определяют по формуле

$$X = \frac{X'}{V_0} \cdot K \tag{7}$$

гле

Х' - количество фосфат-ионов, найденное по градуировочному графику, мкг;

 V_o – объем газа, отобранного на анализ, приведенный к нормальным условиям, дм 3 .

К – коэффициент, учитывающий разбавление пробы;

$$K = \frac{V_p}{V_a} \tag{8}$$

гле

 V_p – объем раствора после разбавления, см³;

 V_a – объем аликвоты, см³;

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерений X в документах, предусматривающих его использование, может быть представлен в виде: $X \pm \Delta$, P=0.95.

где Δ - показатель точности методики.

Величину Δ рассчитывают по формуле: Δ = 0,01· δ · X_{cp} . Значение δ

приведено в таблице 1.

Допустимо результат измерений в документах, выдаваемых лабораторией, представлять в виде: $X \pm \Delta_x$, P=0.95, при условии $\Delta_x < \Delta$, где:

- X результат измерений, полученный в соответствии с прописью методики;
- $\pm \Delta_n$ значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

12 ОПЕНКА ПРИЕМЛЕМОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости) осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6. Расхождение между результатами измерений не должно превышать предела повторяемости (г). Значения г приведены в таблице 3.

Таблица 3 - Предел повторяемости результатов измерений

Диапазон измеряемых концентраций, мг/м ³	Предел повторяемости г. %
От 0,03 до 10 вкл.	22

13 КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

13.1 Общие положения

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

- контроль стабильности результатов измерений путем контроля стабильности среднеквадратического отклонения повторяемости, промежуточной прецизионности и погрешности;
- -оперативный контроль процедуры измерений путем оценки погрешности при реализации отдельно взятой контрольной процедуры.

Периодичность оперативного контроля процедуры измерений и алгоритмы контрольных процедур (с использованием метода добавок, с использованием образцов для контроля и т.п.), а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с 5.3.3 ГОСТ Р ИСО 5725-6-2002.

13.2 Алгоритм контроля процедуры выполнения измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры K_κ с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле:

$$K_{x} = |\overline{X} - C| \tag{11}$$

где \overline{X} - результат контрольного измерения содержания фосфорной кислоты и фосфорного ангидрида в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми не превышает предела повторяемости г.

Значение г приведено в таблице 3.

С - аттестованное значение образца для контроля.

В качестве образца для контроля используют фильтры АФА, на которые нанесено известное количество ГСО или раствора, аттестованного по процедуре приготовления.

Норматив контроля К рассчитывают по формуле:

$$K = \Delta_{\pi} \tag{12}$$

где Δ_{π} — значение характеристики погрешности результатов измерений, установленное в лаборатории при реализации методики, соответствующее аттестованному значению образца для контроля.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

$$K_x \le K$$
 (13)

При невыполнении данного условия эксперимент повторяют. При повторном невыполнении выясняют причины, приводящие к неудовлетворительным результатам.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ (РОСПРИРОДНАДЗОР)

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ЦЕНТР АНАЛИЗА И ОЦЕНКИ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ» (ФБУ «ФИАО»)

СВИДЕТЕЛЬСТВО

об аттестации методики (метода) измерений

№ 003/01.00301-2010/2012

Методика измерений массовых концентраций фосфорной кислоты и фосфорного ангидрида в промышленных выбросах в атмосферу фотометрическим методом,

предназначенная для применения в организациях, осуществляющих контроль состава промышленных выбросов в атмосферу,

разработанная ФБУ «ФЦАО» 125080, г. Москва, Волоколамское шоссе, д. 11, стр. 1

я содержащаяся в ІІНД Ф 13.1.61-2007 «Методика измерений массовых концентраций фосфорной кислоты и фосфорного ангидрида в промышленных выбросах в атмосферу фотометрическим методом», 2012 г., на 12 листах.

Методика (метод) аттестована (ан) в соответствии с Федеральным законом от 26.06.2008 № 102-ФЗ «Об обеспечении единства измерений» и ГОСТ Р 8.563-2009.

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики (метода) измерений и экспериментальных исследований.

В результате аттестации методики (метода) измерений установлено, что методика (метод) измерений соответствует требованиям, предъявляемым ГОСТР 8.563-2009.

Показатели точности измерений приведены в приложении на 1 листе.

Директор ФБУ «ФЦАО»

А.Н.Кичемасов

Лата вылачи: 15.03.2012 г.

125080, г. Москва, Волоколамск

приложение

к свидетельству № 003/01.00301-2010/2012 об аттестации методики измерений массовых концентраций фосфорной кислоты и фосфорного ангидрида в промышленных выбросах в атмосферу фотометрическим методом на 1 листе

Таблица 1 — Диапазон измерений, значения показателей повторяемости, правильности и точности методики

Диапазон	Показатель	Показатель	Показатель
измерений, мг/м ³	повторяемости (относительное среднеквадрати- ческое отклоне- ние повторяемо- сти),	правильности (границы относительной систематической погрешности при P=0,95), ±δ _c , %	точности (границы относи- тельной погрешно- сти методики при P=0,95), ±8,%
	σ _r ,%		
От 0,03 до 10 включ.	8	19	25

Таблица 2 - Значения предела повторяемости при вероятности Р=0,95

Диапазон измерений,	Предел повторяемости
мг/м ³	г, %
От 0,03 до 10 включ.	22

Начальник отдела ФБУ «ФЦАО» Эксперт-метролог (Сертификат № RUM 02.33.00389, Дилому дата выдачи: 24.11.2009 г.)

Т.Н. Попо

^{&#}x27; Соответствует расширенной стандартной неопределенности при коэффициенте охвата k=2