МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ СССР

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗМЕРЕНИЮ КОНЦЕНТРАЦИЙ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

(переработанные технические условия, выпуск 8)

YTBEPETAD

Заместитель Гиавного гооударотвенного авинтарного врача СССР А.и. ЗАИЧЕНКО " 22 " перед 1983 г.

METOJIVIECKUB YKASAHURI

ПО ТАЗОХРО...ТОГРАФИЧЕСКОМУ ИЗМЕРЕНИЮ КОНЦЕНТРАЦИЙ А СИМАЗИНА В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

M = 201,67

Твердое вещество. Т_{им} 225-287°. Растворяется в ацетоне. В воде растворяется ограничение, о водой мегко образует тонкую устойчивую суспенняю.

І. Характеристина метода

Определение основано на использовании газожидкостной кроматографии на приборе с детектором по заквату влоктроизв.

Отбор проб проводится с концентрираванием на фильтр.

Предел измерения симазина I,0 • 10^{-4} мг в анализирує ом объеме раствора,

Предел измерения в воздухе 0,04 мг/м 8 /при отфоре 50 и воздухе/.

л апазон измерлемых концентраций 0,04-10,0 мг/м³.

Определению не мошают хлорорганические и фосфорорганические героппиян.

Граница суммарной погрешности измерения не превымает + 7.5%.

Предельно допустимая концентрация опмазина в раздухе 2 мг/м³.

2. Реактиви, раствоги и материали

Camasan, x.4.

Основной раствор симазина готовят растворением 10 мг препарата в 100 ми ацетона в мерной колое. Срок хранения в холодильнике 30 лией.

Стандартный раствор, содержащий 10 мкг/мл симазина, готовит состветствующим разбавлением ацетоном основного раствора. Срок кранения раствора I день.

Ацетон, ОСЧ, ГОСТ 2603-71, овежеперетнанный. Кроматон $NA-W-\mathcal{D}MCS/0$, I6-0, 20 мм/ с 5% 3B-30. Азот особой чистоты в баллонах с редуктором.

З. Приборы и посуда

Хроматограф с детектором по захвату алектронов.

Колонка хроматографическая, отеклянная.

Аппарат для встряживания.

Ролон мергов ГОСТ 1770-74, вместимостью 50ми,100ми.

Ротационный испаратель.

Аспирационное устройство.

Фильтродержатели.

Фильтры бумажные, обезволенные "спиля лента".

Микрошир и на 10 мкл.

Секундомер.

Линейка и лупа измерительные.

4. Проведение жамерения

Условия отбора проб воздуха

Воздух со скоростью 5 л/мен эспирируют через бумажный фильтр, помещенный в фильтроизраматель.

для определения I/2 НДК достаточно отобрать 5 л воздуха в течение I мин.

Условия анализа

Хроматографическую колонку заполняют чеподвижной фазой с применением вакуума и кондиционируют при температуре 200^{0} С в тачение 6 часов.

Фильтры помещают в илоскодонную колбу, емкостью 50 мл, игливают 10 мл ацетона и вотряживают 5-10 мин. Раствор оливают в колбу ротационного конарителя, тщательно отжимая фильтр отеклянной палочкой. Эту операцию повторяют два раза. Растворитель попаряют под вакуумом досуха. Остаток растворяют в 1 мл оцетона я 1-8 мкл раствора вводят микрошприцем в испаратель кроматографа через самоуил тилюжуюся мембрану.

Общую подготовку прибора провол т овглясно инструкции.

Длина колонки	100 cm				
Диаметр колов: и	0,35 cm				
Твердый носитель	хроматон №-W				
Жицкья фаза	<i>∮</i> E−30				
Температура колонки	180°C				
Температура испарителя	275°C				
Температура детектора	280 ₀ C				
Газ-носитель	азот				
Скорость потока газа-носителя	60 мл/мин				
Рабочая шкала электрометра	10-10 A				
С .000сть пияграммерії ленты	IO MM/MHH				

Солем вводимой пробы

I-8 mri

Орвантировочное время удерживания симанива

3 MMH 15 c.

Количественное опроделсние проводят методом оравнения. Для этого перед анализом пробы и после анализа вводят в хроматограф I—8 мил стандартного раствора окмазина, измернют вмооту пиков и вычисляют среднее арифметическое из 3 опречелений.

Концентрацию симавина в мг/м³ воздуха /X/ вычисляют по формуле:

$$X = \frac{\mathcal{L}_{f} \cdot H_{1} \cdot V_{2}}{H_{1} \cdot V_{1} \cdot V_{10}} , \text{ from}$$

 У - г личество симавина в стандартном растворе, введенном в хроматограф, мил;

 V_i' - объем проби, взятый для акализа, мг;

V2 - общий объем пробы, ми;

Н - висота пика стандартного раствора, км;

Ho - высота нека хроматогрефируемой пробы, мм;

 \mathcal{V}_{\circ} — объем воздуха /л/, взятий для внализа $_{\sim}$ приведенный к стандартным условаям по формуле /ом. приложение I/.

Приложение I

Приведение объема воздуха к стандартным услочины проведят по оделужней формуле:

$$\mathcal{J}_{20} = \frac{\mathcal{J}_{1} \cdot /273 + 20 / \cdot P}{/273 + t / \cdot 101.83}$$
, rge

7. - Объем воздуха, отобранный для анализа, л;

Р - барометрическое давление, кПс /101,39 кПа = 760 мм рт.от./,

для удоботва расчета V_{20} следует пользоваться таблицей мовфициентов /причожение 2/. Для приведения воздуга к стандартным условиям надо умножить \mathcal{V}_{ℓ} на соответствующий ковфициент.

козовин соъема возвука к отанусртным условиям: те° пература +20°С и атмосферане давление 101,38 «Па /760 км рт.ст./

°C.	!	Arriereo P. elle									
	97,33	1 27,86	1 98,40	1 98,93 1		1 I00	! IOO,53	1 101,06 !	101,33	101,86	1 102,40
- 30	I. I582	I.1646	I.1709	I.1772	I.1836	I.1839	1.1963	I.2026	I.2058	1.2122	L.2185
-26	I.1393	I. 1456	I. I5I9	L.1581	I.1644	1.1705	I. 1768	1.1831	I.1862	I. 1925	I.1986
-22	1,1212	I.1274	I.1336	I.1396	I. I458	1.1519	1.1581	I.1543	L. 1673	I. 1785	I.1795
-18	1:1036	I.1097	I. 1158	1.1218	I.1278	1,1338	1.1399	I.1460	L. I490	1.1551	1.1611
-I4	I.C866	I.0926	I.0986	L. 1045	I, II05	1.1164	L. 1224	I.1284	L. I313	I. I373	L. 1432
-10	I.0701	I.0760	1.0819	I.0877	I.0936	I.0994	I.1063	LIII	I.II4I	I. I200	I, I258
-6	L-0540	L.0599	I.0657	I.07J4	I.0772	1.0829	I.0887	I.0945	I.0974	1.1032	I. 1069
-2	I.0385	L0442	L.0499	I.0556	I.0613	1,0669	I:0726	I.0784	1.0812	I. 0869	1.0925
0	I.0309	I.0366	L 0423	I.0477	I.0505	1.0591	I.0648	I.0705	I.0733	I.0789	I.0846
+2	I.0234	I.029I	L.0947	I.0402	I. 0459	1.0514	I.057I	I.0627	L.0655	1.0712	I. 0767
+6	1:0087	L.0143	I.0198	1.0253	I.0309	1.0363	1.0419	I.0475	I.0502	I.0557	1.0612
+10	0,9944	0.9999	I.0054	1.0108	I. 0162	1.0216	L.0272	1.0326	I.0353	I.0407	I.0462
+I4	0.98.06	0.9860	0,9914	0.9967	I,0027	1.0074	I.0128	I.0183	1.0209	I.C263	1.0316
+18	0.9671	0.9725	0.9778	0.9830	0.9884	0.9936	0.9989	I.0043	I.0069	L.0122	
+30	0.9605	0.9658	0.9711	0.9763	0.9816	0.9868	0.9921	0.9974	I.0000	1.0053	I.0175
+22	0.9539	0, 9592	0.9645	0.9696	0.9749	0.9300	0.9853	0.9906	0.9932	0.9985	I.0105
+24	0.9475	0.9527	0.9579	0.9631	0.9983	0.9735	0.9787	0.9839	0.9865		I.0036
+26	0.9472	0.9464	0.9516	0.9566	0.9618	0.9669	0.9721	0.9773	0.9799	0.9917	0.3968
+28	0.9849	0.9401	0.9453	0.9503	0.9555	0.9005	0.9657	0.9708	0.9734	0.9851	0.9902
	0.9288	0.9339	0.9391	0.9440	0.9492	0.9542	0.9594	0.9645		0.9785	0.9836
+30 +34	0.9167	0.9218	0.9268	0.9318	0.9368	0.9418	0.9468	0.9519	0.9670 0.9544	0.9723 0.9595	0.9772
+38	0.9049	0.9099	0.9149	0.9198	0.9248	0.9297	0.9347	0.9397	0.942I	0.9471	0.9520 🕏