МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ СССР

МЕТОДИЧЕСКИЕ УКАЗАНИЯ НА ОПРЕДЕЛЕНИЕ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

XIV

No 1572-77 -- 1598-77

методические указания на очределение вредных веществ в воздухе

Именстерство здравоохранение СССР Иоскав, 1979 г. Сборник методических указаний составлен методической секцией по промышленно — санитарной хижин при проблемной комиссии "Научные основы тигиены труда и профес — спональной патологии"

Випуск ХІУ

Настояцие методические указания распро страниются на определение содержания вредних вецеств в воздухе процапленних помещений при санитарном контроле.

Редакционная коллегия: Виноградова В.А., Бабина М.Д., Соловьева Т.В., Овечин В.Г.

YTREPERAD

Заместитель Главного государственного санитарного врача СССР

A.M. SANTERRO

\$ 1588-77 31 яньаря 1977 г.

методіческой указания на сотометрической определение орто- и паранітротолуода в возбухе

I. Общая часть

- I. Метод основан на восстановлении ентротолуола цинковой пылью в кислой среде до толущина и определения последнего по реакции конденсации с п- диметиламинобензальдегидом.
- 2. Чувствительность определения 0,5 мкг в анализируе мом объеме раствора.
- 3. Определению метают нитросоединения и арсматические амины. Влияние акинов устраняют в процессе отбора проби возду-
- 4. Предельно допустимая концентрация натротодуола в возпухе -3 km/u^3 .

II. Реактиви и аппаратура

5. Применяемие реактиви и раствори. о-Нитротолуол, х.ч., + кип = 221,7°С.

п-Нитротолуол, х.ч., † кин = 238,0°С.

Стандартный раствор о-или и-витротолуола ў І. Растворяют точную нареску нитротолуола в левяной уксусной кислоте. Даль - нейши разбавлении раствора Б I уксусной кислотой готовят стандартний раствор Б 2, содержаний IO вкг/ки витротолуола. Сохраняется в течение трех суток.

> Уксусная кислота, ГОСТ 61-75, ледяная. Пинковая пись.

п-Динетиличеннобензальдегид, МРТУ 6-097634-63, І%-ний раствор. Растворяют І г п-динетилацию бензальдегида в 40 мл ледяной уксусной кислоти, полученный объем раствора доводят до 100 мл водой.

6. Применяемие посуда и прибори. Аспирационное устройство. Поглотительные прибори Займева.

Пробирки колоримстрические, плоскодолние из беспретного стекла, висотой 120мм и внутренним диаметром 15мм.

Воронки стемляние, висотой 4-5 см, диаметром 3-3,5 см. Фильтри бумажние, внаметр — 5,5 см.

Пипетки , ГОСТ 20292-74, емжостью I, 2 и 5 ил c деления-

Фотометр или фотоэлектроколориметр.

Отбор проби воздуха

Воздух со скоростью 0,5 л/кин протягивают через поглотительный прибор Сайцева с.2 ил ледяной уксусной кислоти. В присутствии ароматических аминов к входной трубке прибора с ледяной уксусной имслотой присосдиняют поглотительный прибор Сай цева с 2 ил 0,01 и уксусной имслоти. Для анализа следует отобрать 2 л воздума.

Описание определения

Пробу в количестве I ил переносят в колориметрическую пробирку, добавляют 2 ил води, вносят 50-100 иг цияковой шили и оставляют на 5 или при компатной температуре. Едлее раствор отфильтровивают через бумажний фильтр, преднарительно смоченний уксусной кислотой и добавляют I ил 2%— ного уксуснокислого раствора п-дилетилеминобензальдегида. Содержимое пробирок перемешивают и фотометрируют в кивете с толимной слоя I см при длине волим 432-436 нм.

Содержание интротолуона в пробе находят по предвари - тельно построенному калибровочному графику. Иля построения калибровочного графика готовят вжалу стандартов согласно таблипе 3.

Іжала стандартов

Табляца 3.

Б стандарта	I	2	3	4	5	6	7
Стандартний раствор Б 2,ил	0	0,05	0,1	0,25	0,5	0,75	1,0
Уксусная кисло- та ледяная, ил		0,95	0,9	0,75	0,5	0,25	0
Содержание ни- тротолуола, икг	0	0,5	1,0	2,5	5,0	·7 , 5	10,0

Все пробирки икали обрабативают аналогично пробам, измерият оптическую илогиость и строят график. Екалой стандартов

можно пользоваться для визуального определения, ее готовят в колометрических пробирках одновременно с пробави. Екала устойчива в течение 2-х часов.

Концентрация нитротолуола в воздухе в мг/и 3 (X) вичислявт по формуле:

$$X = \frac{\mathcal{G} \cdot V_1}{V \cdot V_{20}}$$

где \mathcal{Y} – количество интротолуола, найденное в анализируемом объеме раствора, икг;

V₁ - общий объем проби, мл;

V - объец пробы, взятый для анализа, мл:

V₂₀ - объем воздуха, отобранный для апализа и приведенный к стандартилм условиям по формуле (см. приложение I),л.

Приложение Т

Припедение объема воздуха к стандартнім условим (20°С, 760 мл.рт.ст.) производят по следущей формуле:

$$V_{20} = \frac{V_{\pm} \cdot (213 + 20) \cdot P}{(213 + \pm) \cdot 760}$$

где: Уд - объем воздуха, отобранный для анализа, я;

Р - барометрическое давление, им.рт.ст.);

t - температура воздуха в месте отбора проби, ос.

Можно также пользоваться табждей коэфициентов (см. приложение 2). Для приведения объема воздуха к стандартним условиям надо умножить V_\pm на соответствующий коэфициент.

Коэфециенти для приведения объема воздуха к стандартным условиям: температура +20°С к атмосферное давление 760 км рт.ст.

00		Ame	odženace	давлени	e MA.DT	.CT.	
°C							
	730	732	734	736	738	740	742
<u>I</u>	2	3	4	5	6	7	8
-30	1.1582	1.1614	1.1646	I.1677	1.1709	I.174I	1.1772
-28	1.1487	1.1519	I.1550	1.1581	1.1613	1.1644	1.1675
-29	1.1393	1.1425	1.1456	I.I487	1.1519	I.1550	1.1581
-24	1.1302	1.1334	1.1364	1.1391	I.I427	I.I454	1,1488
-22	I'ISIS	1.1243	1.1274	1,1304	1.1336	1.1366	1.1396
-20	1.1123	1.1155	1.1185	1.1215	1.1246	I.1276	1.1306
-18	I.1036	I.1067	1.1097	1.1127	1.1158	1.1188	1.1218
-16	1.0953	1.0981	1.1011	1.1041	1.1071	I,IIOI	1.1131
-14	1.0866	1.0897	1.0926	I,0955	1.0986	1.1015	1.1045
-IS	I.0782	E180.1	1.0842	1.0871	1.0901	1.0931	1.0959
-10	1.0701	1.0731	I.0760	I,0789	1.0819	I.0848	1.0877
- 8	1.0520	1.0650	I.0679	1.0708	1.0737	I.0766	1.0795
- 6	I.0540	1.0570	I.0599	1.0627	1.0657	I.0685	1.0714
- 4	I.0462	1.0491	1.0519	1.0548	1.0577	1.0605	1.0634
- 2	1.0385	1.0414	1.0442	1.0470	I.0499	1.0528	1.0556
0	1.0309	1.0338	1.0366	1,0394	1.0423	I.045I	1.0477
+ 2	I.0234	1.0263	1.0291	1,0318	1.0347	I.0375	1.0402
+ 4	1.0160	1.0189	1.0216	1.0244	1.0272	I.0299	1.0327
+ 6	1.0087	1.0115	1.0143	1.0170	1.0198	1.0226	1.0253
+ 8	1.0015	1.0043	1.0070	1,0097	1.0126	1.0153	1.0179
+10	0.9944	0.9972	0.9999	1.0026	1.0054	1.0081	1.0108
+12	0.9875	0.9903	0.9929	0.9956	0.9984	1.0011	1.0037

продолж. приложения 2

I	2	3	4	5	6	7	8
	• • • • •						
+14	0.9806	0.9833	0.9860	0.9886	0.9914	0.9940	0.9967
+16	0.9737	0.9765	0.9791	0.9818	0.9845	0.9871	0.9898
+18	0.9671	0.9698	0.9725	0.9751	0.9778	0.9804	0.9830
+20	0.9605	0.9632	0.9658	0.9684	0.9711	0.9737	0.9763
+22	0.9539	0.9566	0.9592	0.9618	0.9645	0.9671	0.9696
+24	0.9475	0.9502	0.9527	0.9553	0.9579	.0.9605	0.9631
+26	0.9412	0.9438	0.9464	0.9489	0.9516	0.9541	0.9566
+28	0.9349	0.9376	0.9401	0.9426	0.9453	0.9478	0.9503
+30	0.9288	0.9314	0.9339	0.9364	0.9391	0.9415	0.9440
+32	0.9227	0.9252	0.9277	0.9302	0.9328	0.9353	0.9378
+34	0.9167	0.9193	0.9218	0.9242	0.9268	0.9293	0.9318
+36	0.9107	0.9133	0.9158	0.9182	0.9208	0.9233	0.9257
+38	0.9049	0.9074	0.9093	0.9123	0.9149	0.9173	0.9198
+40	0.8991	0.9017	0.9041	0.9065	0.9090	0.9115	0.9139

o _C		armoober	נהמון ספוני	Tellhe I	M pr.cr.	·	
	744	746	748	750	752	754	756
I	2	3	4	5	6	7	8
~ 30	1.1803	I,1836	1.1867	I.1899	I.1932	I,1963	1.1994
-28	1.1707	I,1739	I.1770	1.1801	1.1834	I.1865	I.1896
-26	1.1612	1.1644	I.1674	I.1705	I.1737	I,1768	I.1799
-24	1.1519	1,1550	1.1581	1.1612	I.1644	I,1674	I.1705
-22	1.1427	1,1458	I.1488	1.1519	I.1550	1,1581	1.1611
-20	1.1337	I.I368	1.1398	I.I428	I.I459	I.T489	1.1519
-18	1.1247	1,1278	1.1308	1.1338	1.1369	I,1399	1,1429
-I6	0311.1	I,II9I	I.ISSI	1.1250	1.1282	I.I3II	I.I34I
-I4	1.1074	1,1105	1.1134	I.II64	I.II94	I,1224	1.1253
~12	P. 1.0989	1,1019	1.1049	I.1078	1.1108	1,1137	1.1166
-IO	1.0906	1.0936	I.0965	I.0994	1.1024	1.1053	1.1082
- 8	I.0324	1.0853	I.0882	1.0911	I.094I	I,0969	1.0998
- 6	1.0742	1.0772	1.0801	1.0829	1.0858	1.0887	1.0916
- 4	1.0662	1,0691	1.0719	I.0748	1.0777	1.0806	I.0834
- 2	2 1.0584	1,0613	1.0641	I.0669	1.0698	1.0726	I.0755
(0060.1	I.0535	I.0563	1.0591	1.0621	I,0648	1.0676
+ 2	2 1.0430	I,0459	I.0487	1.0514	I.0543	1.0571	I.0598
+ 4	4 1.0355	I,0383	1.0411	I.0438	I.0467	I.0494	1.0522
+ (5 I.0280	1.0309	1.0336	1.0363	1.0392	1.0419	1.0446
+ 8	B I.0207	I.0235	1.0262	1.0289	1.0317	I.0345	1.0372
+10	0 1.0134	1.0162	1.0189	1.0216	1.0244	1.0272	1.0298
+13	2 1.0064	1.0092	8110.1	1.0145	1.0173	1.0199	1.0226
+1	4 0.9993	1.0021	I.0048	I.0074	1.0102	1,0128	1.0155
+1	6 0.9924	0.9951	0.9978	I.0004	1.0032	I.0058	I.0084
+I	8 0,9856	0.9884	0.9909	0.9936	0. 9963	0.9989	1.0010

I	2	3	4	5	6	7	8
+20	0.97 89	0.9816	0.9842	0.9868	0.9895	0.9921	0.9947
			0.9775				
+24	0.9657	0.9683	0.9709	0.9735	0.9762	0.9787	0.9813
+26	0.9592	0.9618	0.9644	0.9669	0.9696	0,9721	0.9747
+28	0.9528	0.9555	0.9580	0.9605	0.9632	0.9657	0.9682
+30	0.9466	0.9492	0.9517	0.9542	0.9568	0.9594	0.9618
+32	0.9403	0.9429	0.9454	0.9479	0.9505	0.9530	0.9555
+34	0.9342	0.9368	0.9393	0.9418	0.9444	0.9468	0.9493
+36	0.9282	0.9308	0.9332	0.9357	0.9382	0.9407	0.9432
+38	0.9222	0.9248	0.9272	0,9297	0.9322	0.9347	0.9371
+40	0.9163	0.9189	0.9213	0.9237	0.9263	0.9287	0.93II

°C		í	z.r.vocije bi	ное дави	cinie iai	PT.CT.	
	758	760	762	764	766	768	770
I	2	3	4	5	6	7	8
-30	I.2026	I,2058	1.2089	1.2122	1.2153	1,2185	1.2217
-28	1.1928	I.1959	1.1990	I.2022	1.2053	I.2084	1.2117
-26	I.183I	1.1862	1.1893	I.I925	1,1956	I.1986	1,2018
-24	I.1736	1.1767	1.1797	I.1829	I.1859	1.1891	1.1922
-22	1.1643	1.1673	1.1703	I.I735	1,1765	1.1795	1.1827
-20	1.1551	1.1581	I.I6II	I.I643	1.1673	1,1703	I.I734
- I8	I.1460	I.I490	1,1519	I.I55I	I.I58I	1.1611	I.1642
-16	I.1372	I.140I	1.1431	1.1462	1.1491	1.1521	I.1552
-I4	I.1284	1.1313	1.1343	1.1373	1.1402	1.1432	I.I463
-I2	1.1197	I.1326	1.1255	1,1285	1.1315	I.1344	I.I374
-I0	I.IIIS	I.II4I	1.1169	1.1200	1,1229	I.I258	1.1288
- · 8	I.1028	1.1057	1.1086	1.1115	1.1144	1,1173	1.1203
- 6	I.0945	I.0974	1.1003	1.1032	1.1061	1.1089	BIII.I
- 4	I.0864	1.0892	1.0921	I.0949	I.0978	1.1006	1.1026
- 2	I.0784	1.0812	1.0841	1.0869	1.0897	I.0925	I.0955
0	1.0705	1.0733	1.0761	I.0789	1.0817	1.0846	I.0875
+ 2	1.0627	I.C655	1.0683	1.0712	I.0739	I.0767	1.0795
+ 4	1.0551	I.0578	1.0605	I.0634	1.0662	I.0689	1.0717
+ 6	I.0475	1.0502	1.0529	I.0557	I.0585	1.0612	1.0641
+ 8	I.0399	1.0427	I.C454	I.0482	1.0509	I.0536	I.0565
+10	I.0326	I.0353	I.0379	1.0407	I.0435	I.0462	I.0489
+I2	I.0254	1.0281	1.0307	I.0335	1.0362	I.0388	1.0416
+14	E310.1	1.0209	1.0235	1.0263	I.0289	1,0316	1.0344
+16	1.0112	1.0138	1.0164	1,0192	1.0218	I.0244	1.0272

I	2	3	4	5	6	7	8
			•			-	
+18	I.0043	1.0069	I.0095	I.OISS	I.0I48	1.0175	1,0202
+20	0.9974	1.0000	1.0026	I.0053	1.0079	1.0105	1.0132
+22	0.9906	0.9932	0.9957	0.9985	1.0011	1.0036	1.0063
+24	0.9839	0.9865	0.9891	0.9917	0.9943	0.9968	0.9995
+26	0,9773	0.9799	0.9824	0.9851	0.9876	0.9902	0.9928
428	0.9708	0.9734	0.9759	0.9785	0.9811	0.9836	0.9863
+30	0.9645	0.9670	0.9695	.0.9723	0.9746	0,9772	0.9797
+32	0.9581	0.9666	0.9631	0.9657	0.9682	0.9707	0.9733
+34	0.9519	0.9544	0.9569	0.9595	0.9619	0.9644	0.9669
+36	0.9457	0.9482	0.9507	0.9532	0.9557	0,9582	0.9607
+38	0,9397	0.9421	0.9445	0.9471	0.9495	0.9520	0.9545
+40	0.9337	0.9361	0.9385	0.9411	0.9435	0.9459	0.9485

Приложение 3

Поглотительные прибори и дозпрукцее устройство

- Рис. І Потлотительний прибор Зайцева
- Рис. 2 Поглотительный прибор Пстри
- Рис. 3 Поглотительный прибор с пористой стеклянной пластинкой
- Рис. 4 Дозируждее устройство:
 - А- Диффузионный натекатель,
 - І- пток, 2- стеклянный колиндо,
 - 3- поршень из оторопласта,
 - 4- каллорованний стеклянний кашилляр,
 - Б- Установка для приготовления эталониих смесей.

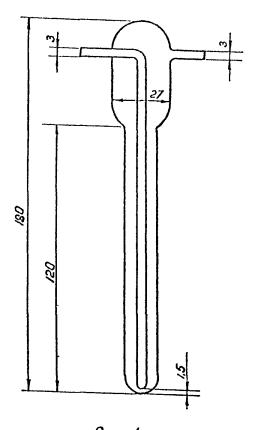
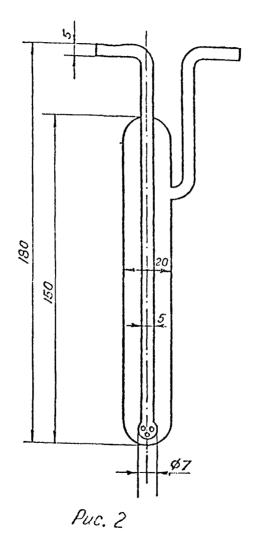
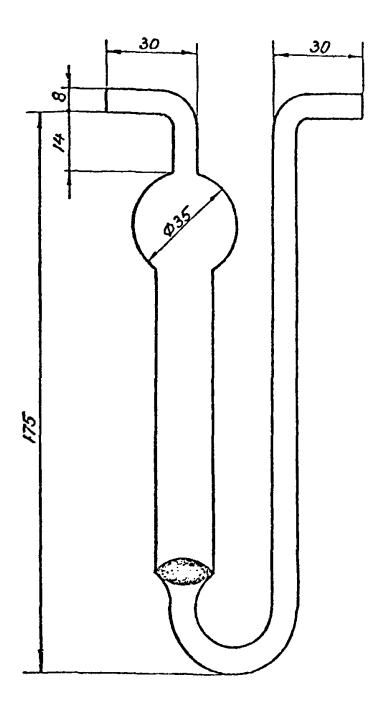
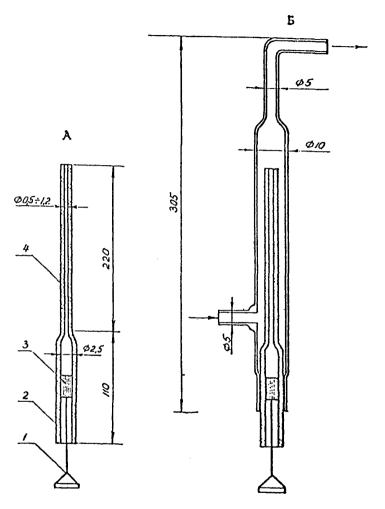




Рис. 1
Поглотительный прибор Зайцева



Поглотительный прибор Петри

Puc. 3

Поглотительный прибор с пористой стеклянной пластинкой

Puc. 4

Дозирующее устройство

- А Диффурмовный натекатель: І-сток, 2-стеклянный цилиндр, 3-порлень из фторопласта, 4-калиброванный стеклянный капилляр.
- Б Установка для приготовления эталонных смесей

Приложение 4

ПЕРЕЧЕНЬ
учреждений, представивных методические указания в
данный сборник

kiê un	Истодическое указание	Учреждение представлянее методическое указание
I	2	3
ı.	Полярографическое определе-	Научно-исследовательский
	ние каллая	институт гигнени труда и
		ии::эдхэА киньяэлодыгфорп
		медицинских наук СССР
2.	Газохроматографическое опре-	Уфимский научно- исследова-
	доление паральдегида	тельский институт гигиены и
		профзаболеваний
3.	Газохроматографическое опре-	Харьковский паучно-исследо-
	деление о-м-п-нитротолуолов	вательский внститут гигиени
	и о-и-п-толуидинов	труда и проўзаболеваний
4.	Газохроматографическое опре-	Научно- исследовательский
	деление дийтордихлорэтилена	институт гигиени фуда и
		профзаболеваний Академин ме-
		дицинских наук СССР
5.	Хроматографическое опреде-	Узбекский научно- исследова-
	ление фурфурола, фурмового	тельский институт санитарии,
	спарта, монофурфурилиденаце-	гигиени и профзаболеваний.
	тона	
6.	Газохроматографическое опре-	Новосибирский научно- иссле-
	деление хлористого алжила,	довательский савитарный ин-
	4-х хлористого углерода,	ститут.
	I.2-дихнорпропана.	

Ι 2 3 7. Газохроматограбическое опре-Перыский государственний деление гексафторбензола менивинский институт _"_ 8. Газохроматографическое определение пентафторбензола. монохлорпентабторбензола 9. Газохроматографическое определение октафтортолуола 10. Газохроматографическое опре-Пермский государственный деление пентафторанциина меницинский институт II. Газохроматографическое опре-Ростовский государственний деление дибутилкетона медицинский институт Газохроматографическое опре-Волгоградская областная саделение метилентетрагидропинитарно-эпипемиологическая рана RNIDIGTO Филиал Всесорзного научно - Газохроматограсическое определение тестостерона и метилисслеповательского жимко тестостерона фармацевтического института Определение мета-нитробензо-Киевский научно- исследоваата шклогексклажиза метоном тельский институт гигиены тонкослойной хроматографии труда и профзаболеваний Фотометрическое определение Горьковский научно-исследохлористого алима вательский институт гигиени труда и профзаболеваний 16. Фотометоическое определение _*_

О- и п-толуидинов

2 3 17. Фотометрическое определение Горьковский научно- исслео- и п-интротолуолов довательский институт гигиени труда и профзаболеганий 18. Фотометрическое определение Университет дружби народов м-трифторметилфенилизоциднаим. П. Лукумби. TA 19. Фотометрическое определение Ростовский государственний н-винилизиррожидона меджинский институт 20. Фотометрическое определение 4.4° - диаминодифенилсульфила 21. Фотометрическое определение 2-нафтойной кислоты 22. Фотометрическое определение плангиприла 1.4.5.8-насталиятетракарбоновой имслоти 23. Фотометрическое определение Новосибирский научно- пссле-2,3- дохлорпропена довательский санитарный ин -CTRTYT 24. Фотометрическое определение Ростовский государственный нафталин. - 2.6-жикарооновой медециский институт кислоти, похлоргидрида нефталин-2,6-дикарбоновой инслоти 25. Сотометрическое определение І, 4, 5, 8-нафтажнтетракарсоновой кислоты

I	2	3
26.	сотометрическое определение 4,4° - азобензолижарбоновой кислотн	Ростовский госудерственний медицинский институт
27.	Фотометрическое определение окиси хрома	Научно- исследовательский институт гиглени труда и профзаболераний АЛН СССР

COLEPEAHNE

	стр.
Методические указания на полярографическое опреде-	
ление калиля в воздухе	1
Методические указания на газохроматографическое	
определение паральдегида в воздухе	4
Методические указания на газохрожатографическое	
определение изомеров нитротолуола и изомеров	
толуидина в воздухе	9
Методические указания на газохрожатографическое	
определение дифтордиилоратилена в воздухе	14
Методические указания на кроматографическое опре -	
-фуфоном, втолы стомонауф, вкофуффуф	
фурилиденацетона (ЖА) в воздухе	18
Методические указания на газохроматографическое	
определение клористого глима, четырекклорис -	
того углерода и 1,2 -дихлориропана в воздухе	22
Иетодические указания на газохрожатографическое	
определение генсирторбензола (ГЛБ) в воздухе	29
Методические указания на газохроматографическое	
определение пентафтороензола (БVБ) и иснохлор-	
пентафторбензола (МУПОБ) в воздухе	34
Методические указания на газохроматографическое	
определение октафтортогуств в присутствия	
гексаўторбензоля, монохлорпентаўторбензола в	
DOSITUYA	20

Методические указания на газохроматографичес- стр	р.
кое определение пентаўтораннынна (ПФА) в	
воздухе	43
Ветодические указания на газохроматографическое	
определение плоутилиетона в воздухе	47
Исторические указания на газохроматографическое	
определение метилентеграгицронирана в воз-	
духе	50
Методические указания на газохроматограймческое	
определение тестостерона и метилтестостеро-	
на в воздухе	54
Методические указания на определение мета -	
нитробензоата шиклогексиламна (ингибитора	
Ц-2) методом тонкослойной хроматографии в	
воздухе	58
Методические указания на фотометрическое определе -	
ние хлористого алимпа в воздухе	64
Методические указания на фотометрическое определе -	
ние орто-и пара - толухдина в воздухе	69
Методические указания на фотометрическое определе -	
ние орто- и пара -нитротолуола в воздухе	73
Методические указания на фотометрическое определе -	
ние и-трифторметилфенилизопраната (ТИЦ) в воз-	
пухе	77
Метолические указания на фотометрическое определе -	
ние И -винилпиролидона в воздухе	81
Истодические указакия на фотсметрическое определе -	
ние 4,4 - днагинодийенносульфида в воздухе	84

	131
Истодические указания на фотометрическое опре-	стр.
деление 2-нафтойной кислоти в воздухе	88
Истолические указания на фотомстрическое опре -	
деление плангидрида -1,4,5,8-нафталин-тетра-	
карбоновой кислоты в воздухе	91
Методические указания на фотометрическое опреде-	
ление 2.3- дихлориропилена (2.3-ДХП) в воз-	
духе	94
Методические указания на фотометрическое опреде -	
ление -2,6 - нафталин-тетракарбоновой кис -	
лоты (НЛК) дихлорантидрида и 2,6-нафталин -	
тетракербоновой кислоти (ДПК) в воздухе	99
Методические указания на фотометрическое опреде -	
ление 1,4,5,8 - набталинтетракарбоновой кис-	
лоты (1,4,5,8- НТКК) в воздухе	102
Методические указания на фотометрическое определе-	
ние 4.4 - азобензолункарбоновой кислоти	
(АБДК) в воздухе	105
Методические указания на фотометрическое определе-	
ние окиси хрома в воздухе	108
and order apoint a proximation	
Приложение № 1	113
Приложение % 2	II4
Приложение % 3	120
Hounozenie la 4	125

Зак. 1162 Л-66339 от 4/УІ-79г. Тир. 1000