ТИПОВОЕ ПРОЕКТНОЕ РЕШЕНИЕ 407-03-338.83

ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ 110/10 КВ

ВЕЗ ВЫКЛЮЧАТЕЛЕЙ НА СТОРОНЕ ВЫСШЕГО НАПРЯЖЕНИЯ

С ТРАНСФОРМАТОРАМИ МОЙНОСТЬЮ ОТ 40 ДО 80 МВ-А

ДЛЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

AJILBOM I

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА И УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ТИПОВЫХ ПРОЕКТОВ 407-3-339. ±.407-3-342

TUTIOBOE IIPOEKTHOE PELIEHUE407.93-338.83

ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ 110/10 КВ ВЕЗ ВЫКЦЮЧАТЕЛЕЙ НА СТОРОНЕ ВЫСШЕТО НАПРЯЖНИЯ С ТРАНСФОРМАТОРАМИ МОЩНОСТЫО ОТ 40 ДО 80 МВ-А ДЛЯ ПРОМЫШЛЕННЫХ ПРЕДПРИНТИЙ

COCTAB IIPOERTA

Альбом I Пояснительная записка и указания по применению типовых проектов 407-3-339. ÷. 407-3-342.

AJILBON I

PASPABOTAH

Куйбышевским отделением

ГПИ Электропроект

Управляющий отделением П.В. Мальцев

Главный инженер проекта

Н.Г.Сорочайкин проекта

Государственным институтом Промстройпроект г. Москва

Главный инженер

института В.И.Королев

Главный инженер

Е.А.Новожилова

Типовое проектное решение утверждено и введено в действие Минмонтажспецстроем Протокол от 14 декабря1982 г.

2

СОДЕРЖАНИЕ

uu Ma	Наименование	Стр.
Ī	2	3
	Титульный дист	I,
	Содержание альбома	2
	Материалы для проектирования	
	І. ОБЩАЯ ЧАСТЬ	5
	2. KPATKOE COJEPWAHNE TMIOBHX IPOEKTOB	5
	з. электротехническая часть	•
3.1.	Схемы электрических соединений	8
3.2.	Основное электрооборудование	9
3.3.	Основные конструктивно-компоновочные	
	решения	. 10
3.4.	Прокладка кабелей	13
3.5.	Заземление и молниезащита	13
3,6,	Электрическое освещение	14
	4. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ И САНИТАРНО- ТЕХНИЧЕСКАЯ ЧАСТЬ	, V
4.1.	Условия строительства	15
4.2.	Сжема генпжана	15
4.3.	Конструкции фундаментов под трансформаторы и	
	вспомогательные устройства подстанции	16

I	2	3
4.4.	Конструкции открытого распределительного устройства IIO кВ	18
4.5.	Здания закрытого распределительного устройства IO кВ	18
4.6.	Отопление и вентиляция	22
4.7.	Водоснабжение и канализация	22
4.8.	Обеспечение пожарной безопасности	23
4.9.	Ожрана окружающей среды	23
	5. OPTAHUBALIUR CTPONTEJISHO-MOHTARHEX PABOT	23
	6. ИНДУСТРИАЛИЗАЦИЯ ЭЛЕКТРОМОНТАЖНЫХ РАБОТ	24
	7. МЕХАНИЗАЦИЯ ТРАНСПОРТИРОВКИ И УСТАНОВКИ ТЯЖЕЛОГО И КРУПНОГАБАРИТНОГО ЭЛЕКТРООБО- РУДОВАНИЯ	25
	8. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ТИПОВЫХ ПРОЕКТОВ	. 26
	9. ПОКАЗАТЕЛИ ИЗМЕНЕНИЯ СМЕТНОЙ СТОИМОСТИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ, ЗАТРАТ ТРУДА И РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ	. 28
	Таблица I Сетла схем подстанций IIO-4-2x63-IO-2(E-3I.5-I), IIO-4-2x80-IO-2(E-3I,5-2)	32
	Таблица 2 Сетка схем подстанций 110-3(У)-2x63-10-2(В-31,5-1), 110-3(У)-2x80-10-2(В-31,5-2)	33

Ī	2	3	
	Таблица 3 Общие нагрузки с.н. ПС IIO-4-2x63-IO-2(B-3I,5-I), IIO-3(У)-2x63-IO-2(B-3I,5-I)	34	
	Таблица 4 Общие нагрузки с.н. ПС IIO-4-2x80-IO-2(Б-3I.5-2), IIO-3(У)-2x80-IO-2(Б-3I.5-2)	35	

I. OBMAR PACTL

В работе приведены технические решения и указания по применению типовых проектов "Трансформаторные подстанции ПО/ГОКВ, без выключателей на стороне высшего напряжения с трансформаторами мощностью от 40 до 80 МВ-А для промышленных предприятий", разработанных Куйбышевским отделением ГПИ Электропроект и институтом Промстройпроект г. Москва по плану типового проектирования Госстроя СССР ма 1982 год.

Типовые проекты разработамы на основании технических решений, согласованных Главгосэкспертизой Госстрои СССР и утвержденных Минмонтажспецстроем СССР протоков от 20.04.79 г.

2. RPATROE COMEPHANNE THROBEX RPOENTOB

Разработанные типовые проекты являются частью серии подстанций без выключателей на стороне высшего напряжения для промышленных предприятий. В них входит 4 типа подстанций IIO/IO кВ с трансформаторым от 40 до 80 МВ·А. Перечень типовых проектов приведен в таблице.

ж типового проекта	Обозначение типа подстанций
407-3-341.83.	II0-4-2x63 - I0-2(B-3I.5-I)
407-3-342.83	II0-4-2x80 - I0-2(B-3I,5-2)
407-3-339.83	110-3(y) - 2x63 - 10-2(B-31,5-1)
407-3-340.83	110-3(y) - 2x80 - 10-2(B-31,5-2)

Обозначение типа подстанции расшифровывается следующим образом

образом II0-3(y) - 2x80 - I0-2(B-3I.5-2)2x63 - 10-2(B-31.5-1)Тип распределительного устройства 110 кВ IIO-4 - схема блок линиятрансформатор с отпелителями и неавтоматической перемычкой со стороны линии; IIO-3(У)-схема два блока - RNHNE трансформатор с сед имя подполня без перемычки с усиленной изоляшией аппаратуры. Количество и максимальная мощность трансформаторов для данного типа подстанции Тип распределительного устройства IO кВ 10-2 - две одиночные секционированные выключателями CUCTOME MINH В **– номинальный ток** ввода B - 3200 A 31.5 TOR OTRADUCHUA B 1.2 тиноразмер здания I - 9x42 m 2 - 9x48 m

Область применения проектов – для подстанций, расположенных в районах страны с расчетной температурой минус 20° , 30° , 40° с обычными геологическими условиями (сейсмичность не выше 6 баллов).

Подстанции IIO-4-2x63-IO-2(B-3I,5-I), IIO-4-2x80-IO--2(B-3I,5-2) с изоляцией аппаратуры IIO кВ категории А по ГОСТ 9920-75 предназначены для электроснабжения предприятий с атмосферой, не загрязненной промышленными уносами.

Подстанции IIO-3(У)-2x63-IO-2(Б-3I,5-I), IIO-3(У)-2x80--IO-2(Б-3I,5-2) с усиленной изоляцией аппаратуры IIO кВ категории Б по ГОСТ 9920-75 и предназначены для электроснабжения предприятий с загрязненной атмосферой (II степень по СН-I74-75).

Подстанции предназнечены для эксплуатации без постоянного дежурства персонала.

В проектах разработаны архитектурно-строительные, электромонтажные, сантехнические разделы и сметная документация.

Типовые проекты разработаны применительно к подстанциям со смещанной системой оперативного тока (переменный и выпрямленный) или на выпрямленном оперативном токе (без стационарных аккумуля торных батарей).

з. электротехническая часть

3.1. Схемы электрических соединений.

Сетка схем подстанций типовых проектов приведена в таблицах I и 2. Все подстанции запроектированы двухтрансформаторными без выключателей на стороне высшего напряжения с установкой в цепи трансформаторов отделителей и короткозамыкателей.

Перед отделителями со стороны линии установлены ремонтные разъединители.

На подстанциях IIO-4-2x63-IO-2(Б-3I,5-I), IIO-4-2x80--IO-2(Б-3I,5-2) распределительное устройство IIO кВ выполняется по схеме IIO-4- два блока линия-трансформатор с неавтоматической перемычкой со стороны линии.

На подстанциях IIO-3(У)-2x63-IO-2(Б-3I,5-I), IIO-3(У)-2x80-IO-2(Б-3I,5-2) распределительное устройство IIO кВ выполняется по схеме IIO-3(У) - два блока линия-трансформатор.

На подстанциях II0-4-2x63-I0-2(E-3I,5-I), II0-3(У)-2x63-I0-2(E-3I,5-I) могут быть установлены трансформаторы мощностью 40 MB·A и 63 MB·A, на подстанциях II0-4-2x80-I0-2(E-3I,5-2), II0-3(У)-2x80-I0-2(E-3I,5-2)-63 MB·A и 80 MB·A.

Трансформаторы принимаются по ГОСТ 12965-74, с расщепленной обмоткой IO кВ. Для защиты нейтрали трансформатора принимаются разрядники PBC-35 + PBC-I5.

Для заземления нейтрали устанавливается заземлитель 30H--IIOM-II.

Предусматривается возможность установки в нейтрали трансформатора короткозамыкателя КЗ-IIOУI. На напряжении IO кВ принята схема IO-2 - две одиночные, секционированные выключателями системы шин.

Проектами предусматривается установка на подстанции двух трансформаторов собственных нужд мощностью 40 кВ·А для ПС 110-4-2x63-10-2(Б-31,5-1), 110-3(У)-2x63-10-2(Б-31,5-1) или 63 КВ·А для ПС 110-4-2x80-10-2(Б-31,5-2), 110-3(У)-2x80--10-2(Б-31,5-2). Подсчет нагрузок СН приведен в таблицах 3, 4.

Трансформаторы собственных нужд подключаются через предохранители до выключателей вводов IO кВ. Напряжение сети собственных нужд - 380/220 В с заземленной нейтралью.

Для компенсации емкостного тока замыкания на землю в сети 10 кВ на всех подстанциях предусмотрена возможность установки четырех заземляющих реакторов, подключаемых к разным секциям шин 10 кВ через специальные трансформаторы.

Тип заземляющих реакторов и трансформаторов определяется при привязке проектов.

3.2. Основное электрооборудование.

На подстанциях IIO-4-2x63-IO-2(E-3I,5-I), IIO-4-2x80-IO-2(E-3I,5-2) аппаратура ОРУ-IIОкВ и силовые трансформаторы приняты с внешней изоляцией категории "A", для подстанций IIO-3(У)-2x63-IO-2(E-3I,5-I), IIO-3(У)-2x80-IO-2(E-3I,5-2) с изоляцией категории "Б" по ГОСТ 9920-75.

Распределительное устройство IORВ комплектуется из шкафов КРУ типа КР-IO/3I,5 УЗ с выключателями ВМПЭ-IO на ток отключения 3I,5 кА со встроенными электромагнитными приводами.

3.3. Основные конструктивно-компоновочные решения

3.3.1. Компоновочные решения

Подстанция состоит из трех основных конструктивных узлов: распределительного устройства IIO кВ; силовых трансформаторов; распределительного устройства IO кВ.

Оборудование распределительного устройства IIО кВ и силовые трансформаторы для всех подстанций устанавливаются открыто.

Связи трансформаторов с ОРУ-IIO кВ и ЗРУ-IO кВ выполняются гибкими.

Для ремонта и ревизии трансформаторов на подстанции предусмотрена одна ремонтная площадка.

Распределительное устройство IO кВ сблокировано со щитом управления и вспомогательными помещениями в одном 2-х этажном здании.

Распределительное устройство IO кВ, щит управления и вспомогательные помещения расположены на 2-ом этаже здания.

Первый этаж эдания — открытый, предназначен для прокладки кабелей.

Компоновка ЗРУ-IO кВ предполагает выход кабелей IO кВ на кабельные эстакалы и галереи.

Трансформаторы собственных нужд, заземляющие реакторы и трансформаторы к ним устанавливаются открыто, на специально отведенных для них площадках.

Из объектов вспомогательного назначения предусмотрен закрытый маслосборник для аварийного слива масла из трансформатора, расположенный на территории подстанции. 3.3.2. Конструктивные решения ОРУ-IIO кВ.

ОРУ-IIO кВ по схеме IIO-4 принято по типовому проекту 407-3-309, по схеме IIO-3(У) - по типовому проекту 407-3-3II.

Оборудование ОРУ-IIO кВ устанавливается на железобетонных опорах.

Ошиновка ОРУ выполняется сталеалюминиевым проводом: для ОРУ по схеме IIO-4- маркой АС, для ОРУ по схеме IIO-3(У)-маркой АСНП.

Для соединения проводов в местах ответвлений применяются ответвительные прессуемые зажимы. При освоении монтажной организацией сварки проводов соединение проводов в местах ответвлений может быть выполнено при помощи сварки.

Для присоединения проводов к аппаратам применяются аппаратные прессуемые зажимы.

3.3.3. Установка силовых трансформаторов.

Силовые трансформаторы устанавливаются на сборные железобетонные фундаменты.

На всех подстанциях между трансформаторами предусмотрена разделительная перегородка с пределом огнестойкости I,5 часа.

Для крепления ошиновки IIO кВ трансформаторов предусматриваются железобетонные порталы. Вводы от трансформаторов в ЗРУ—IO кВ выполняются гибкой ошиновкой с алюминиевым проводом марки A500 для подстанций IIO-4-2x63-IO-2(Б-3I,5-I), IIO-4-2x80—IO-2(Б-3I,5-Z) и марки АНП500 для подстанций IIO-3(У)-2x63-IO—2(Б-3I,5-I), IIO-3(У)-2x80-IO-2(Б-3I,5-Z). Ошиновка IO кВ крепится на опорных изоляторах.

3.3.4. Конструктивные решения ЗРУ-10 кВ.

В проектах разработано 2 типа ЗРУ-ІО кВ: IO-2(Б-3I,5-I) - для установки до 3I шкафа отходящих линий; IO-2(Б-3I,5-2) - для установки до 45 шкафов отходящих линий.

Расшифровка обозначения типов ЗРУ-IO кВ приведена в разделе 2.

Расположения шкафов НРУ двухрядное, с двухсторонним обслуживанием каждого ряда.

Выход силовых и контрольных кабелей из шкафов КРУ в открытый кабельный этаж осуществляется через проемы в перекрытии, которые после прокладки кабелей закрываются со стороны кабельного этажа съемными асбестоцементными досками и заделываются легкоудаляемым теплоизоляционным материалом (см. раздел 4.5.).

Шкафы КРУ устанавливаются на специально предусмотренные в полу швеллеры.

Вводы от трансформаторов в ЗРУ-IO кВ осуществляются через проходные изоляторы, которые крепятся к асбестоцементным доскам, установленным в стене здания.

Вводы от проходной доски до шкафов КРУ предусматриваются шинопроводами 10 кВ, которые должны изготавливаться как нестандартизированное оборудование.

В помещении распределительного устройства 10 кВ кроме шкафов КРУ устанавливаются четыре устройства питания электромагнитов включения типа УКП.

В помещении щита управления предусмотрена возможность установки 5 панелей щита собственных нужд, 30 панелей управления, защиты и автоматики и 4-х блоков питания БПНС.

Выход контрольных и силовых кабелей из помещения щита управления в кабельный этаж осуществляется аналогично выходам из шкафов КРУ.

3.4. Прокладка кабелей.

Прокладка кабелей, силовых и контрольных, по территории ОРУ-IIОкВ предусматривается в надземных железобетонных лотках. Выход кабелей из лотков к ящикам зажимов и приводам аппаратов выполняется в металлических лотках и коробах.

В открытом кабельном этаже ЗРУ-ІО кВ кабели прокладываются по кабельным конструкциям.

3.5. Заземление и молниезащита.

Заземление подстанций выполняется в соответствии с главой I-7 ПУЭ-76 с соблюдением требований к сопротивлению заземляющего устройства и его конструктивному выполнению.

В типовых проектах приведены чертежи заземления подстанций, выполненые для удельного сопротивления грунта равного 100 Ом.м.

При устройстве заземления использованы естественные заземлители- водопроводные трубопроводы, железобетонные конструкции здания РУ-10 кВ, система трос-опора.

Защита подстанций от прямых ударов молнии осуществляется стержневыми молниеотводами, установленными на приемных порталах IIO кВ и здании РУ-IO кВ.

Молниезащита выполнена для подстанций с эквивалентным удельным сопротивлением грунта до 1000 0м.м. 3.6. Электрическое освещение.

На подстанции предусматривается рабочее и ремонтное электроосвещение.

Рабочее освещение подстанции питается от сети переменного тока напряжением 380/220B.

Ремонтное освещение осуществляется от переносных трансформаторов с вторичным напряжением I2 В, включаемых в сеть рабочего освещения.

Аварийное освещение на подстанции не предусматривается. При полном исчезновении питания следует использовать переносные аккумуляторные фонари.

4. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ И САНИТАРНОТЕХНИЧЕСКАЯ ЧАСТЬ

4. І. Условия строительства

Рабочие чертежи типовых трансформаторных подстанций напряжением IIO/IO кВ мощностью 40-80 МВ А для промышленных предприятий разработаны с учетом следующих условий строительства:

- расчетная зимняя температура наружного воздуха -30° C и варианты применительно к районам с расчетными температурами -20° C и -40° C;
 - скоростной напор ветра для I географического района;
 - вес снегового покрова для Ш географического района;
 - рельеф территории спокойный, грунтовые воды отсутствуют;
- грунты непучинистые, непросадочные со следующими нормативными характеристиками: нормативный угол внутреннего трения \mathcal{G}^{H} =28°, нормативное удельное сцепление C^{H} =0,02 кг/см2, модуль деформации нескальных грунтов E=150 кгс/м2, плотность грунта χ =1,8 т/м3, коэффициент безопасности по грунту Kr=1.0;
 - сейсмичность не выве 6 баллов.

4.2. Схема генплана.

Подстанция II0/I0 кВ размещается на территории промышленного предприятия.

При компоновке рационально использована территория с соблюдением технологической взаимосвязи зданий и сооружений.

На территории подстанции для перемещения трансформаторов с фундаментов на ремонтную площадку предусмотрено устройство рельсового пути, совмещенного с автодорогой. Отметки головок рельсов и покрытия автодороги приняты на нулевом уклоне с превышением уровня головок рельсов на 200 мм.

Въезд на подстанцию односторонний со стороны ремонтной площадки, которая должна иметь твердое, непылящее покрытие, определяемое при конкретной привязке проекта.

Для обеспечения подходов к аппаратуре в качестве пешеходных дорожек используются надземные кабельные каналы.

Вертикальная планировка площадки подстанции решается поверхностным отводом дождевых и талых вод с территории подстанции.

Минимальный уклон поверхности принят 0.003:

Отметки головок рельсов продольного и поперечного профиля путей приняты одинаковыми.

Объемы земляных масс при вертикальной планировке, устройстве автомобильных дорог определяются при привязке типового проекта в конкретных условиях.

4.3. Конструкции фундаментов под трансформаторы и вспомогательные устройства подстанции

Фундаменты под трансформаторы приняты столбчатого типа из монолитного бетона с отм.заложения — I,4 м. Поверху фундаментов укладываются сборные железобетонные плиты НСП-3 по серии 3.407-IO2 вып. I для установки и закрепления рельса.

Под силовыми трансформаторами предусмотрено устройство маслоприемника с использованием сб. бетонных блоков с заполнением промытым и просеянным гравием или непористым щебнем крупностью 50-70 мм.

Отвод масла и атмосферной воды из маслоприемника предусматривается в специальную канализацию. Конструкции канализационных колодцев приняты по ГОСТу 8020-80.

Подземный маслосборник принят по типовому проекту 4-I8-839 "Резервуар на 50 м3 для волы".

Продольный рельсовый путь перекатки трансформаторов выполняется с применением рельсов Р50 ГОСТ 7174-75 по железобетонным шпалам ЩС-2У ГОСТ 10629-78. На глухих пересечениях рельсового пути и поперечных путей вместо шпал применены специальные сборные железобетонные плиты НСП-3, НСП-1 по серии 3.407-102 вып.1.

Отметка головок рельсов продольных и поперечных путей принята 40.200. С целью защиты исправного трансформатора при горении соседнего, между ними установлена огнезащитная железобетонная перегородка. Конструкции перегородки приняты по серии 3.407-II2 вып. I.

Анкерные устройства, необходимые для перемещения трансформаторов при их установке и выкатке, в проекте приняты из подножников типа АП серия 3.407-IO3 вып. I.

Конструкции кабельных каналов приняты по серии 3.407-102 вып.1: лотки УБК-1А, УБК-2А железобетонные, корытного профиля, шириной 1000 мм и 500 мм. Лотки устанавливаются на подкладки БК-11а, БК-12а и перекрываются плитами УБК-5, ОПП-5.

Перед устройством кабельных каналов территория должна быть спланирована в соответствии с проектом вертикальной планировки.

Стены узлов пересечения кабельных каналов выполнять из глиняного кирпича марки 35 на растворе марки 25. В месте прохождения через рельсовый путь, совмещенный с автодорогой, кабели прокладываются в гильзах из стальных труб Ø 108 мм по ГОСТу

8732-78. На площадке установки трансформаторов собственных нужд и площадке установки заземляющих реакторов для опор под оборудование использованы сборные железобетонные стойки УСО-ЗА, устанавливаемые в подножники стаканного типа УБ-I по серии 3.407-IO2 вып.I.

Ограждение подстанции решено по серии 3.017-I. Внешнее ограждение высотой 2 м типа М5В из металлических сетчатых панелей с железобетонным цоколем по железобетонным столбам с шагом 3.0 м.

Для обеспечения необходимой устойчивости стойки ворот ограды заделываются в пробуренные в грунте скважины бетоном M 200.

Внутреннее ограждение высотой I,6 м типа M4B без поколя из сетчатых металлических панелей по железобетонным столбам с шагом 3.0 м.

Ворота и калитки оград сетчатые, распашные.

В соответствии с заданием института "Электропроект", в местах примыкания внешней ограды к зданию, а также внутренней ограды к внешней. выполняются вставки из силикатного кирпича.

4.4. Конструкции открытого распредустройства IIO кВ.

Конструкции ОРУ IIO кВ разработаны для ОРУ IIO-4 в альбоме П типового проекта 407-3-309, для ОРУ IIO-3(У) в альбоме П типового проекта 407-3-3II.

4.5. Здания закрытого распределительного устройства 10 кВ.

Здания закрытых распределительных устройств ЗРУ 10-2(Б-3I, 5-I) и ЗРУ 10-2(Б-3I, 5-2) запроектированы двухэтажными из сборных железобетонных изделий по серии ИИ-20.

Размеры зданий в плане соответственно 42x9 м и 48x9 м, сетка колонн 9x6 м, высота первого этажа (кабельного) 3,3 м (до низа несущих конструкций 2,2 м), высота второго этажа 4,8 м (до низа несущих конструкций 3,7 м).

Первый этаж здания неотапливаемый, предназначен для кабельных разводок; на втором этаже размещаются помещения распределительных устройств и щитов, а также вспомогательные помещения: тепловой узел, комната ремонтного персонала, уборная. Состав, месторасположение и площади вспомогательных помещений для обоих типов зданий одинаковы.

В связи с отсутствием постоянных рабочих мест, комната ремонтного персонала и уборная используются только в период ремонтно-профилактических работ на подстанциях.

Кабельный этаж по пожаро-и вэрывоопасности относится к категории В, помещения распределительных устройств и щитов - к категории Г.

Степень огнестойкости здания принята П.

Звакуация ремонтного персонала из кабельного этажа осуществляется через калитки в торцах здания, со второго этажа через открытые стальные лестницы, отделенные от пожароопасного кабельного этажа глухими несгораемыми железобетонными панелями.

Каркас здания из сборных железобетонных конструкций. Колонны по серии 1.420-12 в.2, ригели по сериям ИИ 23-2/70, 1.420-12 в.7, плиты перекрытия и покрытия по сериям ИИ 24-8 и ИИ 24-9.

Фундаменты под колонны монолитные железобетонные по типу фундаментов серии I.412-3/79 вып.1,3. При привязке типового проекта конструкции фундаментов принимать в соответствии с местными условиями строительства - климатическими, гидрогеологическими, грунтовыми.

Утепление перекрытия над кабельным этажом запроектировано из пеностекла $\chi = 300$ кг/м3 толщиной 35-50 мм и керамзитобетона $\chi = 1000$ кг/м3; толщина керамзитобетона, единая для всех расчетных зимних температур наружного воздуха, приведена в экспликации по-лов на листе 6.

Кровля плоская, рулонная с внутренним водостоком. Утеплитель покрытия — минераловатные плиты повышенной жесткости V=200 кг/м3 толщиной 50 мм для расчетной зимней температуры наружного воздуха -20° С, толщиной 90 мм для -40° С.

Наружные стены первого неотапливаемого этажа из железобетонных панелей толщиной 70 мм по серии I.432-I5, а также из стальных сетчатых панелей (по типу панелей серии 3.017-I) с цоколем из кирпича высотой 300 мм. Стальные сетчатые панели запроектированы распашными (наружу).

Наружные стеновые панели второго этажа приняты из поризованного керамзитобетона толщиной 300 мм по серии I.432-I4/80 γ = II00 кг/м3 для расчетной зимней температуры наружного воздуха -20°C; γ = II00 кг/м3 для -30°C; γ = II00 кг/м3 для -40°C.

Внутренние перегородки второго этажа запроектированы из гипсовых листов с деревянным каркасом по серии 1.431-21 с общив-кой асбестоцементными листами; перегородка, отделяющая щитовое помещение от помещения распределительных устройств принята кирпичной для обеспечения необходимого предела огнестойкости.

В перекрытиях (в зоне установки шкафов в помещениях щитов и распределительных устройств) предусмотрены монолитные ж.б.

участки с устройством проемов для прохода кабелей из шкафов КРУ и панелей в кабельный этаж и для анкеровки установочных профилей.

После прокладки кабелей проемы заполнить сыпучим теплоизоляционным материалом (по узлу на листе 7) с объемным весом не более 800 кг/м3.

Конструкции полов отвечают технологическим требованиям и приняты: в помещениях щитов и распределительных устройств — бетонные с пропиткой флюатами (для обеспечения малого пылеотделения); в кабельном этаже — асфальтобетонные; в комнате рабочего персонала — из линолеума; в остальных вспомогательных помещениях — из керамической плитки.

Участки примыкания полов к шкафам КРУ в местах выкатки тележек дополнительно армируются сеткой % 5-I, 20 ГОСТ 3826-66%.

Двери из помещения распределительного устройства открываются наружу или в сторону других помещений; конструкция дверей принята по ГОСТ 14624-69, противопожарная дверь по серии 2.435-6 в.1.

Внутренняя отделка помещений выполняется по подготовленным поверхностям водоэмульсионными красками 3-BA-27 (ГОСТ $19214-73^{36}$), перхлорвымиловыми эмалями XB-124 (ГОСТ 10144-74).

Заполнение оконных проемов в щитовом помещении и комнате ремонтного персонала принято деревянными переплетами по ГОСТ 12506-67. В щитовом помещении переплеты с внутренней стороны обтянуть сеткой № 10х1,2х0 ГОСТ 5336-80.

Наружная отделка здания ЗРУ назначается при привязке проекта в соответствии с архитектурными решениями, общими для всего комплекса предприятия, в состав которого входит подстанция. Рекомендации по наружной отлелке приведены на листах проекта.

22

4.6. Отопление и вентиляция.

Отопление и вентиляция зданий закрытого распредустройства разработаны для климатических районов с расчетными зимними темпе-ратурами воздуха наиболее холодной пятидневки -20°C, -30°C, -40°C.

Теплоносителем для системы отопления и теплоснабжения служит перегретая вода с параметрами $150^{\rm O}$ – $70^{\rm O}$ С, поступающая из теплосети. В помещении распределительного устройства для поддержания температуры $+5^{\rm O}$ С система отопления решена с помощью регистров из гладких труб по оси "А". На время ремонтных работ и профилактического обслуживания в помещении распределительного устройства дополнительной веткой отопления по оси "Г" поддерживается температура $+18^{\rm O}$ С.

В остальных помещениях регистрами и радиаторами MI40-AO поддерживается температура $\rightarrow 18^{\circ}$ C.

В помещении распределительного устройства предусмотрена аварийная пятикратная вытяжная вентиляция. Применены осевые вентиляторы 06-300 № 4. При остановке вентиляторов заслонки закрываются, исключая потери тепла в отопительный период. Кнопки пуска систем аварийной вентиляции расположены у входа.

4.7. Водоснабжение и канализация.

На подстанции предусматриваются ввод водопровода и выпуски канализации.

Источником водоснабжения принимается наружная сеть хозяйственно-питьевого водопровода. Потребный напор на вводе в здание - IO м.в.ст., расчетный расход воды равен 0.17 л/сек.

Для отвода сточных вод от санитарных приборов, талых и ливневых вод с кровли разработана, соответственно, бытовая и ливневая системы канализации.

4.8. Обеспечение пожарной безопасности.

Пожаротушение предусматривается от наружных сетей водоводов или спецпожаротушения.

4.9. Охрана окружающей среды.

Устройство маслоприемников, системы маслоотводов и маслосборника, предусмотренное проектом, предотвращает загрязнение окружающей территории при аварийном выбросе масла из трансформатора. Откачка масла из маслосборника производится в передвижные емкости.

Сброс дождевых вод из маслосборника (выпуск К2-I) присоединить к внутриплощадочной сети производственной канализации или местным очистным сооружениям.

Для санитарно-технического обслуживания персонала ремонтных бригад, на подстанции предусматривается ввод водопровода в здание вакрытого распределительного устройства и устройство уборной.

5. ОРГАНИЗАЦИЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ

Строительно-монтажные работы по возведению трансформаторной подстанции следует выполнять одним комплексным потоком.

До начала основных строительно-монтажных работ должна быть выполнена подготовка строительной площадки.

Возведение зданий и сооружений следует производить в следуюшей очередности:

- злание ЗРУ:
- фундаменты под трансформаторы, рельсовый путь перекатки трансформаторов, маслоприемники, резервуар-маслосоорник;
- открытое распределительное устройство (OPУ), кабельные каналы, ограждение, благоустройство.

После возведения подземной части здания ЗРУ (фундаментов, приямков, подготовки под полы) выполняются работы по монтажу конструкций каркаса, стен, перегородок и покрытия.

Монтаж конструкций следует производить с помощью самоходных стреловых кранов (гусеничных или пневмоколесных), " с колес", в соответствии с проектом производства работ, обеспечивающим минимальную трудоемкость и продолжительность строительства.

Строительно-монтажные работы необходимо выполнять в соответствии с требованиями СНиП III-4-80.

6. ИНДУСТРИАЛИЗАЦИЯ ЭЛЕКТРОМОНТАЖНЫХ РАБОТ

Конструктивная часть подстанции запроектирована с учетом максимальной индустриализации электромонтажных работ.

Техническая документация разработана с учетом ведения электромонтажных работ в две стадии.

Монтаж оборудования сводится в основном к установке в монтажной зоне комплектного оборудования заводского изготовления (шкафы НРУ, панели щита управления) и укрупненных комплектных узлов (НУ), представляющих собой металлоконструкции со смонтированным на них электрооборудованием, полностью подготовленных в мастерских электромонтажных заготовок (МЗЗ). Предусматривается использование электромонтажных изделий и конструкций изготовляемых заводами ГЭМ Минэнерго СССР.

7. МЕХАНИЗАЦИЯ ТРАНСПОРТИРОВКИ И УСТАНОВКИ ТЯЖЕЛОГО И КРУПНОГАБАРИТНОГО ЭЛЕКТРО— ОБОРУЛОВАНИЯ

Транспортировка, выгрузка и монтаж силовых трансформаторов IIO кВ должна производиться в соответствии с инструкцией по транспортировке, выгрузке, хранению, монтажу и введению в эксплуатацию силовых трансформаторов общего назначения на напряжение IIO-500 кВ (РТМ 16687000-73 Минэнерго СССР).

Установка всех узлов, монтируемых на трансформаторе, предусматривается автокраном грузоподъемностью 3 т.

Перемещение трансформатора от места его сборки (ремонтная площадка) до места установки, производится с помощью лебедки, для чего в строительной части подстанции предусмотрены анкерные устройства.

Для подъема трансформатора при установке его на фундамент предусмотрены специальные площадки под домкраты.

Монтаж шкафов КРУ должен вестись в соответствии с инструкцией по монтажу комплектных распределительных устройств на напряжение до IO кВ (ВСН 386-77 MMCC СССР).

Автокранами грузоподъемностью Эт шкафы КРУ и панели щита управления поднимаются на отметку 2-го этажа и устанавливаются на специально предусмотренную монтажную площадку.

Монтажная площадка рассчитана на установку оборудования массой 2 тонны. При перемещении шкафов КРУ и панелей к месту их установки и при установке их на закладные конструкции рекомендуется использовать приспособления и механизмы, указанные в инструкции. Для удобства транспортировки в помещении ЗРУ-I0 кВ предусмотрено съемное анкерное устройство.

Оборудование и ошиновка ОРУ-IIОкВ монтируется с помощью автокранов и телескопических вышек.

8. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ТИПОВЫХ ПРОЕКТОВ

- 8.1. Электротехнических чертежей.
- 8.1.1. При привязке проекта в спецификациях на чартежах установки силового трансформатора (альбом I) и плана ОРУ-IIО кВ (альбом II) в бликах проставить принятое сечение провода и тип аппаратных и ответвительных зажимов в соответствии с таблицей.

Марка и сечение	AC95/16	ACI20/19	ACI50/19	AC185/24	AC240/32
провода	ACKI195/16	ACKII120/19	ACKII150/19	ACKII185/24	ACKII240/32
Зажим аппарат- ный прес- суемый	AIA-95-4	AIA-120-4			
Зажим аппарат- ный прес- суемый	A2A-95-4	A2A-120-4	A2A-150-4	A2A-185-4	A2A-240-4
Зажим аппарат- ный прес- суемый	A4A-95-4	A4A-120-4	A4A- 150 - 4	A4A-185-4	A4A-240-4
Зажим ответви- тельный прессу- емый	0 A-95- 2	0A-120-2	OA-150-2	0A-185-2	0A-240-2

^{8.1.2.} Чертежи заземления, молниезащиты и схема электрических соединений приведены в качестве образца при разработке ссответствующих чертежей.

Чертежи заземления и молниезащиты могут быть применены без изменения при совпадении условий, указанных в разделе 3.5. и на чертежах.

- 8.1.3. В альбоме III в чертежах плана на отм.3.300, в альбоме У в ведомостях изделий МЭЗ и в ведомостях изделий и материалов для изготовления изделий МЭЗ, в альбоме УП в ведомостях потребности материалов заполнить блики.
- 8.1.4. Остальные чертежи альбомов I, Π , \mathbb{I} , \mathbb{J} , $\mathbb{J}\Pi$ могут быть применены без изменений и дополнений.
- 8.1.5. Чертежи разработаны для напряжения IO кВ. Для напряжения 6 кВ изменения и дополнения вносятся при привязке.
 - 8.2. Строительных чертежей.

При привязке проекта следует руководствоваться строительными нормами и правилами СНиП П-89-80, СНиП П-M,2-72 и СНиП-Ш-4-80.

При несоответствии условий, принятых в типовом проекте от условий конкретного проекта (климатических, гидрогеологических, грунтовых) следует произвести проверочные расчеты и внести соответствующие изменения.

Проект должен быть дополнен чертежами генплана подстанции, вертикальной планировки, подъездной автодороги и привязан к внешним сетям водопровода и канализации.

В альбомах П ТП 407-3-309 и ТП 407-3-311 на листах марки КЖ2 исключить опоры СКЗ под опорные изсляторы.

Установку опор под опорные изоляторы выполнить по чертежам марки КЖІ альбома I.

8.3. Составление спецификаций и заказ оборудования

При привязке типовых проектов для конкретных подстанций заказные спецификации должны составляться на основании спецификаций, приведенных в альбоме УІ.

Ведомости потребности в материалах и электромонтажных изделиях приведены в альбоме ${\rm УП}$.

9. ПОКАЗАТЕЛИ ИЗМЕНЕНИЯ СМЕТНОЙ СТОИМОСТИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ, ЗАТРАТ ТРУДА И РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

В разработанных типовых проектах применен передовой опыт - ЗРУ 10 кВ запроектированы с открытым кабельным этажом.

9.1. Сравнения показателей разработанного типового проекта IIO-4-2x63-IO-2(B-3I,5-I) (новый технический уровень - HTV) с показателями типового проекта - аналога ГПП-IIO-П-2x63-Б2СР (базисный технический уровень - БТУ) приведены в таблице

пп	Показатели	БТУ	НТУ	Изменение по сравне- нию с БТУ (снижение (+), увеличение (-)
I	2	·3	4	. 5
I.	Общая площаль ЗРУ 10-2 м2		769,4	
2.	Площадь застройки м2	2346	2697	-3 5I
3.	Строит.объем здания мЗ	3095	3203	–108
4.	Сметная стоимость строит.монт.работ тыс.руб.	113,39	88,91	+24,48
5.	Трудозатраты на здание ч-дни	1460	1064	+396

I	. 2	3	4	5 [.]	
6.	То же на I млн.ру строительно-монта работ ч-дни	76. IZ 9 00	12050	+85 0	
	Расход материалог	3:	• • • • •		
7.	Цемент т	I55,I	82,4	+62,7	
8.	Сталь т	42,8	51,0	-8. 2	
9.	Ле соматериалы	43 IO.35	14	-3,65	

9.2. Сравнения показателей разработанного типового проекта IIO-4-2x80-IO-2(Б-3I,5-2) (новый технический уровень - HTУ) с показателями типового проекта - аналога ГШІ-IIO-II-2x80-Б2СР+Б2СР (базисный технический уровень - БТУ) приведены в таблице.

將 1111	Показатели	БТУ	НТУ	Изменение по сравнению с БТУ снижение (+), увеличение (-)
I	2	· 3	4	5
ı.	Общая площадь ЗРУ 10-2 м2		878,I	
2.	Площадь застройни м2	3428	2752	+6 76
3.	Строит.объем здания м3	6190	3649	+254I
4.	Сметная стоимость строит. монт.работ тыс.руб.	185,3	98,2	+87,I
5.	Трудозатраты на здание ч-дни	2920	1229	+1691
6.	То же на I млн.руб.строи- тельно-монтажных работ ч-дни	15700	12450	+3250
	Расход материалов:			•
7.	Цемент т	292,5	8 5,I	+207,4

Ī	12		3	4	5
8.	Сталь	T	57,02	54,8	+2,2
9.	Лесоматериалы	мЗ	10,52	14	-3,4 8

9.3. Сравнения показателей разработанного типового проекта IIO-3(У)-2x63-IO-2(Б-3I,5-I) (новый технический уровень -HTУ) с показателями типового проекта — аналога ГШІ—IIO—ШУ-2x63-Б2СР (базисный технический уровень — БТУ) приведены в таблице

MANA IIII	Показат	пке	БТУ	нту	Изменение по сравнению с БТУ снижение (+), увеличение (-)
I	2		3	· 4	5
I.	Общая площадь	3Py 10-2 m2		769,4	,
2.	Площадь застро	йки м2	2178	2 393	_215
3.	Строит объем з	дания мЗ	3095	° 3203	-108
4.	Сметная стоимо- монт.работ	сть строит. тыс.руб.	. 112,63	88,29	+24,34
5.	Трудозатраты н	е здание инд-Р	1460	1064,2	+395,8
6.	То же на I млн строительно-мог	.руб. нт.работ ч-дни	12960	12150	48 I0
	Расход материа	MOB:	`.		
7.	Цемент	T	I55,4-	82,3	473 , I
8.	Сталь	T	43,36	51,0	-7,6
9.	Лесоматериалы	м3	10,28	14	-3,72

9.4. Сравнения показателей разработанного типового проекта IIO-3(У)-2x80-IO-2(Б-3I,5-2) (новый технический уровень - НТУ) с показателями типового проекта - аналога ГПП-IIO-ШУ-2x80--Б2СР-Б2СР (базисный технический уровень - БТУ) приведены в таблице

1111 NeMe	Показатели			БТУ	НТУ	Изменение по сравнению с БТУ снижение (+), увеличение (~)
ı.	Общая площадь ЗЕ	y 10 – 2	м2		878,I	
2.	Площадь застройн	M	м2	3260	2448	+8 12
3.	Строит.объем зда	RNH	мЗ	6190	3649	+2541
4.	Сметная стоимост	ь строи тыс	r. .pyd.	184,13	97,45	486,68
5.	Трудозатраты на	• •	рни	2920	1229,5	+I690 , 5
6.	То же на I мин. г тельно-монт. рабо			15860	12550	+3310
	Расход материало	В:			•	
7.	Цемент	T.		292,7	8 5	+207,7
8.	Сталь	T		57,84	54,8	+3,0
9.	Лесоматериалы	• мЗ		10,53	14	_3,47

Обозначение Мила	Схема электрических соединений	Мощность трансфор матарад МВ.Я	Вводных Выканоч. Максим. Количест	ор жомпоновка 8 Хомпоновка
-2] 110-4-2x63-10-2[6-31,5-1]		40; 63	3200	51000
110-4-2×80-10-2/5-31,5-2,		63;80	4	42000 8nn 10 -2[5-31.5 48000 8nn 10 -2[5-31.5

Обозначени е типа	Схема электрических соединения	Мощность тронефар матороб мВ:А	Ном. так Вводных выключ. А	Marcum. Konuvectő AUHUÚ IOM 8.	Компоновка				
110-3(4)-2×80-10-2[6-31,5-2] 110-3(4)-2×63-10-2(5-31,5-1)		63,80	3200	31 45	51000 42000 48000 300 300 265315-6				

100.	nuyo 3	Общи		YSKU	C. H.	nc	110-4	-2×63-10-2	?(5-31,5-1);	110-3(9)-2 Docuem 408		2(6-31,5-1)			
Наименование ерупп электроприемников		Установ. мощн						летог		acyerniyax	нагрузка эимой				
		Мощность в евинице и каличество	общоя мощность ф	8	h sos	\$ 67	Козарициент спроса	Активная мощнасть Ря = <u>Рес</u>	Peckm Mowy Qs = P.	Noshas moutmoeme Sp.=V(EPs)=+EQs)=	Коэффициент спросо	Humudhara Mouyhocmo Pa = Pod	Реактивная мащность Вз=Рз-£g ф	Полная мощность Sp = V(2.P ₃) ² -(2q ₃) ²	
		KBT KBT	KBT	—	╀	↓	12	KBT_	кВ Ap	2	12	квт	KB-AD	, 2	
0c8eutena 0b3 - 110	кB		4,8	1	1	0	0,6	2,8	-		0,6	2,88	_		
Освещение 3 РУ - 10	xB		7,45	1	1	0	0,6	4,47			0,6	4,47	-		
Повогрев при	180008	0,15 × 4	0,6	1	1	a	_	-	_		1	0,6	_		
Подогре ў	110-4	0,3×3	0,9	1	1	0	_				1	0,9	_		
наруженой установки на ОРУ	110-3(4)	0,3×2	0,6	1	1	0	_	_			1	0,6			
и рееулиров Охлажавние	тр-рав Вание	8,4 ×2	16,8	0,85	0,85	0,62	0,85	16,8	11,4		0,85	16,8	11,4		
Операптивные переменноес	e yenu 7 maka		1,7	0	0,9	0,484	0,85	1,44	0,696		0,85	1,44	0,696		
Блоки питания		1×4	4		0,9	0,484	9.85	3,4	1,63		0,85	3,4	1,63		
Аппаратура телемеканики — 0,5		0,5	1	1	0	1	0,5	_		1	0,5				
umozo	110-4-2	(63-10-21	5-31,5-1	1				29, 41	13,73	32,2		30, 99	13,73	33,9	
	110-44)-	2×63-10-2	2/5-31.5-	11				29,41	13,73	32,2		30,69	13,73	33,6	

		Vc marin	Общие Вленная		Ť	T	с.н. ПС 110-4-2×80-10-2(5-31,5-2); 110-3(У)-2×80-10-2(5-31,5-2). Расчетная наерузка										
. Наименование ерупп влектроприемников		МОЩН	OCMb	2	ø saz	tg 4		Jemom 3umov									
		Мош, нос. в единиц количес					Козфациент спроса	Активная мощность Рл = Рес.	Реактивная мощность qл=Pn-tg y	Полная мащность	Nospouguerm Consoco	нктивная мощность Р ₃ = <u>Р.</u>	Реактивная мощность 0,3=P3 - £9 V	Nonhan Mowyooms	(6h-1. (5;-), do		
		KBM	KBM	┼	├	<u> </u>	2	KBM	KB-AP		3 %	r.Bm	KB-Ap	, ,	니		
0.свещение 110 х	? OPY- 18.		4,8	1	/	0	0,6	2,88			0,6	2,88					
Освещение 3РУ-10	x8		8,45	1	1	0	0,6	5,07			0,6	5,07	 		7		
Nobospel n OA u K3	o <i>u80до8</i>	0,15×4	0,6	1	1	0					1	0,6			٦		
Подогрев инафов наруженой установки на ОРУ	110-4	0,3×3	0,9	1	1	0					1	0,9			-(
	110-3(4)	0,3×2	9,6	1	1	0		. :	,		1	9,6			7		
и регулирование и регулирование		15,7×2	31,4	0,85	0,85	Q62	0,85	26,7	16,5		0,85	26,7	16,5		7		
Оперативные цепи переменнога тока			1,7		0,9	0,484	0,85	1,44	0,69		0,85	1,44	0,69				
δλοκυ πυποιμυπ		1×4	4		0,9	0,484	0,85	3,4	1,64		0,85	3,4	1,64				
Аппаратура те лемехан	א א ס		0,5	1	1	0	.1	0,5			1	0,5					
	110-4-	110-4-2*80-10-2(5-31,5-2)							18, 88	44,3		41,49	18,88	45,6]		
	110-3/	4/-2×80-1	0-2/5-21	5-21				39,99	18,88	44,3		41,19	18,88	45,3	7		