министерство строительства предприятий нефтяной и газовой промышленности

Воесований научно-исследовательский институт по строительств, магистральных трубопроводов

> методика с программой расчета на эвм трубопроводов при пульсации давления р 546 — 82/

министерство строительства предприятий нестяной и газовой промышленности

Всесорэний научно-исследовательский институт по строительству магистрельных трубопроводов

- B H M M C T -

COLIACOBAHO

и инженер Узоентрансгаза

11 OKTASPA 1983 F.

YTBEPEJIAIO

, Дирентер ВНИИСТа

-45 0KTA874 1983 P

Зиневи

МЕТОДИКА С ПРОГРАММОЙ РАСЧЕТА НА ЭЕМ ТРУБОПРОВОДОВ ПРИ ПУЛЬ— САЦИИ ДАВЛЕНИЯ

P 546 - 824

Зав. отделом прочности и надежности трубопроводов, к.т.н., с.н.с.

Зав. лабораторией математических методов исследований, к.т.н. В.В.Рождественский

Thousand - H. V. TDOMOB

"Методика с ттограммой расчета на ЕВМ трубопсоводов при пульсащи дваления" реглаботама отделом прочности и напелности конструкца пристральных трубопроводов и лабораторией математических методов ис редования ЗНУИСТж при участии катедри строительной механики коробля прининградского технического института рыбной промышленности и хоза иза /КТИРП и у/.

В "Методкиз..." изложена методика расчета сооственных и вынукденных колебанкі трубопроводов произвольной пространственной конфишурации.

"Методика..." разработана на основании теоретический, экспериментальных исследований и натурных наблюдений обвязочных трубопровс дов компрессорых станций и станций подземного хранения газа.

"Методику..." составили: канадлати технических наук М.С.Геритейн, И.Д.Крастина, инженэри В.Д.Корнеев, В.Н.Павлов /ВНЛИСТ/, D.М.Саприкке / ТРИХ/, Г.Ф.Темпель /Узбектрансгаз/.

r 346-84

Впервые

1. OS Mue nonomenua.

- I.I. В документе содержится методика динамического расчета разветвленных трубопровсдов произвольной пространственной конфигурации с массивными опорами и арматурой применительно и обвязочным трубопроводам компрессорных станций /КС/, подвергающимся действию пульсаций давления транспортируемого газа.
- 1.2. При проектировании и расчете обвязочных трубопроводов КС следует выполнять требования главы СНиП П-45-75 "Норми проектирования. Магистральные трубопроводы" и "Инструкции по расчету обвязочных трубопроводов и приструкции по расчету обвязочных трубопроводов на динамические нагрузки: определярасчет обвязочных трубопроводов на динамические нагрузки: определярасчет обвязочных колебаниях колебаний и амплитуди виброперемедений при
 вынумденных колебаниях, выз анных неравномерностью потока транспортируемого продукта.
- 1.3. Динамические нагрузки на трубопроводную систему, создаваемые в результате неравномерности пстока, которая вызвана лериодическим воздействием импульсов расхода компрессоров на линиях всасивания и нагнетания, определяются на основе акустического расчета трубопроводных систем по методикам, разрабативаемым специализированными организациями /ВНЕИТаз, МЕНХИГП им. И.М.Губкина и пр./.
- 1.4. Методика включает программи динамического расчета трубопроводной системи на ЭВМ, входящих в единую систему /ЕС ЭВМ/. Программи комплекса VNIIST составлени на алгоритмическом языке
 пи/т с использованием методических рекомендаций [2], составленных
 имаш ан ссср.

Komilaeko iiporpama VNIIST ha mamuhhhix hoceteliax xpahetos bo

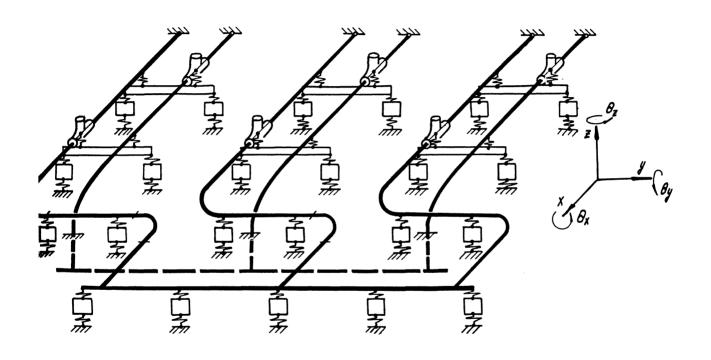
сена ВНИИСТем

Утверждено ВНИИСТОМ 15 октября 1983 года Срок вредения в демствие "_______1986г

2. Расчетние схеми обвязочных трубопроволов

2.1. В качестве расчетной схемы обвязочного трубопровода КС принята пространственная стержневая система, состоящая из прямолинейных и криволинейных участков постоянной кривизны и включающая массивные сосредоточенные и упруго-демифирующие элементы. Предусмотрена возможность учета в расчетной схеме различных упругих и демифирующих свойств трубопроводов, арматуры и опорных конструкций.

Пример расчетной схемы трубопроводной обвязки представлен в $^{HO}_{\alpha}$ аксометрической проекции на рис. I.


- 2.2. Трубопроводная система считается полностью компенсированной, т.е. принято, что продольные растягивающие усилия в трубах при
 статическом действии внутреннего давления равни . усилиям на заглушку /произведению давления на площадь труби "в свету"/. Таким образом, при рассмотрении малых колебаний допустимо использование линейной теории и применим принцип суперпозиции.
- 2.3. Расчетную схему представляют совокупностью дискретных элементов, взаимодействующих между собой в кон чном числе узловых точек. Использовани дискретные элементы следующих типов.

Здемент трубы однородного по длине сечения с осевой линией постоянной кривизны, лежащей в плоскосты, которая занижает произвольное положение в пространстве /в программном комплексе элемент носит названия ТРУБА/; элемент прямой трубы /т.е. с осевой линией нулевой кривижны/ является частным случаем элемента ТРУБА;

- элемент прямолинейного стержня произвольного постоянного по длине сечения /БАЛКА/;

элементы ТРУБА и БАЛКА могут быть свободными между узлами или связанными с упругим основанием;

- опорный безмессовый элемент конечной протяженности для моделирования упругах и упруго-демифирующих опорных конструкций, амортизаторов, грунтового основания под массивные элементы системы /ОПОРА/;

PUC. 1. PACHETHAS EXEMA.

- инерпионний сосредсточенный элемент для моделирования фунцаментов под опори, массивных элементов арматуры - кранов, задвижек и т.п. /МАССА/.
- 2.4. Дисиретные элементы соединены друг с другом в узлах. Каждому узлу в общем случае соответствует шесть степеней свободы. В задании на расчет указывают номера и координаты узлов.

Координати узловых точек задают в общей системе координат х, у, д . Ось д принимают направленной вертикально, а направления осей х и у выбирают таким образом, чтобы направляющие векторы осей х, у и д образовали правую тройку.

2.5. Для трубопроводов /моделируемых элементами ТРУБА/ узли задают на опораж, в местах стыковки труб с арматурой, в точках разветвления, а также в пролетах между опорами /не менее одного узла между соседения опорами/.

Криволинейные участки трубопровода можно моделировать прямолинейным и криволинейными дискретными элементами типа ТРУБА. При использовании криволинейных элементов задают номера и координаты концевых узлов криволинейного участка, а также координаты точки пересечения касательных к осевой линии, проведенных в узловых точках. При использовании прямолинейных элементов задают номера и ординаты узлов на криволинейной осевой линии.

Подвижные и упругие опоры моделируют элементами типа ОПОРА, для которых задают номера и координаты концевых узлов.

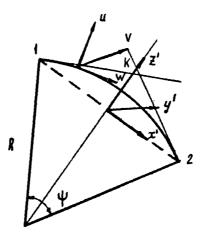
Для неподвижной опоры задают координату и номер узла. Неподвижным узлам дают номера, большие, чем номера узлов, имеющих етепени свободы.

2.6. С каждым дискратным элементом связывают местную систему координат х . у . г . направляющие векторы которой образуют правую тройку.

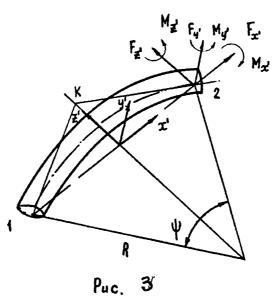
Местную систему координат х'у'г' для элемента ТРУБА определяют

и к в общей системе координат так, как это показано на рис. 2. Центральный угол криволинейного элемента может быть вычислен по координатам концов и заданному радиусу R; се не должен превышать 90° . Участки с большим углом следует разбивать на пва или более элемента.

трубе прямолинейного элемента ТРУБА ось х направлена вдоль оси трубе ворода от узла с меньшим номером к узлу с большим номером.


Ось у вноирают, как правило, лежащей в плоскости х-у общей системи коорлинат.

Для элемента БАЛКА ось х направлена вдоль оси стержня от узла в меньшим номером к узлу с большим номером, а оси у и Z совнадают с главными центральными осями поперечного сечения.


Для элемента ОПОРА местную систему координат выбирают, как прашио, срепадающей с местной системой координат одного из элементов ТРУБА или БАЛКА, примыкающих к данной опоре. В некоторих случаях шимет оказаться целесообразным иной выбор местной системы координат, учитывающий конструктивные особенности опоры.

3. Молели пискретных элементов и формирование пинамической матрили

- 3.1. Каждий из дискретних элементов, совокупность которых моделирует трубопроводную обвязку в целом, характеризуется инерционвой матрицей, матрицей жесткости и матрицей демифирования. Для вычисления этих матриц следует знать физико- м.е. комуческие свойства
 участков и узлов трубопроводной системы. В данном разделе приводятси данные, необходимые для вычисления динамических матриц элементов.
- 3.2. Ссновным элементом рассматриваемой системы явыяется произвольно расположенная в пространстве труба с сечением в выде тонкого вольца и осевой линией, изогнутой в плоскости и имеющей постсинную аривизну, рис. З /элемент ТРУБА/.

Puc.

Частным случаем является элемент ТРУБА с нулевой кривызной осевой линик, который соответствует прямолинейному участку трубопровода.

3.3. Для элемента ТРУБА задают наружный диаметр труби \mathcal{D} , толшину стенки труби \mathcal{S} , массу единици жини m. В общем случле величина m включает массу самой труби, массу изоляции, массу содержащегося в трубе газа и другие распределенные по длине труби масси, участвующие в поперечных колебаниях труби. Задают также модуль упругости \mathcal{E} и коэффициент Пуассона \mathcal{M} материала труби.

Геометрические характеристики — площадь сечения F и моменти инерции сечения I_x , I_y и I_z вичисляются в программе. Под $I_y = I_z$ понимаются осевые моменты инерции сечения относительно диаметра сечения, под I_x — полярный момент инерции относительно центра сечения.

3.4. Для элементов, моделирующих криволинейные участки трубопровода /отводы/ моменты инерции при изгибе в плоскости и из плоскости вычисляют умножением величин I_y и I_z на коэффициент
уменьшения жесткости K_x .

В соответствии с главой СНий Нормы проектирования. Магистраль-

В соответствии с главой СНиП ^мНормы проектирования. Магистральвне трубопроводн^и как для гнутых, так и для сварных отводов коэффициент $\mathbf{k}_{\mathbf{x}}$ при $\lambda_{\mathbf{k}} < 0$,3 определяют по формулам:

$$k_{x} = \frac{\lambda_{x}}{165}$$
 /3.I/

$$\lambda = \frac{d^2 R}{r_0^2}$$
/3.2/

где

← толщина стенки труби;

r - средний радиус сечения:

Р - радиус изгиба оси.

Значение $k_{_{\rm M}}$ вычисляют и вводят в числе других исходных данных в задания на расчет.

3.5. Подземные трубопроводы моделируют элементами типа ТРУБА на линейноупругом основании. Коэффициенты постели упругого основания вычисляют по формулам

$$s_1 - s_2 = c_0 D_H$$
 /3.3/
 $s_2 - c_2 \pi D_H$ /3.4/

Здесь D_{μ} - наружный диаметр труби, см;

с. - коэффициент нормального сопротивления грунта,
 кгс/см³:

 C_{x} — коэффициент касательного сопротивления грунта, кгс/см³.

Значения C_{\bullet} и C_{γ} принимают теми же, что использованы в статическом расчёте.

3.6. Явные выражения для элементов матрицы жесткости в местной системе координат криволинейного элемента весьма громоздки и наудобны при вычислениях. Поэтому для их численного определения на ЭВМ используется следующий алгоритм.

Интегрирование уравнений напряженного состояния криводинейного стержня даёт

$$\{P(s)\} = [A(s)]\{C\}; \{u(s)\} = [B(s)]\{C\},$$

где $\{P(s)\}$, $\{u(s)\}$ — векторы усилий и перемещений соответственно размерности 6;

{С} - вектор постоянных интегрирования длины 12; [A(s)],[B(s)] - матрицы размерности 6х12, выражения для которых приведены в приложении 3.

Для узловых усилий и перемещений получаются выражения

$$\{\mathsf{P}\}_{\bullet} = [\mathsf{N}] \left[\frac{\mathsf{A}(\mathcal{L}/2)}{\mathsf{A}(\mathcal{L}/2)} \right] \{ \mathcal{C} \} = [\mathsf{Y}] \{ \mathcal{C} \}; \quad \{ \mathsf{u} \}_{\bullet} = [\mathcal{Q}] \left[\frac{\mathsf{B}(\mathcal{L}/2)}{\mathsf{B}(\mathcal{L}/2)} \right] \{ \mathcal{C} \} = [\mathsf{X}] \{ \mathcal{C} \},$$

ОТКУДА

- матрица жесткости криволинейного элемента в местной системе коорnuhar. Marphille [N] w [Q] monseache s monsomenum 3.

3.7. Для определения матрицы инерции криволинейного элемента используется выражение для кинетической энергии

$$T = \frac{1}{2} \rho F \int_{-2/2}^{2/2} {\{\dot{u}(s)\}}^{T} [G] \{\dot{u}(s)\} ds$$

где

где

$$\begin{bmatrix} \mathbf{G} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & j^2/2R & 0 \\ 0 & 0 & 0 & j^2/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & j^2/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & j^2/2 & 0 \end{bmatrix};$$

$$\{\dot{u}(s)\}=[B][X]^{-1}\{\dot{u}\}_{o}.$$

Orcona

$$T = \frac{1}{2} \rho F \left\{ \dot{u} \right\}_{o}^{T} \left[\int_{-Q_{2}}^{Q_{2}} [X]^{-1} [B]^{T} [G] [B] [X]^{-1} ds \right] \left\{ \dot{u} \right\}_{o}^{T} = \frac{1}{2} \left\{ \dot{u} \right\}_{o}^{T} [M] \left\{ \dot{u} \right\}_{o}^{T},$$

PRe

$$M = \rho F \int_{-\ell/2}^{\ell/2} [X]^{-4^{T}} [B]^{T} [G][B][X]^{-4} ds$$
/3.6/

- матрица инерции, элементы которой вычисляются с помощью проце-АУР численного интегрирования.

3.8. Демијируршие свойства трубопровода следует учитивать, зави для злемента ТРУБА козфициент демијирования — В прогве расчета матрицу демијированием получают умножением матрици втюсти для денного элемента в местной системе координат на коэфвеет демијирования — В

$$B = p \kappa$$
 /3.7/

Величина коэффициента демприрования со свизана со значенив догариймического декремента у соотношением

$$z = \frac{\sqrt{2}\kappa}{\pi} \sqrt{\frac{m_{ii}}{\kappa_{ii}}}$$
 /3.8/

то по и ки - элементи матрици масс и матрици жесткости.

При отсутствии экспериментальных данных значение декремента вызвоний для стальных однослойных сварных и бесшовных труб попусвытся принимать равным 25 = 0.005.

3.9. Конструкцию опори трубопровода /представляющию собой увел предления труби и опорному фундаменту/ моделируют в расчетной схеме влементом ОПОРА, для которого задают в местной системе координат воступательные кесткости C_X , C_Y , C_Z , кто/см и врещательные восткости P_{x} , P_{y} , P_{z} , кто-см. В случае, если жесткость опори в одном из направлений превышает величину $AEEI_{z}/U^3$ /где I_{z} — момент инервии сечения и длина элемента труби, примыкающего и данной опоре/ в IO^3 или более раз, соответствующую степень свободи узла крепления устраняют из рассмотрения /т.е. считают опо-

Коэффициенты демијирования в опоре / = 1....6/ задаът отдельно для каждого направления поступательного и вращательного дажения.

З.10. Массивный фундамент опоры моделируют элементом МАССА.

Зацают массы фундамента m_{ϕ} , кгс-с²/см и массовые моменты инерции относительно главных центральных осей в местной системе координат I_{x}, I_{d}, I_{z} , кгс-с²-см.

З.ІІ. Естественное основание под опорный фундамент моделируют влементом ОПОРА. Основную упругую карактеристику естественных оснований фундаментов под опоры - коэффициент упругого равномерного склуна опродолжит солжасно главе СНиП И-19-79 по формуле

$$C_{e}^{*} = \delta_{o} E_{r} \left(1 + \sqrt{F_{o} / F_{np}} \right)$$
 Kro/cm³ /3.9/

Здесь \mathcal{E}_o , см^{-I} - коэффициент, принимаемый равным: для песков - 0,0I, для супесей и сугнинков - 0,0I2, для глин и крупнообломочных грунтов - 0,0I5:

— модуль деформации грунта, кгс/см², определяемый в соответствии с требованиями главы Сний по проентирования оснований: восружений: и осоружений:

$$F_{n\phi}$$
 - площадь подошви фундамента, см²;
 $F_{n\phi} = 1.10^5 \text{ см}^2$.

нлияние соковой засынки фунцамента на увеличение коэффициента весткости основания допускается не учитывать.

Козффициенты упругого неравномерного сжатия C_{V} , кгс/см 3 и упругого равномерного сдвига C_{V} , кгс/см 3 и упругого неравномерного сдвига C_{V} , кгс/см 3 и упругого неравномерного сдвига C_{V} , кгс/см 3 и ринимаютом равными

$$C_{\varphi}^{*} = \mathcal{C}_{Z}^{*}; \quad C_{x}^{*} = 0.7C_{z}^{*}, \quad C_{\psi}^{*} = C_{z}^{*}$$
 /3.10/

Коэффициенти жествости для естественных оснований $\mathcal{C}_{\mathcal{E}_{j}}$ $\mathcal{C}_{\mathcal{V}_{j}}$ $\mathcal{C}_{\mathcal{X}}$ и $\mathcal{C}_{\mathcal{V}_{j}}$ определяют по формульм:

$$C_z = C_z^* F_{nqp} /3.II/$$

$$C_{4} = C_{4}^{*} \mathcal{J}$$
 /3.12/

$$C_X = C_X^* F_{nq}$$
 /3.13/

$$C_{\psi} = C_{\psi}^* J_{\psi} \qquad \qquad /3.14/$$

Зпасъ

Fnop - плодадъ подошви фундамента, см²;

J, Jy - моменты инерции площади подошны фундамента соответственно относительно горизонтальной и вертикальной осей, см4.

Значения характеристик демифирования естественного основания следует определять, как правило, по результатам экспериментов. Соответствующая методика содержится в Руководстве [3].

Допускается при отсутствии опитных данных принимать значение жозффициента демпфирования при вертикальных колебаниях

$$Z_2 = 0,005 - 0,008 c.$$

Значения γ , соответствующие горизонтально-вращательным колебаниям фундаментов в 1,5-2 раза ниже значения γ

3.12. Опорные металлоконструкции трубопроводной обвязки моделируют с использованием стержневых элементов БАЛКА, для которых задают длину ℓ , геометрические карактеристики сечения \digamma , \varGamma_x , \varGamma_y , \varGamma_z в местной системе координат, распределенную массу m и овойства материала \digamma , M, ρ .

Непуменне элементи симметричной матрици жесткости К элемента БАЛКА имеют вид:

$$k_{H} = \frac{EF}{l} \; ; \quad k_{22} = \frac{12EI_{3}}{l^{3}} \; ; \quad k_{26} = \frac{6EI_{2}}{l^{2}} \; ;$$

$$k_{33} = \frac{12EI_{4}}{l^{3}} \; ; \quad k_{35} = -\frac{6EI_{4}}{l^{2}} \; ; \quad k_{44} = \frac{GI_{4}}{l^{4}} \; .$$

$$k_{55} = \frac{4EI_{4}}{l} \; ; \quad k_{66} = \frac{4EI_{2}}{l} \; /3.15/$$

Элемент Кіј метрици жесткости представляет собой узловое шлие в направлении і при единичном смещении в направлении ј Элементи симметричной матрици инерции балочного элемента имеют

$$m_{11} = \frac{m\ell}{3}$$
, $m_{22} = \frac{13}{35}m\ell$, $m_{24} = \frac{11}{210}m\ell^2$
 $m_{33} = \frac{13}{35}m\ell^2$; $m_{35} = -\frac{11}{210}m\ell^2$; $m = \frac{1}{3}\rho I_x$
 $m_{55} = \frac{m\ell^3}{105}$; $m_{44} = \frac{m\ell^3}{105}$

/3.16/

Коэффициент демифирования для опорных метадлоконструкций при Втоутствии опытных данных допускается принимать равным

$$7 = \frac{o.r}{\sqrt[4]{\omega}}$$
 /3.17/

же *ω* - частота вынуждающей нагрузки.

3.13. Свайные фундаменты под опоры рассчитывают, моделируя ваю сосредоточенной массой /// , которую находят по формуле

$$m = \beta^* m_{cs}$$
 /3.18/

рае m_{ca} - масса свай, кго c^2/cm , $\beta^* = 0.4 + 1.6 th \frac{6}{t_c}$. ℓ_c - дина свай, м.

Коэффициенты жесткости свайного основания в вертикальном $K_{\xi',u}$ вичисляют согласно главе СНиП В-19-79.

Коэффициенты демифирования 2x, 2y, 2z для свайной опоры

$$p_x = p_y = 0.2 \sqrt{\frac{m}{\kappa_x}}$$

/3.20/

3.14. Массивные узлы трубопроводной арматуры моделируют элементом масса, который характеризуется значениями массы m и массомих элементов инерции $I_{x_1}I_{y_2}$, I_{z_3} , определнемых в необходимых случаях опытным или расчетным путем по известным формулам теоретитеской механики.

3.15. На основе исходных данных, характеризующих топологичесжие, геометрические и механические свойства системи и ее элементов, в программном комплексе происходит автоматическое формирование дижимческой матрици с помощью ЭЕМ.

Вначале матрипу жесткости каждого элемента в местной системе жоординат К получают по указанным в п.п 3.3 - 3.14 данным. Матрицу жесткости элемента преобразуют затем к общей системе координат:

$$K = T^T K'T /3.2I/$$

Верхний инлекс Т означает транспонирование:

T - клеточно-диагональная матрица преобразования, элементы которой составлены из матриц направляющих косинусов A и матриц переноса начала координат $R_1 \cup R_2$ соответственно для пирвого и второго жоннов элемента

$$T = \begin{bmatrix} T_i \\ T_z \end{bmatrix}, T_i = \begin{bmatrix} A & AR_i \\ A \end{bmatrix}, T_z = \begin{bmatrix} A & AR_z \\ A \end{bmatrix}$$
/3.22/

Матрицу масс М и матрицу демий прования В в местной системе координат преобразуют к общей системе координат по зависимости, анамогичной /3.21/.

Процедури преобразования матриц жесткости, инерции и демий ирозания и общей системе координат повторяют для всех узлов и автоматически компонуют полную динамическую матрицу системы.

4. Расчети свободных и вынужленных колебаний

- 4.1. Частоти и формы свободных колебаний трубопроводной системи являются важнейшими динамическими характеристиками, позволяющими получить информацию о свойствах объекта. Для расчета свободных колебаний достаточно иметь информацию о жесткости и инерционных характеристиках системы, содержащуюся в разделе 3.
- 4.2. Уравнение движения системы со многими степенями свободы сводится к следующему

$$M_X + B_X + K_X = F$$

Здесь \mathcal{Z} - вектор-столоец динамических перемещений и углов поворота в узлах системы; точки обзначают производные по времени;

— матрица инерции;

K - MATDELIA MECTROCTES

В - матрица демприрования:

Вектор возмущающих узловых нагрузок.

Уравнение /4. I/ слукит для расчета винужденных колебаний при действии периодически изменяющихся во времени нагрузок.

4.3. Уравнения движения при малых свободных колебаниях в системе без учета трения можно представить в виде

$$M\ddot{x} + K_{x} = 0$$

Это уравнение логически следует из /4.1/, если значения возбуждения F и деминирования B приближения к нуже.

Решение 🗴 принимается в виде

$$x = Re \left\{ ve^{i\rho^t} \right\}$$
 /4.3/

Здесь U - вектор-столбец неизвестных амплитуд;

Р - неизвестная частота;

i = √-1;

Re - действительная часть комплексного числа.

Подстановка решения /4.3/ в уравнение /4.2/ приводит к залаче в собственных вначениях

$$(K - P^2M) v = 0$$

Система /3.4/ имеет ненужение решения, если определитель элтрицы умноженной на вектор ν^- , равен нуло, т.е.

Уравнение /4.5/ относительно р спредставляет собой частотное уравнение.

4.4. Для отнования собственных значений применен следующий алкориты [2]. Симметричную матрицу M представляют в виде произведения матрица "треугольных" матрица

$$M = 1.^{T}1.$$
 /4.6/

№ - индекс, обозначающий транспонированную матрицу/...

Задача о собственных вначениях /3.4/ принимает вид

$$(A - P^2 E) v_i = 0 /4.7/$$

Зпесь

$$A = (L^{\tau})^{-1} K L^{-1}$$

$$V_{\tau} = L V^{-1}$$

– алиничная матрица.

Далее для получения собственных значений и собственных вектороз выполнено обращение к стандартной подпрограмме EIGEN, реавыполней метод вращений /4/.

Каждому из Λ сообственных значений ρ_K^2 соответствует соб-

$$V = [V/K]_{th}$$
 /4.8/

представляет собой модальную матрицу для задачи о собственных значениях, выпаваемую на печать в результате вычислений.

4.5. Задача о вынужденных колебаниях трубопроводной системы с учетом демийирования решается на основе уравнения /4.1/:

$$M\ddot{x} + B\dot{x} + Kx = F$$

При этом возбуждение имеет установившийся гармонический характер:

$$F = F_0 e^{i\omega t}$$

$$F_0 = f + ig$$
/4.9/

Решение в этом случае следует искать в виде

$$x = Xe^{i\omega t}$$
 /4.10/

Подстановка /4.9/ и /4.10/ в уравнение движения /4.1/ приводви к соотношению

$$(K - \omega^2 M + L \omega B) x = F^2$$
 /4.II/

Введени обозначения

$$\Lambda - i\Pi = K - w^* M + iwB$$

$$\Lambda = K - w^* M$$

$$\Pi = wB$$

$$X = u + iw$$

/4.I2/

Подстановка /3.12/ в /3.11/ и решение дают

$$u = \Phi^{-1}(f + 17\Lambda^{-1}g)$$

 $w = \Phi^{-1}(g - 17\Lambda^{-1}f)$ /4.13/

THE

Таким образом, найдено решение в виде вектора-столоца

$$X = y + \dot{\epsilon} W \qquad \qquad /4.14/$$

Оптимальный по быстродействию алгоритм решения задачи о вынум денных колебаниях, описанный в методических рекомендациях 2 использован в данной методике

$$w = (P - w^{2}O + w^{4}R)^{-1} (\Lambda 17^{-1}g - f),$$

$$u = 17^{-1}(g - \Lambda w)$$
/4.15/

THE

/4.16/

4.6. В результате расчета по программе на печать видаются амплитуды перемещений в увлах

и свей и

$$\varphi_j = \operatorname{arct}_y \frac{w_j}{u_j}$$

INTEPATYPA

- І. Вибрации в технике: Справочник. В 6-ти т./Ред.совет: В Н. Челомей /пред./ - М.: Машиностроение, 1978-1982. Т.І. Колебания вынейных систем/ Под ред. В.В.Болотина. 1978. 352с. ил.
- 2. Расчеты и испытания на прочность. Метод расчета колебаний вожных пространственных конструкций в области низних форм колебашт. Методические рекомендации МР 61-82.-М., ВНИИНМАШ, 1982.
- 3. Руководство по проектированию фундаментов машин с дынамичес ми нагружеми/Нииосц им. Н.М.Герсеванова.-М. Стройиздат, 1982-
- 4. Математическое обеспичение ЕС ЭЕМ. Пакет научных подпрог-
- Б. Постнов В.А., Хархурим И.Я. Метод конечных элементов в растах судовых конструкций. Л., Судостроение, 1974.

ИНСТРУКПИЯ

по вводу исходых данных иля программного комплекса VWIIST

- I. Исходные данные для расчета по программе должны быть подготовлены на перфокартах, для чего их необходимо записать, пользуявв прилагаемыми таблицами-паблонами.
- 2. Всего заполняют 8 табляц основных и I или 2 дополнительных. Далие числа записывают без запятой, реальные в одном из трех видов: либо как целое число, например 50; либо как реальное число с коловой точкой, например, + 48.3; либо как число с десятичным порядком, например, 5EI, 4.83EI.
- З. Все числа должны отделяться друг от друга либо пробелом, либо кодовой запятой. Количество чисел на перфокарте - произвольно, виреход на новую перфокарту допустим между любыми двумя числами.
- В конце каждой таблицы перфорируется признак окончания таблицы кол 🖈 .
- 4. Для расчета по программе вся конструкция разбивается на элементи, называемие узлами /карактерными точками/, и соединяющили их
 меняями. Все узли далжни быть пронумерованы, все овлея тексе. В
 мрограмме приусмотрены следующие виды связей, балка, балка полземная
 труба, труба подземная, опора. Допустимо использование криволижейных труб. Видов узлов два; с сосредоточенной массой и без
 жее.
- 5. С целью сокращения количества вводимой информации вся способся

 ва повторять информация собрана в ссислочные таблици: типи трус,

 жин балок, типи масс, типи опор, типи материалов. Поэтому каждий

 вакой элемент задается один раз, ему присваевается порядковый номер

 в соответствующей таблице, а в данных об узлох и о связях укланнают

 в тот порядковый номер.

6. При заполнении таблиц принимаются следующие единицы камерения:

CHAR - KTC: MACCA -KTCK2/CM;

Павление - ис/ сп²; масса единицы длины-ктс «С²/cм²;

Координаты, длины, геометр, размеры - см:

Моменти инершии сечений - см4:х

BOOMOTES SHOP DE CETE OCT & -KTC;

MOCTKOCTЬ - KTC/CM:

Модуль упругости - кгс/см 2 :

Угли поворота - рапиани:

Кордилиенти /жесткости. Пуассона/ - осяразмерние:

Коэлбициент постели - кгс/см

Коэй иниент демайирования - С.

7. Пояснения к заполнению задания.

Для каждого узла, кроме его номера, необходимо запать:

- а/ Количество связей, иля которых данный узел принят за начало CBASK:
- б/ Геометрические координаты узда в едилой /глобальной/ систе-MO KOODIWHAT!
- в/ Номера степеней свободы, исключаемые из расчета колебаний. **Запаются шестью числами: три поступательные и три врадательные** степени своболы обозначаются импрами I+6: если степень своболы исклю-**ТАСТСЯ.** ЗАДАТЬ ОО НОМОР. ОСЛИ НОТ - НОЛЬ:
- т/ Номер типа сосредоточенной масси. описызаемой в ссылочной таблице № 3. При отсутствии масси задать ноль;
- и/ Угин ориентации масси и смещение центра тяжести масси отмосительно координат узла задавать только для ненулевых масс.

В ссылочной таблице № 3 "Типы масс" задаются величины масс I MX MOMERTH MREDIUM.

9. Для каждой связи /отрезка трубы, балки, опоры ме ду смежжыми узлами/ кроме ее порядкового номера, задать:

а/ Номер начала связи, номер ее конца, и номер типа связи — для указания характеристик связи, задаваемых в ссылочных таблицах 5,6,7;

о/ Сооственный поворот сечения — задать ненулевым для не осесимметричных балок; соответствует повроту вокруг оси X при установже балки в нужное положение повротом вокруг осей X, X и Z;

в/ Смещение закрепления связи относительно узлов-начального и конечного:

т/ После задания всех связей из прямых элементов, задать, если имеются, криволи неизные трубы, для которых кроже выпоуполинутого, задать координаты центра дуга.

10. В ссылочной таблице 5 "Тыпы балок" - задать информацию о балках, объеденяемых в типы при одинаковом их сечении; для них задать:

а/ Помер типа балки;

о/ Площаль сечения балки:

в/ ССылочный номер материала, по которому в таблицо 8 запить его характеристики:

г/ Массу балки единичной дални;

д/ Три момента инерции сечения балки;

е/ Поправки на сдвиговые деформации жесткости \mathcal{E}_{3} , \mathcal{E}_{2} и инерции $\beta_{1,2}$ /при неучете сдвига \mathcal{E}_{3} = \mathcal{E}_{2} = 1, \mathcal{E}_{3} = 0/;

ж/ После задания всех надземных балок задать все полземные, для которых, кроме вышеупомянутого, задать три коэф ициента постели \mathcal{L}_{x} , \mathcal{L}_{y} , \mathcal{L}_{z} .

II. В ссилочной таблице 6 "Типи труб" - задать информацию о трубах, объединенных в типи при одинаковом их сечении; для них задать:

- а/ Номер типа трубы, причем нумерация типов труб должна быть продолжением нумерации типа салок;
 - б/ Массу трубы единичной длины;
 - в/ $\overline{\mathbb{A}}$ иметр \mathcal{D} и толцину стенок трубн \mathcal{S} ;
- г/ Спилочний номер материала, по которому в таблице 8 запать его характеристику;
- \mathbb{A}^{\prime} После задания всех надземных труб задать все поиземные, для которых, кроме вышеупомянутого, задать коэффициенты постели \mathcal{S}_{x} , \mathcal{S}_{5} , \mathcal{S}_{ϵ} .
 - 12. В ссылочной таблице № 7 "Типы опор" задать:
- а/ Номер типа опоры, причем нумерация типов опор должна быть продолжением нумерации типов труб;
- о/ Поступательные C_x , C_y , C_z и вращательные P_x , P_y , P_z жесткости опор;
 - в/ Шесть соответствуюцих им коэфлициентов делифпровиния.
 - 13. В ссилочной таблице (2 8 "Типы материалов" задать:
 - а/ Комер типа материала:
 - б/ Модуль Юнга;
 - в/ Кожффициент Пуассона материала;
 - г/ Плотность материала.
- 14. Заполнив таблицы 2, задать управляющую информацию в таблице 1;
 - а/ Шир вадания два 5-символьних слова;
 - б/ Количество узлов, связей прямих, связей криволинейных;
- в/ Количество типов труб надземных, подземных, бал ж надземных, подземных, опор, сосредоточенных масс, материалов;
- г/ Признак печати матриц жесткости и инерци. /І-нечатать, 0 -не и чис ... выводимых на печать форм колесаний;
 - п/ Последовательность выполнения подпрограмм

Для расчета винужденных колебаний под воздействием внешних сил необходимо дополнительно задать дополнительную информацию в виде одной последовательности чисяя, цолых или реальных, разделенных пробелами или запятыми:

- а/ Число расчетных вариантов по частотам;
- б/ Инсли ненулевых компонентов внеших сил;
- в/ Коэйй иппент демприрования;
- r/ Значения частот /в герцах/ в количестве, равном /d/;
- д/ Номера ненулевых компонентов внешней сили, в количестве, равном /б/, причем нумерация соответствует нумерации степеней свободы системы, на каждый узел по 6 степеней свободы, порядок уздов соответствует их исходной нумерации;
 - е/ Реальние составляющие внешних сил в количестве, равном /б/;
 - ж/ Мнимне составляющие внешних сил в количестве, равном /6/.

Для расчета перемедений в системе при действии статических внешних сил задается:

- а/ Число ненулевых компонентов внешних сил;
- б/ Номера ненулевых компонентов внешних сил в количестве, раввым /2/, причем нумерация соответствует нумерации степеней свободы системы: на каждый узел — по 6 степеней свободы, порядок узлов соответствует их исходной нумерации;
 - в/ Величини внешних сил в количестве, равном /2/.

После заполнения таблиц вси исходная информация набивается на перфокартах и вводится в ЭВМ согласно инструкции по запуску программного комплекса VVIIST,

Таблица I.

ยนก็ก วก	7 OH DE	8, OH E8-	1	ютриц не диске			
мисно Мунено		T		,			
	-	CTEOCTH.	1				
деипфир			1				
коли-	B D	CCMSTDIESON	OM	00.100			
	-						
ORECOP		OXONG		BHY TOCHHUX			
ASTOR	B P	noaratheono;		ocaec			
	n	одсхоне		внутренних			
колниес	TBO	пряцык					
CBSSCI	l	дугових					
кол в-		хиниосден	TPy6				
OCTOBP		иодочиния	C	балок			
?uiob		подземных	3	:bAq			
				Carok			
	опор						
		сосрадоточ	OHE	MX M800			
		nezebnovoj)				
o zepe n na	нерц Тъ л	и (О или I) им (О или I)	C T	COCPH			
UNCHO	ტა চ #	коло Саний	annia				

Таблица 2. Данные об узлах.

	ZZ 23	коорд	инеты уз	л8	номера		зеполн	ить тол	ько для	нулев	ой мес	CH.	
o o	количество связей исходящих и узла			. 7	исключаемых степ.свобод	EMIR8	углы ој	и нет вци	и мессе		смещения центра тяжести		
номер увла	KOJ KOZ W	X	Υ	Z	I 2 3 4 5 6 или 0 0 0 0 0 0	номер типе мессы	Ψ	γ	φ	R_{x}	Ry	Ra	
						To the second se							
				And the second s		:							
								· · · · · · · · · · · · · · · · · · ·					
			·	* * * * * * * * * * * * * * * * * * *		:		:	Andreas (Project)				

Таблица 3. Типы масс.

8	<u></u>	MOMOHTL B MOCTH	инерции ных коорд	массы инатах
номер типа мессы	величина м ессы	I_{\star}	Iy	I _e

			!	

Теблице 4. Денные о связях (трубах, белкех, опорех) (снечеле ведеть все недземные, ветем подземные).

собств.	недело векреплени			исвязи Іоной			криволинейных) с		
CBRSU CBRSU	R_{\star}	R_y	R_{ϵ}	Q,	Qy	۵۶	Xu	Yu,	Zy.
				a a superior of the state of th					
					; : :				

Таблица 5. Типы балок. (сначала задать все надземные , затем подземные).

типа	площадъ	типв	масса	момен Сечен	ты инер ия балки	икр	пс	правки н	в сдвиг	коэффициенты постели; вадать только для подвемны			
демон	сечения <u>Г</u>	номер виселен	масса единицы длины <i>М1</i>	I,	I_{y}	I_z	E_{y}	Ez	ß,	S.	es,	\$ 5	ø∫,s
	: :	-					, m	A PROPERTY DESCRIPTION OF THE PROPERTY OF THE					
-						Tradition of the state of the s							
		; ;						Marian American					
								nappin to distance in the second seco					
:			k di								† †		
k ; L	:			•					Angelina and miles	ı	4 i 6	•	

Таблица 6. Типы труб.

Bird	803	ифи	ІИНИ	Q					Инв :и Си типв пила		(382	ициент постели дается только для дземных труб)		
номер типа трубы	N8C	6дин	R	див	rpy	TOT	CTOHE	rpy	дем он	WSTO	گ ,	S	Se	
								1						
						a de des estados de la constante de la constan								
						Andreas of the factorial and t								

Таблица 7. Типы опор.

loce	пателы	IH6		Вращ ател	PHHO	Коэўфициенты дэмпфирования опор			
ESCT	KOCTA OI	тор	X6C	TKOCTH O	пор	поступетел	ение	врещательные	
C _*	$C_{\mathfrak{s}}$	Cį	Px	$ ho_{\mathtt{y}}$	Pe				
						Programme and the summer comments of the			
		-			4 6	1			
							!		
	ZSCT	ESCIKOCIA O	Поступетельные дествости опор С _х С ₅ С ₂	жесткости опор жес	Zectrocta onop Zectrocta o	жесткости опор жесткости опор	жесткости опор жесткости опор поступетели	жесткости опор жесткости опор поступательные	

Таблица 8. Типы материалов.

номер типа	модуль упругости	коэффициент Пувссона	плотності материала
PNST8-	метериала Е	мате риала	٠. م
		va.	
		!	
!			
		M.A. C. Edistania	
		-	

Придожение 2

Пример расчета

Расчетная схема трубопроводной системы с нумерацией узлов приведена на рис. П. Размеры и основные характеристики системы представлены на рис. 12.2.123 и 12.4.

Исходине данные для кранов /узлы 2,12,22,35,55,75/:

 $m = 0.88 \text{ kgc } c^2/cm$

 $I_{\times} = 360 \text{ are } c^2 \text{cm}$

 $I_{3} = 500 \text{ kpc } e^{2} \text{cm}$

 $l_{*} = 280 \text{ kg c}^{2} \text{cm}$

Значения поступательных жесткостей опор /в общей системе координат/:

 $C_{\star} = 10^5 \text{km} \text{c/cm}$

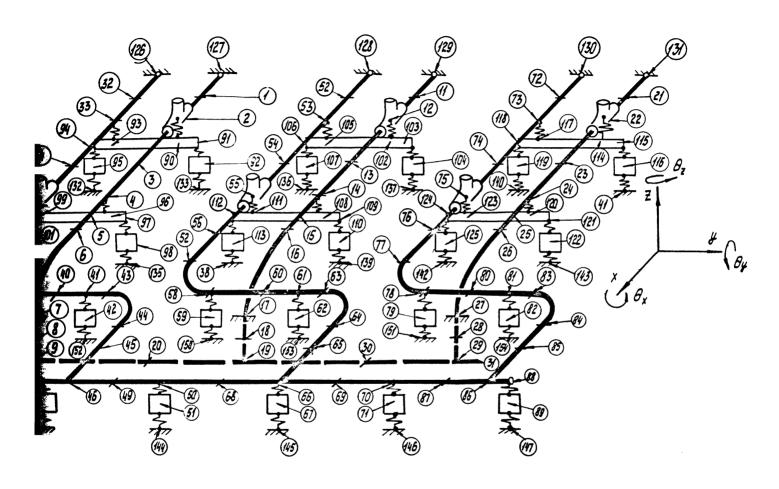
C = 10 E KTO/CM

 $C_2 = 10^6 \text{krc/cm}$

Коэффициент постели:

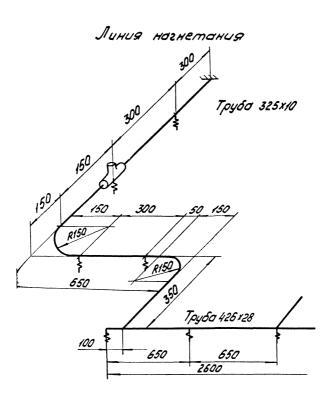
для труби диам. 325 $\Delta_{q} = \Delta_{z} = 100 \text{ krc/cm}^{3}$,

 $\Delta_{\chi} = 40 \text{ kTc/cm}^3$

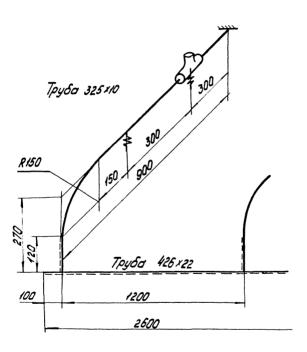

для труби двам. 426 $\lambda_3 = \delta_4 = 130$ кгс/см³.

 $b_{\parallel} = 40 \text{ kmc/cm}^3$.

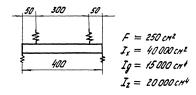
Динамические нагрузки приложени на углах поворота и на заглушках. Значения F = 1500 кге для труб двам. 325 км и F = 2500кге для труб двам. 426 км.

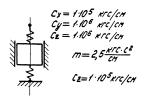

Расчет производился для частот 🖒 = 10;30;60 Гц.

Распечатка исходних данных и фрагмент распечатки результатов вичислений приведени нике.


Puc. DZ+1

Puc.(172)2


Puc.(12)2


Линия всасывания

PUC. [92]-3

Опоры

ТАБЛУЦА 1

I "NATONIDE MECTROCTH" I	NETGA
KOPPHECTES PTOOKICTONFURBIB BACKE	
MATPHUS RECTROCTS 1	42
AMA MATOVIE HHERLAV :	TERUT
KOUNAUCLES CINOR COLOULHUBIB PUCKE	
MATPHIL VHERUMN :	4 2
AMB MATURIF TERMOSNEOBYHNY !	MEMU
KONDARCIES ULBOR (CLOVERUBIB PUORE	
I RNAKBORVAMMEL HENREM	4 2
ORWEE KOLAHECTBO YBAOR P	
PACCHATPURAFMOR CXEME 1	154
ROUBACCES BHALLEHENX ASUCB	
B PACCHATANGAEMOS CXEVE :	125
DEMBE KONAHECTBO YSMOP R	
PACHUTERARMOD DOLCXEME	154
KOUNALCES BHALBEHENX ASVER	
B PACHATERARMON CONCRETE 1	125
KONMHESTER HEAMAY CBUSEN 1	139
KONNUNCTED AYROBLX OBSSER 1	9
KONPURCTER THROS DEASEMBLE TRYE :	
KONFHECTER TUPOR PORTHHER BATOK (
KOUNHECISH TOOR OCUREMARE INAL!	
KULBHECLED ANDOR NOTSEMAPY EVGOK 1	
COURTED ANDUR OLOB !	,
KOURAMOLES ALMON WELLNWEEL	1
T STAP 'II ANABAM'I AKAMBABA'INY	•
HACOO BURAHHIMIX HA NELATH COPM	
<u> 1</u> 77664440 ;	10
PARCHE CABUFANE 1	5 5

T A B A V 4 A 2

HEMED !		l I K C n P	1 A 14 12	A T 53 T	HOMERA	HOMEP T
	450760	_			NCKVAHIENPR	
YSAL		1	1			
	CRASEA				GB06049	t t
		1	1			Ţ
-4						
1	2 2	15#	3	150		
2		300	3	150	80000	i
3 4	1	450	9	150		
	2	4.00 4.75	9	152 152		
Ä	1	75#	Ø &	150		
7	1	500	v	1,24		
	1	960	Ø	-68		
•	2	ç g ø	ē	=120		
1 7	ē	900	-120	-120		
11	2	15*	1787	150		
1,7	?	300	1788	150	0.6406	1
13	1	450	1700	150		
14	2	600	1700	150		
15	1	675	1784	150		
1 ^A 17	1	750 500	1788 1788	150		
17	i 1	666	1766	-60		
1 ~	\$	cpn	1700	#13c		
ģ*	ì	can	A 0 p	-145		
2 1	:	150	2454	150		
2 "	2	* 0 0	2465	150	0 7 2 9 9 9	1
23	1	456	2402	150		
24	2	10°	2400	150		
25 26	1	675 75#	24 g g 24 g g	150 150		
27	1	7 D F	2460	138		
2 R	•	cgs	2466	-08		
20	2	500	2466	-127		
37	ē	ç Ø 🏕	1 7 2 7	=122		
31	ę	~ Ø Ø	3000	-120		
3?	2	15#	-300	1 > 0		
33	2	300	-360	130		
34	1	A 5 6	-366	150		
35 36	2	400	-300	150	0 ~ 0 ~ 0 @	1
37	1 1	47₹ 75₽	-366 -366	150 150		
3*	2	cga	-150	150		
30	ī	C 0 P	-150	15	190458	2
4*	i	¢ 9 ¢	g.	150		•
41	ž	000	100	150		
42	1	500	100	75	190458	2
43	i	5 Ø 🗖	150	150		
4.4	1	1050	360	152		
45	1	1150	366	152		
46	2	1750	300	150		

47	•	1250	798	150		
		-		_	4 4 7 4 5 8	-
48	1	1250	705	75	190458	2
49	1	1750	558	150		
5 *	Ī	1250	₹50	150		
	*	-	_	-	. A JACA	2
51	1	1250	² 50	75	100456	4
5?	2	15#	900	150		
5 3	2	300	900	150		
				150		
5 1	1	459	900	•	0.0.2.0.0	
55	2	680	900	150	8 ~ 2 ~ 8 °	1
54	1	675	968	150		
57		75#	900	150		
	<u>.</u>			-		
5 ^R	2	\$ Ø Ø	1750	150		
5 ?	1	coo	1750	75	122456	2
67	1	684	1788	150		
		ဂစ္ထန	1366	150		
61	4					^
67	1	CBW	1300	7 5	103456	2
63	1	C 0 W	1358	150		
68	1	1:50	1500	150		
65		115#	1500	150		
	i i	-	-			
64	3	1250	1 9 6	150		_
67		1250	1500	75	100156	2
6 ^R	1	1750	1175	150		
		~				
6 9	1	1250	1*25	150		
7 ~	1	1250	2150	150		_
71	1	1250	2150	75	102458	2
7,	2	150	2100	150		
73	2		2 ! 6 6	150		
*	2	307	-	• .		
7 \$	i	450	2100	150		
75	2	684	2100	152	<i>ରବ୍ୟବର୍ଷ</i>	1
74	•	475	2 ! 2 2	150		
77	•	750	2166	150		
	7			**		
7 *	2	cge	2750	152		_
79	1	900	275@	75	1-0455	2
87	į	cga	2498	150	•	
	*			150		
81	•	600	2500			_
87	1	50€	2 5 0 0	75	120456	2
83	1	5 0 B	2550	152		
8 1	ĺ	1050	2766	157		
				-		
85	•	1150	2788	150		
84	2	1250	2788	150		
87	1	1250	2450	159		
8 *	•	175*	2300	152		
	4				103466	2
28	1	1250	2 R & &	75	108456	2
97	2	300	?	120		
91	•	300	50	127		
	*	300	50	75	103455	2
97	1					•
9 3		300	-366	120		
94	1	300	+35€	120		
95	<u>.</u>	300	+35B	7.5	198456	2
	*					
èè	2	600	6	120		
97	1	€ Ø 🗖	58	120		
9 *	1	100	50	75	102156	2
90		× 00	-366	127		
-	.					
1 e 7	1	404	+35@	128	4 4 0 4 11 4	•
101	1	600	-350	75	100156	2
107	2	300	1708	125		
. 6	1	360	1250	129		
	4		1750	75	198456	2
104	1	300	_		1,0400	4
365	1	360	998	120		

106	i	300	R 5 Ø	123		
107		300	85 Ø	75	170458	2
	1	_		120		•
168	2	100	1700			
100	1	€ Ø ₹	1?5₽	120		•
11 T	1	600	1750	75	190456	2
<u> 1</u> 11	1	6 Ø 8	90	120		
Ţ17	1	6 Ø 🗗	* 5 Ø	120		
113	1	6 0 F	*5¢	75	190456	2
110	2	300	2400	120		
115	1	300	2150	128		
714	:	300	2450	75	192458	2
117	:		2100	127	170.50	•
	:	300				
<u> </u>	:	300	2 7 5 2	120		
Īi	1	300	2750	75	198456	2
727	2	€ Ø #	2400	120		
ĩ 2 1	1	600	2000	127		
127	i	400	2450	75	120456	2
723	i	100	2100	120		
124	i	600	2950	120		
725		600	2750	75	190156	2
	:	(6)			1.0.00	•
124	e	•	- ₹ Ø Ø	154		
		_				
127	۶	•	Ø	150		
125	Ł	ø	900	150		
Ţ2°	î	ø	1786	150		
13"	c	•	2187	150		
131	Ý		2400	150		
132	Ÿ	300	-350	• • •		
133		300	50			
	i					
134	£	600	-350			
{3 5	ę	100	. 5 @			
135	Q	300	⁸ 5 Ø			
(37	Ę	300	1756			
138	e	€ Ø 🗖	*5 Ø			
£30	٤	6 Ø #	1750			
147	2	300	2750			
141	ç	300	2150			
147	ŕ	100	2750			
144		-600	2450			
144	í		2 5 g			
	2	125*				
145	ε	1750	1500			
146	e	1750	2158			
147	î	125	2 4 9 9			
₹4ª	ĉ	175#	700			
140	2	ି ଓ ଶ୍ର	-150			
ĭ 5 *	ę	C 0 5	1750			
151	7	€ Ø 🍖	2750			
153	¥	0.00	1300			
54	e	C 9 8	2520			
	T.	. 10	6 2 50 6			

ТАБЛУЦА 3

	T REMYSUNHA	и не	E H T H P U N N	· · · · · · · · · · · · · · · · · · ·
TVPA MAECR	<u>'</u>	I X	;	17 !
1 2	Ø.68 2.5	348	503	129

ТАБЛУЦА 4

		,		I CARNE	SAKPE	IVEHNA	СВЯЗИ		Knop	NHATH	ŧ	, , ,
HOMED !	HOMED	HCHER	COSCTREH-	I OTHOS	NAEVPHO	y 3,	14		UFHTP	A		INSNUM-+6
FARAL I	/ « Снц» :	I TV∏A : I CBO3/	T FEROPOT	I H V H	. A / 6		HE	li .	ДУГ" 		t •∸v nk	HNABHNO
CBR34 1	1 30937	l CENS	T TEVENUS	1			, n _ [===[- i	***	MAN THEFT
1	!	I	1	I RX I R	Y I R7	7 0 X	I RY I	ηZ	Y 1	Y 1 5	7 T WE	CTKOCTH
			. ~ . ~					****	••••			-+-••
1	127	3										
1 2	2 3	3 3										
3	4	3										
4	5	3										
5	6	3										
7	8	6										
8	9 10	6 5										
9	70	5										
11	129	3										
11	12	3										
<u> </u>	13	3										
13	14	3										
Ĩ4 Ĩ5	15	3 3										
17	18	6										
18	19	6										
Ţ 9	20	5										
Ĩ 9	10	5 3										
21	171	3										
22	າີ້	3										
23	24	3										
24	25	3										
25 27	76 78	3 6										
21	19	6										
?9	40	5										
79	₹1	5									•	
32	126	2										
32	33 34	2 2										
33 34	35	2										
35	36	2										
36	37	2										•
38	10	2										
40	41	2										
41	43 45	2 2										
45	46	2										
46	47	4										
46	19	4										
49	50	4										
5 6	46 126	2										
74	1,0	4										

		^
4 2	43	2
53	4 4	2
54	₹5	2
55	46	2
56	5 7	2
		2
58	4.0	
6.6	^ 1	2
K1	43	2
44	4.5	2
45	46	2
46	48	4
46	49	4
49	7 Ø	4
7 Ø	*7	4
95	111	7
73	117	7
75	123	7
72	1 7 Ø	2
72	7.3	2
73	74	2
74	75	2
75	76	2
76	77	2
78	* 0	2
88	* 1	2
8.1	ΑŠ	2
R4	-	
	* 5	2
8.5	* 6	2
* 6	* 7	4
*6	*δ	4
2	? Z	7
	01	
98	4 1	1
91	• 2	7
90	03	1
33	?3	7
93	24	1
04	25	ž
	°5 °6	
4	• 0	7
96	97	
97	ా 6	7
3.5	9	7
96	69	1
09	170	i
	1 /8 4	
100	171 172 173 174	7
12	1 * 2	7 1
102	173	
103	174	7
1 * 2	1 * 5	1
*3	1 % 5	
	175 176	7
105	1 * 6	1
7 ~ 6	107	7
1 * 6 T 4	107	7
108	179	1
109	110	7
108	1 1 1	
		1
111	1 • 2	1
172	; 13	7
22	1 1 4	7
114	115	1
- • -	• · -	•

_	(14	7										
5	116	•										
4	117	4										
7	118	1										
8	119	<i>I</i> 										
4	170	7										
5	171	1										
1	1 2 2	7										
•	123	1										
3	124	1										
4	175	7										
2	176	2										
2	133	8										
4	1 7 7	3										
6	1 4 1	δ										
2	132	δ										
5 7	136	8										
6	110	8										
9	142	ô										
9	150	δ δ										
9	151	8										
9	450	ზ										
2	152	8										
2	153											
	154	8										
18	175	8										
	139	8										
2	1/3	Ö										
1	174	8										
3	138	8										
5 5	1/2	8										
: 5	148	8										
1	114	8										
ı 7	145	8										
1 \$	146	8										
19	147	8										
6	7	3	@	3	4	₹	9	Ø	759			
6	17	3	Ø	3	*	ĸ	73	8	<i>(</i> 5	750	1700	
6	27	3	>	ð	4	2	78	0	Ø	750	2400	
17	38	2	7	ð	4	Ò	2	e	29	750	=150	150
17	58	2	e	2	•	v	28	2	Ø	750	1750	150
17	78	2	9	v.	,	ð	4	0	03	750	2750	150
13	A 4	2	ŕ	3	a	ď	3	0	Ø	1959	150	150
13	44	2	ø	3	•		73	Ø	Ø	1658	1750	150
13	* 4	2	P	. 🖟	•	Ď	M	0	ø	1050	2550	150
-	•		•	₩				-			- -	

AV	-U.A. 5		-,.		, - ÷			,	,		-,	- 8 ; -	- -		- 4	• + -		• - •	7 1	;	, -	- * - •	• - •		•• <u>-</u>	+ - ,	, - -	
1	SEDEHNA	I TATA	•	- TAHN-	1 4	ИИ	5	AA	CN		•	רסח	P 4	вки	۲	A C	API	1"	Ĭ	40344N#	T T	4896) 1 N	ly#	EWŢ	n	ogt	-
1	\$4 #X7			-	•		•		-				-				•			aOdVHNu 4EAUeN*			-		SY			7
1	252		1	8.179E=2		4	E I	5 E S	3	2 p	4	1		1		0	•	3		6E+5		•			•		-	

ТАБЛУЦА 6

I HOMED I HACCA I TUMA I ENVHUEI MATERUEI UÜ I ANA I ACUHU I	TPY b	ТЭИНИ— 1 СТЕНКИ 1 ТЭУБЫ	TUTA MATE-	1 KODAANA 1 KODAAN- 1 KODAAN- 1 KODAAN-	7	VUNERT V	+==+++i	AELLABCIA LOUNAEHNA TOUBHL ROJOONA
78.789F=3 32.789F=3 4	424 424 424 424 424	1 Ø 1 Ø 2 8 2 2 1 Ø	i i i i	AL =6 AL =6 AL =6 AL =4 AL =4	4 m	1 0	130	

	P U A	7										
TA TA	40CTYC	ATE/BH		MEGTK(TEABHRE		! ! KO>00; !	NUNEHT	Я ТЕМЬФИ	POBRHU	Я	T T
1	3X 1.	CY I	!	λ I	PY I P	Z .	1 1 1	2 !	3 !	£ 1	5 !	6 1
7	1F5	1 E ¢	1F6 1F5	e e	ø &	8	2. • 5 0	5E-3	5E-3	2	3	8

7 /		1,	11	2

*****	٠				
	1		1		Ī
AO#Eb	•	MOEYAP	1	KOS44NIINEHT	1
		VERYFOCTA	Ī	CYACCCHA	1
		MATEPHANA	-	MATERYANA	i
PHRAL	•		1		1
	. !		i		Ī
	,	2.1F6		# Tr	•

COPCIBENHA SHARENN & BEKTOPP

HACUO CLEHEREN CHOPOTA NE 60

HECHO BEBUARMENT FORM MITE 95 NMEHA MCXUAHUX MATPHIL

KC5G2

MC5G2
MMR BUBGAYMOTO HA MA MACCUBA COBCIB. MACEA & BEKTOPOS

COBG3

				COBG3	
1	¥2	4(bay/cek)	. ₩(rePu)	DIAG (MO)	
. 1	5.784137736+09	7.605350006+04	1-210428916+04	1.84924030E+00	
4	5.05637274E+09	1.113818/5++04	1-13172148 +04	1.849235536+00	
3	3-80715443E+09	5-17)214455734	9-820199226+03	1.849235538400	
4	3.5357289 E+09	5.94619961E+j4	9.46366797E+03	1.84922564E+00	
5	2.35003218E+09	847682 ,3E+94	7.715324228+93	1.849243165+00	
•	2.23648179F+09	4-7691451,34	7.52666/97E+03	1.849263 96+00	
′	1.48947072E+09	3.859366 54	6.142371096+03	1.349 ¹³ 541E+00	
8	1.42797//35+04	3.7/8659 04	6.01423828E+03	1,84961169E+00	
4	9.937871366+00	3-152439 34	5-01726172E+03	1.849 8213E+00	
10	9.46744320E+08	3.0/5921 /2+04	4.897070316+03	1,349 61 (86+00	
11	8.43951872E+08	2.9393	4.67874688E+03	1.84917.71E+00	
12	8-457472888+08	2- 9 68 *>4	4-62848047E+03	1.849 69E+00	
15 14	7.90378496E+08	2.81	4.47442578E+03	1.8466E+01	
	6.24456448E+08	2,41	3,977142096+02	* 8 - 587E+	
15	6.13336576E+06	· · · · · · · · · · · · · · · · · · ·	3.941572276+03	1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
10	5 61339648E+08 3.90108416E+08	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3.772795416403	. 8 > ∈ *	
-		* * * * *	3.143494875+03	7 R € € * * *	
18	3.85719808E+08	1 to 12.50 to 134	3-125762946+03	·+ >3526+3.	
14	3.69628160E+08	7. 10 40 7 7 3 4	3.05986719E+03	7 +73 + C+ 1	
20	3.404526086+08	3 1652.2+34	2.936624518+03	1.1 +5-3E+40	
21	2-38561576E+08	5 3 5 6 5 - 3 6	2.45821080F+91	+ ₹ - ∀ 1 ₹ 1 ₹ 3 €	
56	2,30499536F+08	47 A	2.416323495- 3	.•⊃ 5 	
23	2.14994928E+08	* * * *	2.33364185£+93	5	
24 25	1-9839408, E+08	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.241/356(6+33	5491478,6400	
26	1.5c65376JE+08	4 - Fatty 6	1.95348486E+-	849-7,686-00	
21	1.46774768E+08	11 11 0 25 E * 14	1.928171638+	849124916+00	
28	1.39353584E+08	1 -3 /57*34	1.87879395	1.8491 1746+00	
27	1. 314649 76E+08 1.08661584 E+08	3. 3. 5. 6. 4. 7. 6. C.	1.82484100	1.8.9151612100	
30		ન મેટ્લેંગ જિલ્લ ું લ	1.6596444	18465. AF 000	
31	9.54504960E+0/ 8.4569328(E+0)	1 3 4 4 5 7 8 7 1 E 1 3 3	1.5549247	1 + 8 = 1 1 4 * 1 3 \$ * 2 C	
32	8.16608800E+0	9614/166 *33 336640 638*33	1.463614	1.549116+00	
33	7.471724808+ /	75888984£+73	1.43822533333	1,849 58156+30	
34	5.77460160E-17	.599.7 8 13t+03	1.394/1.45 ****	1.849 5 338E+ 00 1.849 4158 E+ 00	
32	5.33390720x -07	1.303359386+03	1.162369409+03	*,849753388+00	
36	4.92945920=+0.	7.021011/26+03	1.1174574/6+03	1,849:45756+00	
3/	4.8290256 E+C			<u>.</u>	
38	4.342330 / E .	6.96911719E+03	1 - 10543-056+03	1.4493/1506+00	
39	3.689244-08-	h.58964063£+03	1.048//3686+03	1.84918838.00	
40	3.43671 2084 /	5.07391797±+Q3	9.666.38486.02	1,8492,3406+00	
41	3.176315405092	5.862378916403	9.330263676+02	1.849:35268+00	
42	2.9724/36(5-5)	5.636414)6k+93	8.97c52988E+02	1.849727638+00	
43	2-8656 400 3437	5.452039)62403	8.6771875(E+52	1.849165066106	
44	2.843.774	5.353355476403	8.520.26956452	1 -849178518400	
45	2.6551962 5201	5.332144536+03	8.486369636+02	1.849 25826+00	
	Tit tick talk	5.108023446403	8.129670416+02	1.849-45756+06	

Собственные значения (продолжение)

40	2.C9328480E+01	4.575242196+03	7.281721198+02	1 849'40'495
41	1.824219206+01	4.271089846+03	6.797648936+02	1.84910488E+00
45	1.77714/206.+07	4-21562109E+03	6-709367686+02	1.84906101E+00
49	1.47555100E+07	3 - 84 129004E+03	6-11360107E+02	1.849081996+00
5 0	1-42222110E+0/	3.77123462E+03	6.002:0449E+02	1.84900093E+00
5 1	1-3898688 E+p/	3-72809448E+33	5 93344482E*n2	1.84903622E+0c
52	1-2091568 E+07	3 - 47/293216+03	5.53428223E+02	1.84920597E+00
5 3	1,2071928,6+07	3.474468 ; 2t+03	5.52978516E+02	1-84904861E+00
5 4	9.682523008+06	5.11167529E+03	4.952382815+92	1.549.38125+00
55	8 1594620:E+06	2.856477298+03	4.546223146+02	1.849g8485E+00 1.848999g2E+00
56	7.3669060) £-06	2.71420459€+03	4.319796045+32	
5/	5.9295217 E+36	3.435.60/92+33	3.875517586+02	1.84918785E+00 1.84902477E+00
5 8	5 01 876 50 €⇒06	2.249260018+53	3.5654834(E+02	1.84911251E+00
59	4.5912480.6+06	2,142719736+03	3.4102417. 6+02	1.84916687E+00
6 J	3.5233919 6+66	.87/66982E+33	2.987448736+0>	1.84917259E+00
6 1	3 2053740 E+16	1.79:35571++03	2.849438485+02	1.84906673E+00
6 4	2.8376450.E+0c	1.684353.3E+03	2.680729985+02	1.84913158E+00
6 5	2 49597632E+36	.579866+62+93	2 514435276+02	1.84917818E+QC
64	2 - 3381260: E+g6	1.427629646+93	2.272:42795+02	1.8491.297E+00
65	2.005213046+36	1.41605615E+03	2.253722996+02	1.84909630E+00
66	1 - 7457969 (E+g6	1.321285646+03	2.10289108E+02	
6/	1.64628201 8+06	1.283:75401+03	2.04207/336+02	1.849y9344E+00
6 8	1.592384061+06	1.20189697E+03	2.00837116402	1.849:3622E+00
é y	1.555386072+06	1.24715112E+03		1.84911537E+00
7.	18664:3 5+16	1-086573 , £+03	1-984902346+02 1-729334416+02	1.84910011E+00
71	8.99207813E+55	9.482656258+52	1.509211438*02	*.849;3622E+00
72	8.9679825 E+05	7-469443858+02	1-507188116402	1.849137318400
75	7-768035638+05	5.813645 26+92	1.402734998+02	1.84916782E+00 1.84899426E+00
74	6.99992688E+g5	1.8(4438486+32	1.242114728+02	1.84957627E+00
75	5.5920559 E+05	7.478; 53/6+32	1 190161296402	1.849.9153E+00
76	5-3138559 5+05	7.06.85693+402	1-120953138402	1-849040038+00
71	4.804361256+05	6.9313501.8452	1.103.58428402	1.849/49572+00
78	4.7c837375E+05	6.861/60256492	1.992(82826+32	1-849061976+00
79	2.396c1563E+35	+.89491271E+02	7.790492258+0+	1-84917259E+00
8 g	1.679073758+05	4.097051171492		1.84979534E+00
8 1	1.56392125E+05	1.954643556+02	6.52161255E+c1 6.294(094(E+o1	1.84969153E+00
8.2	1.37851313E+05	3.712834478+92	5.909158336+01	1.84915447E+00
8.5	8.7914500 E+04	2.96563936E+02	4.719c0482E+01	1.84908295E+00
84	7.13515625E+04	2.671171586+02	4.25130157E+01	1.84914494E+00
85	6.33029835E+04	2.516008308+02	4.00435C28E+01	1.84914589E+00
86	6.17142266E+04	2.484234771+02	3.953781136+01	1.84918499E+00
87	5.83862266E+04	2.416324166+02	3.84569855E+01	1.84920311E+00
88	5.820112116+04	2.412490842+02	3.83959656E+04	1.84920406E+00
84	5.31957539E+04	2.30642044£+02	3.670780946+01	1.84904194E+00
90	2.138144926+04	1.46223969E+02	2.327226266+01	1.84918594E+00
-	= 1 1 2 2 1 1 1 2 2 1 4 4		P. 351 550505484	

Собственные формы

```
-9.27c18498E-05 8.58436152E-03 -1.08766020E-03 -2.53405189E-04 6.83045255E-06
5.39051252E-05 -1.83084290E-04 -1.61250634E-03 2.11619947E-04 -5.05652977E-24
-3.14697390E-05 -2.47393968E-04 -2.83775385E-04 -4.59342524E-02 5.79794124E-03
-7.26293/72t-04 -1.99471251E-05 -1.61197895E-04 -3.81713966E-04 3.37473280E-03
-4.68/73502E-04 -9.42462124E-04 1.24317463E-04 9.89757944E-04 -4.49261930E-04
1.031281958-01 -1.277600978-02 -1.49890888-03 1.915996698-04 1.592532038-03
~$.08839032E~04 2.32164919E-01 -2.75211893E-02 -1.15515012E-03 1.8997)247E-04
1.78150520E-03 1.38096581E-03 3.47254276E-01 -3.73578593E-02 -1.217257-0E-03
1.44044975E-04 1.69528602E-05 4.96044755E-03 4.65942979E-01 -4.28564660E-02
-1.24253/986-03 7.54756766E-05 1.47344242E-63 6.75840303E-03 5.70240855E-01
-4.41558845E-02 -1.22325262E-03 5.95653546E-07 1.17279729E-03 4.869610 7E-03
6.51530685E-01 74.38425951E-02 -1.18024927E-03 "6.23471424E-05 8.36651307E-74
-2.31441042E-04 7.20908284E-01 -4.38872278E-02 -1.08995195E-03 -1.03147977E-04
4.9(524806E-04 -6.9585964)E-03 7.74207056E-01 -4.39434275E-02 -5.64657850E-04
-1-1739717u6-14 1.44553866E-04 3.11808940E-03 7.79094100E-01 1.21787712E-12
5.53342100E-05 -1,19885328E-04 -1.66361424E-05 -2.12663524E-02 7.74218798E-01
-9.97103453F-02 -5.56234503E-04--1.1/745643E-04-1.42572870E-04-1.07119069E-3
7.506756968-01 -4.12633643E-03 1.298650398-05 -1.20668672E-04 -2.75907951E-06
-1.23443870E-J3 2.03345381E-02 -3.39503437E-02 -8.26737611E-04 2.09903912E-04
~1·25580>396~04 2.45615584Engs 4.0067g2456~gs 6.54473156E-gs -1.64379156E-gs
-9.661>656/c-14 5.79762273E-14 -3.767(6617E-03 1.04604900E-C1 1.71552837E-11
-2.204352706-03 -4,53681.49E-04 3.44859902E-04 -5.02547622E-03 -6.81449845E-03
-1.24557540 =-02 2.73835985E-03 3.55060911E-03 -2.16831826E-03 -5.84774092E-03
-2.225288756-01 -3.60695660E-01 -2.993593236-03 $.41526452E-03 -3.41947330E-03
-6.65992126t. : -4.96717572E-01 -7.78565586E-01 -3.24030430E-03. 5.44825569E-03
-3.75/,3513£- - 5.00559919E-02 -6.70718193E-01 -1.06838226E+00 -3.45811294E-03
4.46498476=- - 3 54652945E-03 1.72457185E-01 -7.17272639E-01 -1.25345802E+00
-3.59388/21-
              - 3.03973793E-03 -5.11123021E-03 2.80433876E-01 -6.2444.372E-01
~1.3361847 ...
               -3.89287318E-03 1.67271122E-03 -2.59968429E-03 3.5295/249E-01
-4.234196
            1.342757236+0) -3.933668146-03 7.150266326-04 -2.092381016-03
3.196528 -
             1 -1.93620801E-01 -1.34142685E+00 -3.69362906E-03 2.51998892E-04
-1.00402.
             3 3.90-94221E-01 1.50492564E-02 -1.34003258E+00 -3.22639570E-03
1 - 446/2
             -4 -1.11545995E-03 -9.40965489E-03 1.60121173E-02 -4.68627401E-72
-9.8.97
          1.77425653E-04 -2.51632649E-04 5.01028836E-01 1.5c412135E-32
-1.000
         --- "JO "3.19605530E-03 1.45484213E-J4 -1.1 641983E-03 -6.76034 93E-72
1.03:
          - - 12 2,45692432E-01 -3.11120413E-04 1.88262609E-04 -4,36554983E-05
74.61 1.05259828E-02 71.54116447E-03 4.48993640E-04 9.5496880E-06
6. ... 133, 135 -9.50439717E-05 -2.08599190E-03 2.96250917E-04 8.92205862E-04
       =2<sup>25</sup>5=15 -2.99553154E-04 -1.43822821E-04 -5.37934117E-02 7.71440938E-03
 1 1/25 20F 13 -2.45719857E-05 -1.75405672E-04 -1.91554660E-04 3.48176830E-3
-5 - 68378E-14 1.45852542E-03 1.58784300E-04 1.10873347E-03 -2.25312775t-,4
1 - 7-3461E-01 -1.60768032E-02 1.58939487E-03 2.39823697E-04 1.73615430-033
TE: NOTBOCKETUA - 2.52128184E-01 -3.44037749E-02 -1.71513646E-03 -2.3628727 ENGE
 1 390831636-03 2.16805562E-03 3.38403463E-01 -4.676422856-02 1.824822515-03
 1 c6/819876-04 1.771303836-03 7.399967456-03 3.583129056.01 -5.42 specific-12
 1.938624316-93 1.159280956-04 1.544989656-13 1.099620016-02 3.775564956-31
-5.68446852E-12 2.02098098E-03 4.62442113E-05 1.29202404E-03
                                                                1 1,206.28E-12
2.03924894E-01 -5.70171326E-02 2.00085086E-03 -6.90098386E-06 1.05098464E-02 8.88211727E-02 -5.69559671E-02 1.80454249E-03
                                                                  $4036217E-55
 8.29956494E-04 7.58322328E-03 -9.62516665E-03 -5.68737872E-0/
                                                                · 45109743E-23
-5.50842813E-05 4.06632559E-04 2.89025009E-01 -1.03545375E-0-
                                                               231000666-01
8.77973364E-,4 -7.01002427E-05 3.75921372E-04 -5.30911945E-
                                                                ~ - 63583964E-c3
#.818235016-02 1.45108649E-03 -5.52471465E-05 6.07175520100
                                                                -.98292148E-01
~1.05998336=02 ~1.26805740E+03 7.84039265E-04 -7.5453496\\ \\ 3.39496182E+04
```

1.00000000E+01 3.0000000E+01 6.0000000E+01

NHAEKCH A CVAL

\$1 57 69 80 0.0 900000E+00 0.0600000E+0 0.0000000E+00 0.0000000E+00 1.50000000E+03 1.50000000E+03 -1.50000000E+03 -2.50000000E+03

4ACIOTA= 1.00000000E+01(FEPU)= 6.28318176E+01

1	x 1	ХS	АМПЛИТУДА
1	4.51/33358 _E -05	7.46693590E-04	7.47968908E-04
2	-2.14551837E-1,5	-2.92969402E-04	2.937543416-04
3	3.64900279E-: 6	5.664 9767E-05	5.67593961E-C5
4	1,695285396-66	< 28998979E-05	2.296255842-05
5	~4,3)813 519E -(8	-5.581842526-07	3.58927 826-07
6	-1.5>056496E-07	~~ .8523/15)E-06	1.857288236-06
7	8,962408176-05	1,492993216-03	1.49568)316~(3
<u>ਰ</u>	4.25852785E-(6	5.833-3935E-05	5.84903610E-05
9	-7.1/183354E-07	-1.12459584E-05	1.12688022E-05
10	3.39350117E-06	4.577980148-05	4.59053990E-05
11	1.04679771E-67	:.657/3850E-06	1.06054087E-06
12	6-250649568-07	8.5/301647E-06	8.59637112E-06
13	1,40047414E-04	2.342895378-05	2.347077246-03
14	1.3/5026998-04	1.618543648-03	1.622832816-03
15 16	-2.61484654E-05	-3.128005895-04	3.33508557E-64
•	5.:1991326E-(6	0.813286756-05	6.831753138-05
17 18	1.4481985E-(8	1.132 79938-06	1.13443184E-06
19	4.22639175E-07-	5.83133715E-06	5.84663121E-06
20	1.90560124E-04 -1.21155111E-06	3.192 31066-05 -9.86494415E-05	3.197713998-63
21	1. 1247133E-06	:.62778597E-05	9.89170658E-05
5.5	6.659978498-06	9.042/4784E-05	1.63093064E-05 9.26708592E-05
٤3	-4.28677652E-07	-0.73408367E-06	6.748311536-06
64	-4.54306087E-06	-3.503 5636E-05	3.51227500E-05
25	4.22385730E-04	3.731375566-03	3.737996578-03
26	-2.67772470E-04	-3.69485817E-05	3.70454835E-03
27	4.529363996-05	7.153465418-04	7.:6778915E-64
e 5	1.44266890E-06	1.01546742E-04	1.01819111E-04
29	-1.54343318E-U7	-1.16174665E-05	1.16419305E-05
30	-4.26221595E-06	-5.88562543E-05	5.90103737E-C5
51	2.5>264575E-04	4.27027419E-03	4.277896146-03
35	-6.29765612E-04	-8.62738490E-03	8,64968821E-03
53	1.694237236-04	1.716129958-05	1.719614728-03
34	8.23609935E-06	1.12644193E-04	1.12944879E-04
35	-9.42091731E-07	-1.4/865003E-05	1.48164809E-05
56 57	-5.0/243749E-06	-7.06934516E-05	7.U8751904E-05
37 38	2.44219089E-04	4.09179181E-03	4.09907103E-03
39	-1.01536070E-03	-1.41080953E-02	1.41445845E-C2
40	1.66088197E-04	2.61318241E-03	2.61865510E-03
41	8.81639880E-06	1.20302924E-04	1.206255266-04
42	-1.01691239E-06	-1.61036319E-05	1.61327043E-05
43	-5.10322661E-06	-7.15127971E-05	7.16946233E-05
-54	2.090664696-04	3.557461558-03	3.56359943E-03
			~ *** ########

Диномический расчет

40	9.381739198-06	1.25128194E-04	1.254641: 2-04
47	-1.921308898-06	-1.64325174E-05	1.04642 55-65
48	-4.60789215E-06	-6.54323812E-05	6.554638276-65
49	1-612764468-04	2.763207778-05	2.7677 256-13
5	-4. 39395108-03	-2.90254419E-62	2.97 2:3895-12
۶.	6.47625168E4	3.9459914 E -03	3,95±2518E+13
> <	4.257944146-66	1.25237159E-04	1.2562/2526-4
<u>ر</u> د	-9.58522833E-77	-1.589 8952F-05	1.59:97662E=05
· ·	-3.777626268-06		
55	1.,53934486-64	~5.39232424E~(> 1.878~7158E~03	5.40554029E-05
>6	-4.7,036981E-03	_	1.881595938-03
5?	2.36579850E-04	-3.72567698E-02	3.73544991E-C2
5%		4 123459928-05	4.1314587CE-C3
59	8.594947346-96	1.195 1562E-64	1.19835444F-(4
	-8.544516286-57	-1.46498451E-05	1.46/4 4*605
6 <i>⊕</i>	-c.69519928E-16	-3 89495544E-05	3,9042 " 2405
0	6 24222739E-15	1.04824547E-03	1.2501 2006+03
6 /	-5,:93917226~93	-4,4021,2908-02	4.413674036-/2
63	6.3291(432E-04	3,694798568-03	3.70213226E- 3
¢ 4	7,-88225496-66	1.6 24 20 4 13 E -64	12693768 - 4
65	-/.35752678E-17	-1.3(4537866-,5	1.30671,78 - 5
6.6	-1.55866292E-36	-2. 2519991 9E-65	2.25738627 - 5
67	2. 4473735E-25	3 010 1365E-54	3.0070729 =
6 *	-3.54:14779E~;3	-4.8775.3676-62	4.89(4353) -
69	6.76453275E-74	3.26803164E-L3	3.275145 🐔 🕣
10	3.5/431720E-06	4,6590/46)E-(5	4,67187632,
73	-0.71105170E-67	-1.20624009E-05	1.2081055
13	-4.33182013E-67	-6.12755866E-Co.	6.142638
13	-5.689674256-06	-7.20027665E-05	7 2232 21
14	-3.46402614E-03	-4.741016138-02	4.75475 6
15	-4.>6441776E-95	-5.88982133E-04	5.907.2154
16	-4.4.737376E-47	-5.74939191E-06	3.76.6.⇒9 ⊲
11	-6.296406246-07	-1.12249163E-65	1.12.2 6
13	4 . 2575786E-08	5.34852632E-C/	5.353 5
19	6.284362466-05	9.034.52496-64	9.5.65
83	-5.56101315E-03	-4.91865426E-02	4 /3 52
5 1	5,403063266-04	7.844634356-63	2 84 21
82	3.28846818E-06	4.547:32598-05	. 0 5 5 9 1 1 1 2 2 2 5 5
83	-6.67127779E-07	-1 20543637E-05	. :72 = // 1
84	-4.20473953E-07	~6.00136978E-C6	0. 15
85	1.447617256-06	1.650316798-65	5 2 5 6 7 7 3 5 7 4 5 9
86	-5.45520800F-U3	~4.69630100E- 2	6 (1) 3 (4) 3 (4) 4 (5) 4 (4)
87	1.157889078-05	1.43478639E-(4	
88	-1.55190420E-08	~ 1.89081504E-07	. 6 * 4
89	-0.24201448E-07	~1.094987248-65	
	* * * * * * * * * * * * *	* ***	44 (2) ** 20 \$ \$ 4 1 1 1 \$ 1

Динамический расчет (продолжение)

```
1.884954838+62
χZ
              AMPONITYAL
        7.955948825-04
                                                     1.979 /c 663E-05
                                                                          -3.7682:491E-05
                                                                                                4.249197081-05
04
        8.69878801E-C4
                                             41
                                                     -2.30827936E-06
                                                                          -7 99124518E+06
                                                                                                8.317940236-06
C 5
        6.15489989F-05
                                             48
                                                      1.832141616-06
                                                                           5.42003467E-64
                                                                                                1.42L75209E-04
(6
        1.01421610E-05
                                             49
                                                      6.35111922E-65
                                                                           3.693 . CO18E-03
                                                                                                3.69394268E-03
7.7
        3.83458428E-C7
                                             50
                                                     -8.813065276-04
                                                                           4.75785285E-02
                                                                                                4.758668698-02
26
        5.41559984E-C6
                                             5 1
                                                     8.68001021E-04
                                                                                                1.223193256-03
                                                                          -8.618.4514E-04
2.3
        1.58877554E-03
                                             52
                                                      2.0971990E-05
                                                                          -3-22329579E-05
                                                                                                3.798500986-05
; 4
        1.727614736-04
                                             53
                                                     -1.6523C267E-66
                                                                          -1.68048573E-05
                                                                                                1.688588246-05
, 5
        1.215607068-05
                                             54
                                                     3.19735800F-06
                                                                           1.11859597E-04
                                                                                                1.11865369E-04
3.5
        2.02069787E-05
                                             > 5
                                                     -1.65983511E-05
                                                                          .2.49428302E-63
                                                                                                2.49433797E-c3
; 6
        1.770120436-06
                                             >6
                                                     -2 . 1628939E-13
                                                                          5-045-25798-62
                                                                                                5 . 04515618E-02
, 5
                                             5/
                                                      8.863070986-04
        2.50503217E-65
                                                                          -6.291 12148E-04
                                                                                                1.086897928-03
. 5
        2.4560648CF-03
                                             58
                                                      1-907862326-05
                                                                          -2.92991899E-65
                                                                                                3.49633483E-05
 3
        4.59240004E-03
                                             59
                                                    -1.19841661E-06
                                                                          -2.428524(7E-(5
                                                                                                2.43147806E-05
                                             60
        3.19415703E-04
                                                      8.24036135E-07
                                                                           7 958529836-05
                                                                                                7.968953296-05
Ś
                                             0:
                                                     -6.18791450E-05
                                                                           8.74506147E-64
        2.81325774E-05
                                                                                                8.783906236-04
        1.05160052E-06
                                             62
                                                     -3.27550118E-03
                                                                           5 227894716-02
                                                                                                5.23693361E-02
                                                     8.616589481-64
                                             63
                                                                          - 065 32698-03
        1.56005699F-05
                                                                                                1.36994477E-63
                                                     1.548780866-05
                                             64
                                                                          -3 29426985E-65
        3.31596471F-c3
                                                                                                3.64873764E-05
        2.98614148E-04
                                             65
                                                     -1.0/890264E-06
                                                                          -2.9263 1978-05
                                                                                                2.928789768-05
                                             66
                                                      7.987698611-67
        3.37029051E-05
                                                                           4.77693191E-05
                                                                                                4.77756985E-05
                                             61
                                                     -1.50416585E-04
                                                                          -9.731 1251E-04
        3.58568359F+05
                                                                                                9.84667800E-04
        6.88775890E-06
                                             68
                                                     -5-8:649115E-. 3
                                                                          5.4:49 039E-62
                                                                                                5.41828759F=n2
                                             69
       9.668440918-05
                                                     8.32527177E-..4
                                                                          -1.5:03552:E-03
                                                                                                1.716294566-03
        3.861926508-63
                                             10
                                                      7.88932994E-06
                                                                          -2 3/941735E-05
                                                                                                2.22395465E~65
                                             1:
                                                    -1.240479836-06
                                                                          -3 19/31189E-65
                                                                                                3 . 9971732E-05
        1..0007243F-62
                                             12
       6.88219676E-C4
                                                     7.163479186-07
                                                                           - 58734824E-05
                                                                                                1.589744358-05
                                             13
                                                                           5 7:9563928-64
       3.95955431E-05
                                                      1.39380921E-05
                                                                                                5.76715684F-64
                                             14
                                                    -3.724023476~63
                                                                           5.677 1676E-62
                                                                                                5.619369826-62
       9.64647552E-06
                                             15
                                                    -2.132394878-04
                                                                           7.50274909E-04
                                                                                                7.857624446-64
       1.55066344E-04
                                             16
                                                     -6.99439909E-07
                                                                           2 53. 941956-06
                                                                                                 2.62580943E-06
       4.40490618E-03
                                             77
       2.255794786-02
                                                    -1.79822837F-66
                                                                          -3 522625786-55
                                                                                                3.527212546-05
                                             18
                                                     -7.55194947E-08
                                                                          -2.56787718E-06
                                                                                                 2 .. 69255976-06
        1.34259113E-03
                                             19
                                                     -4.2/506578F-04
                                                                          -2 54978635F-63
       4.32802190E-05
                                                                                                 2.559716586-63
                                             80
       7.0313103E-06
                                                     -3.83695052E-63
                                                                           5 364 3272E-62
                                                                                                5.37803732E~62
                                             5 1
                                                     1.62652275E-03
                                                                          -1.56566953E-03
                                                                                                3.91912833E-c3
       1.735942216-04
                                             82
                                                      1.79705533E-06
                                                                          -2.05881515E-05
                                                                                                 2.20151269E-05
       4.43990901E-C3
                                             83
       3.28736044E-02
                                                     -1.23450536E-06
                                                                          -3.200 1895E-05
                                                                                                 3.202498196-05
                                             84
                                                     1.66092512F-07
                                                                           1.572503248-05
                                                                                                 1.574368806-65
       1-597620318-03
                                             85
                                                     -4.97843217E-05
                                                                          -c.28315286E-04
                                                                                                 2.30249803E-C4
       4.44309408E-05
                                             86
                                                     -3.69826448E-03
                                                                           5.6749,608E-02
                                                                                                 5.68694361E-02
       3.93273919E-06
                                             87
                                                     7.44016725E-05
                                                                          -2.948 1779E-04
                                                                                                 3.04045388E-04
       1.64896817E-04
                                             88
       4.30852175F-03
                                                     -3.226537611-07
                                                                           1.26566544E-06
                                                                                                 1.30608714E-06
                                             89
                                                     -1.99714032E-06
                                                                          -3.63324070E-05
       4.17082608E-02
                                                                                                 3.63872532E-65
       1.50044472E-03
                                                     -1.90703020E-07
                                                                          -9.152 8602E-07
                                                                                                 9.34865966F-07
```

Динамический расчет (окончание)

	4ACIUTA= 6.0000	000E+31(FEPU)= 3,769	90967E+02				
ī	x 1	X 2	AHNAWTYAA				
1	4.54481588E-04	_1.00984890E-03	1.03671383g-03	46	9.26184748E-06	-3.54725635E-05	3.66617605E-05
2	3.19741889E-05	-2,149+5176E-05	3.77838442E-C5	47	3.50820192E-05	-1.14185777E-05	3.689351436-05
3	2.49315286E-04	-8.53387319E-05	2.63516093E-C4	4 *	5.21805032E-06	-1.60613854E-05	1.68877450E-05
4	2.01396751E-06	-:.65283273E-05	1.676614926-05	49	4.43495878E-03	4.02569771E-03	5.69974631E-03
5	-1.4/66C376F-C6	4.98957040E-07	1.55862926E-C6	5.6	4.20811586E-64	9.76743409E-C4	1.,63536398-03
٥	1.226473986-67	-1.26098655E-07	2.219480288-07	5 1	3.41278734E-04	-1.79827446E-04	3.857577696-04
/	4.04651268F-04	2.507/37296-03	2.06080312E-03	5 2	8.55567941E-66	-3.34997167E-05	3.457500136-05
*	-6.51612192E-66	4.698443248-06	7.27948827E-06	>3	3.088461948-05	-1.76592439E-05	4.38938795E-05
j. 9	-4.01243912E-65	1-543312176-05	4.868526596-05	54	6.59050511E-C6	-2-37155764E-05	2.46142881E-05
10	5 58004558E-06	-3.2535856 :E-05	3.30108887E-05	> 5	5.69699332E-03	2 -95762182E-03	6.41897321E-03
113	6./3867968E-96	-2.215-18446-06	7-131438916-06	5.6	6.93459151E-05	2.484464/9E-03	2.48543220E-03
1 -	-8. /2320c2E-(7	5.798 15689E-37	1.026673098-06	5 /	3. 4124627E-15	2.95556529E-05	4.31309600E-05
13	0.04149915E-04	2,948567856-05	3.02364072E=63	5 ⁸	6.33649233E-06	-2.97483784E-05	3.04157293E-05
14	-1.405339726-04	9.617588198-05	1.70293235E-04	59	1.e/836988E-05	-1.79887720E-05	2.46c26g29E-c5
3.5	-3 . /3 4694E-03	3.49130768E-04	1.12851220E-03	• 3	8./1704378t-c6	-3.2/254384E-05	3.386651226-05
16	0.50452922E-06	-3.492.2164E-05	3.55770026E-05	61	5.>2672520E-03	2-092209186-03	5.90948761E-03
n 7 n 8	6.58918029E-06	-8.081-46486-07	2.807986686-06	6.5	-1.8/563943E-04	4.130549736-05	4-13480401E-03
18	-3.91407809F-C7	2.7463 4526-51	4.78144216E-07	6.3	1.4/3837898-05	-4-013:71396-C4	415776796-04
19	8.556471648-64	3.854-34948-35	3.956443128-03	64	1.96035944E-06	-2.51245656E-05	2.520091956-05
2) 21 22	6.04553318;-16	4.933 (421 18-5	8.276531026-06	65	-2.619935556-75	-9.251 9548E-66	2.778471396-05
2 1	1 5311792E-,4	-5.03983688E-05	1 192512865-04	60	1.121505838-05	-4.21738427E-05	4.364438066-05
2 2	1.420948528-96	-3.62035498E-05	3.70599300E-05	6/	4.116665248-63	2 039 32998-05	2.93903495E-03
2 3, 4 5 6 7 2 8 8 7	-2. 0243567Eng5	6.378576526-06	2.158821746-05	6 5	-1.19024320E-64	5.5.292060E-03	5.504205828-03
£4	6.03488416E-66	54.6461.20 JE-06	3.124106126-06	69	-3.31938281E-(6	-8.3153,255E-04	8.31580774E-04
25	9.287)78786-04	4.429350738-03	4.538845278-03	1.	-4.063746046-06	-2.06856494E-05	2-12048617E-05
20	6.01438312E-04	/65n1865t-04	3.154743464-64	7:	-9. 1721872E-5	9 07483081E-06	9.1622700E-05
e7	1.91477244E3	-5.888564166-04	2.03276496-03	12	1 308620008-05	-5.1492/5248-05	5.328952796-05
2.2	8.494254006-66	-1.04102115E-05	3.737340746-05	73	-1.2/1857888-03	1.592238246~05	2. 3785277E-03
₹9	-4.36499036E-05	7.579337816-06	2,481362038-05	14	1.389431426-06	7.37252459E-C3	7.37252459E-G3
3 0	3.9/546955E-06	-3.3998/7646-06	5.231015176-06	15	-9,45733490E-05	-7.221 493E-04	7.28240935E-04
	1.10961474F	4.991396456-03	5.113 7 3207F=03	16	6./3401337E-06	1.36334047E-05	1.520581016-05
25	5.768998531-04	-5.391 2126E-64	7.895857586-04	17	-2.63691414E-94	6.410 L37)E-05	2.71370402E-04
29 20 31 33 34 35	1.0961474F203 5.768998538-04 5.2961058E-03	18-42456-63	3.29115265E-03	14	-1./50591048-05	4.023 U106E-05	4.38747229E-05
3.	0.030237016-06	-3.634 396 E-65	3.74.444668-05	19	1.743395408-04	1.300 3044E-03	7.34098256E-03
35	-5.06887136E-06	3.:57./82,5-	6.488859988-06	8.0	-1.45052603E-04	5.69145856E-03	5.,9346649E-C3
3 6	4.404191678-06	-6.540 818t s	7.8847(879E=06	81	-4 /2785439E-04	-2-9458:195E-03	2.98351026E-C3
37	1, 2751165E-03	4.9990227 6- 3	5.75098125E-03	8 2	-4.689361c5E-66	-2-13043677E-05	2.18143541E-05
28	34352274E-04	-6 J447(75'E 4	9.511478718-04	83	-9 -8379083E-C5	9 175496428-06	9.22951149E-05
39	4.82839802E-03	-1.622 68785-5	3.107469788-03	84	1.339397298-05	-5.30085963E-G5	5.46745869E-05
57 59 0 1 2 3 4 5	9-234443818-06	-3.612374716~05	3.72779614E-05	8.5	4.90266051E-03	-7.93648884E-03	8.88870656E-03
E)	1.69895939E-05	-3.397678488-06	1.732600508-05	86	4.64217301E-05	8.031588051-03	8. 31722166-03
Z	4.597712186-06	-1.038623496-05		87	1.158939216-03	2.860289776-03	3.08616227E-03
3	2.1/0796516-03	4 75633889E-03	1.13583810E=05 5.22829965E=03	88	-8.3/722200E-06	-1,882199798-05	2.06012483E-05
4	6.69568777E-04	-7.09974265E-05		89	-3.30153154E-04	8.60138098E-05	3.41173494E-04
5	1.54186506E-03	-6.615/84368-04	6.73322240E-04	90	2.486354796-05	-5.3/663582E-Q5	5.92369615E-05
_	1-0300E-03	.0.013:0430E=64	1.677786478-03	. •		21212137322143	************

I. Ненулевые элементы матрицы [A(S)] равны

$$a_{11} = k \cos ks$$
; $a_{12} = k \sin ks$; $a_{23} = 1$;
 $a_{31} = k \sin ks$; $a_{32} = -k \cos ks$; $a_{44} = k \cos ks$ =
 $a_{45} = k \sin ks$; $a_{51} = -\sin ks$; $a_{52} = \cos ks$
 $a_{54} = 1$; $a_{63} = \frac{1}{k} = R$; $a_{64} = k \sin ks$; $a_{65} = -k \cos ks$

2. Ненулевые элементы матрины [B(s)] умноженные на ЕГ

равны

$$\begin{aligned} &\delta_{11} = \left\{ \frac{k}{2} \left(1 + \frac{2}{j^{2}k^{2}} \right) + \frac{(1+V)k}{y} \right\} S \cos kS ; \\ &\delta_{12} = \left\{ \frac{k}{2} \left(1 + \frac{2}{j^{2}k^{2}} \right) + \frac{(1+V)k}{y} \right\} S \sin kS ; \\ &\delta_{16} = \frac{2}{j^{2}k^{2}} ; \quad \delta_{1,10} = k \cos kS ; \delta_{1,11} = k \sin kS ; \\ &\delta_{23} = \frac{2(1+V)}{k^{2}} \left(\frac{1}{j^{2}} + \frac{k^{2}}{y} \right) S ; \\ &\delta_{24} = -\frac{2+V}{j^{2}} \left(S \sin kS + \frac{1}{k} \cos kS \right) ; \\ &\delta_{25} = \frac{2+V}{j^{2}} \left(S \cos kS - \frac{1}{k} \sin kS \right) ; \\ &\delta_{25} = -\frac{2}{j^{2}} \sin kS ; \quad \delta_{24} = \frac{2}{j^{2}} \cos kS ; \quad \delta_{2,22} = 1 ; \\ &\delta_{31} = \frac{1}{k} \left[\frac{1}{j^{2}} + \frac{k^{2}}{2} \left(1 + \frac{2(1+V)}{y} \right) \right] S \sin kS + \frac{1}{k^{2}} \left[\frac{1}{j^{2}} - k^{2} \left(\frac{1}{j^{2}} - \frac{1+V}{y} \right) \right] \cos kS ; \\ &\delta_{32} = -\frac{1}{k} \left[\frac{1}{j^{2}} + \frac{k^{2}}{2} + \left(1 + \frac{2(1+V)}{y} \right) \right] S \cos kS + \frac{1}{k^{2}} \left[\frac{1}{j^{2}} - k^{2} \left(\frac{1}{j^{2}} - \frac{1+V}{y} \right) \right] \sin kS ; \\ &\delta_{33} = k \sin kS ; \quad \delta_{33} = \frac{2}{j^{2}k} ; \\ &\delta_{33} = \frac{2}{j^{2}} \frac{1+V}{k^{2}} ; \quad \delta_{44} = \frac{k \left(2+V\right)}{j^{2}} S \cos kS ; \end{aligned}$$

$$b_{us} = \frac{K(2+V)}{J^{2}} s \sin ks; \quad b_{ux} = \frac{2k}{J^{2}} \cos ks;$$

$$b_{us} = \frac{2k}{J^{2}} \sin ks; \quad b_{sx} = \frac{2}{J^{2}k} \sin ks;$$

$$b_{ss} = \frac{2}{J^{2}k} \cos ks; \quad b_{sx} = \frac{2}{J^{2}k} \sin ks;$$

$$b_{ss} = \frac{2}{J^{2}} s; \quad b_{sx} = \frac{2}{J^{2}};$$

$$b_{ss} = \frac{2}{J^{2}} s; \quad b_{sx} = \frac{2}{J^{2}};$$

$$b_{ss} = -\frac{K(2+V)}{J^{2}} s \sin ks - \frac{V}{J^{2}} \cos ks;$$

$$b_{ss} = -\frac{K(2+V)}{J^{2}} s \cos ks - \frac{V}{J^{2}} \sin ks;$$

$$b_{ss} = \frac{2k}{J^{2}} \sin ks; \quad b_{ss} = \frac{2k}{J^{2}} \cos ks;$$

THE V - KOSÉDMINENT LLYACCONA, $\int_{0}^{2} = \frac{1}{F}$ 3. HOHYROBNO SARMENTH MATPUT [N] N [Q] PABHNO $I_{11} = I_{12} = I_{12}$

СОДЕРЖАНИЕ

	crp.
Р Общее положения	4
Расчетные схежы обвязочных трубопроводов	5
моделя дискретных элементов и формирование динамичес-	
кой матрицы	8
Расчети свободных и вынужденных колебаний	18
тература	22
RYHOROLEG	
Игструкция по вводу исходных данных для программного	
komilierca	23
Пример расчета	36
1. Frenenth matpus	59