МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

РЕКОМЕНДАЦИИ

P 52.24.741 -2010

ОЦЕНКА ТОКСИЧНОСТИ ПОВЕРХНОСТНЫХ ВОД СУШИ В УСЛОВИЯХ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ МЕТОДОМ ЭКСПРЕССНОГО БИОТЕСТИРОВАНИЯ

Предисловие

- 1 РАЗРАБОТАНЫ Государственным учреждением Гидрохимический институт (ГУ ГХИ)
- 2 РАЗРАБОТЧИКИ Е.Н. Бакаева, д-р биол. наук, Н.А. Игнатова, канд. биол. наук
 - 3 СОГЛАСОВАНЫ с ГУ «НПО «Тайфун» 04.10.2010 И УМЗА Росгидромета 11.10.2010
- 4 УТВЕРЖДЕНЫ Заместителем Руководителя Росгидромета 12.10.2010
- 5 ЗАРЕГИСТРИРОВАНЫ ЦМТР ГУ «НПО «Тайфун» за номером Р 52.24.741-2010 от 19.10.2010
 - 6 ВВЕДЕНЫ ВПЕРВЫЕ

Введение

Метод биотестирования широко используется в последнее время для оценки токсичности и поверхностных вод, и донных отложений. Информация, получаемая в ходе биотестирования дает информацию о воздействии на гидробиоту всего комплекса находящихся в водном объекте веществ. В случаях экстремально высоких загрязнений и в условиях чрезвычайных ситуаций (ЧС) необходимо получение оперативной информации для принятия управленческих решений. В связи с чем необходимо использовать экспрессные методики биотестирования.

Настоящие рекомендации отвечают требованиям оперативности получения биологической информации: 1) реакция хемотаксиса позволяет практически за 1 ч получить ответную реакцию тест-объектов на воздействие исследуемой пробы воды; 2) выбранный тест-объект (Раramecium caudatum) является одним из центральных видов микрозоопланктеров практически во всех водных объектах, что позволяет использовать его во всех регионах страны; 3) методика биотестирования по выживаемости зоопланктеров позволяет использовать популяции исследуемого региона, отобранные в фоновых (незагрязненных участках) водных объектов. В связи с тем, что гидробионты реагируют на специфику гидрохимического состава водных объектов различных регионов предпочтительнее использовать в случаях ЧС природные популяции гидробионтов, отобранные из фоновых (условно чистых участков). Для этого в рекомендациях приведен список возможных тестобъектов с указанием их экологических особенностей в отношении температурного фактора, рН-среды, минерализации.

РЕКОМЕНДАЦИИ

ОЦЕНКА ТОКСИЧНОСТИ ПОВЕРХНОСТНЫХ ВОД СУШИ В УСЛОВИЯХ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ МЕТОДОМ ЭКСПРЕССНОГО БИОТЕСТИРОВАНИЯ

Дата введения - 2011-10-01

1 Область применения

Настоящие рекомендации устанавливают методику экспрессного биотестирования и порядок проведения оценки токсичности поверхностных вод суши (ПВС) в условиях чрезвычайных ситуаций (ЧС) и проведения оперативных работ в мониторинге ПВС в условиях ЧС.

Рекомендации предназначены для организаций наблюдательной сети Федеральной службы по гидрометеорологии и мониторингу окружающей среды (Росгидромета), осуществляющих организацию и проведение наблюдений за загрязнением ПВС в составе Государственной службы наблюдений за состоянием окружающей среды (ГСН) России.

Настоящие рекомендации могут быть использованы в качестве методического пособия специалистами и практическими работниками природоохранных организаций, осуществляющих наблюдения за загрязнением окружающей среды, а также для оценки токсического загрязнения поверхностных вод суши.

2 Нормативные ссылки

В настоящих рекомендациях использованы ссылки на следующие нормативные документы:

ГОСТ 19179-73 Гидрология суши. Термины и определения

ГОСТ 17.1.1.01-77 Охрана природы. Гидросфера. Использование и охрана вод. Основные термины и определения

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 27065-86 Качество вод. Термины и определения

Р 52.24.566-94 Рекомендации. Методы токсикологической оценки загрязнения пресноводных экосистем

РД 52.24.609-99 Организация и проведение наблюдений за содержанием загрязняющих веществ в донных отложениях

РД 52.24.635-2002 Проведение наблюдений за токсическим загрязнением донных отложений в пресноводных экосистемах на основе биотестирования

РД 52.24.309-2004 Организация и проведение режимных наблюдений за загрязнением поверхностных вод сущи на сети Росгидромета

РД 52.24.662-2004 Рекомендации. Оценка токсического загрязнения природных вод и донных отложений пресноводных экосистем методами биотестирования с использованием коловраток

РД 52.24.670-2005 Унифицированный метод определения острой токсичности проб поверхностных вод суши, содержащих взвешенные вещества

Р 52.24.690-2006 Рекомендации. Оценка токсического загрязнения вод водотоков и водоемов различной солености и зон смешения речных и морских вод методами биотестирования

Р 52.24.695-2007 Рекомендации. Оценка токсического загрязнения природных вод и донных отложений водных экосистем по коэффициенту регенерации популяции

Примечание - Ссылки на остальные нормативные документы приведены в разделе 6, пунктах 7.2 и 8.2.

3 Термины, определения и обозначения

В настоящих рекомендациях использованы следующие термины и определения:

3.1

биотестирование (биологическое тестирование): Оценка качества объектов окружающей среды (воды и др.) по ответным реакциям живых организмов, являющихся тест-объектами

[ГОСТ 27065-86, статья 39]

- 3.2 **биотест**: Совокупность приемов получения информации о токсичности воды (донных отложений) для гидробионтов на основе регистрации реакций тест-объекта (Р 52.24.566).
- 3.3 **водный объект**: Сосредоточение природных вод на поверхности суши, либо в горных породах имеющее характерные формы распространения и черты режима (Р 52.24.566).
- 3.4 загрязнение токсическое: Загрязнение воды водоемов и водотоков токсичными веществами.
- 3.5 **зоопланктеры:** Представители зоопланктона (совокупность населяющих толщу воды беспозвоночных животных, пассивно переносимых течениями) [1].

3.6

качество воды: Характеристика состава и свойств воды, определяющая пригодность ее для конкретных видов водопользования [ГОСТ 27065-86, статья 2]

3.7

контроль качества воды: Проверка соответствия показателей качества воды установленным нормам и требованиям

[ГОСТ 27065-86, статья 2]

- 3.8 **критерий токсичности**: Значение показателя токсичности, на основании которого судят о наличии токсического действия.
- 3.9 **метрологическая характеристика метода**: Характеристика чувствительности метода, определяемая для тест-объекта по LC $_{50}$ при воздействии эталонного токсиканта (медь (II) сернокислая, калий двухромовокислый).
- 3.10 острое токсическое действие (острая токсичность); ОТД: Воздействие, вызывающее быструю ответную реакцию тест-объекта. Острое токсическое действие чаще всего определяют по тестреакции «гибель» или «выживаемость» в условиях кратковременного биотестирования. При использовании коловраток и других организмов микрозоопланктона длительность воздействия составляет от 6 до 24 ч (РД 52.24.662).
- 3.11 **показатель токсичности**: Признак тест-объекта, используемый для оценки токсичности воды.
- 3.12 **поверхностные воды суши;** ПВС: Воды, находящиеся на поверхности суши в виде различных водных объектов (Р 52.24.566).
- 3.13 проба воды: Количество воды, предназначенное для исследования.
- 3.14 пункт наблюдений за загрязнением поверхностных вод суши Государственной сети наблюдений Росгидромета: Место на водоеме или водотоке, где проводят комплекс работ для получения данных о качестве воды или донных отложений. (РД 52.24.635).
- 3.15 результат биотестирования: Конечный вывод о токсичности водной среды, установленный в ходе биотестирования.
- 3.16 **тест-объект:** Организм, который используют при биотестировании (инфузории, дафнии и т.д.) (Р 52.24.566).
- 3.17 **тест-показатель:** Показатель жизнедеятельности (поведенческие реакции, размножение, выживаемость и т.д.) тест-объекта, используемый для определения токсичности ПВС
- 3.18 токсичность воды: Свойство воды вызывать патологические изменения или гибель организмов, обусловленные присутствием в ней токсичных веществ (Р 52.24.566).
- 3.19 токсикологический эксперимент: Эксперимент, в ходе которого оценивают влияние на тест-объект испытываемой воды или химического соединения. Состоит из двух серий: опыт (с воздействием воды или химического соединения) и контроль (без воздействия, но в тех же условиях) (Р 52.24.566).
- 3.20 условно чистый участок водного объекта: Обычно это фоновый створ.

- 3.21 фоновый створ: Створ, расположенный на расстоянии не менее 1 км выше источника загрязнения (Р 52.24.566).
- 3.22 **хемотаксис:** Двигательные реакции свободно передвигающихся растительных и простейших животных организмов, а также клеток (зооспор, сперматозоидов, лейкоцитов и др.) под влиянием химических раздражителей [2].
- 3.23 чрезвычайная ситуация; ЧС: Обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей [3].
- 3.24 чувствительность тест-объекта: Нижняя граница диапазона действия эталонного токсиканта, при которой обнаруживают параметры его токсичности на тест-объект.
- 3.25 эталонный токсикант: Токсическое вещество, используемое для проверки чувствительности биотеста или тест-объекта (Р 52.24.566).
- 3.26 LC₅₀: Концентрация токсиканта, приводящая к гибели 50 % взятой для эксперимента выборки.

4 Общие положения

- 4.1 Настоящие рекомендации устанавливают требования и условия по проведению экспрессного биотестирования ПВС в условиях ЧС, обусловленного высоким уровнем загрязнения или присутствием опасных токсических веществ, поступающих в водные объекты в ходе аварий, залповых сбросов, с целью выяснения чрезвычайных экологических ситуаций.
- 4.2 Экспрессное биотестирование ПВС проводят с целью проверки соответствия качества отдельных исследуемых проб воды установленным нормам без идентификации загрязняющих веществ и их количественных характеристик [4].
- 4.3 Вода контрольного створа (природная вода) не должна оказывать токсического действия (хронического и, тем более, острого) на тест-объекты, используемые для биотестирования [4].
- 4.4 Биотестирование ПВС основано на определении показателей токсичности исследуемой пробы воды, отобранной в зоне влияния источника загрязнения, и их отличий от контрольной пробы, отобранной на условно чистом участке водного объекта и водопроводной водой исследуемого региона.
- 4.5 Экспрессное биотестирование токсичности ПВС в условиях ЧС дает возможность за короткий промежуток времени:
 - оценить токсичность пробы воды:

- выявить точки (створы) и участки с чрезвычайной экологической ситуацией;
- оценить влияние источников загрязнения на состояние водной составляющей водного объекта;
- оценить экотоксикологический статус водного объекта или его участка;
- оценить эколого-токсикологическое состояние водного объекта в комплексе с методами биоиндикационных и физико-химических исследований.
- 4.6 Для оценки токсичности ПВС используют не менее трех биотестов с разными тест-объектами, либо трех тест-показателей одного тест-объекта. Набор биотестов и тест-показателей должен экологически соответствовать региону исследования согласно приложениям А, Б и (Р 52.24.690).
- 4.7 В составе системы мониторинга ПВС режимные наблюдения и наблюдения в условиях ЧС по токсикологическим показателям методом биотестирования проводят по программам работ оперативнопроизводственных подразделений территориальных управлений по гидрометерологии и мониторингу окружающей среды (УГМС) Росгидромета в соответствии с требованиями РД 52.24.309 для поверхностных вод суши, РД 52.24.609 и РД 52.24.635 для вод и донных отложений.
- 4.8 Результаты по оценке токсичности вод методом биотестирования в условиях ЧС, в зависимости от их масштаба, представляют в органы управления Единой государственной системы предупреждения и ликвидации ЧС (РСЧС) соответствующего уровня (региональный, территориальный и местный, объектовый).

5 Основные принципы биотестирования поверхностных вод суши в условиях ЧС

- 5.1 В ходе биотестирования ПВС в условиях ЧС устанавливают:
- наличие либо отсутствие токсического действия отдельных проб воды;
 - острое токсическое действие отдельных проб воды;
- кратность разбавления вод, снимающую ОТД, в случае его обнаружения;
 - район экологического неблагополучия исследуемой акватории.
- 5.2 Экспрессное биотестирование ПВС проводят с использованием различных тест-объектов: инфузорий, коловраток, ракообразных, микроводорослей, макрофитов, а также природных популяций гидробионтов, отобранных из условно чистых (фоновых) участков исследуемого водного объекта.
- 5.3 Использование природных популяций гидробионтов имеет преимущества:

- гидробионты из исследуемого водного объекта исключают реакцию на физико-химические особенности воды, которая может иметь место у лабораторных культур гидробионтов;
- возможность прогнозирования состояния конкретных популяций гидробионтов в исследуемом регионе в связи с произошедшим загрязнением.

Использование природных популяций гидробионтов имеет недостатки:

- адаптация к слабому постоянному воздействию загрязнения на фоновом участке, если оно имеет идентичную природу с воздействием на загрязненном участке;
- заранее нельзя предвидеть, какие именно организмы можно будет выделить на фоновом участке исследуемого водного объекта.
- 5.4 Оптимальным является проведение одновременного биотестирования на природных популяциях гидробионтов и лабораторных культурах тест-объектов с известными характеристиками и известной чувствительностью к загрязняющим веществам (проверка пригодности культуры к биотестированию по эталонному токсиканту).
- 5.5 Наиболее важным показателем, на основе которого можно дать прогноз развития популяции, является размножение. Время получения результатов по показателю размножения на общепринятом тестобъекте Daphnia magna составляет 30 сут. В условиях ЧС информация должна быть оперативной, поэтому преимущество среди тест-объектов нужно отдать короткоцикличным тест-объектам: инфузориям, коловраткам, микроводорослям.
 - 5.6 Экспрессное биотестирование ПВС проводят:
 - а) с использованием экспрессных тест-показателей:
- скорость потребления пищи организмами-фильтраторами инфузориями, коловратками в соответствии с РД 52.24.662 (раздел 10) и РД 52.24.670:
- скорость фотосинтеза растительных тест-объектов, A-Z-Ph-тест на микроводорослях в соответствии с P 52.24.566;
- поведенческие реакции хемотаксис в соответствии с приложением В.
 - б) с использованием тест-показателей:
- выживаемость или гибель на тест-объектах, экологически соответствующих исследуемому водному объекту; выживаемость на тест-объектах из представителей крупного рачкового планктона можно наблюдать визуально без микроскопирования в соответствии с РД 52.24.662, Р 52.24.690, Р 52.24.695;
- размножение, позволяющее при использовании короткоцикличных тест-объектов (микроводоросли, инфузории, коловратки) в короткие сроки определить не только их выживаемость, но и размножение, и по-

казывающее возможность сохранения популяции в соответствии с РД 52.24.662, Р 52.24.690, Р 52.24.695;

- комплекс показателей (выживаемость и размножение) в сопряженности со временем (24, 48, 72 ч), позволяющее при использовании короткоцикличных гидробионтов (инфузории, коловратки) дать прогноз развития популяции в соответствии с Р 52.24.566, РД 52.24.662.
- 5.7 Длительность биотестирования (продолжительность экспозиции) зависит от жизненного цикла выбранного тест-объекта. Микроводоросли за сутки дают до 8 поколений, инфузории до 4-6, коловратки до 3.
- 5.8 В ходе биотестирования используют два контроля: дехлорированную водопроводную воду региона и воду из условно чистого (фонового) участка исследуемого водного объекта.
 - 5.9 Каждый биотест проводят не менее чем в трех повторностях.
- 5.10 Оценку токсичности ПВС проводят по набору биотестов (не менее трех). Например, с тест-объектами парамеции, коловратки, дафнии. Либо по двум тест-объектам (парамеции, дафнии) и нескольким тест-показателям одного из тест-объектов (хемотаксис и гибель парамеций).
- 5.11 Обязательным в условиях ЧС при обнаружении ОТД вод является определение кратности разбавления исследуемой пробы воды, снимающей токсическое воздействие. Кратность разбавления 2; 10; 25; 50; 100 и 500 раз. Разбавление проводят водой, отобранной из фонового створа, или отстоянной дехлорированной водопроводной водой исследуемого региона.
- 5.12 Требования к порядку проведения и оценке результатов биотестирования проводят согласно РД 52.24.669.

6 Отбор, хранение и подготовка проб поверхностных вод суши для биотестирования

- 6.1 Пробы ПВС для биотестирования отбирают с учетом требований ГОСТ 17.1.5.05 и Р 52.24.566.
- 6.2 Объем пробы не менее 0,05 дм³ (при использовании в биотестировании тест-объектов из числа микрозоопланктона) и не менее 1,5 дм³ (при использовании микроводорослей и рачкового планктона).
- 6.3 Сосуды должны быть из материала, не содержащего токсичных примесей (полиэтиленовые емкости для пищевых продуктов, стеклянные баллоны и бутыли).
 - 6.4 Сосуды необходимо маркировать.
- 6.5 Перед заполнением сосудов воду фильтруют через мельничный газ № 70-76 (для удаления природного планктона) и несколько раз ополаскивают сосуд. Заполняют водой полностью.
- 6.6 Анализ проб воды по определению токсичности проводят не позднее 6 ч после отбора проб.

- $6.7~\rm B$ случае невозможности проведения исследований не позднее $6~\rm ^{4}$ после отбора пробы охлаждают до $4~\rm ^{0}C$ или замораживают согласно РД 52.24.309 и хранят до $30~\rm cyt$.
- 6.8 Консервирование проб химическими веществами не допускается.
- 6.9 Перед биотестированием измеряют концентрацию кислорода, значения рН (с целью дифференцирования токсического воздействия каких-либо загрязняющих веществ и измеренных значений рН и кислорода, если эти параметры не обеспечивают нормальной жизнедеятельности гидробионтов).
- 6.10 Пробу делят на две части для проведения биотеста на фильтрованной (пропущенной через бумажный фильтр для удаления взвешенных веществ) и нефильтрованной воде.

7 Биотест по реакции хемотаксиса парамеций

7.1 Принцип метода

Биотест по реакции хемотаксиса основан на способности зоопланктеров, в частности парамеций, перемещаться в направлении или от источника химического воздействия. Хемотаксис положителен, если движение парамеций направлено к источнику химического раздражителя (по градиенту его концентрации воде), и отрицателен, если движение направлено от источника. Влияние исследуемой воды оценивают по количеству переместившихся особей.

ОТД исследуемой воды на парамеций устанавливают за время экспозиции 2 часа.

Показателем реакции хемотаксиса служит среднее количество парамеций, переместившихся в исследуемую воду.

Критерием ОТД является положительный хемотаксис, когда средний процент исходного количества тест-объектов, переместившихся в исследуемую воду, составляет не более 25 %.

7.2 Необходимые материалы, оборудование, реактивы

- 7.2.1 Культура парамеций *Paramecium caudatum*. Описание основных характеристик вида, источники получения культуры и условий культивирования даны в приложениях Г и Д.
- 7.2.2 Микроскоп бинокулярный стереоскопический марки МБС по ГОСТ 8074-82.
 - 7.2.3 Дрожжи пекарские сухие.
- 7.2.4 Пипетки выдувные капиллярные (пастеровские, укороченные с двух сторон или глазные с оттянутым носиком) по ГОСТ 29230-91.
 - 7.2.5 Чашки Петри по ГОСТ 25336-82.

- 7.2.6 Фильтровальная бумага синяя лента.
- 7.2.7 Стаканы вместимостью 0,5-1,0 дм³ по ГОСТ 23932-90.
- 7.2.8 Вода дехлорированная водопроводная исследуемого региона.

7.3 Подготовка к биотестированию

Исходный материал для биотестирования получают за 1-3 сут до опыта. Для этого парамеций пересаживают в чистые чашки Петри с дехлорированной водопроводной водой, в которую предварительно вносят корм (один-два кусочка сухих пекарских дрожжей размером 1 мм³ на одну чашку Петри).

Биотестирование проводят при комнатной температуре без смены воды в нестерильных условиях, в защищенном от прямого солнечного света месте.

7.4 Проведение биотестирования

Общий объем воды для биотестирования одной пробы воды 50 см³. Для проведения токсикологического эксперимента в чашку Петри вносят каплю (0,1 см³) культуральной среды с парамециями. Под микроскопом марки МБС подсчитывают исходное количество парамеций. Далее в эту же чашку Петри рядом с первой каплей вносят каплю исследуемой воды. С помощью пипетки делают перемычку из капли контрольной воды в исследуемую воду. Наблюдают за скоростью перехода парамеций из исходной капли в опыт.

Используют два контроля: дехлорированную водопроводную воду исследуемого региона и воду из фонового условно чистого участка исследуемого водного объекта.

Каждую пробу воды исследуют в трех повторностях с двумя контролями, т.е. необходимо 6 чашек Петри на одну исследуемую пробу. Постановку каждого варианта проводят через 5 мин, необходимых для учета исходного количества парамеций в контрольной капле под бинокулярной лупой.

7.5 Регистрация реакции хемотаксиса

Регистрация реакции хемотаксиса основана на учете численности переместившихся парамеций в каждом варианте. Для оценки реакции хемотаксиса учитывают количество особей, переместившихся из контрольной капли воды в исследуемую пробу воды.

Учет парамеций ведут под бинокулярной лупой (увеличение 4x12,4) через 15, 30, 60, 120 мин.

7.6 Обработка результатов, расчеты и оценка токсичности воды

В таблицу Е.1 (приложение Е) заносят дату проведения биотестирования, номер пробы, номер повторности, количество парамеций, переместившихся в исследуемую воду (в каждой повторности).

Результаты биотестирования оценивают по положительному хемотаксису, т.е. количеству парамеций, переместившихся из контрольной воды в исследуемую.

В каждом варианте токсикологического эксперимента рассчитывают процент парамеций, переместившихся в исследуемую воду. Затем подсчитывают средний процент переместившихся особей на основании результатов трех параллельных определений в контроле и в опыте.

Если количество переместившихся из контрольных вариантов в исследуемую воду парамеций составляет не более 25 %, то воду оценивают как оказывающую ОТД.

Полученные результаты биотестирования заносят в таблицу Е.1 (приложение E).

7.7 Метрологическая характеристика метода

Диапазон перемещения парамеций из контрольной в исследуемую воду в случае положительного хемотаксиса составляет от 0 % до 100 % с внутрилабораторной прецизионностью 25 %.

8 Биотест по выживаемости зоопланктеров

8.1 Принцип метода

Методика основана на оценке влияния исследуемой воды, отобранной из водных объектов, на зоопланктеров. Тест-объектами могут служить лабораторные культуры парамеций, коловраток, дафний, цериодафний, а также природные популяции этих зоопланктеров, отобранные из фоновых (условно чистых) участков водного объекта. Природные популяции используют в экспедиционных условиях при ЧС. Принципы биотестирования на природных популяциях в основном те же, что и на лабораторных культурах.

В случае ЧС оценивают ОТД пробы воды по изменению показателя выживаемости тест-объектов при экспозиции в исследуемой воде. Показателем выживаемости служит среднее количество тест-бъектов, выживших в исследуемой воде за время опыта.

Критерием ОТД является снижение выживаемости тест-объектов не менее чем на 50 % в исследуемой воде по сравнению с контролем. Выживаемость в контроле при этом должна быть не менее 90 %. Наблюде-

ния за выживаемостью проводят через 15; 30; 60 мин, далее через каждый час. Продолжительность биотестирования 24 ч.

8.2 Необходимые материалы, оборудование, реактивы

- 8.2.1 Культура тест-объекта из представителей зоопланктеров (см. приложения А и Б).
- 8.2.2 Микроскоп бинокулярный стереоскопический марки МБС по ГОСТ 8074-82.
- 8.2.3 Пипетки выдувные капиллярные (пастеровские, укороченные с двух сторон или глазные с оттянутым носиком) по ГОСТ 29230-91.
 - 8.2.4 Чашки Петри по ГОСТ 25336-82.
 - 8.2.5 Стаканы вместимостью 0.5-1.0 дм³ по ГОСТ 23932-90.
 - 8.2.6 Вода дехлорированная водопроводная исследуемого региона.

8.3 Проведение биотестирования

При использовании в качестве тест-объектов парамеций, коловраток берут по капле массовых культур этих зоопланктеров и помещают в чашку Петри. Фильтровальной бумагой отбирают излишки воды, добавляют 1 см³ исследуемой воды. Под микроскопом подсчитывают исходное количество парамеций. Через 15; 30; 60 и 120 мин подсчитывают количество выживших парамеций.

При использовании в качестве тест-объектов крупного рачкового планктона (дафнии, цериодафнии, симоцефалюсы), их отсаживают по 10 экземпляров в стаканы вместимостью 0,5- 1,0 дм³ и добавляют 0,5 дм³ исследуемой воды.

При использовании в качестве тест-объектов бокоплавов их отсаживают по 10 экземпляров в чашки Петри.

В качестве контроля используют воду фонового (условно чистого) участка, на котором отловлены используемые в качестве тест-объектов виды, и дехлорированную водопроводную воду исследуемого региона. В контроле выживаемость должна быть не менее 90 %.

Все варианты опыта и контроля ставят не менее, чем в трех повторностях. Общее количество организмов в опыте должно быть не менее 30.

8.4 Регистрация показателя выживаемости и оценка токсичности воды

В качестве тест-показателя токсичности используют выживаемость тест-объектов. Количество живых зоопланктеров регистрируют через 15; 30; 60; 120 мин и через 24 ч.

ОТД исследуемой воды на зоопланктеров устанавливают при крат-ковременном биотестировании (24 ч). Критерием токсичности служит

процент от контроля выживших тест-объектов (при расчете по средним значениям всех повторностей). В случае выживаемости не более 50 % тест-объектов от контроля исследуемую воду оценивают как оказывающую ОТД.

Выживаемость в контроле должна быть не менее 90 % от исходного количества зоопланктеров. В случае значения выживаемости тестобъектов в контроле ниже 90 % токсикологический эксперимент проводят на другой популяции тест-объектов.

Результаты заносят в таблицу Е.2 (приложение Е).

9 Определение кратности разбавления воды, снимающего острое токсическое действие воды

9.1 Биотест при разбавлении воды, снимающей ОТД

В случае обнаружения ОТД необходимо выявить кратность разбавления исследуемой воды, которая снимает токсическое действие.

Кратность разбавления — 2; 10; 25; 50; 100; 500 раз. Разбавление проводят водой, отобранной из фонового створа, или отстоянной дехлорированной водопроводной водой исследуемого региона.

Биотестирование проводят согласно разделам 7 и 8.

9.2 Оценка токсичности воды на основе кратности разбавления пробы

В случае ЧС и при оперативных работах токсическое состояние оценивают на конкретный момент времени исследования. В этом случае при установлении ОТД воды находят кратность разбавления исследуемой воды, при которой токсичность не проявляется.

Оценку токсичности воды и экотоксикологического статуса водного объекта или его участка с точки зрения благополучия водной экосистемы проводят согласно шкале таблицы 1.

Таблица1 - Шкала оценки токсичности и экотоксикологического статуса водного объекта или его участка [5]

Кратность разбавления		Класс токсичности	Экотоксикологический статус
До 1:1 включ.	0	Нетоксичная	Чистая
Св. 1 : 1 до 1 : 25 включ.	1	Слабо токсичная	Олиготоксичная
"1:25 "1:50 "	2	Умеренно токсичная	Бета-мезотоксичная
"1 : 50 " 1 :100 "	3	Остро токсичная	Альфа-мезотоксичная
" 1 : 100 " 1:500 "	4	Весьма токсичная	Политоксичная
"1 : 500	5	Чрезвычайно токсичная	Гипертоксичная

Результаты биотестирования заносят в таблицу E.3 (приложение E).

10 Оценка токсичности воды методом биотестирования с использованием набора биотестов

- 10.1 Оценку токсичности исследуемой воды проводят по набору биотестов (см. 5.10). Использование набора биотестов с разными по чувствительности тест-объектами и тест-показателями увеличивает вероятность обнаружения токсичности исследуемой воды.
- 10.2 Итоговая оценка токсичности ПВС является экспертной. Окончательную оценку проводят по тест-объекту и тест-показателю, проявившему наибольшую чувствительность к воздействию исследуемой воды.
- 10.3 Токсичность воды оценивается словесно: «оказывает» или «не оказывает острое токсическое действие».

11 Требования безопасности, охраны окружающей среды

- 11.1 При выполнении работ следует соблюдать общие требования к безопасности на водных объектах и в химических лабораториях, установленные в национальных стандартах и соответствующих нормативных документах.
- 11.2 Особых требований по экологической безопасности не предъявляется.

12 Требования к квалификации оператора

К выполнению экспериментальных работ по оценке токсичности ПВС методом экспрессного биотестирования допускаются лица, имеющие биологическое, экологическое образование, знакомые с основами водной токсикологии, методами полевых и лабораторных гидробиологических исследований.

Приложение **А** (рекомендуемое)

Экологические характеристики гидробионтов, используемых в качестве тест-объектов при биотестировании

Т а б л и ц а А.1 - Наименование гидробионтов, используемых в качестве

тест-объектов, в связи с их экологическими особенностями

тест-ооъектов, в связи с их экологиче								
	Экологические характеристики							
Наименование гидробионтов	Пресноводные	Солоноватоводные	Теплолюбивые	Холодолюбивые	Олигосапробы	Мезосапробы	Ацидофилы	Алкофилльные
PROTOZOA (Простейшие):								
Paramecium caudatum	+	+	<u> </u>		<u></u>	+	<u></u>	+
Paramecium putrinum	+	+	<u></u>	L		+		
Tetrachimena pyriformis	+	+				+	+	+
Colpidium sp.	+					+		
Stylonichia mytilus	+					+		
Euplotis harpa		+	l		+			
Euplotis vannus (бентический)		Мор- ской		+				
Cristira sp. (бентический)		+		+				
Uronema marinum (бентический)		+		+	Ĺ.,			
Pavella sp. (пелагический)		+		+	+			
Balanoin sp. (пелагический)		+		+	+			
ROTATORIA (Коловратки):								
Brachionus calyciflorus	+		+				+	+
Brachionus rubens	+		+	+				+
Brachionus plicatilis	1	+	+	1			+	+
Philodina roseola	+		+				+	
Pilodina acuticornis odiosa	+		+				+	
CRUSTACEA (Ракообразные):								
Dapnia magna	+		+			+		
Moina macrocopa	+		+			+		
Bosmina longirostris	+		+	+	+			
Ceriodaphnia recticulata	+		+			+		
Artemia salina		+].			+	l	l _ 7

Окончание таблицы А.1

Окончание таблицы А.1								
	Э	колог	ичес	кие :	кара	ктер	исти	ики
Наименование гидробионтов	Пресноводные	Солоноватоводные	Теплолюбивые	Холодолюбивые	Олигосапробы	Мезосапробы	Ацидофилы	Алкофилльные
MOLLUSCA (Моллюски):								
Lymnaea stagnalis	+		+					
Anadonta sp.	+		+					
Dreissena sp.	+	+	+	+	L			
Crassostrea virginica устрицы	_	+	+	+		+		+
Ostrea irridescens устрицы	_	+	+			+		+
Mytilus gallopronvincialis мидии		+	+			+		+
Mytilus edulis мидии	1	+	+			+		+
Mya arenaria		+	+			+		+
Mytilaster sp.	_	+	+			+		+
Patella vulgata		+	+			+		+
Rapana tomassina	1	+	+	+		+		+
OLIGOCHAETA			ł		}		}	
(малощетинковые черви)	↓		L	L				
Aeolosoma hemprichi	+		+				+	
INSECTA (Насекомые):								
Chironomus plumosus	+	L	+	+				+

П р и м е ч а н и е — Знаком «+» обозначено наличие указанных экологических особенностей гидробионтов.

Приложение Б (рекомедуемое)

Гидробионты, используемые в качестве тест-объектов, и методы учета популяционных характеристик

Т а б л и ц а Б.1 - Наименование гидробионтов и методы учета популяционных характеристик

	Метод учета				
Тест-объект	Молодь	Гибель			
	(ювенильные особи)	(отмершие особи)			
PROTOZOA (Простейшие)	Микроскопирование:	Микроскопирование:			
родов Parame-	-индивидуальные	подсчет количества			
cium,Tetrachimena, Colpi-	линии	погибших особей			
dium, Stylonichia	-подсчет численно-				
	СТИ				
ROTATORIA(Коловратки)	Микроскопирование:				
Brachionus calyciflorus, B. ru-	-индивидуальные				
bens, B.plicatilis, Philodina	линии	То же			
roseola,	- подсчет молоди				
P. Acuticornis					
CRUSTACEA	Визуально:	Визуально			
(Ракообразные)	- поведение	подсчет количества			
Dapnia magna, Moina	- подсчет молоди	погибших особей			
macrocopa, Ceriodaphnia					
recticulata, Artemia salina					
OLIGOCHAETA (Малоще-	Визуально:	-			
тинковые черви)	- поведение	То же			
Aeolosoma hemprichi	- наличие кладок				
Mollusca (Моллюски)	Визуально:	n_n			
Lymnaea stagnalis, Anadonta	- количество кладок	,			
sp., p.Mytilis, p. Dreissena	- количество молоди				
Рыбы	Визуально:	11-11			
Poecilia reticulate,	количество молоди	<u></u>			
Brachydanio rerio	Duana and the				
Insecta (Насекомые)	Визуально:	"_"			
Chironomus plumosus	наличие коконов				

Приложение В (справочное)

Хемотаксис

- В.1 Хемочувствительность биоты возникла в истории жизни на Земле очень давно. С самого начала эволюции прокариоты были погружены в водную среду. Способность реагировать на химический состав среды была критичной для выживания. Хемотаксис двигательные реакции свободно передвигающихся растительных и простейших животных организмов, а также клеток (зооспор, сперматозоидов, лейкоцитов и др.) под влиянием химических раздражителей. Хемотаксис может быть положительным движение направлено к источнику химического раздражителя (по градиенту его концентрации в воздухе или воде), и отрицательным движение направлено от источника. Явление хемотаксиса известно для ряда микроорганизмов и беспозвоночных животных.
- В.2 Для возникновения хемотаксисов необходимо в среде создать градиент (неоднородность распределения) химического вещества, чтобы организм мог выбрать направление уменьшения вредного воздействия. Характеристиками таксиса служит концентрация организмов в исследуемой зоне через определенное время, которая измеряется оптическими приборами (бинокулярная лупа) (см. рисунок В. 1)

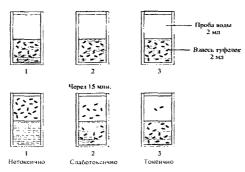


Рисунок В. 1 — Реакция хемотаксиса на примере парамеций (туфелек) [2]

Приложение Г (справочное)

Характеристика тест-объекта инфузории Paramecium caudatum

Г.1 Систематическое положение

Тип - Ciliophora, подтип - Ciliata, класс - Oligohymenophora, отряд - Hymenostomatida, подотряд - Peniculina, род - Paramecium, вид — Paramecium caudatum Ehrenberg, 1838 (в дальнейшем — парамеция).

Инфузории данного вида как тест-объект обладают рядом достоинств: высокая чувствительность к токсикантам, короткий жизненный цикл, высокая скорость размножения, сочетание признаков зукариотной клетки и организма, ярко выраженные таксисы, достаточно широкая толерантность по отношению к температуре и солености, простота содержания в лабораторных условиях.

Г.2 Местообитание

Р. caudatum — свободноживущая широко распространенная ресничная инфузория. Предпочитает альфа-мезосапробные условия, близкие к нейтральному значения рН=6,5-7,5, температурный оптимум в пределах 24-28 ^оС. Обитает в пресных водоемах.

Г.3 Морфология, биология

Парамеции – наиболее сложно организованные простейшие, очень чувствительные к изменению химического состава среды. Парамеции, представляющие собой одноклеточные организмы. Имеют сигарообразное или веретенообразно вытянутое в поперечном сечении округлое тело. Ресничный покров густой, равномерный. Сзади чуть удлиненный. Длина тела составляет 180-300 мкм [6]. Клетка парамеций содержит два типа ядер: вегетативное и генеративное. Размножаются парамеции либо поперечным делением клеток (бесполое размножение), либо половым путем, носящим характер коньюгации. Клетки делятся 1-2 раза в сутки.

Приложение Д (справочное)

Получение исходного материала и содержание парамеций в лабораторных условиях

Д.1 Получение исходного материала для культуры парамеций

Получить исходный материал для культуры парамеций можно в институтах и учреждениях, занимающихся биотестированием с использованием парамеций (в том числе в ГХИ). Обычно этот вид встречается в местных водоемах, поэтому можно самостоятельно вырастить культуру парамеций.

Выделяют парамеций из природных вод методом концентрирования [7]. Для этого из водоема отбирают пробу воды объемом 5 л. Затем путем фильтрации ее через мембранный фильтр с размером пор 3-5 мкм получают концентрированную пробу объемом 0,04 дм³. Полученный концентрат пробы сливают в стакан. Затем осадок с фильтра смывают полученным концентратом в чашки Петри. Высота слоя воды в чашке составляет 0,5-0,8 см. В чашки Петри добавляют корм – сухие пекарские дрожжи (один-два кусочка размером 1 мм³). Полученные пробы оставляют на 1-3 сут. Часто уже через сутки начинается массовое развитие разных видов микрозоопланктона. В лаборатории специалист определяет нужный вид инфузорий (парамеций) под микроскопом. Заранее подготовленные чашки Петри наполняют дехлорированной водопроводной водой и в них переносят парамеций с помощью капиллярной пипетки. Такую пипетку используют в дальнейшем при пересадке инфузорий. Начальная плотность размещения парамеций - 5-10 особей на одну чашку Петри. В течение 1-3 сут инфузорий адаптируют к лабораторным условиям и используют полученную культуру как исходную.

Д.2 Содержание культуры, кормление

Культуру инфузорий выращивают в климатостате, боксе или в любом помещении. не содержащих токсических паров или газов. Оптимальная температура для культивирования и биотестирования 22±2 °C. Дополнительного освещения не требуется. Не допускается освещать парамеций прямыми солнечными лучами. Стеклянную посуду для содержания инфузорий моют водопроводной водой, нельзя использовать для мытья синтетические моющие средства и органические растворители. В помещении, в котором находится культура парамеций, не хранят летучие вещества и не работают с ними.

Для культивирования парамеций используют водопроводную дехлорированную воду или природную воду из незагрязненного водоема. Вода для культивирования должна удовлетворять следующим требованиям: pH=6,5-7,5, жесткость общая 3-4 ммоль/л. концентрация растворенного кислорода не менее 6,0 мг/л.

Оптимальная плотность культуры 10-20 особей на 1 см³ воды. Один раз в 7-10 сут культуру пересевают. Чтобы обеспечить стандартные условия культивирования, поддерживающие культуру парамеций в стационарной фазе роста.

В качестве корма для парамеций используют сухие пекарских дрожжей. Для содержания парамеций в одной чашке Петри достаточно 1-2 кусочков сухих пекарских дрожжей размером 1мм³.

Д.3 Транспортировка культуры

Культуру парамеций транспортируют в пробирках, не допуская перегрева и переохлаждения. Хранить ее без пересева можно в холодильнике при температуре 8-10 ^оС в течение 2-3 нед. Период акклимации к лабораторным условиям составляет 24 ч.

Приложение Е (обязательное)

Формы представления результатов биотестирования

E.1 Форма результатов биотестирования исследуемой воды по реакции хемотаксиса Paramecium caudatum

Т а б л и ц а Е.1 — Результаты биотестирования исследуемой воды по реакции хемотаксиса Paramecium caudatum на территории деятельности ______УГМС

Наиме	енование		Дата			
Водного объекта	Лункта наблюдений	Отбор а пробы	Проведения биотестиро- вания	Номер пробы	Положительный хемотаксис, %	Оценка токсичности воды
1	2	3	4	5	6	7
			nado Zaum			

Примечание - В графе 7 пишут: «Оказывает острое токсическое действие» или «Не оказывает острое токсическое действие».

Е.2 Форма результатов биотестирования исследуемой воды по показателю выживаемости зоопланктеров

Таблиц	а Е.2 – Результать	ы биотестирования	иссле	едуемой	воді	ы по
показателю	выживаемости		на	террито	рии	дея-
тельности _	УГМС	вид зоопланктера				

Наиме	нование		Дата			
Водного объекта	Пункта наблюдений	Отбора пробы	Проведения биотестирования	Номер пробы	Выживаемость, % от контроля	Оценка токсичности воды
1	2	3	4	5	6	7

Примечания

¹ В наименовании таблицы указывают вид использованного в качестве тестобъекта зоопланктера (парамеции, коловратки, дафнии, симоцефалюсы и т.д.).

² В графе 7 пишут: «Оказывает острое токсическое действие» или «Не оказывает острое токсическое действие».

Е.З Форма результатов биотестирования по кратности разбавления исследуемой воды, снимающей острое токсическое действие

Наимен	ование	Да	та				
Водного объекта	Пункта наблюдений	Отбора пробы	Проведения биотестирования	Номер пробы	Кратность разбавления	Положительный хемотаксис, %	Оценка токсичности воды
1	2	3	4	5	6	7	8
	мечані	10. B ma	cho 9 zugun		2, 19207 00		ческое лейст-

Примечание - В графе 8 пишут: «Оказывает острое токсическое действие» или «Не оказывает острое токсическое действие».

Приложение Ж (справочное)

Библиография

- [1] Константинов А.С. Общая гидробиология. М.: Высшая школа, 1986. 470 с.
- [2] Методика определения токсичности почвы и донных осадков по хемотаксической реакции инфузорий. М., 1998. 22 с.
- [3] Федеральный закон РФ "О защите населения и территорий от чрезвычайных ситуациях природного и техногенного характера" от 21.12.94 № 68-ФЗ.
- [4] Правила охраны поверхностных вод (типовые положения). М.: Госкосмприрода СССР, 1991
- [5] Брагинский Л.П. Некоторые принципы классификации пресноводных экосистем по уровням токсической загрязненности // Гидробиологический журнал. 1985. № 6, Т. 21. С. 65-74.
- [6] Банина Н.Н. Тип Инфузории //Фауна аэротенков. Атлас. Л.: Наука. Ленингр., 1984. С.136-186.
- [7] Бакаева Е.Н., Никаноров А.М. Гидробионты в оценке качества вод. М.: Наука, 2006. 238 с.

Лист регистрации изменений

Номер изменения	Н	Іомер ли	ста (стран	ицы)	Номер документа (ОРН)		Дата			
	изме- нен- ного	заме- нен- ного	нового	анну- лирован- ного		Подпись	внесения изменений	введения изменений		
· ·		·-	-							
						}				
								1		
				ļ 						
	}			}		 				
] 						
						<u> </u>				
				! 						
]						

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины, определения и обозначения	2
4 Общие положения	4
5 Основные принципы биотестирования поверхностных вод суши	
в условиях ЧС	5
6 Отбор, хранение и подготовка проб поверхностных вод суши	
для биотестирования	7
7 Биотест по реакции хемотаксиса парамеций	8
7.1 Принцип метода	8
7.2 Необходимые материалы, оборудование, реактивы	8
7.3 Подготовка к биотестированию	9
7.4 Проведение биотестирования	9
7.5 Регистрация реакции хемотаксиса	9
7.6 Обработка результатов, расчеты и оценка токсичности воды	10
7.7 Метрологическая характеристика метода	10
8 Биотест по выживаемости зоопланктеров	10
8.1 Принцип метода	10
8.2 Необходимые материалы, оборудование, реактивы	11
8.3 Проведение биотестирования	11
8.4 Регистрация показателя выживаемости и оценка	
токсичности воды	11
9 Определение кратности разбавления воды, снимающего острое	
токсическое действие воды	12
9.1 Биотест при разбавлении воды, снимающей ОТД	
9.2 Оценка токсичности воды на основе кратности разбавления	
пробы	12
10 Оценка токсичности воды методом биотестирования с	
использованием набора биотестов	
11 Требования безопасности, охраны окружающей среды	13
12 Требования к квалификации оператора	13
Приложение А (рекомендуемое) Экологические характеристики	
гидробионтов, используемых в качестве тест-объектов	
биотестировании	
Приложение Б (рекомедуемое) Гидробионты, используемые в качес	тве
тест-объектов, и методы учета популяционных	
характеристик	16
Приложение В (справочное) Хемотаксис	17
Приложение [(справочное) Характеристика тест-объекта инфузори	1И
Paramecium caudatum	18
Приложение Д (справочное) Получение исходного материала и	
содержание парамеций в лабораторных условиях	19

Приложение Е (обязательное) Формы представления результатов	
биотестирования	21
Приложение Ж (справочное) Библиография	24