МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **ΓΟCT EN**12090—
2011

ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ, ПРИМЕНЯЕМЫЕ В СТРОИТЕЛЬСТВЕ

Метод определения характеристик сдвига

(EN 12090:1997, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и МСН 1.01–01—2009 «Система межгосударственных нормативных документов в строительстве. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Некоммерческим партнерством «Производители современной минеральной изоляции «Росизол» на основе аутентичного перевода на русский язык европейского регионального стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (дополнение № 1 к приложению Д протокола № 38 от 18 марта 2011 г.)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ISO 3166) 004—97	Код страны по МК (ISO 3166) 004—97	Сокращенное наименование национального органа государственного управления строительством	
Азербайджан	AZ	Госстрой	
Армения	AM	Министерство градостроительства	
Казахстан	KZ	Агентство по делам строительства и жилищно-коммунального хозяйства	
Киргизия	KG	Госстрой	
Молдова	MD	Министерство строительства и регионального развития Департамент регулирования градостроительной дея- тельности Министерства регионального развития Министерство регионального развития строительства и жилищно-коммунального хозяйства	
Российская Федерация	RU		
Украина	UA		

4 Настоящий стандарт идентичен европейскому региональному стандарту EN 12090:1997 Thermal insulating products for building applications — Determination of shear behaviour (Теплоизоляционные изделия, применяемые в строительстве. Определение характеристик сдвига).

Наименование настоящего стандарта изменено относительно наименования европейского регионального стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

Перевод с английского языка (en).

Сведения о соответствии межгосударственных стандартов ссылочным европейским региональным стандартам приведены в дополнительном приложении ДА.

Степень соответствия — идентичная (IDT)

- 5 Приказом Федерального агентства по техническому регулированию и метрологии от 17 апреля 2012 г. № 49-ст межгосударственный стандарт ГОСТ EN 12090—2011 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2012 г.
 - 6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему публикуется в указателе «Национальные стандарты».

Информация об изменениях к настоящему стандарту публикуется в указателе (каталоге) «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

© Стандартинформ, 2012

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ΓΟCT EN 12090—2011

Содержание

1	Область применения						
2	Нормативные ссылки						
3	Термины и определения						
4	Сущность метода						
5	Средства испытаний						
6	Образцы для испытаний						
7	Методика проведения испытаний						
8	Обработка результатов испытаний						
9	Точность метода						
10	Э Отчет об испытаниях						
П	Приложение ДА (справочное) Сведения о соответствии межгосударственных стандартов						
	ссылочным европейским региональным стандартам						

ΓΟCT EN 12090—2011

Введение

Настоящий стандарт применяют, если заключенные контракты или другие согласованные условия предусматривают применение теплоизоляционных материалов с характеристиками, гармонизированными с требованиями европейских региональных стандартов, а также в случаях, когда это технически и экономически целесообразно.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ, ПРИМЕНЯЕМЫЕ В СТРОИТЕЛЬСТВЕ

Метод определения характеристик сдвига

Thermal insulating products in building applications. Method for determination of shear behaviour

Дата введения — 2012—09—01

1 Область применения

Настоящий стандарт распространяется на теплоизоляционные изделия (далее — изделия), применяемые в строительстве, и устанавливает требования к средствам испытания и методике определения характеристик сдвига.

Примечание — Метод, приведенный в настоящем стандарте, не предусматривает определение характеристик чистого сдвига, а основан на измерении двух параллельных и противоположно направленных сил, действующих на лицевые грани испытуемого образца. Данное испытание называют «испытанием на сдвиг» условно. Считают, что действие силы перпендикулярно к лицевой грани образца более близко характеризует напряжение, возникающее в теплоизоляционных изделиях в зданиях, например, в стенах, по сравнению с другими методами измерения характеристик сдвига, возникающего, например, при испытании на изгиб.

2 Нормативные ссылки

В настоящем стандарте использована ссылка на следующий европейский региональный стандарт: EN 12085:1997 Thermal insulating products for building applications — Determination of linear dimensions of test specimens (Теплоизоляционные изделия, применяемые в строительстве. Определение линейных размеров образцов для испытаний)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 прочность при сдвиге (shear strength) τ : Отношение максимальной силы, приложенной к образцу, вызывающей его разрушение вдоль грани, параллельной направлению прилагаемой силы, к площади этой грани.
- 3.2 **модуль сдвига** (shear modulus) **G**: Отношение напряжения сдвига к соответствующей деформации ниже точки, где эта зависимость является линейной (см. рисунок 3).

4 Сущность метода

Образец подвергают воздействию напряжения сдвига, передаваемого образцу через жесткие опоры, к которым он прикреплен. По результатам испытания строят кривую зависимости смещения от силы.

П р и м е ч а н и е — Испытания с использованием устройства с одним образцом показали, что полученные значения прочности при сдвиге зависят от толщины образцов и имеют наибольший разброс при более высоких значениях толщины. Испытания с использованием устройства с двумя образцами также показали зависимость прочности при сдвиге от толщины образцов.

5 Средства испытаний

5.1 Испытательная машина

5.1.1 Общие положения

Испытательная машина, создающая силу, необходимую для максимального сдвига образца, возникающего при его испытании. Машина должна иметь постоянную скорость движения подвижного захва-

FOCT EN 12090-2011

та $(3\pm0,5)$ мм/мин в направлении, параллельном продольной оси устройства, в котором находится образец.

Испытательная машина должна обеспечивать создание силы F и смещение γ подвижного захвата относительно неподвижного с максимальной погрешностью 1 %. При необходимости определения модуля сдвига регистрируют одновременно силу F и смещение γ для построения кривой зависимости γ от F в соответствии с разделом 7.

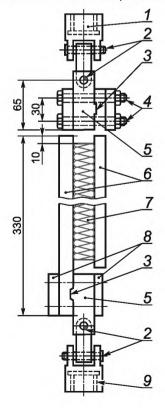
Примечания

- 1 Если необходимо, применяют датчик для точного измерения деформации в случае использования при подготовке образцов толстого слоя клеящего вещества.
- 2 Нулевой сдвиг образца определяют, вычитая из значения смещения γ значение смещения, вызванного воздействием оборудования и слоя клеящего вещества, измеренного при отсутствии образца, заменив в контрольном испытании испытуемый образец металлическим блоком.

5.1.2 Устройство с одним образцом

Испытательная машина должна создавать продольные силы сдвига, действующие на образец через параллельные пластины (держатели), приклеенные к образцу размерами, указанными в 6.1.2. Пластины должны быть жесткими; при испытании одну пластину крепят к неподвижной части, другую — к подвижной части испытательной машины.

5.1.3 Устройство с двумя образцами


Испытательная машина должна создавать продольные силы сдвига, действующие через параллельные пластины (держатели), приклеенные к двум образцам размерами, указанными в 6.1.3. Пластины должны быть жесткими; при испытании наружные пластины крепят к неподвижной части, центральную пластину — к подвижной части испытательной машины.

5.2 Держатели для образцов

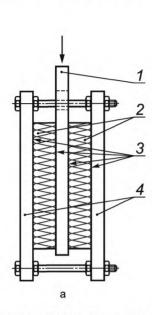
5.2.1 Устройство с одним образцом

Два плоских жестких держателя длиной 330 и шириной 50 мм крепят к захватам испытательной машины с помощью адаптера и универсального соединения. Схема крепления держателей к захватам испытательной машины показана на рисунке 1. Толщина адаптеров, соединяющих держатели с захватами испытательной машины, должна быть равна толщине образца.

П р и м е ч а н и е — В качестве держателей применяют плоские прямоугольные пластины толщиной 16 мм, изготовленные из мягкой сортовой стали.

1 — неподвижный захват испытательной машины;
 2 — соединительные шипы универсального соединения;
 3 — гребень и паз;
 4 — крепление из гаек и болтов;
 5 — адаптер;
 6 — держатели для образца (длина 330, ширина 50, толщина 16 мм);
 7 — образец (длина 250, ширина 50 мм);
 8 — пластины распределения нагрузки;
 9 — подвижный захват испытательной машины

Рисунок 1 — Схема устройства с одним образцом


5.2.2 Устройство с двумя образцами

В устройстве с двумя образцами применяют три плоских жестких держателя, два из которых расположены параллельно и вертикально по отношению друг к другу.

Схемы применяемых устройств показаны на рисунке 2.

П р и м е ч а н и е — При испытании некоторых видов изделий в устройствах с одним или двумя образцами держатели для образцов должны быть очень жесткими.

В устройстве с двумя образцами неподвижные держатели должны находиться в вертикальных и параллельных плоскостях. Для данного испытания могут применяться оба устройства, показанные на рисунке 2.

2 3 4 5

1 — нагружающая пластина (длина 300, ширина 100, толщина 16 мм); 2 — образцы (длина 200, ширина 100 мм); 3 — клеящее вещество; 4 — металлические держатели для образцов (длина 300, ширина 100, толщина 16 мм)

нагружающая пластина;
 образцы (длина 200, ширина 100 мм);
 нагружающая пластина;
 неталлические опоры;
 держатели из фанеры для образцов

Рисунок 2 — Схемы устройств с двумя образцами

5.3 Клеящее вещество

Клеящее вещество, применяемое для закрепления испытуемого образца, должно быть таким, чтобы прочность при сдвиге и модуль сдвига клеящей пленки превышали прочность при сдвиге и модуль сдвига образца, когда разрушается образец, а не клеящее вещество.

П р и м е ч а н и е — Сведения о клеящих веществах и их применении могут быть приведены в стандарте или технических условиях на изделие конкретного вида.

6 Образцы для испытаний

6.1 Размеры образцов

6.1.1 Общие положения

Толщина образцов для испытания должна быть равна толщине изделия, из которого вырезаны эти образцы. Любые поверхностные слои, облицовки и/или покрытия должны быть сохранены.

Размеры образцов определяют в соответствии с EN 12085. Отклонение от параллельности и плос-костности двух основных граней образца не должны превышать 0,5 % толщины образца и быть не более 0,5 мм.

6.1.2 Испытание с одним образцом

Образец должен иметь прямоугольную форму и следующие размеры:

- длину 250₋₅ мм;
- ширину 50₋₅ мм.

FOCT EN 12090-2011

Толщина образца должна быть равна толщине изделия, из которого вырезан этот образец (но не более 50 мм).

6.1.3 Испытание с двумя образцами

Каждый образец должен иметь прямоугольную форму и иметь следующие размеры:

- длину 200₋₅ мм;
- ширину 100⁰₋₅ мм.

Толщина каждого образца должна быть равна толщине изделия, из которого вырезаны эти образцы.

6.2 Число образцов

Число образцов указывают в стандарте или технических условиях на изделие конкретного вида. При отсутствии стандарта или технических условий на изделие число образцов должно быть не менее пяти.

П р и м е ч а н и е — При отсутствии стандарта или технических условий на изделие число образцов может быть согласовано между заинтересованными сторонами.

6.3 Подготовка образцов к испытанию

При подготовке к испытанию образцы должны сохранить структуру изделия, из которого их вырезают. Метод отбора образцов приводят в стандарте или технических условиях на изделие или согласовывают между заинтересованными сторонами.

6.4 Условия кондиционирования образцов

Образцы перед испытанием выдерживают не менее 6 ч при температуре (23 ± 5) °C. В случае разногласий образцы выдерживают при температуре (23 ± 2) °C и относительной влажности воздуха (50 ± 5) % в течение времени, указанного в стандарте или технических условиях на изделие, но не менее 6 ч.

7 Методика проведения испытаний

7.1 Условия испытаний

Испытания проводят при температуре (23 \pm 5) °C. В случае разногласий испытания проводят при температуре (23 \pm 2) °C и относительной влажности воздуха (50 \pm 5) %.

7.2 Проведение испытаний

Измеряют длину, ширину и толщину образца в соответствии с EN 12085.

Образец приклеивают к жестким держателям при помощи клеящего вещества.

Расстояние между двумя основными гранями образца не должно отличаться более чем на 1 %. Устройство с образцом (образцами) прикрепляют к испытательной машине. Сила, прикладываемая к подвижному держателю, должна создавать движение в вертикальном направлении со скоростью (3 ± 0.5) мм/мин. Строят кривую зависимости сдвига γ от силы F.

Результаты испытания, при котором разрушился слой клеящего вещества между образцом и жесткими держателями, не учитывают и проводят новое испытание.

8 Обработка результатов испытаний

8.1 Общие положения

За результат испытаний принимают среднеарифметическое значение результатов отдельных испытаний, выраженное двумя значащими цифрами.

Результаты испытаний не допускается экстраполировать для изделий другой толщины.

П р и м е ч а н и е — Сравнение результатов испытаний с одним или двумя образцами проводят только для образцов одинаковой толщины.

8.2 Прочность при сдвиге

Прочность при сдвиге т, кПа, вычисляют по формуле

$$\tau = \frac{F_m}{A},\tag{1}$$

где $A = l \cdot b$ для одного образца, м²;

 $A = 2l \cdot b$ для двух образцов, м²;

l — первоначальная длина образца, м;

b — первоначальная ширина образца, м;

 F_m — максимальная сила, прилагаемая к образцу, кН.

8.3 Модуль сдвига

Если необходимо, то вычисляют модуль сдвига G, к Π а, по формуле

$$G = \frac{d \operatorname{tg} \alpha}{A},\tag{2}$$

где $A = l \cdot b$ для одного образца, м²;

 $A = 2l \cdot b$ для двух образцов, м²:

l — первоначальная ширина образца, м:

d — толщина образца, м;

b — см. 8.2;

tq a — тангенс угла наклона (при его наличии) прямолинейной части кривой зависимости сдвига от силы, кН/м (см. рисунок 3).

$$tg \alpha = \frac{F_e}{\gamma_e}, \tag{3}$$

где F_e — сила, соответствующая смещению γ_e (предел пропорциональности); γ_e — сдвиг в упругой зоне (хорошо выраженная прямолинейная часть кривой зависимости смещения от силы).

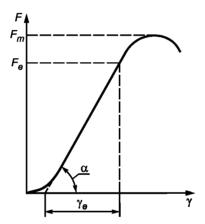


Рисунок 3 — Кривая зависимости сдвига от силы

9 Точность метода

П р и м е ч а н и е — Настоящий стандарт не содержит данных о точности метода, однако при последующем его пересмотре такие данные будут в него включены.

10 Отчет об испытаниях

Отчет об испытаниях должен содержать:

- а) ссылку на настоящий стандарт;
- b) идентификацию изделия:
 - 1) наименование изделия, предприятия-изготовителя или поставщика,
 - 2) код маркировки изделия,
 - 3) вид изделия,
 - 4) вид упаковки,
 - 5) форму поставки изделия в лабораторию,
 - 6) наличие облицовки или покрытия,
 - 7) другую информацию, например, номинальную толщину, номинальную плотность;
- с) методику проведения испытания:
- 1) подготовку к испытанию и порядок отбора проб, например, кто и в каком месте проводил отбор проб,
 - 2) условия кондиционирования,

FOCT EN 12090-2011

- 3) любые отклонения от условий, указанных в разделах 6 и 7,
- 4) дату проведения испытания,
- 5) размеры и число образцов для испытания,
- 6) общую информацию об испытании, включая ссылку на применяемый метод (устройство с одним образцом или устройство с двумя образцами),
 - 7) обстоятельства, которые могли бы повлиять на результаты испытания.

П р и м е ч а н и е — Сведения об оборудовании и о лаборанте, проводившем испытание, должны находиться в лаборатории, однако в отчете их не указывают;

d) результаты: результаты отдельных испытаний и среднеарифметическое значение прочности при сдвиге и, если требуется, модуль сдвига.

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным европейским региональным стандартам

Таблица ДА.1

Обозначение и наименование ссылочного европейского регионального стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
EN 12085:1997 Теплоизоляционные изделия, применяемые в строительстве. Определение линейных размеров образцов для испытаний	IDT	ГОСТ EN 12085—2011 Изделия теплоизоляционные, применяемые в строительстве. Методы измерения линейных размеров образцов, предназначенных для испытаний

 Π р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT — идентичные стандарты.

УДК 662.998.3:006.354

MKC 91.100.60

IDT

Ключевые слова: теплоизоляция, теплоизоляционные изделия, испытания на сдвиг, сопротивление сдвигу, образец для испытания, условия испытания, методика испытаний, вычисление

Редактор В.Н. Копысов
Технический редактор Н.С. Гришанова
Корректор И.А. Королева
Компьютерная верстка Л.А. Круговой

Сдано в набор 21.09.2012. Подписано в печать 22.10.2012. Формат $60\times84\frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 0,85. Тираж 121 экз. Зак. 906.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.