4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания по определению концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения

Сборник методических указаний МУК 4.1.646-4.1.660-96

Издание официальное

Минздрав России Москва 1997

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания по определению концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения

Сборник методических указаний МУК 4.1.646—4.1.660—96

М54 Методические указания по определению концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения: Сборник методических указаний.—М.: Информационно-издательский центр Минздрава России, 1997.—112 с.

ISBN 5--7508--0080--6

- 1. Подготовлены творческим коллективом специалистов в составе: Малышева А. Г. (руководитель), Зиновьева Н. П., Суворова Ю. Б., Растянников Е. Г., Топорова И. Н., Евстигнеева М. А., при участии Кучеренко А. И. (Госкомсанэпиднадзор России).
- Утверждены и введены в действие Первым заместителем Председателя Госкомсанэпиднадзора России – заместителем Главного государственного санитарного врача Российской Федерации С. В. Семеновым 31 октября 1996 года.
 - 3. Введены впервые.

ББК 51.21я8

Редакторы Максакова Е. И., Карнаухова А. А. Технический редактор Ломанова Е. В.

Подписано в печать 12.05.97.

Формат 60х88/16

Тираж 5000 экз.

Печ. л. 7,0 Заказ 6712

ЛР № 020877 от 20.05.94 г. Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати Информационно-издательским центром Минздрава России 125167, Москва, проезд Аэропорта, 11. Отдел реализации, тел. 198-61-01

Отпечатано с готового оригинал-макета в филиале Государственного ордена Октябрьской Революции, ордена Трудового Красного Знамени Московского предприятия "Первая Образцовая типография" Комитета Российской Федерации по печати.

113114, Москва, Шлюзовая наб., 10

© Информационно-издательский центр Минздрава России

Содержание

Область применения	. <i>.</i> 4
Методические указания по газохроматографическому определению	
галогенсодержащих веществ в воде: МУК 4.1.646—96	6
Методические указания по газохроматографическому определению	
фенола в воде: МУК 4.1.647—96	13
Методические указания по газохроматографическому определению	
анилина и о-толуидина в воде: МУК 4.1.648—96	22
Методические указания по хромато-масс-спектрометрическому	
определению летучих органических веществ в воде: МУК 4.1.649—96	29
Методические указания по газохроматографическому определению	
ацетона, метанола, бензола, толуола, этилбензола, пентана, о-, м-,	
п-ксилола, гексана, октана и декана в воде: МУК 4.1.650—96	39
Методические указания по газохроматографическому определению	
толуола в воде: МУК 4.1.651—96	47
Методические указания по газохроматографическому определению	
этилбензола в воде: МУК 4.1.652—96	53
Методические указания по реакционно-хроматографическому	
определению формальдегида в воде: МУК 4.1.653—96	59
Методические указания по газохроматографическому определению	
бутаналя, бутанола, изобутанола, 2-этилгексаналя, 2-этилгексеналя	
и 2-этилгексанола в воде: МУК 4.1.654—96	66
Методические указания по газохроматографическому определению	
диметилового эфира в воде: МУК 4.1.655—96	75
Методические указания по газохроматографическому определению	
метилакрилата и метилметакрилата в воде: МУК 4.1.656—96	81
Методические указания по газохроматографическому определению	
бутилакрилата и бутилметакрилата в воде: МУК 4.1.657—96	89
Методические указания по газохроматографическому определению	
акрилонитрила в воде: МУК 4.1.658—96	97
Методические указания по газохроматографическому определению	
динила в воде: МУК 4.1.659—96	103
Методические указания по газохроматографическому определению	
пириципбензопа в роле: MVK 4 1 66096	108

УТВЕРЖДАЮ

Первый заместитель Председателя Госкомсанэпиднадзора России заместитель Главного государственного санитарного врача Российской Федерации С.В.Семенов

31 октября 1996 г. МУК 4.1.646—4.1.660—96 Дата введения ~ с момента утверждения

Область применения

Методические указания по определению концентраций химических веществ в воде предназначены для использования органами государсвенного санитарно-эпидемиологического надзора при осуществлении государственного контроля за соблюдением требований к качеству воды централизованного хозяйственно-питьевого водоснабжения, водохозяйственными организациями, производственными лабораториями предприятий, контролирующими состояние водных объектов, а также научно-исседовательскими институтами, работающими в области гигиены водных объектов.

Включенные в сборник методические указания разработаны в соответствии с требованиями ГОСТа 8.010—90 "Методики выполнения измереий", ГОСТа 17.0.0.02—79 "Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных вод и почвы. Основные положения". В сборнике приведены методики по измерению концентраций 40 химических веществ.

Методики выполнены с использованием современных физико-химичесих методов исследования газовой хроматографии с различного вида детектированием, метрологически аттестованы и дают возможность контолировать содержание химических веществ на уровне и меньше их предельно допустимых концентраций в воде, установленных в СанПиН 2.1.4.559—96 "Питьевая вода. Гигиенические требования к качеству

Издание официальное

Настоящие методические указания не могут быть полностью или частично воспроизведены, тиражированы и распространены без разрешения Департамента госсанэпиднадзора Минэдрава России.

воды централизованных систем питьевого водоснабжения. Контроль качества", а для веществ не включенных в перечень нового документа – в действующих "Санитарных правилах и нормах охраны поверхностых вод от загрязнения".

Методические указания одобрены и приняты на совместном заседании группы Главного эксперта Комиссии по санитарно-гитиеническому нормированию "Лабораторно-инструментальное дело и метрологическое обеспечение" Госкомсанэпиднадзора России и бюро секции по физико-хиическим методам исследования объектов окружающей среды Проблемной комиссии "Научные основы экологии человека и гигиены окружающей среды".

УТВЕРЖДЕНО

Первым заместителем Председателя Госкомсанэпиднадзора России — заместителем Главного государственного санитарного врача Российской Федерации 31 октября 1996 г. МУК 4.1.647—96 Лата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания по газохроматографическому определению фенола в воде

Настоящие методические указания устанавливают количественный газохроматографический анализ воды централизованного хозяйственнопитьевого водоснабжения для определения в ней содержания фенола в диапазоне концентраций 0,0005–0,1 мг/дм³.

С₆Н₅ОН мол. масса 94,11

Фенол — бесцветное кристаллическое вещество со специфическим запахом, температура плавления — 42 °C, температура кипения — 182 °C. В 100 дм 3 воды при 15 °C растворяется 8,2 г фенола. Хорошо растворим в хлороформе, эфире, маслах и других органических растворителях.

Фенол является нервным ядом, обладает сильным раздражающим и прижигающим действием. Предельно допустимая концентрация в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования 0.001 мг/л. Относится к 4-му классу опасности.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей \pm 20,7 %, при доверительной вероятности 0,95.

Издание официальное

Настоящие методические указания не могут быть полностью или частично воспроизведены, тиражированы и распространены без разрешения Департамента госсанэпиднадзора Минздрава России.

2. Метод измерений

Измерения содержаний фенола выполняют методом газовой хроматографии. Методика основана на извлечении фенола из воды с помо щью-газовой экстракции, концентрировании в ловушке с адсорбентом иэкстракции диэтиловым эфиром с последующим анализом на хроматографе с пламенно-ионизационным детектором.

Нижний предел измерения в объеме пробы 0,001 мкг. Определению не мещают крезолы и хлорфенолы.

3. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

3.1. Средства измерений

лроматограф газовыя с пламенно-	
ионизационным детектором	
Барометр-анероид М-67	ТУ 2504—1797—75
Весы аналитические ВЛА-200	ГОСТ 24104—80E
Линейка измерительная	ΓΟCT 17435—72
Лупа измерительная	ΓΟCT 8309—75
Меры массы	ГОСТ 7328—82E
Микрошприц МШ-10М	ΓΟCT 8043—75
Посуда стеклянная лабораторная	ГОСТ 1770—74E,
	20292—80, 25336—82
Секундомер СДС, пр. 1—2—000	ГОСТ 5072—79
Термометр лабораторный	
шкальный ТЛ-2, пределы 0—55 °C,	
цена деления 1 °C	ΓΟCT 215—73E

Упоматограф газовый с пламенно-

3.2. Вспомогательные устройства

кънкцов кнъс	
Дистиллятор	ТУ 61—1—721—79
Колба Вюрца (схема перегонки, рис. 1)	
Микрокомпрессор РК—1	ТУ 25—056—926—77
Насос вакуумный водоструйный	ГОСТ 10696—75

Редуктор водородный	ТУ 26—05—463—76
Редуктор кислородный	ТУ 26—05—235—70
Сорбционные трубки из	
молибденового стекла длиной 10 см	
и внутренним диаметром 3 мм	
Сосуд для газовой экстракции	
(колба Эрленмейера) ёмкостью 0,5 л	
Хроматографическая колонка из	
нержавеющей стали длиной 3 м и	
внутренним диаметром 3 мм	
Чашки фарфоровые	ΓΟCT 9147—73
Электроплитка	Γ O CT 14919—83

3.3. Материалы

ГОСТ 9293—74
ΓΟCT 11882—73
ΓΟCT 302289
ΓΟCT 1017674

3.4. Реактивы

Ацетон, ч. д. а.	ГОСТ 2603—79
Вода дистиллированная	Γ O CT 6709—77
н-Гексан, х. ч.	ТУ 6-09-3375-78
Диэтиловый эфир, фармакопейный	
Карбовакс-20М на хроматоне	
NAW-DMCS, зернением	
0,10,125 мм (Чехия)	
Кислота серная, пл. 1,84 г/см ³ , х. ч.	ГОСТ 3188—77
Силохром С-80, фракция 0,5-0,35 мм	
Натрия сульфит, ч. д. а.	ΓΟCT 195—77
Фенол, ч. д. а.	ГОСТ 6417—72

4. Требования безопасности

4.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламе-

няющимися веществами по ГОСТу 12.1.005—88.

4.2. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019—79 и инструкцию по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженера-химика, с опытом работы на газовом хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- 6.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150—69 при температуре воздуха (20 ± 10) °C, атмосферном давлении 630—800 мм рт. ст. и влажности воздуха не более 80 %.
- 6.2. Выполнение измерений на газовом хроматографе проводят в условиях, рекомендуемых технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовка хроматографической колонки и сорбционной трубки, установление градуировочной характеристики, отбор проб.

7.1. Приготовление растворов

Исходный раствор фенола для градуировки (с = 1,0 мг/см³). 100 мг фенола вносят в мерную колбу вместимостью 100 см³, доводят уровень дистиллированной водой до метки и тщательно перемешивают. Срок хранения раствора – 30 дней в холодильнике.

Рабочий раствор фенола (c = 0.001 мг/см^3). 1.0 см^3 исходного раствора вносят в колбу вместимостью 1000 см^3 , доводят уровень раствора до метки дистиллированной водой и перемешивают. Срок хранения рабочего раствора -7 дней в холодильнике.

Кислота серная. Раствор в воде в соотношении 1:3.

Фенол свежеперегнанный. Перегонку проводят согласно схеме на рис. 1.

7.2. Подготовка хроматографической колонки и сорбционной трубки

Хроматографическую колонку и сорбционную трубку перед заполнением насадками промывают дистиллированной водой, ацетоном, гексаном и высушивают в токе азота (расход 50 см 3 /мин) при температуре 80-100 °C.

Заполнение хроматографической колонки насадкой проводят под вакуумом. Концы колонки закрывают тампонами из обезжиренного стекловолокна, устанавливают ее в термостате хроматографа, не подключая к детектору, и кондиционируют в токе газа-носителя (азота) с расходом 100 см³/мин в течение 12 часов при температуре 200 °C. После охлаждения колонку подключают к детектору, записывают нулевую линию в рабочем режиме. При отсутствии дрейфа нулевой линии колонка готова к работе.

Аналогичным образом кондиционируют сорбционные трубки. Концы каждой трубки, содержащей 0,1 г силохрома C-80, закрывают тампонами из обезжиренного стекловолокна и кондиционируют при температуре $300\,^{\circ}\mathrm{C}$ в течение 2 ч. До начала измерений сорбционные трубки закрывают стеклянными заглушками и хранят в эксикаторе.

7.3. Установление градуировочной характеристики

Градуировочную характеристику устанавливают методом абсолютной градуировки на градуировочных растворах фенола. Она выражает зависимость площади пика на хроматограмме ($\mathsf{мм}^2$) от массы фенола ($\mathsf{мкr}$) и строится по 5-ти сериям растворов для градуировки.

Каждую серию, состоящую из 6-ти градуировочных растворов, готовят в стеклянных сосудах для газовой экстракции вместимостью $500\,$ см 3 с силиконовыми пробками. Для этого в каждую колбу вносят рабочий раствор для градуировки в соответствии с табл. 1. 0,5 см 3 раствора серной кислоты, доводят объем дистиллированной водой до $250\,$ см 3 , закрывают сосуд силиконовой пробкой и тщательно перемешивают.

 Таблица 1

 Растворы для установления градунровочной характеристики при определении концентрации фенола

Номер раствора	1	2	3	4	5	6
Объем рабочего р-ра (c = 0,001 мг/см ³), см ³	0	0,1	0,25	1,0	10,0	25,0
Содержание фенола, мкг	0	0,1	0,25	1,0	10,0	25,0

После заполнения сосуда его помещают в водяную баню с температурой воды $50\,^{\circ}$ С, присоединяют сорбционную трубку и микрокомпрессор (рис. 2) и через 1—2 мин начинают с помощью микрокомпрессора барботировать воздух через раствор в сосуде (расход $300\,^{\circ}$ см³/мин), продолжая эту продувку в течение $1\,^{\circ}$ ч.

По окончании продувки (газовой экстракции) силохром высыпают из сорбционной трубки в пенициллиновый флакон емкостью $10-15 \,\mathrm{cm}^3$, приливают $1 \,\mathrm{cm}^3$ диэтилового эфира и закрывают флакон корковой пробкой, выдерживая его содержимое в течение $15 \,\mathrm{mun}$ при периодическом встряхивании флакона. Декантируют эфир и промывают силохром $0.5 \,\mathrm{cm}^3$ эфира. Объединенные эфирные экстракты вносят в конусообразную пробирку вместимостью $10 \,\mathrm{cm}^3$, упаривают экстракт на водяной бане до объема $5-10 \,\mathrm{mm}^3$, вводят микрошприцем концентрат в испаритель газового хроматографа и анализируют в следующих условиях:

Температура термостата колонки	200 °C
Температура испарителя	230 °C
Температура детектора	240 °C
Расход потока газа-носителя (азота)	25 см ³ /мин
Расход потока водорода	25 см ³ /мин
Расход потока воздуха	250 см ³ /мин
Скорость диаграммной ленты	200 мм/ч
Чувствительность электрометра	$2 \cdot 10^{-10} \mathrm{A}$
Время удерживания фенола	5 мин 20 сек

На хроматограмме измеряют площади пиков фенола и по средним значениям из 5-ти измерений устанавливают градуировочную характеристику. Проверку градуировочной характеристики проводят 1 раз в месяц и при смене партии реактивов.

Эффективность извлечения фенола из воды методом газовой экстракции составляет 77—86 %. Полнота сорбщии фенола силохромом С-80

 97 ± 5 %, а полнота экстракции микропримесей фенола диэтиловым эфиром составляет 95 %.

Отбор проб проводят согласно ГОСТу 2761—84, 4979—49 и 17.1.5.04—81, в бутыли из темного стекла, добавляя в каждую бутыль по 2 см³ раствора серной кислоты в расчете на 1 дм³ воды. Если в пробе присутствует хлор или другие окислители, добавляют 0,1 г сульфита натрия на 1 дм³ воды. Срок хранения проб воды не более 3 суток при температуре не выше + 4 °C и при pH менее 2.

8. Выполнение измерений

В сосуд для газовой экстракции вносят 250 см³ анализируемой воды и закрывают его силиконовой пробкой. Далее подготавливают пробу к анализу аналогично подготовке проб для градуировки и после выхода хроматографа на рабочий режим проводят измерения в условиях, указанных в разделе 7.3.

На полученной хроматограмме рассчитывают площадь пика фенола и по градуировочному графику определяют массу фенола в пробе.

9. Вычисление результатов измерений

Концентрацию фенола (мг/дм³) в воде рассчитывают по формуле:

$$C = \frac{m}{V}$$
, где

m – масса фенола в объёме пробы, найденная по градуировочному графику, мкг;

V – объём пробы воды, взятой для анализа. см³.

Методические указания разработаны А. Г. Малышевой (НИИ экологии человека и гигиены окружающей среды им. А. Н. Сысина РАМН), А. А. Беззубовым, Ю. С. Друговым (Аналитический центр Геологического института РАН).

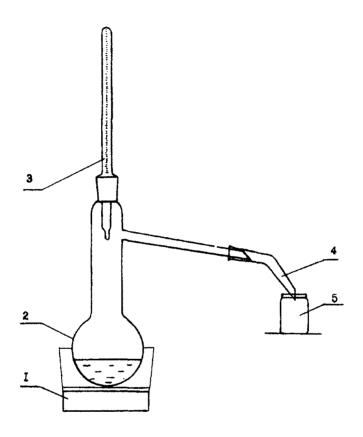
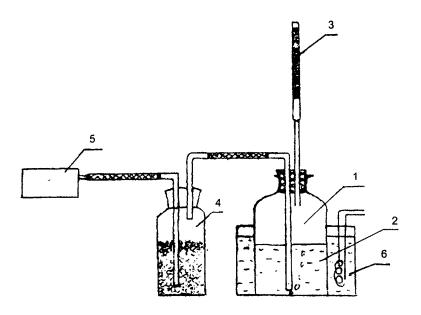



Рис. 1. Схема перегонки фенола.

- 1 электроплитка;
- 2 колба Вюрца вместимостью 50—100 см³;
- 3 термометр;
- 4 алонж;
- 5 приемник.

Рис. 2. Схема устройства для газохронометрического определения фенола в воде.

- 1 стеклянный сосуд;
- 2 анализируемая вода;
- 3 сорбщионная трубка;
- 4 склянка Дрекселя с молекулярным ситом 5А;
- 5 микропроцессор;
- 6 водяная баня с электрообогревом.