

ОТРАСЛЕВНЕ СТАНДАРТН

ОПОРН И ПОДВЕСКИ

СТАНЦИОННЫХ ТРУБОПРОВОДОВ

С ПАРАМЕТРАМИ СРЕДН $P_{pad} \leq 2.2$ МПа и $t_{pad} \leq 425^{\circ}$ С

ТЭС, АЭС И ПН ЛЕГАЗОВОЗДУХОПРОВОДОВ

ТЭС ИЗ УНИ ФИЦИРОВАННЫХ ДЕТАЛЕЙ

ОПОРЫ ПОДВИЖНЫЕ И НЕПОДВИЖНЫЕ Типы и основные размеры

OCT 34-42-610-84 + OCT 34-42-623-84

УТВЕРІДЕН И ВЗЕДЕН В ДЕЛСТВИЕ НРИКАЗОМ Министерства энергетики и электрификации СССР В 154a от 22.11.64г.

ИСПОЛНИТЕЛИ: ПТИ Энергомонтахпроект

Главный инженер Г.С.Бережной

Ленинградский филиал ПТМ Энергомонталироект

Главный интенер А.М. Пагин
Заведующий отделом В.И. Есарев

О.В.Стрельников, Л.Л.Велитченко.

Л.Б.Кривпич, Л.Б.Ратникова, В.А.Андреев, И.В.Сметанина,

Л.В.Праутина

COLLYCOBAH: BO Cobseneblowortax B.V. de Modos

ВГНИГИИ Атонтеплоэлектропроект В.Н.Охотин

Трест Теплоэнергооборудование В.Н.Дробный

ОТРАСЛЕВОЙ СТАНДАРТ

ОПОРА СКОЛЬЗЯЩАЯ НАПРАВЛИВАЯ OCT

HAIL A BOUNCHAR

34-42-623-84

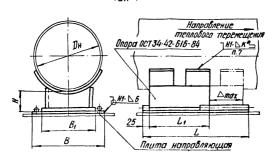
Типы и основные размеры

Вводится впервые

OKII 31 1311

Приказом Министерства энергетики и электрификации СССР срок действия установлен с I июля 1965г. до I июля 1990г.

- 1. Настоящий стандарт распространяется на опоры скользящие, предназначенные для трубопроводов ТЭС и АЭС с Дн57 + I620 мм с параметрами среды \dot{t} раб. \leq 425°C, $Py \leq$ 4.0 MHa.
- 2. Детали в сборочные единицы изготавливаются по рабочим чертежам "Опоры подвижные и неподвижные" Ло-100.000
- 3. Типы и основные размеры должны соответствовать указанным на черт. I и в табл. I.


Издание официальное

Перепечатка воспрещена

TP 8349955 or 04.05.85

OCT34-42-623-84 Cmp 2

Tun 1

* Размер к - по наименьшей толщине свариваемых деталей Черт. 1

Размеры	8 MM	Ταδλυμα :	f
---------	------	-----------	---

Исполі опор для тр из сп			Для การบุชิก กรุงชิงชิงชิ	Допуска: Емая Вертикаль:	,,	,,	В	_	,	,		Масс	a, K2
углерод.	корроз.	Tun	привовов Дн	HOTA HOTAPYSKO KH (KAC)	H	Н,	D	В,	L	۲,	·K	из углер. стапи	из корраз. стали
01	<i>D2</i>		57	1,0 (1,00)		129	85	40				2,3	2.3
03	04		76	1.5 (150)	100	138	105	60			3	2.8	2.8
05	06		89	2,0 (200)	.00	145	,00			l		2,8	2.8
07	D8		108	3,0 (300)		154						4.4	4,4
09	10		,,,,	0,0 (0,007	150	204	145	100	350	เกก		4,9	5,0
11	12		133	4,0 (400)	100	167				,00	4	4,3	4,3
13	14	1	703	7,0 (7,00)	150	217						4.9	4,9
15	16		159	5.0 (500)	100	180	165	120				5,0	5,0
1 7	18		703	0,01 000,	150	230			L		_	5, 5	5.6
19	20		219	11,0 (1100)	100	210						10,8	10.9
21	22		213	11,0 (1100)	<i>150</i>	260	250	200	400	450		12,1	12.3
23	24		273	19,0 (1900)	100	235	230	200	400	150		11, 1	11.2
25	26		2/3	13,0 (1300)	150	286					6	12.5	12.5
27	28		325	25,0 (2500)	100	252						20,7	21,7
29	30		323	23,0 (2300)	150	312	350	300	450	200		22.8	23,8
31	32	ļ	377	30,0 (3000)	100	288						20,5	21,5

				/	Pasmi	еры	в мя	4		Пр	000	пжение	табл. 1
Испо) Опор для т Из	า หะห นя อนุจิอกองชื่อฮิอชิ "Cmanu	Tun	Для трубо- проводов	Допуска Емая вертикаль	Н	Н,	В	В,	L	L,	K	Maci	ca, re
углерод.	корроз.		D _H	HOPPUSKO KH (KEC)				0,		٥,	Ĺ	из углер. стали	из корроз. стали
33	34		377	<i>30 (3000</i>)	150	338	350	300	450	200	6	22,6	23,6
35	38		426		100	315						36,4	38,4
37	38		720	36 (3600)	150	365						40,0	41,8
39	40		478	30 (3000)	100	34D	450	/100	500	250		35,9	37, 5
41	42		1776	1	150	390	450	400	500	230		39,7	41,1
43	44		530	45 (4500)	100	365						35,9	37,2
45	46	,	330	4 3 (4300)	150	416					8	39,6	40,9
47	48	1	630	60 (600D)	100	415	550	500			l °	45,4	47,4
49	50		030	00 (0000)	150	465	330	JUU				49,7	51,7
51	52		720	75 (7500)	100	460						77,3	79, 7
53	54		120	וטטפו) כו	150		650	600				82,8	85,3
55	56		900	95 (9500)	100	510	000	200				74,9	77,2
57	58		82 0	33 (3300)	15 0	ECD			END	350		80,5	82,8
59	60		920	f15 (11500)	100	560			000	030		99,4	102,9
<i>51</i>	62		320	(טטטוו) טוו	150	610	75 <i>0</i>	700			10	107,1	110,6
63	<i>5</i> 4		1020	135 (13500)	100	טיט						97,2	100,5

OCT 34-42-623-84 Cmp.4

						00, 0	• • • • •				<i>'</i>		
Исполі опор для тр из С	หะหนя บุชิกกุอชื่อฮิอชิ เพลงบ	Tun	Ans mpyōo-	Дапуска- Емая Вертикаль	У	ij,	В	В,	L	,		Macc	а, кг
уггерод.	корроз	1017	проводов Лн	ная нагрузка кн (кгс)	"	7.9	В	Β,	L	Ζ,		Из Углер. Стали	ИЗ КОРСЭЗ. СПІСЛИ
65	6 6		1020	135 (13500)	150	66C	750	700	50C	350		104,9	108, 1
67	68		1220	185 (18500)	100	710						133,7	137, 1
69	70		1220	105 (10500)	150	760	850	800			10	142.7	145.3
71	72	1	1420	260 (26000)	100	810			700	453		130,7	134,4
73	74		1420	200 (20000)	150	860						140.0	143,6
75	76		1620	330 (33000)	100	910	950	<i>500</i>			12	163,6	168,4
77	78		1020		150	960					<u> </u>	175,6	180,4
79	80		57	1,0 (100)		129	85	40				2,6	2.6
81	82		76	1,5 (1501	100	138	105	60				3,2	3, 2
83	84		89_	2.0 (200)		145						3,4	3,4
85	86		108	3,0 (300)		154						5,3	5,3
87	88	2		.,	150	204	145	100	350	ממו		5,8	5,8
89	90		133	4,0 (400)	100	1 67						5,9	5,9
91	92			-,- (700)	150	217						6,4	6,4
93	94		159	5,0 (500)	100	180	165	120				6,7	6,7
95	96		,55	5,5 (230)		230						7,3	7,3

-	
-	
-	
-	
	9
-	1
-	101
-	+
_	13
-	्र
_	23-8
	200
_	2
-	18
	10

אבחסת תוא המס מסחת תוא המס	ЛЕНЦЯ оубопроводов Ствый	_	ДЛЯ	Допуска- емая								Масс	а, кг
углерад	корраз	์ กับก	труба- проводов Дн	вертикаль нан нагрузки кн (кгс)	H	H	В	В,	L	L,	K	из углер. Стали	из карроз стали
97	98		219	11 (1100)	100	210						16,5	16.7
99	100		213	17 (1100)	150	260	250	200	400	150		18,0	18,2
101	102		273	19 (1900)	100	236	230	200	טטיי	130		18,5	18,7
103	104		270	15 (1500)	150	286						20,0	20,7
105	106		325	 25 (2500)	100	262						30,5	31,8
107	108		020	20 (2000)	150	312	350	300	450	200		32,5	33,9
109	110		377	30 (3000)	100	288			100	200		32,3	
!!!	112	2			150	338		L			-	34,3	35,9
113	114		426		100	315						54,6	56,8
115	116			36 (3600)	150	365						58,2	50,4
117	118		478	00 (0000)	100	340	450	400	i			<i>56,8</i>	59,1
119	120		7.0		150	390			500	25C		60,3	62,6
121	122		530	45 (4500)	100	365						60,2	62,5
123	124		230	43 (4360.	150	415	L	L				64.7	<i>67,0</i>
125	126		630	<i>60 (6000</i>)	100		550	500				74,9	77,9
127	128		000	00 (0000)	15E	465	1550	1555	i			78,S	81.7

				P:	изме,	ры б	MM			При	nðan;	жение т	eαδη. 1
Испол Испор для тр Из си	าหะหนะ อนูงิอกpoชื่อฮิอชิ วานกม	Tun	Δ/19 πρυδο- προδοδιδ	Допуска- Смая Вертикать-	Н	H,	В	В,	L	L.	K	Массо	·
углерад.	корроз.	1011	Прооболя Пн	HOTA HOTPYSKO KH (KTC)	Ľ	"		0,		٥,		из углер. стали	из корраз. стали
129	130		720	75 (7500)	100	460						116.4	120.0
131	132		,20	75 (7555)	150	540	650	600				122,4	125,0
133	134		820	95 (9500)	100	370	030	000				127,4	131,4
135	136			-0,,	150	560	<u> </u>		600	350		133,4	137.4
137	138		920	115(11500)	100				ļ			170,4	175,4
139	140		520		150	610	750	700	Ì		_	178.4	183,4
141	142	2	1020	135(13500)	100							175.4	182,4
143	144		,,,,,	,	150	660						184.4	190,4
145	146		1220	185(18500)	100	710						258,7	265,7
<u>147</u>	148				150	760	850	800				267,7	275,7
149	150	1	1420	260(26000)	100	810			700	450		279,7	286,7
151	152	1	1720		150	860						288.7	295,7
153	154		1620	330(3 3000)	100	910	OFP	900				359,4	370,4
155	156		1020	30(33000)	150	960	330	300				371,4	382,4

Пример условного обозначения опоры типа I для трубопровода $A_{\rm H}$ =426 мм с высотой H = I50 мм:

Опора 426 ў - 37 ОСТ 34-42-623-84 - для трубопровода из угляеродистой стали.

Опора 426 К - 38 ОСТ 34-42-623-84 - для трубопровода из коррозионностойкой стали.

- 4. Максимальное тепловое перемещение опоры $\Delta_{max} = 200$ мм.
- Опоры скользящие направляющие с приварным корпусом (тип I) применять для трубопроводов Ру

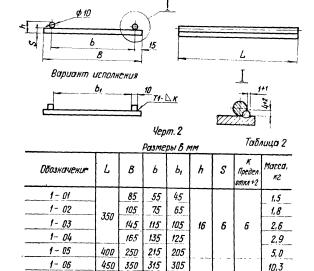
 2,5 МПа и

 $t_{\it pas} \leq 300^{\rm o}$ С при отсутствии угловой деформации трубопровода.

Опоры с хомутовыми или бугельными корпусами (тип. 2) — для ${\rm Py} \leqslant 4$,0 МПа и $t_{\rm pob} \leqslant 425^{\rm o}{\rm C}$.

Опоры типа 2 предпочтительны в качестве скользящих направдяющих, т.к. обеспечивают параллельность сопрягаемых скользящих поверхностей благодаря нежесткому соединению корпуса с трубопроводом.

- 6. Сварные швы по ГОСТ 5264-80.
- 7. Сварочные материалы:


Электрод типа 342A ГОСТ 9467-75 - для сварки углеродистых сталей:

Электрод типа 3-07XI9HIIM3Г2Ф ГОСТ 10052-75 - для сверки коррозионностойких сталей.

8. Остальные технические требования по ТУ 34-42-10380-83.

Cmp 9 OCT 34-42-623-84

Конструкция и размеры плит направляющих должны соответствовать указанным на черт. 2 и в табл 2

415 405 18

605

905

20 10 10

8 8

14,6

17,9

31,4

35.4

47,7

53.4

450

550 515 505

650 615

750 715 705

850 815 805

950

500

600

700

1-07

1-08

1-09

1-10

1-11

1- 12

Пример условного обозначения плиты направляющей B=145мм и $\angle =350$ ми:

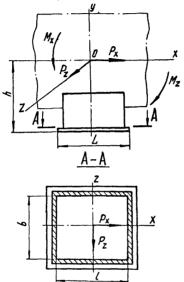
ПЛИТА НАПРАВЛИРШАЯ 1-03 ОСТ 34-42-623-84.

- 1. Сварка ручная дуговая по ГОСТ 5264-80. Электрод 342A по ГОСТ 9467-75.
- Плита направляющая крепится к несущей конструкции сваркой.

Приложение (Qбязательное (Листов 2)

ІІлины и массы пролетов трубопроводов

	Pash		Hausanb-	Maccat	Macca M	рубапрово	של ב עשני	กภ หนุน ยน้
Характ ерис- тика	MI	45,	ший принятый пролет	теплоизи ЛЯЦИОННО 20 СЛОЯ	b	Te s 1961	30000	1800 TOOL
mp yбопра- вода	I _H	s	трубапра вода, м	с покры- тием, ке	I noz. M	Принятаго пралета	Inoe. M	Приня таго Прале та
	57	,	3,5	19,2	23, 2	81	25	88
	76	3	4,0	23,5	28,9	116	33	132
	89	3,5	5,0	28,7	36,1	180	41	205
t≤425°C	108	,,	6,0	28,9	39,2	235	47	282
	133	#	7.2	27,8	40,5	29/	53	382
Ry≤4M7q	159	4,5	8,0	25,2	43,4	347	61	488
(40 mzc/cm²)	219	6	11	32,6	64,1	705	98	1080
(TURALICATE)	273	7		50, 5	95,4	1157	149	1790
	325	8		65,2	127,7	1532	202	2425
	377	9		59,0	140,7	1690	242	2905
	425	L		61,4	154,0	1848	292	3505
	530	8]	64,5	167,5	2010	375	4500
	720	10		82,0	257	3084	544	7730
	530	7		64,5	154,7	1856	364	4370
	630	8	12	73,3	196	2352	492	5905
4	720	8]	82,0	222,5	2670	611	7330
t≤350°C	820	-		90,8	290,5	3485	792	9505
Py≤2,5MNo	1020	1 /4		109,4	457	5484	1230	14760
	1220	 	1	126,0	542	6505	1657	19885
(25 kzc/cm²)	1420		1	146,5	553	<i>5755</i>	2093	25115
	1420	14	l	146,5	632	7585	2153	25830


OCT 34-42-610-84+0СТ 34-42-623-84 Приложение I (лист 2)

Yene ve enu	TT	pyō,	Наи- Соль-	Масса Тепло-	C	о трубо Воляцие	провод И, кг	8
стика тру- бопровода		5	жий приня- тый пролет трубо- прово-	070H CДОЯ С ПО⊶	I nor.m	при- нято- го прож лета	I nor.¤	приня- того про- лета
	гери— тру— Воде Дин Воде Воде Воде Воде Воде Воде Воде Воде		дâ, M	THEM, Kr	без в	идо	вапол ного	
	57		3,5	14,65	18,7	65	21	74
	76	3		21,7	27,I	I35	31	I55
ļ	89	_	5	28,7	35,0	175	4 I	205
	I08	3.5	6	23,7	32,7	19€	40	240
	133) ", "	7,2	27.8	39,0	280	52	375
	159	4,5	9	26.2	43,3	390	6I	550
t = 300°C	219		II	32,6	64,I	705	98	1080
	ректери- вка тру- провода разования раз		36.8	76.3	915	129	1550	
CIEMUL	Труб, бо ми лероводе Втруб, втрубоводе Втрубов В		44,I	91,3	1095	I68	2015	
y = 1,0 ·	Характери— труб, мм стика тру— бопровода В В В В В В В В В В В В В В В В В В В	7	1	61,4	133,7	1605	267	3205
(6KFE/CHZ)	478	•		35,4	116.7	I 400	286	3430
	530		1	38,5	I4I,5	I700	349	4190
	720	8	12	48,2	I88.7	2265	578	6935
	820	9	1	55.0	235	2820	740	8880
	920		1	60.9	289	3470	924	11090
	1020	IO		66.0	315	3780	1100	13200
	1020		1 1	77,6	406	4870	1532	18380
	1620		1		763	9155	2752	33000

ж Масса теплоизоляции трубопроводов принята согласно "Указания № I" Минэнерго СССР от 30 янверя 1978 г."

Приложение 2 (Листов 6)

Данные для расчета неподвижных опор

P_x u P₂ - гаривантальные усилия, действующие на опору, кгс;
M_x u M₂ - изгибающие моменты от сип, соответственно P₂ u P_x,
действующие атносительно осей X u Z, кгс·м;
W_x u W₂ - моменты сопротивления изгибу сечения сварных
швов относительно осей X и Z, см³;
h — расстояние от места приложения сип до сечения
сварных швов, см;

F - площадь сечения сварных швов, см2.

Ислол	нения опор	no	Δη α πρυδοπρο-	h,	F.	W _x ,	Wz,	Danye Momen KH-CK	KOLEMBI MBJ DN 1 (KZC	ICUA PX	δαιουμιά u Pz npu
OCT	OCT	OCT	Водов 77.	1	Ì		1	P_{z}	= P _X	ρ_z	0,5P _x
34-42- <i>616-8</i> 4	34-42-617-84	34-42-618-84	IH, MM	MM	CM 2	CM3	CM3	M _X	Mz	Mx	Mz
01 u 02	01 U 02	01 u 02	57	129	5	6	11	40	40	30	60
03 U 04	03 4 04	03 U 04	76	138	Б	//	15	65	65	45	90
05 u 06	05 4 06	05 u 06	89 108	145	"	"_	13	00		75	
07 u 08	07 ט 08			154	10	32	32	155	155	102	205
11 u 12	_	07 u 08		134	13	45	55	230	230	162	325
09 u 10	09 4 10		100	204	10	32	32	155	155	102	205
13 u 14		09 u 10	204	204	13	45	55	230	230	162	325
15 u 16	ff u f2			167	10	32	32	155	155	102	205
19 u 20	_	11 4 12	133	107	13	45	55	234	234	158	317
17 u 18	13 u 14		133	217	10	32	32	155	155	108	217
21 4 22		13 u 14		217	13	45	55	238	238	163	326
23 u 24	15 u 16		159	180	#	39	36	182	182	119	238
27 u 28		15 u 16		100	14	54	62	270	270	180	360
25 u 26	17 u 18			230	#	39	36	184	184	120	240
29 u 30		17 4 18		230	14	54	62	276	276	184	368

OCT 34-42-616-84 ÷ OCT 34-42-618-84

Repursive 2

(Nucm 2)

Испол	нения опор	no	Δη ς προδοπρο-	ħ,	F.	Wx.	W ₂ ,	MOMEHI	demble TIBL OTT (K2C N	เมรมชิด เรยก Px กา	u Pz						
007	OCT	007	водов Дн.	MM	CM2	,		Pz =	ρ_{x}	$P_z = 0$	0,5 Px						
34-42-616-84	34-42-617-84	34-42-618-84	MM	m	LM-	2775	2770	Mx	Mz	Mx	Mz						
31 u 32	19 u 20			210	25	129	118	600	600	388	777						
35 4 36		19 u 20	210	210	28	151	170	780	780	515	1030						
33 u 34	21 u 22		219	260	25	129	118	600	600	396	793						
37 u 38		21 u 22		200	28	161	170	780	780	533	1066						
39 u 40	23 u 24			236	26	150	130	675	675	440	870						
43 u 44		23 u 24			30	186	185	880	880	580	1160						
41 11 42	25 u 26		2/3		26	150	130	675	675	440	880						
45 u 46		25 u 26		200	30	186	186	890	890	590	1180						
47 u 48	27 u 28			262	38	316	261	1315	1315	850	1720						
51 u 52		27 u 28	325	202	45	414	414	1860	1860	1249	2498						
49 U 50	29 u 30		323	312	38	315	261	1340	1340	865	1730						
53 u 54		29 u 30		0,2	45	414	414	1910	1910	1267	2535						
55 u 56	31 4 32		377	288	38	316	261	1340	1340	850	1720						
59 u 60		31 u 32		200	45	414	414	1900	1990	1257	2515						
57 u 58	33 u 34			338	77.0	77.0	77.0	77.0	77.0	77.0	38	316	261	1350	1350	880	1760
61 4 62		33 u 34		030	45	414	414	1930	1930	1285	2570						

		no	Δ.π. πρυδοπρο	ħ,	F.	W.	Wz,	ADNYCH MOMEN KH-L	MORMANIE MAI DA M (K20	CUA P	ающие х и Рг	
0CT 34-42 616.84	0CT	0CT 34-42-618-84	водов Дн,	MM	1	CM3	CM3		- P _X		Q5P _X	•
07 72.010.04	34-42-017-04	34-42-0/0-04	MM,	mm	CM	LMO	LMO	Mx	Mz	Mx	Mz	
63 u 64	35 u 36			314	67	748	583	2880	2880	1845	3690	· _
67 u 68		35 u 36	400	0,4	84	1056	1058	4945	4945	3225	8450	,/UC/III
65 u 66	37 u 38		426	364	67	748	583	2900	2900	1870	3740	77
69 u 70	_	37 U 38		004	84	1056	1056	5250	5250	3430	6860	=
71 4 72	39 u 40			340	67	748	583	2900	2900	1870	3730	
75 u 76		39 u 40			84	1058	1056	5120	5120	3340	6680	
73 u 74	41 4 42		478	390	67	748	583	2900	2900	1870	3730	
77 u 78	_	41 u 42		090	84	1056	1056	5370	5370	3520	7040	
79 u 80	43 4 44			365	67	748	583	3070	3070	1970	3940	
83 u 84		43 u 44	670	000	95	1266	1425	5980	5980	4039	8060	
81 u 82	45 4 46		530		67	748	583	3110	3110	1990	3980	
85 u 86		45 U 46		415	95	1266	1425	6100	6100	4100	8200	
87 u 88	47 u 48		630	7/3	79	1480	712	3 940	3940	2490	4980	
91 u 92		47 u 48			106	1692	1692	8 590	8590	5600	11200	
89 u 90	49 u 50				79	1480	712	3950	3950	2500	5000	
93 u 94	—	49 4 50		455	106	1692	1692	8695	8695	11530	5760	

Испа	лнения опо	ם חם	ΑΛΑ πρυδοπρο-	ייי ב א בייים		147	"	MOMEH	ONYCKOEMBE USZUĎOROLLUC OMEHMBI OM CUN Px U Pz KK-CM (KEC-M) NOU				
OCT	OCT	DET	00000		170		CM2	1 7.	Wz, CM³	P _z :			0,5 Px
34-42-616-84	34-42-617-84	34-42- 618-84					10,41	Mx	Mz	Mx	Mz		
95 u 96	51 u 52			460	100	1670	1250	6530	6530	4150	8300		
99 u 100		51 u 52	720	400	129	2478	2478	10850	10850	6945	13890		
97 u 98	53 u 54		1 /20		100	1670	1250	6630	6630	4200	8400		
101 u 102		53 u 54		510	129	2478	2478	11000	11000	7290	14580		
103 u 104	55 u 56			310	100	1670	1250	<i>6630</i>	6630	4200	8400		
107 u 108		55 u 56	820		129	2478	2478	11000	11000	7290	14580		
105 u 106	57 u 58		020		100	1670	1250	6530	6630	4200	8400		
109 u 110		57 U 58		560	129	2478	2478	11140	11140	7390	14780		
111 u 112	59 u 60			300	140	2595	1802	9880	9880	6215	12430		
115 u 116		59 u 60	920		187	4190	4190	19480	19480	12580	25360		
113 u 114	61 4 62		320		140	2595	1802	9940	9940	6250	12500		
117 u 118		61 U 62		610	187	4190	4190	20130	20130	13170	26340		
119 u 120	83 u 64			טוט	140	2595	1802	9940	9940	6250	12500		
123 u 124		63 u 64	1020		187	4190	4190	20130	20130	13170	26340		
121 u 122	65 u 66		1020	660	140	2595	1802	9940	9940	6450	12900		
125 u 126		65 u 66		טסט	187	4190	4190	20790	20790	13580	27160		

Испа	лнения опор	חם	Δ.n.я πρυδοπρο-	<i>h</i>	_	14.7	1.7	MOMEN		n cun P	ANOLLUE X U Pz	
OCT	007	007	<i>60000</i>	",	<i>F</i> ,	W_{χ}		Pz =		Pz = 0		_
34-42-010-64	<i>34-42-617-84</i>	34-42-618-84	MM	MM	CM2	CM3	CM3	Mx	MZ	Mx	Mz	'n
127 u 128	67 u 68			710	166	3647	2675	14300	14300	3090	18180	1
131 u 132		67 u 68	4000	110	215	5534	5534	28110	28110	18640	37280	'
129 4 130	69 u 70		1220	750	166	3647	2675	14360	14350	9120	18240	
133 4 134		69 u 70		100	215	5534	5534	28350	28350	18800	37600	
135 u 136	71 u 72			810	166	3647	2675	14400	14400	9150	18300	
139 u 140		71 u 72	****	010	229	6073	<i>6456</i>	32070	32070	21420	42850	
137 U 138	73 u 74		1420	860	166	3647	2675	14400	14400	9150	18300	
141 U 142		73 u 74		000	229	6073	6456	32160	32160	21585	43170	
143 u 144	75 u 76			040	218	5252	3616	20100	20100	12650	25300	
147 u 148		75 u 76		910	293	8555	8555	44130	44130	29250	58500	
145 u 146	77 u 78		1620	950	218	5252	3616	20160	20150	12650	25300	
149 u 150		77 u 78		300	293	8555	8555	44350	44350	29420	58850	

Прилажение 3 (листов 14) Опары приварные(швеллерные и угалковые)

Ucnon Onop	ПО	IJ.1.9 mpy&o-	Исполн	ения опор п	а рабочим чи	ртежам
	42515:84 DYBONPO- US CINCINI		Л8-14	7. 000	Л8-14	18.000
уелер.	корроз.	MM	углерод	корраз.	углерод	корраз.
01	02	89	J18-147.000	118-147.000-01		
03	04	108	-02	-03		
05	06	133	-04	-05		
07	08	159	-06	-07		
09	10	2/9	-08	-09		
//	12	273	-10	-1/		
13	14	325	-12	-13		
15	16	377	-14	-15		
17	18	426	-16	-17		
19	20	478	-18	-19		
21	22	530	-20	-21		
23	24	630	-22	-23		
25	26	720	-24	-25		
27	28	820			J18-148.000	J18-148 000-01
29	30	920			-02	-03
31	32	1020			-04	-05
33	34	1220			-06	-07
35	36	1420			-08	-09
37	38	1520			-10	-1/
	•	•				97

Приложение З (Лист 2)

Опоры приварные

	PHEHUR	11.118	Исполн	ח קסחס וצעא	рабачим ч	ерте жам
000p 00734	42-65-84	mouten-		90.000		191.000
dan ma bodob d	ху.Бопро- из стали	706		DEU XCHEIE	HENO	าชิธ์บวห หыะ
угаер.	корроз.	DH,	углерод.	корроз.	углерод	корроз.
01	02	57	J18-190.000	18-190.000-01	J18-191.000	Л8-191.000-01
03	04	76	-02	- 03	-02	-03
115	05	89	-04	-05	-04	-05
07	08		-05	-07		
09	10	400	- 08	-09		
-11	12	108			-06	-07
13	14	•			-08	-09
15	15		-10	-11		
17	18		-12	-13		
19	20	133			-10	-11
21	22				-12	-13
23	24		-14	-15		
25	26	,,,,	-15	-17		
27	28	159			-14	- 15
29	30				-16	-17
31	32		-18	-19		
33	34	out.	-20	-21		
35	35	219			-18	-19
37	38				-20	-21

<u>ОСТ 34-42-615-84÷ ОСТ 34-42-673-84</u> Припожение 3 (Лист 3) Опары приварные

			עווט	קסטטקוו ואט	HUE			
Ucno	DHEHUЯ DO	1.119	Ucnonn	ения опор п	по рабачим	чертежан		
	42-516-84		L	S18-190.000		191. 000		
badab i	рубапра- 13 стали	805	CKOA	รงคนบะ สิธิบ ม ผพย	HENO	неподвижные		
углер.	KOPPOS.	DH, MN	уг перод	корроз.	углерод	корроз.		
39	40		18-190 000-22	18-190.000-23				
41	42		-24	-25				
43	44	273			J18-191.000-22	J18-191.000-23		
45	46				-24	-25		
47	48		- 26	-27				
49	50		-28	-29				
51	52	325			-26	-27		
53	54				-28	-29		
55	56		-30	-31				
57	58		-32	-33				
59	50	377			-30	-31		
61	62				-32	-35		
63	64		-34	-35				
55	66		-36	-37				
67	68	426			-34	-35		
69	70				-36	-37		
71	72		-38	-39				
73	74	4.70	-40	-41				
75	76	478			-38	-39		
77	78				-40	-41		
	1		l I		,			

Приложение 3 (Лист 4)

Опары приварные

Tlene	DNEHUT		1/2				
ONOP	חמות אוניני חמי		UCNOJIK	ו קסחס ועואים	אטצססטס סו	чертежам	
OCT 34-	42-515-84	การบริก- การเชื่อ-	J18-190.000		118-1	91. 000	
60AC\$	npy5o.pe U3 eman	dob	CKONGSAUUE U HENOOBU KHGIE		непод вижные		
yenep.	<i>409903</i> .	IN, MN	углерад.	корроз.	углерод.	корроз.	
7.9	80			J18-190.000-43			
81	82		-44	-45			
83	84	530			. 18-191.000-42	18-191.000-43	
85	85				-44	-45	
87	88		-45	-47			
89	90	620	-48	-49			
91	92	630			-46	-47	
93	94				-48	-49	
95	95		-50	-5/			
97	98		-52	-53			
99	100	720			-50	-5/	
101	102				-52	-53	
103	104		-54	-55			
105	106	000	-56	-57			
107	108	820			-54	-55	
109	110				-56	-57	
111	112		-58	-59			
113	114	920	-60	-61			
115	115	320			-58	-59	
117	118				-60	-61	

Припожение 3 (Лист 5)

Опоры приварные

Ucno	MEHUA DO	1 44	Ucnonne	ения апор пи	POBOYUM 4	ертежам.		
OCT 34-	42-616-84	การบุธิย-	118-19	J18-19D.000		J18-191. 000		
60008 G	y b anpa- V 3 emanu	прово- дов Дн,	CKONS U HENDD	BRILLUE BUXCHBIE	HENO	движны е		
углер.	корроз	MM.	углерод.	корроз.	уелерод.	корраз.		
119	120		-78-190.000-62	118-190.000-63				
121	122	IDOD	-64	-65				
123	124	1020			JN-191.000-62	18-191.000-63		
125	126				-64	-69		
127	128		-66	-67				
129	130	(000	-68	-69				
131	132	1220			-66	-67		
133	134				-68	-63		
135	136		-70	-71				
137	138		-72	-73				
139	140	1420			-70	-7/		
141	142				-72	-73		
143	144		-74	-75				
145	146		-76	-77				
147	148	1620			-74	- 7 <i>5</i>		
149	150				-76	-77		
		l	, 1		'-	101		

Приложение 3 (Лист 6) Опары хому,товые и бугельные

Ucnas anap OCT 34-	THEHUR 10 Necress	Для	Исполне	אט קסחם אנטאי	г рабочим че,	ртежам
00734-4	261884	труба- права-	18-192.000 u	118-194.000	118-193.000	18-195.000
60006 C	०५६ <i>०१,</i> ०० ४३ ०,७७७	000	СКОЛЬ	ЗЯЩИЕ	непо	движные
углер.	KOPPOS	DH M M	уг лерод.	корраз.	углерад.	корроз.
01	02	57	18-192,000	18-192,000-01	18-193,000	18-193,000-01
03	04	76	-02	-03	-02	-03
05	06	89	-04	-05	-04	-05
07	08	400	-06	-87	-05	-07
09	10	108	-08	-09	-18	-09
//	12		-10	-11	-10	-11
13	14	133	-12	-13	-12	-13
15	15		-14	-15	-14	-15
17	18	159	-16	-17	-16	-17
19	20		18-194.000	T18-194.000-01	118-195,000	118-195,000-01
21	22	219	-02	-03	-02	-03
23	24		-04	-05	-04	-05
25	25	273	-06	-07	-06	-07
27	28		-08	-09	-08	-29
29	30	325	-10	-11	-10	-11
31	32		-12	-/3	-12	-13
33	34	377	-/4	-15	-/4	-15
35	36	4.55	-16	-17	-16	-17
37	38	426	-18	-19	-18	-19
103	ı	ı	'	ı	•	

Припожение 3 Опары хомутовые и бугельные

	HEHUM	_	Hanny		n nashway			
	70 42:517: 8 4 12:518:84	11.719 17.py&a-			правочим чертежам			
BAR M	อบช็อกออ-	npobo-	118-192.000 u	JI 8-194. 000	118-193.000 U 118-195.000			
60008	is erand	106	СКОЛЬ	ЗЯЩИС	непод	Бижные		
углер.	Kappas.	IH, NM	углерад.	корроз.	углерой.	корроз.		
39	40	470	18-194.000-20	18-194.000-21	18-195.000-20	18- 195.000-21		
41	42	478	- 22	-23	- 22	-23		
43	44	530	- 24	- 25	-24	- 25		
45	45	330	-25	-27	-26	-27		
47	48	C20	-28	-29	-28	- 29		
49	50	630	-30	-31	-30	-31		
51	52	700	-32	-33	-32	-33		
53	54	720	-34	-35	-34	-35		
55	56	000	-36	-37	-36	-37		
57	58	820	-38	-39	-38	-39		
59	60		-40	-41	-40	-41		
51	62	920	-42	- 43	-42	-43		
63	64		-44	-45	-44	-45		
<i>15</i>	66	1020	-46	-47	-46	-47		
67	58	4.5.5	-48	-49	-48	-49		
69	70	1220	-50	-51	-50	-51		
7/	72	1420	-52	-53	-52	-53		
73	74		-54	-55	-54	-55		
75	76		-56	-57	-58	-57		
77	78	1620	-58	-59	-58	-59		
	,	'	'		- 1	10		

Припожение 3 (Яист 8)

Ueno	THEHUE		Uchank	ת קסתם ותעוא	о рабочим	чертежам	
DCT 34-4	2-519-84	Tun	118-19. 01		л 8-197.000 Ппара е направляющь хомутом.		
yenep.	корроз.		уг перад	корроз.	углерод.	корраз.	
01	02	1	118-196.001	18-195.000-01	18-197.000	18-197.000-01	
03	04	2	-02	-03	-02	-03	
05	06	1	-04	-05	-04	-05	
07	08	2	-05	-07	-05	-07	
09	10	1	-08	-09	-08	-09	
//	12	Z	-10	-//	-10	-11	
13	14	1	-12	-/3	-12	-15	
15	16	2	-14	-15	-14	-15	
17	18	1	-16	-17	-16	-17	
19	20	2	-18	-19	-18	-19	
2/	22	1	-20	-21	-20	-21	
23	24	2	-22	-23	-22	-23	
25	26	1	-24	-25	-24	-25	
27	28	2	-26	-27	-26	-27	
29	30	1	-28	-29	-28	-29	
<i>3/</i>	32	2	-30	-31	-30	-31	

Приложение 3 (Лист 9)

Ucnani	HE HUE NO		Испалнения опор по рабочим чертежам					
00734-42 00734-42 008 mpg	2734-42-619-84 2734-42-620-84 108 mpy Sonpobo 108 us cmancū		118 - 196 Dru Karrik		. 18-197.000 Опора с направляющим хомутам.			
углер.	корроз.		углерод.	корроз.	уг перад.	карроз.		
33	34	1	18-196.000-32	118-196:000-33	Л8-197.000-32	J78-197.000-33		
35	36	2	-34	-35	-34	-35		
<i>37</i>	38	1	-36	-37	-38	-37		
39	40	2	-38	-39	-38	-39		
41	42	1	-40	-41	-40	-41		
43	44	2	-42	-43	-42	-43		
45	46	1			-44	-45		
47	48	2			-46	-47		
49	50	1			-48	-49		
51	52	2			-50	-51		

Приложение 3

L'Ononnenus Ongo no	<i>Испалнения</i> черт	опор по рабочим ежом
OCT 34-42-621-84 OCT 34-42-622-84	Л8-198.000 C5	Л8-200.000C5
01	18-198.000	18-200.000
02	01	01
03	02	02
04	03	03
05	04	04
06	05	05
07	06	06
08	07	07
09	08	08
10	09	09
11	10	10
12	11	11
13	12	12
14	13	13
15	14	14
16	15	15
17	16	16
18	17	17
19	18	
20	19	1
21	20	1
22	2/	1

Приложение . (Лист (1)

			(UCIII (1)
Ucnonnenus OCT 34-42-	,	Исполнения рабочим ч	e onop no repmemen
रीतन मार्ग्यवर्ग	проводов	18-180	. 000
us cm		Опора скол направля	53911109
Углерад	Карразион.	Углерод	KOPPOBUON.
01	02	J18-180.000	18-180.000-01
03	04	-02	- 03
05	06	- 04	-05
07	08	-06	-07
09	10	-08	-09
11	12	-10	-11
13	14	-12	-13
15	16	-14	-15
17	18	-16	-17
19	20	-18	-19
21	22	-20	-21
23	24	-22	- 23
25	26	-24	-25
27	28	-26	-27
29	30	- 28	-29
3/	32	-30	- 31
33	34	-32	-33
35	35	-34	-35
37	38	-36	-37
39	40	-38	-39
41	42	-40	-4/
43	44	-42	-4,3

OCT 34-42-615-84+0CT 34-42-623-84 Припожение 3 (Лист 12)

Исполнение	י סחסף חס	Исполнение	סחם חם
OCT 34-42-		POBOYUM 45	PMEHOM
वैतन मानुप्रविवा	roobodob	18-180	
U3 CM		Опара скал	<u> </u>
		направл	ЯЮЩОЯ
Углерод	Коррозион.	Yenepod	Карразион.
45	46	118-180.000-44	S18-180.000-45
47	48	-46	-47
49	50	-48	-49
5/	52	-50	-51
53	54	-52	-53
55	56	-54	- 55
57	58	-56	-57
59	60	-58	-59
61	62	-60	-51
63	64	-62	-63
65	66	-64	-65
67	58	-55	-67
69	70	-68	-69
7/	72	-70	- 71
73	74	-72	-73
75	76	-74	- 75
77	78	-76	- 77
79	80	-78	- 79
8/	82	-80	- 81
83	84	-82	-83
85	86	-84	- 85
87	88	-86	-87

<u>0CT 34-42-615-84÷0CT 34-42-623-84</u> Приложение З (Лист 13)

<i>Исполнение</i>	סח קסחם
OCT 34-42-62	3-84
для трубопр	0060 006
U3 CMD	יחט

Исполнение, опор по рабочим чертежам. 18-180.000 Опора скользящая направляющая

Углерод	Коррозион.	Углерод	Коррозион.
89	90	18-180.000 - 88	118-180.000-89
91	92	-90	-91
93	94	-92	-93
95	96	-94	- 95
97	98	-96	-97
99	100	-98	-99
101	102	-100	-101
103	104	-102	-103
105	106	-104	-105
107	108	-106	-107
109	110	-108	-109
	112	-110	-111
113	114	-112	-113
	116	- 114	-115
	118	-116	- 117
119	120	-118	-119
121	122	-120	-121
123	124	-122	-123
125	126	-124	-125
	128	-126	- 127
129	130	-128	-129
13/	132	-130	-13/

<u>0CT 34-42-615-84÷0CT 34-42-623-84</u> Приложение З (Лист 14)

Ucnanneri OCT 34-42		Испалнение опор по рабачим чертежам		
สิกหิ mpy 60 กอดช็ดชิดชิ บริ cma ภับ		Л8-180.000 Опора скользящая ноправляющая		
Уг перод	KOPPOBUOH		KOPPOSUOH.	
/33	/34		118-180.000 - 133	
135	136	-134	-135	
137	138	-135	-137	
139	140	-/38	- 139	
141	142	- 140	-141	
143	144	-142	-143	
145	145	-144	-145	
147	148	-146	-147	
149	150	-148	-149	
151	/52	-150	- 15/	
153	154	-152	- 153	
155	156	-154	-155	

Содержание

		Coocpinanae		
Наружные диаметры труб или осно- бания коробов Dн или Ay	Пара- метры Среды	Типы опор*	Наименование и обозначение опор	Cmp.
1	2	3	4	5
Для коробов пылегазо- воздухопрово- дов П _н или Ау 325÷2020мм		D _H unv Ag	Ппорсі Неподвижная для Вертикапьных коробов ОСТ 34-42-510-84	3
Δ.19 πρυδο - προδοσιοδ Τ 3C υ Α 3C υ κοροδοδ πωπε- εσιοδοσιοχο- προδοσοδ	t≤425°C		Блак двухатковый ОСТ 34-42-611-84	7
ДЛЯ ΤΡΟΥΘΟ- ΠΡΟΘΟΘΙΟΘ ΤЭС U AЭС U ΚΟΡΟΘΟΘΟ ΠΑΙΤΕ- ΣΩΘΟΘΟΘΟ ΠΑΙΤΕ- ΣΩΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟΘΟ			Блок катковый пружинный ОСТ 34-42-612-84	12

^{*} Предназначены для климатического района с температурой наружного воздуха – 30 > t \approx -40° ${\cal C}$

		Продолже	ние содержан	RUF
	2	3	4	5
Для трубо- проводов ТЭС и АЭС Дн=57-1420мн	t≤425°C	<i>DH</i>	Втулка для прохода через перекрытие ОСТ 34-42-613-84	17
Для трубо- проводов ТЭС и АЭС Дн=57-1420нм	Py≈40Mna	D _H	Втулка с колпаком для прохода через крышу ост 34-42-614-84	23
Для трубо- проводов ТЭС и АЭС Пн=89÷1620мм и коробов пылегазовоз духопроводов		The state of the s	Опора Скользящая и неподбижная ОСТ 34-42-615-84	27

		Продолжен	ие содержани	9
	2	J	4	5
Для трубо- проводов ТЭС и АЭС D _H =57-1620мн	Py≈25MNa t≈300°C		Опора приварная Скользящая и неподвижная. ОСТ 34-42-516-84	<i>3</i> 3
Для трубо- прободов ТЭС и АЭС Дл=57-1620мм	Py=4,0Ma t≤425°C		Опара хомутовая и бугельная скользящие. ОСТ 34-42-617-84	42
Д ля т рубо- проводов ТЭС и АЭС Дл ^е 57-1620нм	Py≤4.0MNa t≤425°C		Опора хомутовая и бугельная мелодвижные ОСТ 34-42-618-84	49

		Продолжени	е содержания	,
1	2	3	4	5
Для трубо- проводов ТЭС и АЭС Д _т -426+1520ги	Py≤40M7a t=425°C	DH THE STATE OF TH	Опорсі катковая ОСТ 34-42-619-84	56
Для трубо- проводов ТЭС и АЭС Дн=57÷530мм	<i>Py=1,5MIa</i> t ≤ 80°C		Опора скользящая и неподвиж- ная с направ- ляющим хомутом ОСТ 34-42-520-84	61
Для отводов трубопро во - дов ТЭС Пн 108÷1420мм	Py<2,5MNa t≤300°C		Опора сварных отводов ост 34-42-621-84	67

		Продалжени	е содержания	,
	2	3	4	5
Для трубагроводов ТЭС и АЭС Дн=57÷538мм	Py=40M∏a t = 425°C	D _n	Опора трубчатая крутоизог- нутых отбо дов ОСТ 34-42-622-84	
Для пруёэгроводов ТЭС и АЭС D _H =57÷1620нн	t≤425°C		Опора скользящая направляю- щая ОСТ 34-42-523-84	78
Приложение 1 (сбязательное) листов 2	Длины трубоп)	น พละตะ กุกการการชื่ การใช้สิขชิ	0CT 34-42-610-84 34-42-623-84	ØΥ
Приложение2	Данные	для расчета непод-	34-42 <u>-6</u> 16-84	91

листов

Приложение 3 листов

вижных опор

чертежам

Привязка усполнений опор по ОСТ к исполнениям по рабочим

91

34-42-618-84