ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

УТВЕРЖДАЮ
Директор ФГУ «Федеральный центр тизлиза и оценки тобогенного воздействия»

К.А. Сапрыкин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ АТМОСФЕРНОГО ВОЗДУХА И ВЫБРОСОВ В АТМОСФЕРУ

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СУММАРНОГО СОДЕРЖАНИЯ ПОЛИХЛОРИРОВАННЫХ ДИБЕНЗО- П-ДИОКСИНОВ И ДИБЕНЗОФУРАНОВ В ПЕРЕСЧЕТЕ НА 2,3,7,8-ТЕТРАХЛОРДИБЕНЗО-П-ДИОКСИН В ПРОБАХ ПРОМЫШЛЕННЫХ ВЫБРОСОВ В АТМОСФЕРУ МЕТОДОМ ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ

ПНД Ф 13.1.65-08

Методика допущена для целей государственного экологического контроля

Право тиражирования и реализации принадлежит разработчику.

Методика рассмотрена и одобрена $\Phi\Gamma Y$ "Федеральный центр анализа и оценки техногенного воздействия и Главным метрологом Федеральной службы по экологическому, технологическому и атомному контролю.

Разработчик: Институт проблем эволюции и экологии им. А.Н. Северцова РАН

Адрес: 117071, г. Москва, В-71, Ленинский пр., д. 33

Телефон: (499) 135 13 80

Разработчик: ФГУП "Российский научно-исследовательский центр чрезвычайных ситуаций" ФМБА России

Адрес: 123182, г. Москва, ул. Щукинская, д. 40

Телефон: (499) 7204324

Разработчик: ГУ "Научно-производственное объединение "Тайфун", Федеральная служба по гидрометеорологии и мониторингу окружающей среды

Адрес: 243020, г. Обнинск, ул. Победы, д.4

Телефон: (48439) 4 39 20

ОГЛАВЛЕНИЕ

Значения характеристик погрешности методики	4
	7
Термины и определения	5
Сущность методики	6
Средства измерений	6
Вспомогательные устройства и лабораторная посуда	7
Реактивы и материалы	8
Стандартные растворы	9
Требования безопасности	10
Требования к квалификации оператора	10
Отбор, хранение и транспортировка проб	10
Подготовка к проведению анализа	1
Подготовка проб к анализу	14
Проведение анализа	1:
Вычисление результатов измерений	18
Оформление результатов измерений	20
Оценка приемлемости результатов, получаемых в условиях воспроизводимости	20
Контроль качества	2
Контроль качества результатов измерений при реализации методики в лаборатории	22
Приложение А (обязательное). Форма представления результатов анализа	23
Приложение Б (обязательное). Методические рекомендации по отбору проб выбросов промышленных предприятий для определения массовой концентрации полихлорированных дибензо-п-диоксинов и дибензофуранов методом хромато-масс-спектрометрии	2:
	Сущность методики Средства измерений Вспомогательные устройства и лабораторная посуда Реактивы и материалы Стандартные растворы Требования безопасности Требования к квалификации оператора Отбор, хранение и транспортировка проб Подготовка к проведению анализа Подготовка проб к анализу Проведение анализа Вычисление результатов измерений Оформление результатов измерений Оценка приемлемости результатов, получаемых в условиях воспроизводимости Контроль качества Контроль качества Контроль качества результатов измерений при реализации методики в лаборатории Приложение А (обязательное). Форма представления результатов анализа Приложение Б (обязательное). Методические рекомендации по отбору проб выбросов промышленных предприятий для определения массовой концентрации полихлорированных дибензо-п-диоксинов и дибензофуранов методом хрома-

1. Назначение и область применения

Методика предназначена для идентификации и выполнения измерений массовых концентраций (далее концентраций) 17 высокотоксичных 2,3,7,8-замещенных полихлорированных дибензо-п-диоксинов (ПХДД) и дибензофуранов (ПХДФ): 2,3,7,8-ТетраХДД: 1.2.3.7.8-ПентаХДД: 1.2.3.4.7.8-ГексаХДД: 1.2.3.6.7.8-ГексаХДД: 1,2,3,7,8,9-ГексаХДД; 1,2,3,4,6,7,8-ГептаХДД; ОктаХДД; 2,3,7,8-ТетраХДФ; 1,2,3,7,8-2,3,4,7,8-ПентаХДФ; 1.2.3.4.7.8-ГексаХДФ; 1,2,3,6,7,8-ГексаХДФ; ПентаХДФ: 2.3.4.6.7.8-ГексаХДФ: 1.2.3.7.8.9-ГексаХДФ: 1.2.3.4.6.7.8-ГептаХДФ: 1.2.3.4.7.8.9-ГептаХДФ; ОктаХДФ в промышленных выбросах в атмосферу методом хромато-массспектрометрии и расчета на их основе суммарного содержания токсичных полихлорированных дибензо-п-диоксинов и дибензофуранов в пересчете на 2,3,7,8-тетрахлородибензо-п-диоксин с помощью установленных диоксиновых эквивалентов токсичности, в лабораториях, имеющих соответствующее оборудование и доказавших свою компетентность в проведении этих анализов.

Предел определения (по ГОСТ Р 52361-2005) тетра-, пента-, гекса-, гепта- и окта-хлорированных изомеров 1, 1, 2, 5, 10 пг/м 3 при объеме анализируемой пробы 10 м 3 .

Диапазон определяемых массовых концентраций ПХДД и ПХДФ составляет 1 - $1000~\rm nr/m^3$ при объеме анализируемой пробы $10~\rm m^3$. В случае, когда концентрация какого-либо конгенера в анализируемой пробе находится в диапазоне $1000~\rm -100000~\rm nr/m^3$, применяется метод разбавления конечного экстракта (см. п. 13.3.).

Влияние возможных мешающих соединений устраняется в процессе подготовки пробы к анализу.

2. Значения характеристики погрешности методики

- 2.1. Воспроизводимость результатов измерений по методике согласно ГОСТ 17.4.3.03-85 "Общие требования к методам определения загрязняющих веществ" не должна превышать $30\,\%.$
- 2.2. Методика выполнения измерений при соблюдении всех регламентированных ею условий проведения измерений обеспечивает получение результатов измерений суммарного содержания полихлорированных дибензо-п-диоксинов и дибензофуранов в пересчете на 2,3,7,8-тетрахлордибензо-п-диоксин с погрешностью, не превышающей значений, приведённых в таблице 1.

Таблица 1 -Диапазон измерений, значения показателей точности, правильности, воспроизводимости

Диапазон	Показатель вос-	Показатель правильно-	Показатель точности
измерений, пг/м ³	производимости	сти (границы относи-	(границы относительной
	(относительное	тельной систематиче-	погрешности при веро-
	среднеквадратиче-	ской погрешности при	ятности Р=0,95), ±δ, %
	ское отклонение	вероятности Р=0,95),	
	воспроизводимо-	±δ _{c,} %	
	сти), σ _R , %		
от 1 до 1000 вкл.	30	25	65

- 2.2 Значения показателя точности методики используют при:
- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий по части качества проведения испытаний;

- оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории

3. Термины и определения

В настоящем документе приняты следующие термины и определения:

- 3.1. Полихлорированные дибензо-п-диоксины/дибензофураны (ПХДД/ПХДФ) все конгенеры дибензо-п-диоксинов и дибензофуранов с содержанием в молекуле от 1 до 8 атомов хлора.
- 3.2. Конгенер ПХДД/ПХДФ любой из индивидуальных изомеров дибензо-пдиоксина и дибензофурана с содержанием хлора от 1 до 8 атомов в молекуле.
 - 3.3. ТХДД любой изомер тетрахлордибензо-п-диоксина;

ПеХДД - любой изомер пентахлордибензо-п-диоксина;

ГкХДД - любой изомер гексахлордибензо-п-диоксина;

ГпХДД - любой изомер гептахлордибензо-п-диоксина;

ОХДД - октахлордибензо-п-диоксин;

ТХДФ - любой изомер тетрахлордибензофурана;

ПеХДФ - любой изомер пентахлордибензофурана

ГкХДФ - любой изомер гексахлордибензофурана;

ГпХДФ - любой изомер гептахлордибензофурана;

ОХДФ - октахлордибензофуран.

Порядок замещения для конкретного изомера указывается цифровым индексом, согласно правилам IUPAC, например, 1,2,3,4,5- пентахлордибензо-п-диоксин.

- 3.4 Стандарт-имитатор (SIS) смесь конгенеров ПХДД/ПХД Φ , изотопномеченных углеродом ¹³C₁₂, вводимая в пробу на стадии обработки для контроля полноты извлечения и количественных расчетов.
- 3.5 Инструментальный внутренний стандарт (RIS) изотопно-меченые углеродом $^{13}\mathrm{C}_{12}$ конгенеры ПХДД/ПХДФ, не входящие в состав SIS, вводимые в подготовленный к анализу экстракт для контроля эффективности экстракции конгенеров, входящих в состав SIS, проверки стабильности работы масс-спектрометра и оперативного контроля эффективности хроматографического разделения изомеров.
- 3.6 Ионная масс-хроматограмма масс-хроматограмма, полученная компьютерной обработкой результатов анализа и показывающая величину сигнала, создаваемого ионами с заданной массой, характеристическими для конгенеров ПХДД/ПХДФ с определенной степенью хлорирования.
- 3.7 Диоксиновый эквивалент токсичности (ДЭ) каждого конгенера ПХДД/ПХДФ определяется в соответствии с классификацией в ГН 2.1.6.014-94, аналогичной международной классификации (I-TEF), и выражается в относительных единицах по отношению к токсичности конгенера 2,3,7,8- тетрахлордибензо-п-диоксина, принимаемой за 1. (Приложение 1).
- 3.8 Суммарная токсичность пробы (суммарная концентрация в ДЭ, Приложение 1) представляет собой сумму произведений концентраций каждого конгенера на соответствующий эквивалент токсичности. Именно эта величина нормируется в гигиенических нормативах.
- 3.9. Изокинетический метод отбора отбор проб при равенстве скоростей газа, поступающего в сопло пробоотборного зонда и газа в дымоходе в точке отбора.
- 3.10. Полевая холостая проба проба, взятая на территории предприятия, без введения зонда в дымоход и без отбора воздуха пробоотборным устройством.

3.11. Лабораторная холостая проба - проба, включающая всю аналитическую процедуру, включая экстракцию, очистку, количественное определение, со всеми реактивами и материалами.

4. Сущность методики

Методика основана на улавливании ПХДД/ПХДФ из газообразных выбросов в атмосферу на аэрозольном кварцевом фильтре и полимерном сорбенте-поглотителе ХАD-2. Для контроля качества отбора и последующих количественных расчетов на сорбционный материал предварительно наносят изотопно-меченый стандарт-имитатор ПХДД/ПХДФ (SIS). После экстракции органическим растворителем материала фильтров, очистки экстрактов от сопутствующих соединений, мешающих определению ПХДД/ПХДФ, внесения инструментального изотопно-меченого внутреннего стандарта (RIS), концентрирования экстракта, содержание ПХДД/ПХДФ определяют с помощью сочетания высокоэффективной капиллярной газовой хроматографии и массспектрометрии (ГХ-МС).

Методика отбора проб промышленных выбросов описана в приложении "Методические рекомендации по отбору проб выбросов промышленных предприятий для определения массовой концентрации полихлорированных дибензо-п-диоксинов и дибензофуранов методом хромато-масс-спектрометрии".

Идентификацию конгенеров ПХДД/ПХДФ осуществляют по хроматографическим временам удерживания, наличию характеристических ионов в масс-спектрах хроматографически выделенного конгенера и соотношению интенсивностей (площадей) пиков, отвечающих характеристическим ионам идентифицируемых компонентов и стандартов-имитаторов на регистрируемых ионных масс-хроматограммах.

Концентрации конгенеров ПХДД/ПХДФ определяют по площадям соответствующих хроматографических пиков на ионных масс-хроматограммах по методу изотопного разбавления и внутреннего стандарта.

5. Средства измерений

- 5.1. Хромато-масс-спектрометрическая система, включающая:
- газовый хроматограф, (Trace GC, Agilent Technology 6890 или другой, с характеристиками, не уступающими указанным хроматографам), позволяющий работать с капиллярными колонками, инжектором split-splitless или оп-column, соединенный с масс-спектрометром высокого или низкого разрешения, позволяющим регистрировать отдельные ионы с заданными массами в диапазоне 50 600 а.е.м. при ионизации пробы в режиме электронного удара или химической ионизации с детектированием отрицательно заряженных ионов, оснащенный компьютерной системой обработки данных (ThermoFinnigan 95XL или DFS, Waters AutoSpec, Agilent Technology HP 5975, JMS-700, Varian-320MS, ITMS-240MS, ITQ 900GC/MS, TSQ Quantum или другие, с характеристиками, не уступающими указанным приборам). Чувствительность системы ГХ-МС должна обеспечивать регистрацию не менее 1 пг 2,3,7,8 ТХДД при отношении сигнал/шум равном 5.
- капиллярные хроматографические колонки длиной 25 60 м, внутренним диаметром 0,15 0,32 мм с неполярной или слабополярной неподвижной фазой типа DB-5ms, SGE BPX5, Ultra-2 и др. и полярной неподвижной фазой SP 2331, CP Sil 88, DB-DIOXIN, (допускается использование и других колонок с неподвижными фазами, обеспечивающими разделение 2,3,7,8-замещенных и других изомеров ПХДД и ПХДФ);

- 5.2. Микрошприцы хроматографические, на $10~{\rm mm}^3$, ценой деления $0,1~{\rm mm}^3$, например Hamilton 700 серии.
- 5.3. Термометр технический ртутный прямой с диапазоном измеряемой температуры от 0 до 100 °C и ценой деления 1 °C, ТУ 25-2022.0006.90.
- 5.4. Термометр технический ртутный прямой с диапазоном измеряемой температуры от 0 до 500 °C и ценой деления 2 °C, ТУ 25-2022.0006.90.
- 5.5. Автоматические дозаторы на объем $100 1000 \text{ мм}^3$, точность $\pm 0.8 \%$, например Eppendorf артикул Epp 3111.000.165.
- 5.6. Автоматические дозаторы на объем $10 100 \text{ мм}^3$, точность $\pm 0,6 \%$, например Eppendorf артикул Epp 3111.000.149.
- 5.7. Цилиндры мерные исполнения 3 вместимостью 25, 50, 100, 1000 см³, ГОСТ 1770-74.
 - 5.8. Колбы мерные наливные 2-25-2, 2-50-2, ГОСТ 1770-74.
 - 5.9. Пипетки 1-2-1, 2-2-5, ГОСТ 29227-91.
- 5.10. Весы лабораторные специального или высокого класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г, ГОСТ 24104-2001.

6. Вспомогательные устройства и лабораторная посуда

- 6.1. Ротационный испаритель типа ИР-1 М2 по ТУ 25-1173 102-84.
- 6.2. Сушильный шкаф типа 2B- 151 по MPTУ 42-1411-61 или аналогичный .
- 6.3. Плитка электрическая с закрытой спиралью мощностью 800 Вт типа ЭПШ-1-0.8/200 по ГОСТу 14919-83.
 - 6.4. Устройство для встряхивания жидкостей любого типа.
- 6.5. Концентратор Кудерна-Даниша с испарительной колбой вместимостью 50 см³, концентрирующей пробиркой вместимостью 10 см³ и трехшариковой колонкой Снайдера фирмы Supelco или аналогичный.
 - 6.6. Эксикатор 2-250 ГОСТ 25336-82.
 - 6.7. Аппарат Сокслета 45/40 250;
 - 6.8. Колонка стеклянная длиной 500 мм и внутренним диаметром 25 мм.
 - 6.9. Колонка стеклянная длиной 200 мм и внутренним диаметром 14 мм.
 - 6.10. Колонка стеклянная длиной 150 мм и внутренним диаметром 10 мм.
- 6.11. Флаконы для образцов с коническим дном и герметичной пробкой типа Wheaton Mini-Vials вместимостью 1, 3, 5 и 10 см³.
- 6.12. Флаконы для образцов с герметичной пробкой вместимостью 1, 3, 5, 10 и $30~{\rm cm}^3$.
- 6.13. Резервуар стеклянный Мишель-Миллер с тефлоновыми пробками длиной 450 см и внутренним диаметром 25 мм, Aldrich Chemical Company Z 17, 951-5.
 - 6.14. Посуда и оборудование лабораторные стеклянные по ГОСТ 25336-82: воронки лабораторные В-36-50, В-100-150;

дефлегматор 250-14/23-29/32-ТС;

колбы конические вместимостью $K_{\rm H}$ -1-100-14/23 TC, $K_{\rm H}$ -1-250-24/29 TC; колбы круглодонные K-1-500-29/32 TC, K-1-1000-29/32 TC, K-1-2000-29/32 TC; колбы грушевидные K-1-50-14/23, K-1-100-14/23, K-1-250-29/32;

насос водоструйный:

стаканы В-1-50 ТС, В-1-100 ТС;

холодильник ХПТ-1-300-14/23 ХС;

Трубка стеклянная длиной 15 см, внешним диаметром 7 мм, внутренним диаметром 3,5 мм.

- 6.15. Трубки полиэтиленовые внешним диаметром 2 мм.
- 6.16. Трубки из силиконовой резины.
- 6.17. Резистор ПЭВ-15 8200 Ом, ТУ ОЖО467546.
- 6.18. Баллон со сжатым воздухом.
- 6.19. Редуктор кислородный.

Допускается использование вспомогательных устройств и лабораторной посуды других марок, обеспечивающих проведение анализа с заданной погрешностью.

7. Реактивы и материалы

- 7.1. Ацетон о.с.ч., ТУ-6-09-3513-86.
- 7.2. Толуол, х.ч., ТУ 6-09-4305-76.
- 7.3. Метанол, х.ч, ГОСТ 6995-77.
- 7.4. н-Гексан х.ч., ТУ 6-09-3375-73.
- 7.6. Метиленхлорид х.ч., ТУ 6-09-06-856-71.
- 7.6. Спирт этиловый ГОСТ 18300-87.
- 7.7. н-Тридекан ч., ТУ 6-09-3732-74.
- 7.8. Кислота серная, хч, ГОСТ 4204-77.
- 7.9. Натрий сернокислый безводный, хч, ГОСТ 4166-76.
- 7.10. Натрий хлористый х.ч., ГОСТ 4233-77, водный раствор с массовой долей 5 %.
 - 7.11. Кальций хлористый безводный ч., ТУ 6-09-4711-81.
 - 7.12. Цезий гидроксид 1-водный, х.ч., ТУ 6-09-04-88-82 или Aldrich-Chemie .
 - 7.13. Калия гидроокись х.ч., ГОСТ 24363-80, водный раствор с массовой долей 20 %.
- 7.14. Алюминий оксид для хроматографии, 100-200 mech, Bio-Rad, кат. № 132-1340.
 - 7.16. Гелий марки В, ТУ 51-940-80.
 - 7.16. Азот о.с.ч., ГОСТ 9293-74.
 - 7.17. Целит 545, Alltech.
 - 7.18. Силикагель Kieseigel 60, 70-230 мкм (E.Merk).
 - 7.19. Аммоний сернокислый ч.д.а., ГОСТ 3769-78.
 - 7.20. Вата медицинская гигроскопическая, ГОСТ 5556-81
 - 7.21. Вода дистиллированная, ГОСТ 6709-72.
 - 7.22. н-Декан.
 - 7.23. Полимерный сорбент XAD-2 (E.Merk).
 - 7.24. Аэрозольный фильтр Pallflex 25000-UP.
 - 7.26. Аэрозольный фильтр MFS GC 50.
 - 7.27. Кварцевый аэрозольный фильтр TFA41 Glass Fiber 102 мм (Staplex US).

Допускается использование реактивов и материалов других марок, номинальные и метрологические характеристики которых не хуже вышеприведенных, после их проверки путем проведения всей процедуры анализа с применением этих реагентов для холостого опыта и проанализированных ранее проб с добавлением известного количества определяемых компонентов и оценки полученных результатов с учетом характеристик погрешности.

8. Стандартные растворы¹

8.1. Стандартный раствор изотопно-меченого стандарта-имитатора – SIS, (номер по каталогу CIL EDF4053), с погрешностью содержания каждого компонента не хуже $\pm 10\%$ состава (таблица 2).

Таблица 2 - Состав стандарта-имитатора EDF-4053

Конгенер ПХДД/ПХДФ	Концентрация, мкг/см ³
2,3,7,8 – ТХДД (¹³ C ₁₂ 99 %)	1,0
$1,2,3,7,8 - $ ПеХДД (13 C ₁₂ 99 %)	1,0
$1,2,3,6,7,8 - \Gamma x X ДД (^{13}C_{12} 99 \%)$	1,0
$1,2,3,4,6,7,8 - \Gamma п X ДД (^{13}C_{12} 99 \%)$	
OXДД (¹³ C ₁₂ 99 %)	2,0
$2,3,7,8$ – ТХДФ (13 C ₁₂ 99 %)	1,0
$1,2,3,7,8 - \text{ПеХДФ} (^{13}\text{C}_{12} 99 \%)$	1,0
$1,2,3,6,7,8 - \Gamma x X Д \Phi (^{13}C_{12} 99 \%)$	1,0
$1,2,3,4,6,7,8 - \Gamma п X Д \Phi (^{13}C_{12} 99 \%)$	1,0

8.2. Стандартный раствор изотопно-меченого инструментального внутреннего стандарта – RIS, (номер по каталогу СІL EDF4055), с погрешностью содержания каждого компонента не хуже \pm 10 % состава:

$$1,2,3,4-$$
 ТХДД (13 С $_{12}$ 99 %) 0,5 мкг/см 3 1,2,3,7,8,9 $-$ ГхХДД (13 С $_{12}$ 99 %) 0,5 мкг/см 3

8.3. Стандартный раствор 17 токсичных конгенеров ПХДД/ПХДФ, производства Cambridge Isotope Laboratory (номер по каталогу CIL EDF-7999-10х), с погрешностью содержания каждого компонента не хуже \pm 10 % состава (таблица 3):

Таблица 3 - Состав стандартного раствора EDF-7999-10x

Конгенер ПХДД	Концент-	Конгенер ПХДФ	Концентрация,
	рация, нг/см3		нг/см ³
2,3,7,8-ТХДД	400	2,3,7,8-ТХДФ	400
1,2,3,7,8-ПеХДД	2000	1,2,3,7,8-ПеХДФ	2000
1,2,3,4,7,8-ГкХДД	2000	2,3,4,7,8-ПеХДФ	2000
1,2,3,6,7,8-ГкХДД	2000	1,2,3,4,7,8-ГкХДФ	2000
1,2,3,7,8,9-ГкХДД	2000	1,2,3,6,7,8-ГкХДФ	2000
1,2,3,4,6,7,8-ГпХДД	2000	2,3,4,6,7,8-ГкХДФ	2000
ОХДД	4000	1,2,3,6,7,8-ГкХДФ	2000
		2,3,4,6,7,8-ГкХДФ	2000
		1,2,3,7,8,9-ГкХДФ	2000
		1,2,3,4,6,7,8-ГпХДФ	2000
		ОХДФ	4000

 $^{^{1}}$ Примечание 1: В настоящее время синтетические аналоги ПХДД/ПХДФ, меченные изотопом углерода 13 С $_{12}$, выпускаются компаниями Cambridge Isotope Laboratory (CIL), США, Wellington Laboratories (Канада). Для анализа могут быть использованы также аттестованные стандарты производства других производителей, метрологические характеристики которых не уступают вышеприведенным. (В методике приводится наиболее оптимальный, по мнению разработчиков, вариант).

9. Требования безопасности

Всего существуют 75 различных ПХДД и 135 ПХДФ, отличающихся количеством и местом присоединения атомов хлора. Наиболее токсичны 17 изомеров ПХДД и ПХДФ, замещенные атомами хлора в 2,3,7,8-положениях. Самым токсичным является 2,3,7,8-тетрахлордибензо-п-диоксин (2,3,7,8-ТХДД), который представляет собой кристаллическое вещество с температурой плавления $305-307\,^{\circ}$ С, растворимостью в воде $2\times10^{-8}\,^{\circ}$ %, химически инертное, термостойкое, не разлагаемое кислотами и щелочами. 2,3,7,8-ТХДД высокотоксичен даже в малых концентрациях. Токсичность других ПХДД и ПХДФ выражается в эквивалентах токсичности (диоксиновых эквивалентах, ДЭ) - долях от токсичности 2,3,7,8-ТХДД, принятой за единицу (см. Приложение A).

Требования безопасности устанавливают в соответствии со специальными инструкциями по работе с диоксином (например, "Инструкция по технике безопасности по работе с 2,3,7,8 -ТХДД", утверждена 3 ГУ при МЗ СССР от 02.12.1986 г.).

Помещения лаборатории должны соответствовать требованиям пожарной безопасности по Γ OCT 12.1.004-91.

Помещения, в которых проводятся подготовка проб, должны быть оборудованы приточно-вытяжной вентиляцией. Исходные стандартные образцы для приготовления градуировочных растворов и аттестованных смесей должны храниться в запираемом металлическом шкафу.

Все операции по приготовлению аттестованных смесей и градуировочных растворов, содержащих ТХДД и его меченые аналоги, добавление стандартов к образцу, подготовку образца к анализу, следует проводить под тягой в вытяжном шкафу.

Пробы, подготовленные к анализу, и растворы стандартных образцов, градуировочных и контрольных растворов, аттестованных смесей следует держать в ампулах, закрытых завинчивающейся или запрессованной крышкой с тефлонированной резиновой прокладкой, прокалываемой микрошприцем.

Меры по оказанию первой помощи при попадании диоксина и его растворов на кожу, в глаза и желудок проводят в соответствии с "Временной инструкцией по лечению отравлений диоксином", утвержденной заместителем Министра здравоохранения СССР от 10 сентября 1986 г.

10. Требования к квалификации оператора

Подготовку проб может производить специалист с образованием не ниже среднего, прошедший соответствующую подготовку и имеющий навыки работы в химической лаборатории. Анализ может проводить специалист с образованием не ниже среднего, имеющий навыки работы на газовом хроматографе и масс-спектрометре. Все работающие должны быть проинструктированы о работе с веществами 1 - 2 класса опасности, органическими растворителями, правилах работы в химической лаборатории и работы с электроустановками.

11. Отбор, хранение и транспортировка проб

Отбор проб выбросов в атмосферу для определения содержания ПХДД и ПХДФ производят согласно "Методическим рекомендациям по отбору проб выбросов промышленных предприятий для определения массовой концентрации полихлорированных дибензо-п-диоксинов и дибензофуранов методом хромато-масс-спектрометрии", являющимися обязательным приложением к данной методике. Отбор проб производят,

прокачивая последовательно воздух через обогреваемый аэрозольный фильтр, систему ловушек и сорбент XAD-2. Объем отбираемой пробы $2-10 \text{ m}^3$.

Экспонированный аэрозольный фильтр складывают фронтальным слоем внутрь и заворачивают в пакет из алюминиевой фольги. Картридж с XAD-2 герметически зарывают притертыми крышками. Содержимое ловушек количественно переносят в стеклянную колбу, ополаскивают каждую ловушку ацетоном дважды и объединяют смывы с конденсатом. Хранят конденсат при температуре 4 °C без доступа солнечного света.

Экспонированные фильтры и сорбенты могут храниться до 2-x месяцев при температуре -20 °C без доступа прямого солнечного света.

Возможна транспортировка проб при комнатной температуре при длительности транспортировки, не превышающей трое суток.

12. Подготовка к проведению анализа

- 12.1. Подготовка растворителей и сорбентов.
- 12.1.1. Подготовка растворителей. Органические растворители перегоняют в стеклянной посуде.

К 4 дм 3 гексана добавляют 150 г силикагеля, импрегнированного серной кислотой (способ приготовления см. п. 10.1.3.) и встряхивают в течение 6 - 8 часов. Растворитель декантируют и перегоняют с дефлегматором "елочкой" длиной 50 см, отбрасывая предгон (5%) и кубовый остаток (\sim 5%).

Растворители с маркой "pesticide grade" (для анализа пестицидов) могут использоваться без дополнительной очистки.

12.1.2. Активирование силикагеля и оксида алюминия.

Силикагель активируют в сушильном шкафу при 130 °C в течение 17 ч.

Оксид алюминия активируют при 400 - 450 °C в течение 17 ч в стеклянных ампулах по 4 г в каждой, после чего ампулы запаивают, не допуская их охлаждения ниже 200 °C.

- 12.1.3. Силикагель, импрегнированный серной кислотой. Смесь 150 г активированного силикагеля и 100 г концентрированной серной кислоты помещают в колбу с притертой пробкой и перемешивают на встряхивателе или качалке до отсутствия комков (не менее 30 мин.).
 - 12.1.4. Силикагель, импрегнированный щелочами.
 - 12.1.4.1. Силикагель, импрегнированный гидроксидом цезия.

Готовят раствор гидроксида цезия в метаноле, для чего 150 г гидроокиси цезия растворяют в 50 см 3 метанола.

К 250 г активированного силикагеля приливают раствор гидроксида цезия в метаноле и перемешивают до отсутствия комков, добавляют еще 250 см³ метанола и кипятят в течение 1,5 ч., фильтруют под вакуумом, промывают 500 см³ метанола и 500 см³ хлористого метилена, сушат в эксикаторе в вакууме. Возможна замена гидроксида цезия на гидроксид калия.

12.1.4.2. Силикагель, импрегнированный гидроксидом калия.

Готовят раствор гидроксида калия в метаноле, для чего $150~\mathrm{r}$ гидроксида калия растворяют в $500~\mathrm{cm}^3$ метанола.

К 500 г силикагеля приливают 500 см 3 раствора гидроксида калия в метаноле и перемешивают до отсутствия комков. Смесь выдерживают ночь в закрытой посуде, отфильтровывают и сушат током воздуха (воздух для сушки пропускают через трубку, заполненную гидроксидом натрия для удаления CO_2). Импрегнированный силикагель активируют в сушильном шкафу при 130 °C в течение 17 часов.

12.1.5. Натрий сернокислый прокаливают при температуре 300 - 400 °C в течение 17 ч.

При подготовке и использовании каждой новой партии реактивов и материалов или замене одного из них проводят проверку путем выполнения всей процедуры анализа для холостого опыта и контрольной аттестованной смеси, оценивая результаты с учетом характеристик погрешности.

Допускается использование других растворителей и сорбентов, обеспечивающих проведение анализа с заданной погрешностью.

12.2. Приготовление градуировочных растворов, растворов изотопно-меченых стандартов-имитаторов, а также инструментального внутреннего стандарта.

Градуировочные растворы, представляющие собой смеси индивидуальных нативных и изотопно-меченых ПХДД/ПХДФ, используют для проверки времен удерживания определяемых ПХДД/ПХДФ, линейности диапазона детектирования и расчета коэффициентов чувствительности анализируемых конгенеров.

В качестве базового раствора нативных конгенеров ПХДД/ПХДФ используется смесь индивидуальных ПХДД/ПХДФ в нонане EDF-7999-10х производства компании Cambridge Isotope Laboratories, Inc., США.

В качестве базового раствора стандарта-имитатора используют стандартный раствор изотопно-меченных углеродом 13 C₁₂ конгенеров ПХДД/ПХДФ в нонане EDF-4053 производства компании Cambridge Isotope Laboratories, Inc., США.

12.2.1. Приготовление градуировочных растворов.

а) Раствор CS1.

Используя регулируемые автоматические дозаторы Eppendorf на объемы $100 - 1000 \text{ мм}^3 \text{ и } 10 - 100 \text{мм}^3$, последовательно вносят в виалу емкостью 4 см 3 3830 мм 3 н-декана, 10 мм^3 базового раствора EDF-7999-10х и 160 мм^3 раствора EDF-4053.

б) Раствор CS2.

Используя регулируемые автоматические дозаторы Eppendorf на объемы $100 - 1000 \text{ мм}^3$ и $10 - 100 \text{мм}^3$, последовательно вносят в виалу емкостью 4 см^3 1870 мм^3 н-декана, 50 мм^3 базового раствора EDF-7999-10х и 80 мм^3 раствора EDF-4053.

в) Раствор CS3.

Используя регулируемые автоматические дозаторы Eppendorf на объемы $100 - 1000 \text{ мм}^3$ и $10 - 100 \text{мм}^3$, последовательно вносят в виалу емкостью 2 см^3 910 мм^3 н-декана, 50 мм^3 базового раствора EDF-7999-10х и 40 мм^3 раствора EDF-4053.

г) Раствор CS4.

Используя регулируемые автоматические дозаторы Eppendorf на объемы $100-1000~{\rm mm}^3$ и $10-100{\rm mm}^3$, последовательно вносят в виалу емкостью $2~{\rm cm}^3~860~{\rm mm}^3$ н-декана, $100~{\rm mm}^3$ базового раствора EDF-7999- $10{\rm x}$ и $40~{\rm mm}^3$ раствора EDF-4053.

д) Раствор CS5.

Используя регулируемые автоматические дозаторы Eppendorf на объемы $100 - 1000 \text{ мм}^3$ и $10 - 100 \text{мм}^3$, последовательно вносят в виалу емкостью 2 см^3 760 мм^3 н-декана, 200 мм^3 базового раствора EDF-7999-10 x и 40 мм^3 раствора EDF-4053.

Концентрации градуировочных растворов (нг/см³) приведены в таблице 4.

Приготовленные градуировочные растворы могут храниться в герметически закрытых виалах при температуре не выше -10 °C без доступа солнечного света не долее 6 месяцев, в стеклянных запаянных ампулах не более 2 лет.

Таблица 4. -Концентрации градуировочных растворов (нг/см³)

Конгенер ПХДД/ПХДФ	CS1	CS2	CS3	CS4	CS5
2,3,7,8-ТХДД	1	10	20	40	80
1,2,3,7,8-ПеХДД	5	50	100	200	400
1,2,3,4,7,8-ГкХДД	5	50	100	200	400
1,2,3,6,7,8-ГкХДД	5	50	100	200	400
1,2,3,7,8,9-ГкХДД	5	50	100	200	400
1,2,3,4,6,7,8-ГпХДД	5	50	100	200	400
ОХДД	10	100	200	400	800
2,3,7,8-ТХДФ	5	50	100	200	400
1,2,3,7,8-ПеХДФ	5	50	100	200	400
2,3,4,7,8-ПеХДФ	5	50	100	200	400
1,2,3,4,7,8-ГкХДФ	5	50	100	200	400
1,2,3,6,7,8-ГкХДФ	5	50	100	200	400
2,3,4,6,7,8-ГкХДФ	5	50	100	200	400
1,2,3,6,7,8-ГкХДФ	5	50	100	200	400
2,3,4,6,7,8-ГкХДФ	5	50	100	200	400
1,2,3,7,8,9-ГкХДФ	5	50	100	200	400
1,2,3,4,6,7,8-ГпХДФ	5	50	100	200	400
ОХДФ	10	100	200	400	800
2,3,7,8- ТХДД (¹³ C ₁₂ 99%)	40	40	40	40	40
$1,2,3,7,8$ -ПеХДД(13 C ₁₂ 99%)	40	40	40	40	40
$1,2,3,6,7,8$ – Γ хХДД (13 C ₁₂ 99%)	40	40	40	40	40
$1,2,3,4,6,7,8$ –ГпХДД (13 С $_{12}$ 99%)	40	40	40	40	40
ОХДД (¹³ C ₁₂ 99%	80	80	80	80	80
$2,3,7,8 - ТХДФ (^{13}C_{12} 99\%)$	40	40	40	40	40
1,2,3,7,8-ПеХДФ (¹³ C ₁₂ 99%	40	40	40	40	40
$1,2,3,6,7,8 - \Gamma x X Д \Phi (^{13}C_{12} 99\%)$	40	40	40	40	40
$1,2,3,4,6,7,8$ –ГпХДФ(13 С ₁₂ 99%)	40	40	40	40	40

12.2.2. Приготовление рабочего раствора изотопно-меченого стандарта-имитатора.

Для приготовления рабочего раствора изотопно-меченого стандарта-имитатора SIS-1 в мерную колбу емкостью 50 см³ вносят автоматическим регулируемым дозатором Eppendorf 1000 мм³, стандартного раствора по п. 8.1 (EDF4053) и доводят объем раствора до метки н-деканом. Обозначают полученный рабочий раствор как SIS-1. Концентрации конгенеров имитаторов в рабочем растворе (нг/см³) приведены в таблице 5.

Таблица 5 -Концентрации конгенеров имитаторов в рабочем растворе (нг/см³)

Taosinga 5Rongent pagnin kom enepob imintatopob b paco 4em paetbope (m/em/).				
Конгенер ПХДД/ПХДФ	SIS	SIS-1		
2,3,7,8- ТХДД (¹³ C ₁₂ 99 %)	1000	20		
1,2,3,7,8-ПеХДД(¹³ С ₁₂ 99 %)	1000	20		
1,2,3,6,7,8–ГхХДД (¹³ C ₁₂ 99 %)	1000	20		
1,2,3,4,6,7,8–ГпХДД (¹³ C ₁₂ 99 %)	1000	20		
ОХДД (¹³ C ₁₂ 99 %)	2000	40		
2,3,7,8 – ТХДФ (¹³ C ₁₂ 99 %)	1000	20		
$1,2,3,7,8 - \Pi e X Д \Phi (^{13}C_{12} 99 \%)$	1000	20		
$1,2,3,6,7,8 - \Gamma x X Д \Phi (^{13}C_{12} 99 \%)$	1000	20		

$[1,2,3,4,6,7,8 - \Gamma \Pi X Д \Phi (^{13}C_{12} 99 \%)]$	1000	20

Приготовленный раствор перемешивают на ультразвуковой бане 10 мин, расфасовывают в стеклянные ампулы по 1 см^3 . Ампулы запаивают и хранят до использования без доступа солнечного света не более 2 лет.

12.2.3. Приготовление рабочего раствора инструментального внутреннего стандарта.

Для приготовления рабочего раствора изотопно-меченого инструментального внутреннего стандарта в мерную колбу емкостью 10 см³ вносят автоматическим регулируемым дозатором Eppendorf 1000 мм³ стандартного раствора по п. 8.2 (EDF4055) и доводят объем раствора до метки н-тридеканом. Обозначают полученный рабочий раствор внутреннего стандарта как RIS-1. Концентрации конгенеров в рабочем растворе внутреннего стандарта RIS-1 (нг/см³) приведены в таблице 6.

Таблица 6.- Концентрации конгенеров в рабочем растворе RIS-1 (нг/см³)

Конгенер ПХДД/ПХДФ	RIS	RIS-1
$1,2,3,4-$ ТХДД (13 С $_{12}$ 99 %)	500	50
$2,3,7,8,9 - \Gamma x X$ ДД ($^{13}C_{12}$ 99 %)	500	50

Приготовленный раствор перемешивают на ультразвуковой бане 10 мин, расфасовывают в стеклянные ампулы по 1cm^3 . Ампулы запаивают и хранят до использования без доступа солнечного света не более 2 лет.

12.2.4. Приготовление контрольной смеси ПХДД/ПХДФ С-1.

Используя регулируемые автоматические дозаторы Eppendorf на объемы $100 - 1000 \text{ мм}^3$ и $10 - 100 \text{ мм}^3$, последовательно вносят в виалу емкостью 4 см^3 1950 мм^3 н-декана, 50 мм^3 базового раствора EDF-7999-10х. Полученный раствор содержит 10 нг/см^3 , 2,3,7,8-ТХДД, по 100 нг/см^3 ОХДД и ОХДФ и по 50 нг/см^3 остальных конгенеров ПХДД/ПХДФ.

Приготовленный раствор перемешивают на ультразвуковой бане 10 мин, расфасовывают в стеклянные ампулы по 1 см 3 . Раствор используют для приготовления контрольных проб.

12.2.5. Приготовление контрольной пробы.

Подготовленный для отбора XAD-2 помещают в стеклянный контейнер 500 см 3 , наносят на поверхность материала дозатором 50 мм 3 контрольного раствора C-1, выдерживают в течение 1 часа и герметически закрывают контейнер.

Полученная контрольная проба содержит 0,5 нг 2,3,7,8-ТХДД, 5,0 нг ОХДД и ОХДФ и по 2,5 нг остальных конгенеров ПХДД/ПХДФ. Контрольная проба анализируют в одной серии с отобранными пробами выбросов.

13. Подготовка проб к анализу

- 13.1. Экстракция ПХДД/ПХДФ из аэрозольного фильтра, сорбента XAD-2 и конденсата.
- 13.1.1. Экспонированный аэрозольный фильтр взвешивают с точностью до 0,1 мг, с помощью дозатора или пипетки вносят на фильтр 0,05 см³ рабочего раствора изотопно-меченых стандартов-имитаторов SIS-1 (по п.12.2.2.), и выдерживают 2 часа при комнатной температуре. Помещают фильтр в стеклянный стакан и добавляют 100 см³ 1N раствора соляной кислоты и выдерживают в течение 8-х часов при комнатной температуре. Затем фильтр промывают дистиллированной водой на воронке Бюхнера до нейтральной реакции и высушивают при температуре 60 °C до воздушно-сухого состояния. Высушенный образец экстрагируют в аппарате Сокслета в течение 8 часов

толуолом. Экстракт концентрируют на роторном испарителе до объема 1,5-2 см³. Обозначают экстракт как 31.

- 13.1.2. Полимерный сорбент XAD-2 количественно переносят из сорбционной колонки в аппарат Сокслета, обмывая стенки колонки ацетоном, с помощью дозатора или пипетки вводят 0,05 см³ рабочего раствора изотопно-меченых стандартов-имитаторов SIS-1 (по п. 12.2.2.), и экстрагируют ацетоном в течение 4 часов. Экстракт концентрируют на роторном испарителе до объема 1,5 2 см³ и сохраняют. Повторно экстрагируют сорбент толуолом в течение 16 часов. Объединяют экстракты и концентрируют на роторном испарителе до объема 1,5 2 см³. Если в экстракте наблюдается выделение фазы воды, сушат экстракт добавлением 0,5 1 г безводного сульфата натрия. Полученный экстракт обозначают как Э2.
- 13.1.3. Содержимое жидкостных ловушек количественно переносят в делительную воронку, ополаскивают каждую ловушку 30 см³ ацетона, добавляя смывы в делительную воронку, и экстрагируют дважды 20 см³ толуола. Экстракты объединяют и концентрируют на роторном испарителе до объема 1,5 2 см³. Обозначают экстракт как Эз.

13.2. Очистка экстрактов.

Если не предполагается раздельное определение содержания ПХДД/ПХДФ в паро-газовой и аэрозольной форме, экстракты Э1, Э2, Э3 объединяют и очищают методом колоночной хроматографии. При раздельном определении объединяют экстракты Э2 и Э3 и очищают методом колоночной хроматографии. Экстракт Э1 очищают и анализируют отдельно.

13.2.1. Подготовка "многослойной" колонки с модифицированным силикагелем.

В стеклянную колонку длиной 150 мм и внутренним диаметром 14 мм помещают подложку из стеклянной ваты, на которую помещают 1 см³ нейтрального силикагеля, 1 см³ силикагеля, импрегнированного гидроксидом цезия (калия), 1 см³ сульфата натрия, 1 см³ силикагеля, импрегнированного серной кислотой, 1 см³ сульфата натрия, 1 см³ силикагеля, импрегнированного серной кислотой, 1 см³ сульфата натрия и 1 см³ нейтрального силикагеля.

13.2.2. Очистка на "многослойной" колонке.

Экстракт вносят в колонку с модифицированным силикагелем. Смывают остатки из концентрирующей пробирки двумя порциями по 5 см³ гексана и также переносят в колонку. После прохождения раствора колонку промывают 50 см³ гексана, выдувая остаток растворителя током воздуха. Экстракты объединяют и далее очищают на колонке с оксидом алюминия.

13.2.3. Подготовка колонки с оксидом алюминия.

В стеклянную колонку длиной 150 мм и внутренним диаметром 10 мм помещают подложку из волокнистого кварцевого материала и 4 г оксида алюминия, а сверху - $2 \, \mathrm{cm}^3$ сернокислого натрия.

13.2.4. Очистка на колонке с оксидом алюминия.

Экстракт пропускают через колонку с оксидом алюминия. Колонку промывают последовательно $30~{\rm cm}^3$ гексана, $40~{\rm cm}^3$ смеси гексана и метиленхлорида (95:5 объем.) и элюируют целевую фракцию $50~{\rm cm}^3$ смеси гексана и метиленхлорида (50:50 объем.). Элюат упаривают до объема около $2~{\rm cm}^3$ в колбе с дефлегматором. Последовательно, по частям (\sim 0,5 cm 3) элюат переносят во флакон Mini-Vial с коническим дном вместимостью $1~{\rm cm}^3$, добавляют 0,01 cm 3 рабочего раствора инструментального внутреннего стандарта RIS-1 (по п. 12.2.3) и упаривают в токе азота до полного испарения растворителя (кроме тридекана).

Подготовленные для анализа пробы (конечные экстракты) могут храниться до 40 суток при температуре не выше 4 °C.

13.3. Разбавление конечного экстракта.

Операцию проводят только в тех случаях, когда сигналы тех или иных определяемых конгенеров превышают их сигналы, полученные для наиболее концентрированного из градуировочных растворов (CS5), при этом первый анализ для этих конгенеров рассматривается как предварительный. Разбавляют экстракты раствором внутреннего стандарта (RIS-1). Объем добавленного раствора рассчитывается исходя из того, чтобы сигнал после разбавления составлял приблизительно половину сигнала этого же конгенера в растворе CS5. Раствор добавляют шприцем соответствующего объема. Затем проводят окончательный анализ данного конечного экстракта, учитывая разбавление.

14. Проведение анализа

14.1. Подготовка аппаратуры.

а) хроматографическая программа

Хромато-масс-спектрометрическую систему готовят к работе в соответствии с инструкцией по эксплуатации для проведения анализа в режиме селективного детектирования характеристических ионов аналитов и изотопно-меченых стандартов.

Устанавливают программу анализа для хроматографического разделения конгенеров ПХДД/ПХДФ с использованием неполярной колонки типа DB-5MS.

Примерный вид программы приведен ниже:

u) -pominto-purpi recitionpo-pumin	
Режим инжектора	без деления потока (splitless)
Задержка продувки инжектора	1 мин
Время сброса растворителя	5 мин
Тип колонки	DB-5MS
Длина колонки	30 м
Диаметр колонки	0,25 мм
Толщина плёнки фазы	0,25 μ
Программирование температуры:	
Начальная температура колонки	160 °C
Начальное время задержки	1 мин
Скорость нагрева колонки	10 °С /мин до 220 °С, 3 °С /мин до 300 °С
Температура инжектора	290 °C
Скорость потока гелия через колонку	1 см ³ /мин
б) режим масс-спектрометра	
Температура интерфейса	290 °C
Температура ионного источника	250 °C
Селективное сканирование	массы ионов в табл. 7.
Энергия ионизирующих электронов	50 - 70 oB
Инжектируемый объём	1 mm ³

Устанавливают программу работы масс-спектрометра для селективного детектирования характеристических ионов аналитов с массами, указанными в таблице 7.

Таблица 7. Массы регистрируемых ионов и соотношение площадей их пиков на масс-

хроматограммах.

Соединение	M1	M2	Соотношение площадей
		_	пиков
ТХДД	319,897	321,894	0,77
ТХДФ	303,902	305,899	0,77
ПеХДД	355,855	357,852	1,32
ПеХДФ	339,860	341,857	1,32
ГкХДД	389,816	391,813	1,24
ГкХДФ	373,821	375,818	1,24
ΓπΧДД	423,777	425,774	1,05
ГпХДФ	407,782	409,779	1,05
ОХДД	557,738	559,735	0,89
ОХДФ	441,743	443,740	0,89
¹³ C ₁₂ -ТХДД	331,937	333,934	0,77
13 С $_{12}$ -ТХДФ	315,942	317,939	0,77
¹³ С ₁₂ -ПеХДД	367,895	369,892	1,32
¹³ C ₁₂ -ПеХДФ	351,900	353,897	1,32
¹³ C ₁₂ -ГкХДД	401,856	403,853	1,24
¹³ С ₁₂ -ГкХДФ	383,864	385,861	1,24
13 С $_{12}$ -ГпХДД	435,817	437,814	1,05
13 С $_{12}$ -ГпХДФ	417,825	419,822	1,05
¹³ С ₁₂ -ОХДД	469,778	471,775	0,89

Примечания

- 1. При использовании масс-спектрометра низкого разрешения регистрируются ионы с соответствующими номинальными массами, напр. вместо 319,897 320 и т.д.
- 2. Для обеспечения большей достоверности результатов регистрировать три иона молекулярного кластера каждого аналита, $-(M)^+$, $(M+2)^+$, $(M+4)^+$, например ионы м/z 320,322,324 а.е.м. для ТХДД.
- 3. При использовании других изотопно-меченых стандартов в таблицу масс регистрируемых ионов включают массы их молекулярных ионов.
- 14.2. Проверяют функционирование ГХ-МС системы, вводя в инжектор хроматографа растворитель, определяют общую чувствительность прибора, фон, наличие эффектов "памяти" и артефактов. Для проверки чувствительности анализируют градуировочный раствор CS1 (п. 12.2.1.) так, как описано в п. 14.4. Оценивают чувствительность прибора по соотношению величины сигнала к шуму пика 2,3,7,8-ТХДД, которое должно быть не ниже 5:1.
- 14.3. Определяют времена удерживания 2,3,7,8-замещенных ПХДД/ПХДФ и внутренних стандартов, анализируя несколько раз градуировочный раствор CS4 (п. 12.2.1.), и измеряя в каждом опыте времена удерживания конгенеров ПХДД/ПХДФ. По результатам измерений рассчитывают средние значения времен удерживания и доверительные интервалы. Времена удерживания зависят от типа колонки и условий работы.

Относительные времена удерживания некоторых 2,3,7,8-замещенных ПХДД/ПХДФ на двух разных неподвижных фазах (неполярной и полярной) приведены в таблице 8.

Таблица 8. - Относительные времена удерживания некоторых 2,3,7,8-замещенных

ПХДД/ПХДФ

No		Неподвиж	кная фаза
п/п	Соединение	Неполярная	Полярная
		DB-5MS	SP-2331
1	1,2,3,4-ТХДД	0,99	1,02
2	2,3,7,8-ТХДД	1,00	1,00
3	1,2,3,7,8-ПеХДД	1,23	1,40
4	1,2,3,4,7,8-ГкХДД	1,46	2,08
5	1,2,3,6,7,8-ГкХДД	1,47	1,94
6	1,2,3,7,8,9-ГкХДД	1,50	2,15
7	1,2,3,4,6,7,8-ГпХДД	1,76	2,98
8	ОХДД	2,17	4,50
9	2,3,7,8-ТХДФ	0,96	0,96
10	1,2,3,7,8-ПеХДФ	1,18	1,31
11	2,3,4,7,8-ПеХДФ	1,22	1,35
12	1,2,3,4,7,8-ГкХДФ	1,39	2,01
13	1,2,3,6,7,8-ГкХДФ	1,39	2,03
14	2,3,4,6,7,8-ГкХДФ	1,43	2,07
15	1,2,3,7,8,9-ГкХДФ	1,48	2,09
16	1,2,3,4,6,7,8-ГпХДФ	1,61	2,83
17	1,2,3,4,7,8,9-ГпХДФ	1,74	2,96
18	ОХДФ	2,12	4,45

14.4. Получение градуировочной зависимости для определяемых компонентов.

Для получения градуировочной зависимости последовательно анализируют градуировочные растворы CS1-CS5, содержащие изопно-меченые стандарты и нативные вещества в широком интервале концентраций (таблица 4), инжектируя по 1 мм 3 каждого раствора. Регистрируют масс-хроматограммы для ионов с массами, указанными в таблице 7. С помощью системы обработки данных для каждого градуировочного раствора определяют относительный фактор отклика RRF_n каждого индивидуального конгенера $\Pi X \mathcal{H} / \Pi X \mathcal{H}$ относительно соответствующего изотопно-меченого конгенера стандарта-имитатора, который рассчитывают по формуле:

$$(RRF)_i = (S_{ni}) m_{si} / (S_{si}) m_{ni},$$
 (1),

где: S_{ni} – площадь пика *i*-го конгенера ПХДД/ПХДФ, полученная для соответствующего градуировочного раствора;

 S_{si} – площадь пика соответствующего изотопно-меченого конгенера в градуировочном растворе;

 m_{ni} – масса *i*-го конгенера ПХДД/ПХДФ в градуировочном растворе, нг;

 $m_{\rm si}$ — масса соответствующего изотопно-меченого конгенера в градуировочном растворе, нг.

При наличии линейности градуировочной зависимости различие величины относительного коэффициента чувствительности RRF не должно превышать $\pm~20~\%$ для всех градуировочных растворов.

Рассчитывают средние значения относительных коэффициентов чувствительности для каждого индивидуального конгенера $\Pi X D \Pi X \Delta \Phi$ для всех градуировочных растворов.

<u>Примечание</u>. Зависимость считается линейной, если коэффициент вариации значения функции RRF в каждой точке не превышает 20 %.

14.5. Получение масс-хроматограмм анализируемой пробы.

Отбирают микрошприцем 0,001 см³ анализируемого раствора и вводят в инжектор газового хроматографа в режиме splitless или on-column. Регистрируют ионные масс-хроматограммы для ионов, соответствующих определяемым ПХДД/ПХДФ и используемым стандартам-имитаторам (SIS) и внутренним стандартам (RIS) (таблица 7).

14.5.1. Условия проведения анализа.

В связи с тем, что в настоящее время не существует капиллярных колонок, способных разделить все изомеры, в ряде случаев анализ проводят в два этапа. Сначала, применяют неполярную колонку типа DB-5MS. Если обнаруживают: 1,2,3,7,8,9- Γ кХДД; 2,3,7,8-TХДФ; 2,3,4,7,8- Π еХДФ; 1,2,3,4,7,8- Γ кХДФ, то ту же пробу анализируют на полярной колонке, например, SP2331, для определения именно этих изомеров.

15. Вычисление результатов измерений

По окончании анализа с помощью системы обработки данных фиксируют на масс-хроматограммах пики в области времен удерживания, соответствующих выходу 2,3,7,8-замещенных ПХДД/ПХДФ, и ПХДД/ПХДФ, входящих в состав стандарта-имитатора и внутреннего стандарта.

15.1. Идентификация определяемых компонентов.

Вычисляют отношение площадей хроматографических пиков на реконструированных масс-хроматограммах для ионов М1 и М2, регистрируемых для каждого определяемого соединения и внутреннего стандарта, и сравнивают его с теоретическим значением, приведенным в табл. 4. Это отношение должно быть в пределах ± 15 % от теоретического значения, например, для ТХДД - от 0,65 до 0,89 (теоретическое отношение равно 0,77). Если хроматографические пики в указанной области времен удерживания имеются, но отношение площадей пиков выходит за эти пределы, то говорить о положительной идентификации по этим пикам ПХДД или ПХДФ в данной пробе нельзя. (В этом случае требуется дополнительный анализ (на хроматографической колонке с другой неподвижной фазой, с ионизацией отрицательными ионами или с применением тандемной масс-спектрометрии) или же повторный анализ после дополнительной очистки на колонке с активированным углем и на колонке с окисью алюминия).

Наличие в пробе или контрольном образце индивидуального конгенера ПХДД/ПХДФ считают установленным при соблюдении следующих условий:

- а) на всех реконструированных масс-хроматограммах, построенных по массам характеристических ионов для данного конгенера, присутствуют пики, имеющие соотношение интенсивности сигнал/шум больше или равное 3, при этом времена удерживания, определяемые по разным характеристическим пикам данного конгенера, совпадают;
- б) хроматографическое время удерживания конгенера, определяемое по положению максимума пика характеристичекого иона не отличается более чем ± 1 с от времени удерживания, определенного для данного конгенера при анализе градуировочного раствора, соотношение интенсивностей характеристических ионов на вершине пиков не отличается более, чем на 15 % от значений, приведенных в таблице 7.
 - 15.3. Вычисление концентраций определяемых компонентов

Массовую концентрацию конгенеров ПХДД/ПХДФ в анализируемой пробе C_i , $H\Gamma/M^3$ рассчитывают на основании полученных сигналов для каждого конкретного конгенера по следующей формуле:

$$C_i = (S_{ni})m_i/(S_i) (RRF)_i Q_n$$
(2),

где: S_{ni} – площадь пика i-го конгенера ПХДД/ПХД Φ на реконструированной хроматограмме;

- S_i площадь пика соответствующего изотопно-меченого стандарта-имитатора ПХЛД/ПХДФ
- Q_n объем отобранной пробы, приведенный к нормальным условиям и скорректированный на содержание кислорода 11 %, Hm^3 (Приложение Б, Б3)
 - m_i количество введенного i-го изотопно-меченого стандарта-имитатора, нг;
- $(RRF)_i$ относительный коэффициент чувствительности *i*-го конгенера ПХДД/ПХДФ, рассчитанный по формуле (1);

Коэффициент извлечения *s*-го конгенера изотопно-меченого стандарта-имитатора E_s определяется по формуле:

$$E_s = (S_s) m_r / (S_r) m_s (RRF_{sr}),$$
 (3),

где: S_s — площадь пика s-го конгенера изотопно-меченого стандарта-имитатора на реконструированной хроматограмме анализируемого образца;

- S_r площадь пика r-го конгенера изотопно-меченого инструментального внутреннего стандарта на реконструированной хроматограмме анализируемого образца;
- $m_{\rm s}$ количество введённого в анализируемый образец изотопно-меченого стандарта-имитатора, нг;
- $m_{\rm r}$ количество введенного в анализируемый образец изотопно-меченого внутреннего стандарта, нг;
- $(RRF)_{sr}$ относительный коэффициент чувствительности s-го конгенера изотопномеченого стандарта-имитатора определяется из градуировочного раствора по формуле:

$$RRF_{sr} = (S_{ss}) m_{rs} / (S_{rs}) m_{ss}$$
 (4),

- где: S_{ss} площадь пика s-го конгенера изотопно-меченого стандарта-имитатора на реконструированной хроматограмме градуировочного раствора.
- S_{rs} площадь пика r-го конгенера изотопно-меченого инструментального внутреннего стандарта на реконструированной хроматограмме градуировочного раствора.
- m_{rs} массовая доля изотопно-меченого инструментального внутреннего стандарта в градуировочном растворе, нг;
- m_{ss} массовая доля изотопно-меченого стандарта-имитатора в градуировочном растворе, нг;

Определение площадей S_n , S_i , S_s , S_r , S_{ss} , S_{rs} проводят по масс-хроматограммам либо для одного из двух ионов М1 или М2, указанных в таблице 7, либо для двух ионов с усреднением результатов, либо по сумме площадей соответствующих пиков на обеих масс-хроматограммах.

16. Оформление результатов измерений

Результат измерения X суммарного содержания полихлорированных дибензо-пдиоксинов и дибензофуранов, выраженного через диоксиновые эквиваленты токсичности представляют в виде:

 $X \pm \Delta$, P=0,95, где: X- массовая концентрация суммы определяемых компонентов в пробе, Δ = 65 %;

Результаты анализа вносят в Протокол испытаний, оформленный в соответствии с требованиями ГОСТ Р ИСО/МЭК 17025-2006, по форме таблицы Приложения 1.

Допустимо представлять результат в виде:

 $X \pm \Delta \pi$, P=0,95, при условии $\Delta \pi < \Delta$,

где Δn - значение характеристики погрешности результатов измерений, установленное при реализации методики в конкретной лаборатории и обеспечиваемое контролем стабильности результатов измерений.

<u>Примечание</u>. Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_n = 0.84 \ \Delta_n$ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Результат измерений оканчивается тем же десятичным разрядом, что и погрешность. Результаты измерений оформляют записью в журнале. Результаты измерений удостоверяются лицом, проводившим измерение, а при необходимости - руководителем организации.

17. Оценка приемлемости результатов, получаемых в условиях воспроизводимости

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их общее среднее значение. Значения предела воспроизводимости приведены в таблице 9.

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725-6.

Таблица 9. Диапазон измерений, значения предела воспроизводимости при доверительной

вероятности Р=0,95

Диапазон	Предел воспроизводимости
измерений, пг/м ³	(относительное значение допускаемого расхождения между
	двумя результатами измерений, полученными
	в разных лабораториях), R, %
от 1 до1000 вкл.	84

18. Контроль качества результатов анализа

Контроль качества измерений обеспечивают выполнением следующих условий:

- анализ проб проводят сериями. Каждая серия включает до 11 проб промышленных выбросов, контрольной пробы с заданным содержанием ПХДД/ПХДФ и лабораторной холостой пробы.
- оперативный контроль точности и правильности измерений обеспечивается анализом изотопно-меченых стандартов имитаторов, аналогов определяемых веществ, вводимых в каждую пробу на стадии пробоподготовки.

Допускаемые критерии качества анализа.

- Содержание индивидуальных конгенеров ПХДД/ПХД Φ в лабораторной холостой пробе меньше 1 пг.
- Определяемое содержание конгенеров ПХДД/ПХДФ в контрольном образце должно соответствовать заданному значению для 90 % определяемых соединений.
- Значения величины извлечения конгенеров $E_{\rm s}$, рассчитанные по формуле (3), находятся в диапазоне 50-110~%.
- Чувствительность прибора определяют один раз в день (или после настройки прибора) путём анализа стандартного градуировочного раствора ПХДД/ПХДФ. Прием-

лемый критерий качества — соотношение сигнал-шум больше 5:1 при инжекции 1 пг 2,3,7,8-ТХДД.

- Хроматографическое разрешение подтверждают анализом градуировочного раствора, проводимым до и после анализа аналитической серии. Приемлемое значение - разделение пиков 1,2,3,4,7,8-ГхДФ 1,2,3,6,7,8-ГХДФ - соответствует условию:

$$2h/(H_1+H_2)<0.7$$
 (5)

где H_1 и H_2 – высоты пиков конгенеров, h - высота долины между ними.

- Отношение площадей хроматографических пиков на парных масс-хроматограммах ионов M1 и M2, регистрируемых для каждого определяемого компонента и внутреннего стандарта, должно быть в пределах ± 15 % от теоретического, приведенного в табл. 3.
- Масс-спектральное разрешение определенное при настройке прибора, составляет для низкого разрешения не хуже 0.8 а.е.м во всем диапазоне масс проводимых измерений и для прибора высокого разрешения R > 10000.
- Линейность калибровки прибора определяют по анализу 5-ти градуировочных растворов ПХДД/ПХДФ. Критерий качества допустимое стандартное отклонение рассчитанного относительного фактора отклика (RRF) $_{\rm n}$ должно быть меньше 20 %.
- Стабильность работы прибора подтверждается до и после анализа серии образцов путем анализа градуировочного раствора ПХДД/ПХДФ CS2. Критерий качества различия значений величины относительного отклика (RRF)_n, рассчитанные до и после анализа серии образцов, не должны превышать $\pm 15~\%$.
- Проверку чистоты прибора на содержание анализируемых компонентов проводят после каждого анализа градуировочного стандартного раствора путем инжекции декана. Приемлемый критерий величина вносимой ошибки за счет фона инструмента не должна превышать $1\,\%$ от среднего значения определяемых концентраций.

При невыполнении любого из перечисленных условий принимаются меры по выявлению причин и повторяется анализ партии проб.

19. Контроль качества результатов измерений при реализации методики в лаборатории

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

- контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм контроля процедуры выполнения измерений с использованием метода добавок.

Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результата отдельно взятой контрольной процедуры K_κ с нормативом контроля $K_{\tt d}$.

Результат контрольной процедуры К рассчитывают по формуле:

$$K_{\kappa} = |X' - X - C|$$

где X' – результат контрольного измерения массовой доли определяемых компонентов в пробе с известной добавкой определяемых компонентов,

X – результат контрольного измерения массовой доли определяемых компонентов в рабочей пробе;

С – величина добавки.

Норматив контроля К_д рассчитывают по формуле

$$K_{\text{M}} = \sqrt{\left(\Delta_{\text{MX}'}\right)^2 + \left(\Delta_{\text{MX}}\right)^2},$$

где $\Delta_{\pi X_i}$, $\Delta_{\pi X}$ - значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие массовой доле определяемых компонентов в пробе с добавкой и в рабочей пробе, соответственно.

 $\Delta_{\pi X} = 0.01 \ \delta_{\pi X} \ X \ (X - массовая доля определяемых компонентов в пробе);$

 $\Delta_{\pi X_i} = 0.01 \, \, \delta_{\pi X_i} \, X^{'} \, (X^{'}$ - массовая доля определяемых компонентов в пробе с добавкой).

Значения $\delta_{\pi X}$ ($\delta_{\pi X'}$) установлены в лаборатории.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

$$K_{\kappa} \leq K_{\pi}$$

При невыполнении условия эксперимент повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам.

Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений, регламентируют в Руководстве по качеству лаборатории. Контроль качества результатов измерений обязательно проводить при смене партий реактивов и материалов, при замене или ремонте средств измерений.

Приложение А (Обязательное)

Форма представления результатов анализа.

± opad npegerabiembi pesynbrarob anama.
Наименование организации, проведшей анализ. Номер аттестата аккредитации.
ПРОТОКОЛ № от ""
количественного химического анализа

полихлорированных дибензо-п-диоксинов и дибензофуранов

Методика КХА (краткое описание с указанием отклонений от регламентированной процедуры).

Краткое описание пробы (шифр; наименование и характеристика пробы и условий пробоотбора).

Определяемый компонент	Диоксиновый		
	эквивалент,	ТС	то
	дэ	Концентрация, нг/Нм ³ ,	Концентрация в ДЭ, нг/Нм ³ ,
2.2.5.0 (17)		при содержании О ₂ =11%	при содержании O_2 =11%
2,3,7,8-ТХДД	1		
1,2,3,7,8-ПеХДД	0,5		
1,2,3,4,7,8-ГкХДД	0,1		
1,2,3,6,7,8-ГкХДД	0,1		
1,2,3,7,8,9-ГкХДД	0,1		
1,2,3,4,6,7,8-ГпХДД	0,01		
ОХДД	0,001		
2,3,7,8-ТХДФ	0,1		
1,2,3,7,8-ПеХДФ	0,05		
2,3,4,7,8-ПеХДФ	0,5		
1,2,3,4,7,8-ГкХДФ	0,1		-
1,2,3,6,7,8-ГкХДФ	0,1		_
2,3,4,6,7,8-ГкХДФ	0,1		
1,2,3,7,8,9-ГкХДФ	0,1		
1,2,3,4,6,7,8-ГпХДФ	0,01		
1,2,3,4,7,8,9-ГпХДФ	0,01		
ОХДФ	0,001		
Другие ТХДД			
Другие ТХДФ			
Другие ПеХДД			
Другие ПеХДФ			
Другие ГкХДД			
Другие ГкХДФ			
Другой ГпХДД			
Другие ГпХДФ			
Предел обнаружения по ${}^{13}C_{12}$ - 2,3,7,8-ТХДД,		Суммарная концентрация в	ДЭ, нг/Нм ³
нг/Нм ³		<u> </u>	
Относительная погрешность оп	ределения, %		

Подпись ответственного исполнителя

<u>Примечание</u>: допустимо представление дополнительной информации по характеристикам проб, пробоотбору и результатам анализов.

Приложение Б (Обязательное)

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по отбору проб выбросов промышленных предприятий для определения полихлорированных дибензо-п-диоксинов и дибензофуранов

1. Назначение и область применения

- 1.1. Методические рекомендации устанавливают процедуру и регламент отбора проб промышленных выбросов в атмосферу для определения в них массовых концентраций полихлорированных дибензо-п-диоксинов (ПХДД) и дибензофуранов (ПХДФ) методом хромато-масс-спектрометрии. Методические рекомендации основываются на "Методике определения концентрации пыли в технологических газах" (Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. Ленинград. Гидрометеоиздат, 1987 г.) и соответствуют Европейскому Стандарту EN 1948-1:1996 "Определение массовой концентрации ПХДД/ПХДФ в выбросах стационарных источников. Часть 1: Отбор проб определение массовых концентраций ПХДД и ПХДФ".
- 1.2. Методические рекомендации являются приложением к "Методике выполнения измерений суммарного содержания полихлорированных дибензо-п-диоксинов и дибензофуранов в пересчете на 2,3,7,8-тетрахлордибензо-п-диоксин в пробах промышленных выбросов в атмосферу методом хромато-масс-спектрометрии" ПНД Ф 13.1.65-08.

2. Термины и определения

В данных методических рекомендациях используются термины и определения, приведенные в п. 3 методики ПНД Φ 13.1.65-08.

3. Сущность метода

Пробы промышленных выбросов отбираются изокинетически в канале газохода. ПХДД/ПХДФ, как адсорбированные на частицах, так и содержащиеся в газовой фазе, улавливаются пробоотборным устройством на аэрозольном фильтре и полимерном сорбенте XAD-2. Объем пробы составляет 4 - 10 м³.

4. Оборудование, реактивы и материалы

4.1. Пробоотборное устройство, включающее:

Комбинированный зонд с обогреваемым кварцевым трактом, термостатом аэрозольного фильтра и сменными соплами сечением $0,3-1,5~{\rm cm}^2;$

Стеклянный держатель аэрозольного фильтра на диаметр 102 мм;

Жидкостные ловушки, стеклянные по ГОСТ 25336-82;

Термостат жидкостных ловушек;

Картриджи (колонки) стеклянные, диаметром 35 мм, длиной 350 мм с перегородкой пористого стекла и шлифами № 24;

Ротационный безмасляный вакуумный насос G582DX или аналогичный.

4.2. Цифровой дифференциальный манометр ДМЦ-02 с пневмометрической трубкой Пито. Сертификат Госстандарта РФ № 2390 от 10.06.06 или аналогичный;

- 4.3. Микроманометр для измерения давления дымового газа в канале.
- 4.4. Анализатор кислорода АНАТ310 ИБЯЛ-413411042-ТУ или аналогичный;
- 4.5. Прибор для измерения объема газа Ryton Turbine Flow Meter, Cole Parmer, США (точность измерения объема газа \pm 3 %) или аналогичный;
 - 4.6. Измеритель-регулятор температуры микропроцессорный 2ТРМ0Щ2-04 ТУ;
 - 4.7. Манометр (± 1 кПа) для измерения абсолютного давления;
 - 4.8 Кварцевый аэрозольный фильтр TFA41 Glass Fiber диаметром 102 мм с коэффициентом удавливания частиц 0,3мкм 99,97 % или аналогичный;
 - 4.9. Аппарат Сокслета 45/40 250 или производства фирмы Supelco:
 - 4.10 Насадка типа НЭТФ, номинальной вместимостью 500 см³ ГОСТ 25336-82;
 - 4.11. Весы лабораторные общего назначения по ГОСТ 24104-80 с предельной нагрузкой до $200~\mathrm{r}$;
 - 4.12. Полимерный сорбент XAD-2 фирмы "Supelco" или аналогичный.
 - 4.13. Силикагель КСМГ технический по ГОСТ 3956-76
 - 4.14. Ацетон о.с.ч., ТУ-6-09-3513-86.
 - 4.15. н-Гексан ос.ч., Криохром, ТУ-6-09-3731-74.
 - 4.16. Метиленхлорид х.ч., ТУ-6-09-06-856-71.
 - 4.17. Тканевые мешочки размером 200х200 мм.
 - 4.18. Вата медицинская гигроскопическая, ГОСТ 5556-81
 - 4.19. Вода дистиллированная, ГОСТ 6709-72.
 - 4.20. Фольга алюминиевая ТУ-1811-005-53974937-2004
 - 4.21. Перчатки резиновые медицинские, Sempermed, или аналогичные;
 - 4.22. Контейнеры стеклянные, 250 см^3 , герметичные с тефлоновой прокладкой, Alldrich, Z2519-8
- 4.23. Газоанализатор Testo 350 или аналогичный для измерения кислорода с погрешностью \pm 5 %.

Для отбора проб могут быть использованы установки для отбора проб промышленных выбросов в изокинетическом режиме с дополнительными приспособлениями для улавливания ПХДД/ПХДФ, например, фирмы Арех (США), метрологические характеристики которых не уступают вышеприведенным. (В данных методических рекомендациях приводится возможный, по мнению разработчиков, вариант, состоящий из отдельных устройств).

5. Конструкция пробоотборного устройства

Пробоотборное устройство изображено на Рисунке 1. Отбираемый газ засасывается через сопло, через кварцевый тракт, расположенный в обогреваемом зонде попадает на аэрозольный фильтр, находящийся в термостате при 120 °C. Затем газ проходит через охлаждаемые ловушки для сбора конденсата и картридж с полимерным сорбентом XAD-2. Перед насосом установлен прибор для измерения объема отобранного газа и регулирования скорости отбора.

В корпусе зонда, выполненном из нержавеющей стали, расположен нагревательный элемент, кварцевый тракт, соединяющий сопло и камеру с аэрозольным фильтром, термопары, измеряющие температуру в зонде и температуру отбираемых газов в точке отбора, датчик скорости потока газа в канале (трубка Пито) и канал для отбора газа для определения содержания кислорода. Температура в точке отбора, блоке жидкостных ловушек и зоне перед измерителем расхода газа определяется измерителем-регулятором температуры 2ТРМОЩ2-04. Температура в корпусе зонда и термостате аэрозольного фильтра автоматически регулируется.

Отборные сопла сменные, с сечением входного отверстия от 0,3 до 1,5 см 2 , изготовлены из кварца.

Газоотборный тракт длиной 1400 мм и внутренним диметром 15 мм изготовлен из кварца. Корпус держателя аэрозольного фильтра для использования фильтров диметром 100 мм изготовлен из термостойкого стекла.

Три жидкостные ловушки, каждая объемом 500 см 3 помещены в водяной термостат при температуре 0 $^{\circ}$ C.

Соединительные шланги после аэрозольного фильтра – фторпласт Φ -4, диметром 10 мм.

Пробоотборное устройство предназначено для отбора газа при объемной скорости от 0,5 до 2 ${\rm m}^3/{\rm q}$.

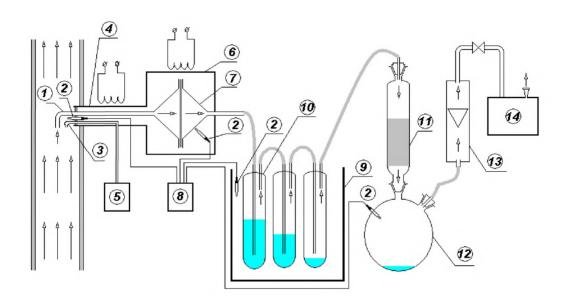


Рисунок Б1: Пробоотборное устройство

1 - сопло, 2 - термопары, 3 - трубка Пито, 4 - корпус зонда, 5 - измеритель скорости потока (или анализатор кислорода), 6 — термостат аэрозольного фильтра, 7- держатель фильтра, 8 - измеритель-регулятор температуры, 9 - термостат жидкостных ловушек, 10-жидкостные ловушки, 11 - картридж с сорбентом XAD-2, 12 - ресивер, 13 - измеритель расхода газа, 14 -насос.

6. Подготовка к отбору проб

6.1. Подготовка полимерного сорбента и аэрозольного фильтра.

Сорбент XAD-2 очищают сначала путем нескольких последовательных промывок водой, метанолом и метиленхлоридом до тех пор, пока фильтраты не перестанут быть

мутными. Затем XAD-2 экстрагируется в аппарате Сокслета толуолом в течение 48 ч. и промывается дихлорметаном. Оставшийся дихлорметан удаляется в роторном испарителе при контролируемом вакууме (50 кПа, температура ванны 40 С). Контроль чистоты XAD-2 осуществляется посредством экстракции толуолом и ГХ/МС-анализа. Очищенный сорбент хранится в стеклянной бутылке с герметически завинчивающейся пробкой при комнатной температуре и отсутствии прямого света не более 2 месяцев.

Кварцевые аэрозольные фильтры TFA41 Glass Fiber прогревают в термостате при температуре 400 °C в течение 2 часов, после охлаждения помещают в пакет из алюминиевой фольги и хранят в эксикаторе не более 2 месяцев.

6.2. Подготовка силикагеля.

Силикагель активируют в сушильном шкафу при температуре 130 °C в течение 24 часов. Активированный силикагель хранят в стеклянной посуде с притертой пробкой не более 10 дней. После истечения срока хранения необходимо активировать силикагель повторно.

6.3. Подготовка картриджа с сорбентом ХАД-2.

В стеклянный картридж вносят 30 см³ подготовленного адсорбента XAD-2 и дозатором наносят на поверхность сорбента 0,05см³ раствора изотопно-меченого стандарта-имитатора SIS-1. Добавляют 30 см³ адсорбента XAD-2 и повторно вносят 0,05см³ раствора изотопно-меченого стандарта-имитатора SIS-1. Закрывают картридж с обеих сторон притертыми пробками и хранят без доступа света до момента отбора.

6.4. Установка аэрозольного фильтра TFA41 Glass Fiber.

Подготовленный аэрозольный фильтр диаметром 102 мм устанавливают в стеклянный держатель и герметизируют оба выхода тефлоновыми пробками.

6.5. Подготовка картриджа для определения влагосодержания.

В стеклянный картридж вносят 200 см 3 безводного силикагеля с размером гранул 2 мм. Картридж герметически закрывают с обеих сторон притертыми пробками и взвешивают с точностью $0.05~\Gamma$.

7. Отбор проб

Внимание! Отбор проб дымовых газов проводят не ранее, чем через сутки после вывода обследуемой установки на стабильный стационарный режим работы.

7.1. Выбор соответствующего места для отбора проб.

Отбор проб должен проводиться в специальных представительных точках в канале трубы. Для отбора подготавливают технологическое отверстие в дымовой трубе с диаметром, обеспечивающим свободный ввод зонда. Подводят электроэнергию с напряжением 220 В к месту отбора.

7.2. Определение влагосодержания.

где:

Для определения влагосодержания подготовленный картридж с силикагелем устанавливают в ресивер (11) вместо картриджа с сорбентом. На вход картриджа с силикагелем надевают тефлоновую трубку диаметром 10 мм, второй конец которой вводят в технологическое отверстие в трубе, минуя зонд. Включают насос и отбирают $0.05~\text{м}^3$ дымовых газов из трубы со скоростью 2 дм 3 /мин. Отсоединяют картридж, закрывают обе стороны притертыми пробками и взвешивают. Влагосодержание дымовых газов f_n рассчитывают как:

$$f_n = (m_2 - m_1)/V_1; r/M^3$$
 (B1),

m₁ и m₂ - масса картриджа с силикагелем до и после отбора газа,

 V_1 - объем газа, отобранного для измерения влажности.

7.3. Сборка системы пробоотбора.

Собирают систему отбора проб по схеме, приведенной на рис. 1 и проверяют на герметичность. Для проверки системы на герметичность закрывают сопло заглушкой и включают насос и устройство контроля потока. Пробоотборное устройство считается готовым к отбору при полном отсутствии потока газа.

- 7.3. Измерение параметров газового потока в трубе.
- 7.3.1. Закрывают заборное сопло заглушкой и вводят зонд в технологическое отверстие в дымовой трубе. С помощью калиброванной трубки Пито измерителем скорости потока ДМЦ-02 определяют профиль скоростей газа по сечению трубы и давление внутри трубы. Результаты измерений заносят в журнал.
 - 7.3.2. Концевой термопарой зонда измеряют температуру отходящих газов.
 - 7.4. Расчет скорости откачки пробы для обеспечения изокинетичности отбора.

Скорость отбора пробы дымовых газов определяют по формуле:

$$V_1 = 6Sv_tT_iP_t/T_tP_i(1 + f_n/\rho)$$
 (62),

где:

 V_1 - скорость отбора пробы по показаниям измерителя, дм³/мин;

S – сечение сопла, см²:

 v_t – линейная скорость газового потока в трубе в точке отбора, м/с;

 T_i – температура в ресивере (12) рис. 1, °К;

 P_{t} - статическое давление в трубе, кПа;

 T_t – температура в точке отбора, °К

Р_і - давление в ресивере, кПа;

 f_n - влажность дымовых газов, г/м³.

 ρ -плотность насыщенных водяных паров при стандартных условиях, 804 г/м³

Если требуемая скорость отбора пробы V_1 превышает 60 % технической производительности насоса, проводят перерасчет требуемой скорости отбора для сопла с меньшим сечением.

7.5. Проведение отбора пробы дымовых газов.

Устанавливают на зонд пробоотборное сопло и размещают зонд таким образом, чтобы сопло находилось в центре трубы и было ориентировано навстречу потоку газа. На выход канала трубки Пито подсоединяют измеритель содержания кислорода. Устанавливают температуру зонда и термостата аэрозольного фильтра равной $120\,^{\circ}$ С и температуру термостата жидкостных ловушек равную $0\,^{\circ}$ С. Включают насос и регулятором расхода устанавливают скорость отбора равной V_1 .

Отбирают 4 - 10 м³ газообразных выбросов. Во время проведения отбора пробы измеряют значения температуры и давления в дымовой трубе и в зоне измерителя расхода с интервалом в 20 мин.

Содержание кислорода в отходящих газах определяют согласно инструкции прибора АНАТ-310 или Testo 350 не менее 4 раз за период отбора.

Скорость потока в трубе измеряют каждые 30 мин в течение отбора пробы. При изменении скорости потока более чем на 15 % от первоначальной, корректируют скорость отбора.

7.6. Разборка оборудования.

По окончании отбора проб насос и обогреватели отключают, а зонд вынимают из канала так, чтобы не внести загрязнения со стенок отверстия в трубе, и охлаждают. За-

тем регистрируют отобранный объем газа, обозначаемый как Q_i. Держатель аэрозольного фильтра вынимают из термостата, извлекают фильтр пинцетом, сворачивают его фронтальной стороной внутрь и упаковывают в пакет из алюминиевой фольги. Пакет помещают в герметично закрывающийся стеклянный контейнер. Отсоединяют картридж с сорбентом XAD-2, герметизируют обе стороны притертыми пробками. Конденсат из жидкостных ловушек и ресивера количественно переносят в стеклянную колбу с притертой пробкой. Ополаскивают каждую ловушку 30 мл ацетона дважды и добавляют смывы к конденсату. Тефлоновую трубку, соединяющую аэрозольный фильтр с первой ловушкой промывают 50 мл ацетона и добавляют смыв к конденсату.

- 7.7. Требования к отбору проб.
- а) Полевую холостую пробу (см. п. 3.3 методики ПНД Ф 13.1.65-08) отбирают перед каждым пробоотбором дымовых газов. Результат анализа полевой холостой пробы не должен превышать 10~% от предельного допустимого значения (в I-TEQ), при расчёте на тот же объём газов, что и при отборе проб. Если измеренное значение меньше, чем результат анализа полевой холостой пробы, то полученный результат принимают меньшим или равным полевой холостой пробе.
- б) Если части пробоотборного устройства очищаются на месте перед повторным использованием, необходимо тщательно промыть все повторно используемые поверхности, контактирующие с пробой. Промывочный раствор сохраняют. Он должен быть проанализирован, если концентрация следующей пробы превысит предельное значение.

8. Расчет нормализованного объема отобранного дымового газа

Объем отобранного дымового газа, приведенный к нормальным условиям и откорректированный на содержание кислорода 11 % об, рассчитывается по уравнению:

$$Q_n = 9.95 Q_i T_n P_i / T_i P_n (20.95 - [O_2])$$
 (63),

где:

 $Q_{\rm n}$ - объем пробы, приведенный к нормальным условиям и скорректированный на содержание кислорода 11 %, ${\rm Hm}^3$

 Q_i - измеренный объем пробы, м³

 T_n – абсолютная температура (273,15 °K)

P_i - давление в ресивере, кПа

Т_і - температура пробы в газовом счетчике, °К

 P_n - нормальное атмосферное давление (101,325 кПа)

 $[O_2]$ - усредненное содержание кислорода в канале за время отбора, % об.

9. Требования безопасности

Требования безопасности устанавливают в соответствии со специальными инструкциями по работе с диоксином (например, "Инструкция по технике безопасности по работе с 2,3,7,8 -ТХДД", утверждена 3 ГУ при МЗ СССР от 02.12.1986 г.).

При отборе проб и выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.4.019, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019.

Все операции по приготовлению аттестованных смесей и градуировочных растворов, содержащих ТХДД и его меченые аналоги, добавление стандартов к образцу, подготовку образца к анализу, следует проводить под тягой в вытяжном шкафу.

Растворы стандартных образцов для нанесения на сорбент должны храниться в герметичных стеклянных ампулах в дозах, соответствующих количеству для однократного нанесения на сорбент или в ампулах, закрытых завинчивающейся или запрессованной крышкой с тефлонированной резиновой прокладкой, прокалываемой шприцем.

10. Требования к квалификации оператора

Отбор проб может производить специалист с образованием не ниже среднего, прошедший соответствующую подготовку.

Все работающие должны быть проинструктированы о работе с веществами 1 - 2 класса опасности, органическими растворителями, правилах работы в химической лаборатории и работы с электроустановками.

11. Акт отбора проб

Акт отбора проб должен включать информацию о том, выполнены ли требования данных методических указаний, а также следующую информацию:

Организация, участок, точка отбора проб на участке, дата, время.

Отклонения от регламента.

Информация о канале (размеры и т.д.)

Диаметр сопла

Температура в канале во время отбора проб

Скорость потока через фильтр, через блок адсорбера

Максимальная температура на фильтре во время отбора проб

Максимальная температура на холодильнике или в блоке адсорбера

Средняя температура газового счетчика

Влажность отобранного газа

Давление на газовом счетчике

Объем отобранного газа в условиях, при которых находился газовый счетчик, Q_i Содержание O_2

Влагосодержание, используемое при расчете концентраций ПХДД/ПХДФ

Результаты проверок на герметичность до и после отбора проб

Продолжительность отбора проб, начало, окончание, перерывы, дата

Исполнитель: (Фамилия, должность, подпись)

Представитель Заказчика: (Фамилия, должность, подпись)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

№ 224.02.12.222/2008

Методика выполнения измерений суммарного содержания полихлорированных
наименование измеряемой величины;
дибензо- <i>n</i> -диоксинов и дибензофуранов в пересчете на 2,3,7,8-тетрахлородибензо- <i>n</i> -
диоксин в пробах промышленных выбросов в атмосферу методом хромато-масс-
спектрометрии,
объекта и метода измерений
разработанная Институт проблем эволюции и экологии им. А.Н. Северцова РАН;
ФГУП «Российский научно-исследовательский центр чрезвычайных
ситуаций» ФМБА России;
ГУ «Научно-производственное объединение «Тайфун», Федеральная
служба по гидрометеорологии и мониторингу окружающей среды
наименование организации (предприятия), разработавшей МВИ
аттестована в соответствии с ГОСТ Р 8.563
Аттестация осуществлена по результатам метрологической экспертизы материалов
по разработке МВИ
вид работ: метрологическая экспертиза материалов по разработке МВИ, теоретическое или экспериментальное исследование МВИ, другие виды работ
В результате аттестации установлено, что МВИ соответствует предъявляемым к ней
метрологическим требованиям и обладает следующими основными метрологическими
характеристиками, приведенными в приложении.
диапазон измерений, характеристики погрешности измерений (неопределенность измерений) и (или) характеристики составляющих погрешности (при необходимости – нормативы контроля)
Приложение: метрологические характеристики МВИ на 1 листе
Λ
Вам. директора по научной работе С.В. Медведевских
Вав. лабораторией В.И. Панева

Россия, 620000, г. Екатеринбург, ул. Красиоармейская,4 тел.: (343) 350-26-18, факс: (343) 350-20-39. E-mail: uniim@uniim.ru

23.12.2008 г.

Дата выдачи:

Срок действия: 23.12.2013 г.

Приложение к свидетельству № 224.02.12.222 / 2008

об аттестации методики выполнения измерений суммарного содержания полихлорированных дибензо-*n*-диоксинов и дибензофуранов в пересчете на 2,3,7,8-тетрахлородибензо-*n*диоксии в пробах промышленных выбросов в атмосферу методом хромато-массспектрометрии

1 Диапазон измерений, значения показателей точности, воспроизводимости и правильности.

Диапазон измерений, пг/м ³	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %	Показатель правильности (границы относительной систематической погрешности методики при доверительной вероятности $P=0.95$), $\pm\delta_c$, %	Показатель точности (границы относительной погрешности методики при доверительной вероятности $P=0,95$), $\pm\delta$, %
от 1 до 1000 вкл.	30	25	65

2 Диапазон измерений, значения предела воспроизводимости при вероятности Р=0,95.

Диапазон измерений, $\pi r/M^3$	Предел воспроизводимости (относительное значение допускаемого расхождения между двум результатами измерений, полученными в разных лабораториях), $R, \%$	
от 1 до 1000 вкл.	84	

- 3 При реализации методики в лаборатории обеспечивают:
 - оперативный контроль процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
 - контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов измерений регламентируют в Руководстве по качеству лаборатории.

Зам. зав. лаб. 224 ФГУП «УНИИМ» [masser

Ю.С. Бессонов

ПИЯ ВЕРН

соответствует расширенной неопределенности $U_{\text{оти}}$ (в относительных ещий) при коэффициенте охвата k=2.