ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

УТВЕРЖДАЮ

Директор ФГУ «Федеральный центр анализаци. оценки техногенного

И.Л.Феофанов

2010 г

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ПОЧВ

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ ДОЛИ НЕФТЕПРОДУКТОВ В ПРОБАХ ПОЧВ, ГРУНТОВ, ДОННЫХ ОТЛОЖЕНИЙ, ИЛОВ, ОСАДКОВ СТОЧНЫХ ВОД, ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 16.1:2:2.2:2.3:3.64-10 (ФР 1.31,2010.07598)

Методика допущена для целей государственного экологического контроля

> МОСКВА 2010 г.

Право тиражирования и реализации принадлежит ФГУ «ФЦАО».

Методика рассмотрена и одобрена ФГУ «Федеральный центр анализа и оценки техногенного воздействия» (ФГУ «ФЦАО»).

Директор ФГУ «ФЦАО»

И.Л.Феофанов

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий документ устанавливает методику измерений массовой доли нефтепродуктов в пробах почв, грунтов, донных отложений, осадков сточных вод, отходов производства и потребления гравиметрическим методом.

Диапазоны определяемых концентраций представлены в таблице 1.

На точность проводимых измерений может оказывать влияние неоднородность отобранной пробы. Для устранения этого фактора необходимо строго соблюдать требования п.8.1.

2 МЕТОД ИЗМЕРЕНИЙ

Определение массовой доли нефтепродуктов основано на их экстракции из образца воздушно-сухой пробы хлороформом, отделении от полярных соединений методом колоночной хроматографии после замены растворителя на гексан и количественном определении гравиметрическим методом.

3 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

- оформлении результатов анализа, выдаваемых лабораторней;
- оценке деятельности лабораторий на качество проведения испыганий;
- оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Таблица 1- Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости

Диапазон	Показа-	Показатель	Показатель	Показа-	Показа-
измерений	тель	воспроиз-	воспроиз-	тель	тель точ-
	повто-	водимости	водимости	точно-	ности ²
	ряемости	(относитель-	(относитель-	сти	(границы
	(относи-	нос	ное значение	(границы	относи-
	тельное	значение	средне-	относи-	тельной
	значение	средне-	квадратиче-	йоналэт	погрешно-
	средне-	квадратиче-	ского откло-	погреш-	сти при ве-
	квадрати-	ского откло-	нения вос-	ности при	роятности
	ческого от-	нения вос-	производимо-	вероятно-	Р=0.95 и
	киноноги	производимо-	сти при п=2),	сти	n=2),
	повторяе-	сти при п≂1),	$\sigma_{R_{x_{xy}}}$, %	Р=0.95 и	±δ _{.ν.,} , %
	мости),	$\sigma_{\scriptscriptstyle H}$, %		n=1),	,
	σ_c , %			±δ,%	
Почвы, грунты, донные отложения, илы, осадки сточных вод (млн массовая доля)					
От 20 до 100 вкл.	17	20	19	40	38
Св. 100 до 50000	11,5	15	13,5	30	27
вкл.					
Отходы (%, массовая доля)					
От 0,02 до 1 вкл.	18	22,5	21	45	42
Св. 1 до 100 вкл.	13	17,5	16	35	32

 Π р н м е ч а н и е – n - количество результатов параллельных определений, необходимых для получения окончательного результата измерений

4 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

4.1 Средства измерений вспомогательное оборудование, посуда и материалы

Весы лабораторные аналитические типа ВЛР-200	ΓΟCT 24104-2001
Гири	ΓΟCT 7328-2001
Термометр лабораторный шкальный	ΓΟCT 28498-90
Пипетки градуированные вместимостью 5 см ³	ГОСТ 29227-91
Муфевьная пень пюбого тыпа обеспечивающая тем-	

Муфельная печь любого типа, обеспечивающая температурный режим от 150 до 600°С

³ Соответствует относительной расширенной неопределенности с коэффициентом охвата k=2 и n=1.

² Соответствует относительной расширенной неопределенности с коэффициентом охвата k=2 и n=2.

Стаканы химические ТС вместимостью 50 см3	ΓΟCT 25336-82
Колонка хроматографическая стеклянная (внутренний диаметр 10 мм)	
Фарфоровая ступка с пестиком	ΓΟCT 9147-80
Сито с размером отверстий 1 мм	
Емкость для отбора и хранения проб вместимостью	
500-2000 см ³	ТУ 46-22-606-75
Баня водяная	ΓΟCT 25336-82
Эксикатор	ΓΟCT 25336-82
Холодильник Либиха	ГОСТ 25336-82
Бюксы	ΓΟCT 25336-82
Колбы конические 1-150-2, 1-250-2	

Примечание. 1 Допускается использование других типов средствизмерений и вспомогательного оборудования, посуды и материалов с метрологическими и техническими характеристиками не хуже указанных.

2 Приборы должны быть поверены в установленные сроки.

4.2 Реактивы и материалы

Гексан, х.ч.	ТУ 6-09-3375-78
Хлороформ, х.ч. или чда.	ΓΟCT 20015-88
Вода дистиллированная	ΓΟCT 6709-72
Алюминий оксид II степени активности по Брокману	ТУ 6-09-3916-75
Стеклянная вата или	
стекловолокно	ΓΟCT 10727-74
Фильтры обеззоленные «красная лента»	ТУ 6-09-1678-86

Примечание. 1 Все реактивы, используемые для анализа, должны быть квалификации х.ч. или чда.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

5 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

- 5.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 и ПОТ Р М-004-97.
- **5.2** Электробезопасность при работе с электроустановками соблюдается по ГОСТ 12.1.019-79.
- 5.3 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
- 5.4 Организация обучения работающих безопасности труда производится по ГОСТ 12.0.004-90.
- 5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке их результатов допускают специалиста, имеющего опыт работы в химической лаборатории, прошедшего соответствующий инструктаж, освоившего метод в процессе тренировки и уложившегося в нормативы при выполнении процедур контроля погрешности.

7 УСЛОВИЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ

Условия окружающей среды, при которых обеспечивается требуемая точность измерений, следующие:

- атмосферное давление, кПа (мм рт.ст) 97,3 – 104,6 (730 – 780); - температура воздуха, °C (20 \pm 5); - относительная влажность воздуха, % не более 80 при t=25°C; - напряжение питания электросети, В 220 \pm 22; - частота переменного тока, Γ ц 50 \pm 1.

8 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

8.1 Отбор проб

Отбор проб производится в соответствии с ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб», ГОСТ 17.4.4.02-84 «Охрана природы. Почвы. Метод отбора и подготовки проб для химического, бактериологического, гельминтологического анализа», ГОСТ 17.1.5.01-80 «Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность», ПНД Ф 12.1:2:2.2:2.3.2-2003 «Отбор проб почв, грунтов, осадков биологических очистных сооружений, шламов промышленных сточных вод, донных отложений искусственно созданных водоёмов, прудов-накопителей и гидротехнических сооружений», ПНД Ф 12.4.2.1-99 «Отходы минерального происхождения. Рекомендации по отбору и подготовке проб. Общие положения» или другими нормативными документами, утвержденными и применяемыми в установленном порядке.

При отборе проб составляется сопроводительный документ, в котором указывается:

цель анализа, предполагаемые загрязнители;

место, время отбора;

номер пробы;

должность, фамилия отбирающего пробу, дата.

8.2 Подготовка проб к анализу

Для анализа объединенную пробу составляют путем смешивания не менее чем пяти точечных проб, взятых с одной пробной площадки.

Масса объединенной пробы должна быть не менее 1 кг.

Отобранные пробы донных отложений и грунтов оставляют стоять до полного осветления жидкости. Оставшуюся жидкость удаляют сифонированием.

Пробы высушивают при комнатной температуре до воздушно-сухого состояния. Затем рассыпают на бумаге и пинцетом удаляют механические включения, измельчают с помощью лабораторного гомогенизатора или в фарфоровой ступке. Просеивают через сито с диаметром ячейки 1 мм. Пробу квартуют и отбирают навески для анализа.

8.3 Приготовление оксида алюминия II степени активности по Брокману

Перед использованием оксид алюминия прокаливают при температуре 600°С в течение 4 часов в муфельной печи, охлаждают в эксикаторе, после чего добавляют дистиллированную воду в количестве 3 % от массы сорбента, интенсивно перемешивают в течение 30 минут в сосуде с пришлифованной пробкой и выдерживают перед применением в течение суток. Срок хранения в банке с пришлифованной пробкой 6 месяцев.

8.4 Подготовка хроматографической колонки

Непосредственно перед выполнением анализа необходимо подготовить хроматографическую колонку, представляющую собой стеклянную трубку высотой 12-15 см, диаметром 1 см с оттянутым нижним концом до диаметра, равного 1-2 мм. В качестве готовой колонки можно использовать пипетку указанных размеров.

В нижнюю часть колонки помещают слой стеклянной ваты или стекловолокна толщиной 1 см, затем колонку заполняют оксидом алюминия, приготовленным по п. 8.3, слоем 2-8 см и покрывают слоем стеклянной ваты или стекловолокна. Оксид алюминия в колонке используют однократно. Приготовленную колонку устанавливают в штативе, а её содержимое с помощью пипетки смачивают 3-5 см³ гексана.

Под носик колонки ставят взвешенный на аналитических весах пустой стаканчик ёмкостью 50 см³. В таком виде колонка считается готовой к работе.

9 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Масса высушенных образцов проб должна находиться в пределах 30,0-100,0 г при содержании нефтепродуктов от 20 до 50000 млн⁻¹ (при

анализе почв, грунтов, донных отложений, илов, осадков сточных вод) и от 3,0-10 г при содержании нефтепродуктов от 0,02 до 100 % (при анализе отходов).

Навеску помещают в колбу вместимостью 150 см³, смачивают хлороформом до влажного состояния. Затем несколько раз проводят экстракцию путём добавления 10-15 см³ хлороформа до получения в последней порции бесцветного экстракта. Время проведения каждой экстракции – 5-10 минут.

Экстракты фильтруют в коническую колбу через фильтр «красная лента». Остаток в колбе, где проводилась экстракция, промывают 5 см³ хлороформа.

Объединенный хлороформный экстракт выпаривают в вытяжном шкафу на водяной бане или удаляют хлороформ методом отгонки. С этой целью экстракт помещают в колбу вместимостью 250 см³, которая соединяется с холодильником, и ставят её на водяную баню для выпаривания. Когда в колбе останется 10-15 см³ жидкости, отгонку прекращают. Содержимое колбы сливают в стаканчик вместимостью 50 см³, колбу дважды ополаскивают хлороформом по 10 см³. Эти две порции хлороформа сливают в тот же стаканчик, который помещают в вытяжной шкаф для испарения.

Оставшийся в стаканчике после испарения хлороформа осадок растворяют в 5-10 см³ гексана. Полученный раствор пропускают через хроматографическую колонку, приготовленную по п.8.4, для избавления от полярных соединений.

После того, как над оксидом алюминия останется слой раствора 1-2 см, колонку промывают 2-3 порциями гексана (по 2-3 см³), предварительно ополоснув им стаканчик.

Прошедший через слой алюминия раствор собирают в заранее взвешенный и доведенный до постоянного веса стаканчик.

Гексан испаряют в токе воздуха при комнатной температуре. После полного удаления гексана стаканчик взвешивают на аналитических весах, выдерживают в течение получаса в лаборатории и повторно взвешивают. Взвешивание повторяют до достижения постоянной массы.

10 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Определяют массу нефтепродуктов $(A_1 - A_2)$ =A по разности массы стаканчика с остатком (A_1) и пустого стаканчика (A_2) .

10.1 Содержание нефтепродуктов (Х, млн вычисляют по формуле:

$$X = \frac{A}{B} * 1000,$$

где А - найденное количество нефтепродуктов, мг;

В - навеска образца, взятая для анализа, г;

10.2 Содержание нефтепродуктов (Х, %) вычисляют по формуле:

$$X = \frac{A}{B} * 0,1,$$

где А - найденное количество нефтепродуктов, мг;

В - навеска образца, взятая для анализа, г;

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерения в документах, предусматривающих его использование, может быть представлен в виде:

11.1
$$X \pm \Delta$$
, Р=0,95, где

Х – единичный результат измерения, млн (%);

 Δ - показатель точности методики, млн $^{\text{-}1}$ (%).

Значение Δ рассчитывают по формуле: Δ = 0,01·δ·X. Значение δ приведено в таблице 1.

11.2
$$X_{cp} \pm \Delta_{\rm x}$$
, P=0,95, где

 X_{cp} – среднее (среднее арифметическое или медиана) результатов параллельных определений, млн⁻¹ (%);

 $\Delta_{\rm x}$ - показатель точности методики, млн⁻¹ (%).

Значение Δ_x рассчитывают по формуле: $\Delta=0.01\cdot\delta_x\cdot X$. Значение δ_x приведено в таблице 1.

11.3 Допустимо результат измерения в документах, выдаваемых лабораторией, представлять в виде:

$$X \pm \Delta_n$$
, P=0,95, где

X – результат анализа, полученный в точном соответствии с прописью методики [единичный результат или среднее (среднее арифметическое или медиана) результатов параллельных определений];

 $\pm \Delta_s$ - значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории для единичного результата или среднего арифметического параллельных определений, и обеспечиваемое контролем стабильности результатов измерений.

Примечание.

При представлении результата измерения в документах, выдаваемых лабораторией, указывают:

- количество результатов параллельных определений; использованных для расчета результата анализа;
- способ определения результата измерения (среднее арифметическое значение или медиана результатов параллельных определений).

12 ПРОВЕРКА ПРИЕМЛЕМОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

12.1 При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости), осуществляют в соответствии с требованиями раздела 5.2 ГОСТ Р ИСО 5725-6-2002.

За результат анализа X_{cp} принимают среднее арифметическое значение двух параллельных определений X_1 и X_2

$$X_{cp} = \frac{X_1 + X_2}{2} \,, \tag{1}$$

для которых выполняется следующее условие:

$$|X_1 - X_2| \le 0.01 \cdot r \cdot X_{cp}$$
, (2)

где r - предел повторяемости, значения которого приведены в таблице 2.

ПНД Ф 16.1:2:2.2:2.3:3.64-10

При невыполнении условия (2) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5.2 ГОСТ Р ИСО 5725-6-2002.

12.2 При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 2.

Таблица 2 - Значения предела повторяемости и воспроизводимости при вероятности Р≈0,95

Диапазон измерений	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), г, %	Предел воспроизводи- мости (относительное зна- чение допускаемого расхо- ждения между двумя ре- зультатами, полученными в разных лабораториях), R, %		
Почвы, грунты, донные отложения, илы, осадки сточных вод (млн-1, массовая доля)				
От 20 до 100 вкл.	48	56		
Св. 100 до 50000 вкл.	32	42		
Отходы (%, массовая доля)				
От 0,02 до 1 вкл.	50	63		
Св. 1 до 100 вкл.	36	49		

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

12.3 Расхождение между средними арифметическими результатами анализа, полученными в двух лабораториях, не должно превышать критической разности. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их общее среднее арифметическое значение. Значения критической разности приведены в таблице 3.

Таблица 3 - Значения критической разности при вероятности Р=0,95

Диапазон измерений	Критическая разность ³		
ļ	(относительное значение допускаемого расхождения меж-		
	ду двумя средними арифметическими результатами измерений, полученными в разных лабораториях при		
	$n_1 = n_2 = 2$), $CD_{0.95}$, %		
Почвы, грунты, донные о	тложения, илы, осадки сточных вод (млн ⁻¹ , массовая доля)		
От 20 до 100 вкл.	53		
Св. 100 до 50000 вкл.	38		
	Отходы (%, массовая доля)		
От 0,02 до 1 вкл.	59		
Св. 1 до 100 вкл.	45		
Примечание - п коли	чество результатов параллельных определений, полученных		
в первой лаборатории, n_2 - к	оличество результатов параллельных определений, полу-		
ченных во второй лаборатор			

13 КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

- оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1 Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

³ Соответствует пределу воспроизводимости по РМГ 61-2003

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\kappa} = \left| C_{cp} - C \right| \tag{3}$$

где C_{ep} – результат анализа массовой доли нефтепродуктов в образце для контроля – среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (2), млн $^{-1}$, %;

C – аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

$$K = \Delta_n \tag{4}$$

где $\pm \Delta_x$ - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_{x} = 0.84 \cdot \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (5)

При невыполнении условия (5) контрольную процедуру повторяют. При повторном невыполнении условия (5) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.2 Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Хлороформную вытяжку, приготовленную по п.9, делят на две равные части. К одной из них делают добавку нефтепродуктов. Величина добавки должна составлять 50 - 150 % от содержания нефтепродуктов в исходной пробе. Пробы анализируют в точном соответствии с прописью методики и получают результат анализа исходной рабочей пробы X, и рабочей пробы с добавкой - X.

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\kappa} = \left| X_{cp} - X_{cp} - C_{\delta} \right|, \tag{6}$$

где X_{sp}^{\cdot} – результат анализа массовой доли нефтепродуктов в пробе с известной добавкой – среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (2), млн⁻¹, %;

 X_{ep} – результат анализа массовой доли нефтепродуктов в исходной пробе – среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (2) раздела млн⁻¹, %.

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta_{s,\chi_{op}^{'}}^{2} + \Delta_{s,\chi_{op}^{'}}^{2}}, \qquad (7)$$

где $\Delta_{x,X_{ep}}$, $\Delta_{x,X_{ep}}$ - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации никеля в пробе с известной добавкой и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_n = 0.84 \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (8)

ПНД Ф 16.1:2:2.2:2.3:3.64-10

При невыполнении условия (8) контрольную процедуру повторяют. При повторном невыполнении условия (8) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

федеральное агентство по техническому регулированию и метрологии Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

№ 223.1.03.01.14 / 2010

Методика выполнения измерений массовой доли пефтепродуктов в пробах поча,

наныенование изыерясыей величины, объекта

грунтов, донных отложений, илов, осадков сточных вод, отходов производства и потребления гравиметрическим методом.

и метода измерений

разработанная ФГУ «ФЦАО» (г. Москва),

наименоваше организации (предприятия), разработавшей МВН

аттестована в соответствии с ГОСТ Р 8.563.

Аттестация осуществлена по результатам метрологической экспертизы материалов выд работ: метрологическая экспертизы материалов по разработке МВИ,

по разработке методики выполнения измерений

теоретическое или экспериментальное исследование МВИ, другие анды работ

В результате аттестации установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками, приведенными в приложении.

Приложение: метрологические характеристики МВИ на 1 писте

Зам. директора по научной работе

Зав. лабораторией

Дата выдачи:

04.02.2010 r.

Срок действия:

Россия, 620000, г. Екатеринбург, ум. Красноармейская, в тел.: (343) 350-76-18, факс: (343) 350-20-39. E-mail: unlim@unlim.ru

Приложение к свидетельству № 223.1.03.01.14/2010 об аттестации методики выполнения измерений

массовой доли пефтепродуктов в пробах почв, грунтов, донных отложений, илов, осадков сточных вод, отходов производства и потребления гравиметрическим методом

1 Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости

		MICONDI TO MICOLD			
Диапазон	Показатель	Показатель	Показатель	Показатель	Показатель
измерений	повторлемо-	воспроизводи-	воспроизводи-	точности ¹	точности ²
	сти	мости	мости	(гринить:	(гражилы
	(относительное	(относительное	(относительное	относительной	OLHOCALCUP:
ł	знатение	значение средне-	значение средне-	погрешности при	ной
	среднеквидрати- ческого	кладратического	квадратического отклонения	вероятности	погрешностя
	OTKUIOIIBIIIIH	воспроизводимости	воспроизводи-	P=0.95 a n=1),	вероятности
	повторявности),	при п=1), <i>О</i> _R , %	мости при п≃2),	± δ,%	P=0.95 B
	σ,,%		σ_R , %		n≃2),
			x	_	$\pm \delta_{\overline{X}}$,%
Почвы, групты, допные отножения, илы, осадки сточных вод (млн ⁻¹ , массовая доля)					
От 20 до 100 включ.	17	20	19	40	38
Св. 100 до 50000 вилюч.	11,5	1,5	13,5	30	27
Осходы (%, массовая доля)					
От 0,02 до 1 включ.	18	22,5	21	45	42
Св. 1 до 100 включ.	13	17,5	16	35	32
Примечание — и - ког результата измерений	ипество результато	в параллельных опред	елений, необходими	о киногулоп влд хо	огонательного

2 Диапазон измерений, значения пределов повторяемости, воспроизводимости и критической

Диапазон измерений, (массовая доля), %	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами паралиельных определения), г, %	Предел воспроизводимости (относительное значения допускаемого расхождения между двумя единичными результатами измерений, полученными в развых лабораторнях), R, %	Критическая разность (относительное значение допускаемого расхождения между двумя средними арифметическими результатыми измерений, полученными в разных лабораториях при $n_1 = n_2 = 2$), $CD_{0.95}$, %
Почвы, групть	і, донные отложения, илы	, осадки сточных вод (млн	, массовая доля)
От 20 до 100 вюточ.	48	56	53
Св. 100 до 50000 включ.	32	42	38
	Отходы (%,	массовая доля)	
От 0,02 до 1 включ.	50	63	59
Св. 1 до 100 включ.	36	49	45

количество результатов параплельных определений, полученных во второй лаборатории.

3 Контроль стабильности результатов измерений, получаемых в условиях повторяемости и промежуточной (внутрилабораторной) прецизионности, организуют и проводят в соответствии Периодичность получения результатов и РМГ 76-2004. с ГОСТ Р ИСО 5725-6-2002 в документах лаборатории, регистрации приводят контрольных процедур и формы их устанавливающих порядок и содержание работ по организации методов контроля, стабильности результатов измерений в пределах лаборатории.

Старший научный сотрудник лаборатории 223

По гергина О.В.Кочергина

¹ Соответствует относятельной расширенной неопределенности с коэффициентом охвата k=2

⁷Соотретствует относительной расширенной неопределенности с коэффициентом охвата k=2

³ Соответствует пределу воспроизводимости по РМГ 61-2003