ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕЛЫ

УТВЕРЖДАЮ
Заместитель Председателя
Государственного комитета РФ
по охране окружающей среды
А.А.Соловьянов

ньаря 2000 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ СУЛЬФИТОВ И ТИОСУЛЬФАТОВ В ПИТЬЕВЫХ ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 14.1:2:4.163 -2000

Методика допущена для целей государственного экологического контроля

> МОСКВА 2000 г. (издание 2009 г.)

Право тиражирования и реализации принадлежит разработчику

Методические рекомендации рассмотрены и одобрены Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Госкомэкологии России

Главный метролог Госкомэкологии России Мау К.И.Машкович Начальник ГУАК Г.М.Цветков

Регистрационный код МВИ по Федеральному реестру ФР.1.31..2001.00342

Настоящий нормативный документ устанавливает титриметрическую методику раздельного определения концентрации сульфитов и тиосульфатов в питьевых, природных и сточных водах. Диапазон измеряемых концентраций сульфитов от 1 до 50 мг/дм^3 , тиосульфатов — от 1 до 100 мг/дм^3 .

Продолжительность анализа сульфитов и тиосульфатов для одной пробы 4 часа, серии из 10 проб – 7 часов.

Блок схема анализа сульфитов и тиосульфатов приведена в Приложении 1.

1. ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблица 1 Значения показателей точности результатов измерений

Диапазон измерений,	Показатель повторяемости	Показатель воспроизводи-	Показатель воспроизводи-	Показатель точности*	Показатель точности*	
измерении,	повторисмости		•	104HOCIM	точности	
	(относительное значение сред- неквадратического отклонения повторяемости),	мостн (относительное значение средне- квадратического отклонения вос- производимости при n = 1),	мости (относительное значение средне-квадратического отклонения воспроизводимости при п = 2),	(границы относительной погрешности при вероятности Р=0,95 и n = 1),	(границы относительной погрешности при вероятности Р=0,95 и n = 2)	
мг/дм ³	σ, %	σ _R , %	$\sigma_{R\tilde{x}}, \%$	± δ, %	± δ ₁ , %	
	Питьевые воды					
Сульфиты	I					
от 1 до 10 вкл.	6	10	8,5	20	17	
св.10 до 50 вкл.	4	7	6	14	12	
Тиосульфаты						
от 1 до 10 вкл.	5	9	7,5	18	15	
св.10 до 100 вкл.	3	5,5	4,5	11	9	
Природные и сточные воды						
Сульфиты						
от 1 до 10 вкл.	10	15	13	30	26	
св.10 до 50 вкл.	6	10	8,5	20	17	
Тиосульфаты						
от 1 до 10 вкл.	8	12,5	11	25	22	
св.10 до 100 вкл.	5	9	7,5	18	15	
Thursday and the second party of the second pa						

Примечание: п- количество результатов параллельных определений, необходимых для получения окончательного результата измерений.

^{* -} соответствует относительной расширенной неопределенности с коэффициентом охвата, k =2

2. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, РЕАКТИВЫ И МАТЕРИАЛЫ

2.1. Средства измерений и вспомогательное оборудование

- Весы лабораторные по ГОСТ 24104 с наибольшим пределом взвешивания 210 г и ценой деления 0,0001 г.
- Бюретки вместимостью 10 см³, по ГОСТ 29251, класс точности 2;
- Колбы мерные вместимостью 100, 500, 1000 см³, по ГОСТ 1770, класс точности 2;
- Пипетки вместимостью 2, 5, 10, 25, 100 см³ по ГОСТ 29227, класс точности 2;
- Цилиндры вместимостью 50, 100 см³ по ГОСТ 1770;
- Мензурка градуированная пластиковая вместимостью 500 см³.

2.2. Вспомогательное оборудование и материалы

- Бумажные фильтры «синяя лента» по ТУ 6-09-1678-77;
- Воронки стеклянные, диаметром 75 мм по ГОСТ 25336;
- Дистиллятор или установка для получения деионизованной воды степени чистоты 2 по ГОСТ Р 52501:
- Колбы конические или плоскодонные вместимостью 250, 500 см 3 по ГОСТ 25336;
- Плитка электрическая с регулируемой мощностью нагрева по ГОСТ 14919;
- Склянка из темного стекла вместимостью 1000 см³;
- Стаканы химические вместимостью 50, 250, 1000 см³ по ГОСТ 25336;
- Стеклянные или полиэтиленовые флаконы вместимостью 500 см³ для отбора проб;
- Холодильник бытовой любой марки, обеспечивающий температуру $2-6^{\circ}$ С.

Допускается использование других средств измерения с метрологическими характеристиками не хуже, чем у вышеуказанных и вспомогательных устройств с техническими характеристиками не хуже, чем у вышеуказанных.

2.3. Реактивы и материалы

- Вода дистиллированная по ГОСТ 6709 или деионизованная степени чистоты 2 по ГОСТ Р 52501;
- Глицерин, ч.д.а. по ГОСТ 6259-75;
- Йод, стандарт титр, 0,1 моль/дм³ эквивалента (0,1 н) по ТУ 6-09-2540-87;
- Калий двухромовокислый (бихромат калия), стандарт-титр, 0,1 моль/дм³ эквивалента (0,1 н) по ТУ 6-09-2540-87;
- Калий йодистый, х.ч., по ГОСТ 4232-74
- Крахмал растворимый, ч.д.а. по ГОСТ 10163-76;

- Натрий гидроокись, ч.д.а. по ГОСТ 4328-77;
- Натрий серноватистокислый (тиосульфат натрия), стандарт-титр, 0,1 моль/дм³ эквивалента (0,1 н) по ТУ 6-09-2540-72 (для приготовления основного раствора);
- Натрий серноватистокислый (тиосульфат натрия) 5-водный, ч.д.а., по ГОСТ 27068 (для приготовления образцов для контроля);
- Натрий сернистокислый безводный (сульфит натрия), ч.д.а., по ГОСТ 195;
- Натрий углекислый, безводный ч.д.а. по ГОСТ 83-79;
- Серная кислота, х.ч. по ГОСТ 4204-77;
- Уксусная кислота, ч.д.а. по ГОСТ 61-75;
- Формалин технический (40 % раствор формальдегида), по ГОСТ 1625-89;
- Хлористоводородная (соляная) кислота, ч.д.а. по ГОСТ 3118-77;
- цинк сернокислый 7-водный, ч.д.а. по ГОСТ 4174-77.

Допускается использование реактивов с квалификацией не ниже, чем у вышеуказанных.

з. ПРИНЦИП МЕТОДА

Метод раздельного определения сульфитов и тиосульфатов в воде основан на определении суммарного содержания сульфит- и тиосульфат-ионов путем обратного йодометрического титрования одной части пробы, с последующим определением содержания только тиосульфат-ионов прямым йодометрическим титрованием другой части пробы (после предварительного связывания сульфит-ионов формальдегидом). Содержание сульфит-ионов рассчитывают по разности концентраций, найденных в ходе двух титрований.

Мешающее влияние сульфидов устраняют в ходе анализа осаждением их солью цинка и отделением полученного осадка (ZnS) фильтрованием. Для предохранения сульфит-ионов от окисления кислородом воздуха в пробу добавляют глицерин.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕЛЫ

- 4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.
- 4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности при работе с электроустановками по ГОСТ 12.1.019.
- 4.3. Организация обучения работающих безопасности труда должна проводиться по ГОСТ 12.004.
- 4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

К выполнению измерений и обработке их результатов допускают лиц, владеющих техникой титриметрического анализа.

6. УСЛОВИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны соблюдаться следующие условия:

температура воздуха 20 - 28 °C

влажность воздуха не более 80 % при 25 °C

частота переменного тока (50 \pm 1) Γ ц напряжение в сети (220 \pm 22) В.

7. ОТБОР И ХРАНЕНИЕ ПРОБ

- 7.1. Отбор проб воды осуществляют в стеклянные или полиэтиленовые флаконы, в которые предварительно вводят консервант: 0,2 0,4 г (2-4 гранулы) гидроокиси натрия и 10 см³ глицерина на 500 см³ пробы. Затем бутыль наполняют до горлышка пробой, закрывают пробкой так, чтобы не осталось воздушных пузырьков, и перемешивают содержимое флакона переворачиванием.
- 7.2. Объём отбираемой пробы должен быть не менее 500 см³.
- 7.3. Определение проводят как можно быстрее после отбора пробы. При необходимости законсервированную пробу можно хранить при температуре 2-6 °C не более 3 суток.
- 7.4. При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:
 - место, дату и время отбора;
 - определяемый показатель;
 - шифр пробы;
 - должность, фамилия специалиста отбирающего пробу.

8. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

8.1. Приготовление растворов

8.1.1. Приготовление раствора уксусной кислоты 1:9

В стакане вместимостью 1000 см³ к 900 см³ дистиллированной воды осторожно при перемешивании прибавляют 100 см³ 98% уксусной кислоты. Раствор готовят в вытяжном шкафу. Срок хранения раствора 6 месяцев

8.1.2. Приготовление раствора серной кислоты 1:9

В стакане вместимостью 1000 см^3 к 900 см^3 дистиллированной воды осторожно небольшими порциями при перемешивании прибавляют 100 см^3 серной кислоты ($d = 1,84 \text{ г/см}^3$). Раствор готовят под тягой. Срок хранения раствора 6 месяцев.

8.1.3. Приготовление раствора крахмала 0,5 %

В стакане вместимостью 50 см³ смешивают 0,5 г растворимого крахмала с 5 - 10 см³ дистиллированной воды. Полученную кашицу прибавляют к 100 см³ кипящей дистиллированной воды. Раствор кипятят 5 - 10 минут в прикрытой воронкой колбе. Срок хранения раствора 5 дней при температуре 2 – 6 °C. 8.1.4. Приготовление основного раствора йода 0,1 моль/дм³ эквивалента (0,1

н) из стандарт-титра

Содержимое ампулы стандарт-титра количественно переносят в мерную колбу вместимостью 500 см³ и доводят объём раствора дистиллированной водой до метки. Срок хранения раствора 3 месяца в склянке из темного стекла. 8.1.5. Приготовление рабочего раствора йода 0,01 моль/дм³ эквивалента (0.01 н)

Готовят из основного раствора йода. Пипеткой отбирают 100 см³ основного стандартного раствора йода в мерную колбу вместимостью 1000 см³, объём раствора доводят до метки дистиллированной водой. Установку поправочного коэффициента к титру рабочего раствора йода проводят в день его использования. Раствор хранят не более 1 месяца в склянке из темного стекла.

8.1.6. Приготовление основного раствора тиосульфата натрия 0,1 моль/дм3 эквивалента (0,1 н) из стандарт-титра

Содержимое ампулы стандарт-титра количественно переносят в мерную колбу вместимостью 1000 см³ и доводят объём раствора дистиллированной водой до метки. Перед использованием выдержать раствор не менее двух недель в темном месте. Раствор хранят не более 3-х месяцев.

8.1.7. Приготовление рабочего раствора тиосульфата натрия 0,01 моль/дм³ эквивалента (0,01 н)

Готовят из основного раствора тиосульфата натрия. Пипеткой отбирают 100 см³ основного стандартного раствора тиосульфата натрия в мерную колбу вместимостью 1000 см³, объём раствора доводят до метки дистиллированной водой. Перед использованием выдерживают раствор не менее трех дней в темном месте. Хранят раствор в склянке из темного стекла не более 1 месяца. Установку поправочного коэффициента к титру рабочего раствора тиосульфата натрия проводят в день использования.

8.1.8. Приготовление раствора сернокислого цинка с концентрацией 150 г/дм³ В стакане вместимостью 1000 см³ растворяют в дистиллированной воде 150 г сернокислого цинка, объём раствора доводят до 1000 см³ дистиллированной водой. Срок хранения раствора 6 месяцев.

8.1.9. Приготовление раствора углекислого натрия с концентрацией 160 г/дм3

В стакане вместимостью 1000 см³ растворяют в дистиллированной воде 160 г безводного углекислого натрия, объём раствора доводят до 1000 см3 дистиллированной водой. Срок хранения раствора 3 месяца.

8.1.10. Приготовление раствора соляной кислоты 2:1

В стакане вместимостью 1000 см³ к 300 см³ воды осторожно при перемешивании прибавляют 600 см³ соляной кислоты (d = 1,18 г/см³). Раствор готовят в вытяжном шкафу. Срок хранения раствора 6 месяцев.

8.1.11. Приготовление основного раствора бихромата калия 0,1 моль/дм³ эквивалента (0,1 н) из стандарт-титра

Содержимое ампулы стандарт-титра количественно переносят в мерную колбу вместимостью 1000 см³ и доводят объём раствора дистиллированной водой до метки. Срок хранения раствора 3 месяца.

8.1.12. Приготовление рабочего раствора бихромата калия 0,01 моль/дм³ эквивалента (0,01 н) из стандарт-титра

Пипеткой отбирают 25 см³ основного стандартного раствора бихромата калия в мерную колбу вместимостью 250 см³, объём раствора доводят до метки дистиллированной водой. Рабочий раствор хранят в склянке из темного стекла 1 месян.

8.2. Установка поправочного коэффициента к титру раствора тиосульфата натрия по раствору бихромата калия

В коническую колбу вместимостью 250 см³ наливают 5,0 см³ раствора серной кислоты (1:9), добавляют 1 г йодистого калия, 10 см³ раствора бихромата калия молярной концентрации эквивалента 0,01моль/дм³.

Колбу закрывают пробкой и выдерживают 5 минут в темном месте. Затем доливают дистиллированную воду до получения объёма раствора приблизительно 100 см^3 и титруют раствором тиосульфата натрия молярной концентрации эквивалента 0,01моль/дм 3 эквивалента. После получения светло-желтого окрашивания добавляют $2-3 \text{ см}^3$ раствора крахмала и титруют далее по каплям при перемешивании до обесцвечивания раствора. Титрование проводят два раза. Результаты титрования не должны отличаться более чем на $0,05 \text{ см}^3$. Поправочный коэффициент рассчитывают по формуле:

$$K_T = \frac{V_6}{V_T}$$
, где

 K_{T^*} поправочный коэффициент к титру раствора тиосульфата натрия 0,01 моль/дм³ эквивалента:

 V_{δ} - объём раствора бихромата калия 0,01 моль/дм³ эквивалента;

 V_T - объём раствора тиосульфата натрия, пошедшего на титрование 10 см 3 0,01 моль/дм 3 эквивалента раствора бихромата калия, см 3 .

8.3. Установка поправочного коэффициента к титру раствора йода по титрованному раствору тиосульфата натрия

В коническую колбу вместимостью 250 см³ наливают 80 - 100 см³ дистиллированной воды, 5 см³ раствора соляной кислоты (2:1), 10 см³ рабочего раствора йода молярной концентрации эквивалента 0.01 моль/дм³ эквивалента

и титруют раствором тиосульфата натрия молярной концентрации эквивалента 0.01 моль/дм³ эквивалента до появления светло-желтой окраски. Затем добавляют 2-3 см³ раствора крахмала и продолжают титровать по каплям до обесцвечивания раствора. Титрование проводят дважды. Результаты титрования не должны отличаться более чем на 0.05 см³. Поправочный коэффициент рассчитывают по формуле:

$$K_u = \frac{V_T \cdot K_T}{V_u}$$
, где

 $K_{\rm M}$ - поправочный коэффициент к титру раствора йода $0,01\,$ моль/дм $^3\,$ эквивалента;

 V_{τ} - объём раствора тиосульфата натрия, израсходованного на титрование 10 см 3 0,01 моль/дм 3 эквивалента раствора йода, см 3 ;

 V_{μ} - объём раствора йода, взятого для определения, см³;

 K_{τ} — поправочный коэффициент к титру раствора тиосульфата 0,01 моль/дм³ эквивалента.

Примечание: Установку поправочных коэффициентов к рабочим растворам тиосульфата натрия и йода проводят с каждой серией образцов, но не реже 1 раза в неделю.

9. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

В коническую колбу вместимостью 500 см 3 наливают 400 см 3 анализируемой пробы, прибавляют 10 см 3 глицерина и по 10 см 3 растворов углекислого натрия и сернокислого цинка. Полученный раствор перемешивают и оставляют для отстаивания не менее чем на один час. Затем раствор фильтруют через фильтр «синяя лента» в коническую колбу вместимостью 500 см 3 . Осадок на фильтре промывают 40 — 50 см 3 теплой (40 — 50 °C) воды. Дают полностью стечь промывным водам в течение 20 — 30 минут. С помощью мензурки объём полученного фильтрата доводят дистиллированной водой до 500 см 3 . Полученный фильтрат делят на две равные части.

Примечание: Допускается оставлять пробы для отстаивания на большее время, но не более, чем на 17-18 часов.

9.1. Определение концентрации тиосульфат-ионов

250 см³ фильтрата помещают в коническую колбу вместимостью 500 см³, прибавляют 5 см³ раствора формальдегида и 10 см³ раствора уксусной кислоты (1:9). Содержимое колбы перемешивают, закрывают колбу пробкой и выдерживают 10 минут. Прибавляют 2 – 3 см³ раствора крахмала и титруют рабочим раствором йода до появления синего окрашивания, сохраняющегося не менее 30 секунд. Объём раствора йода, пошедшего на титрование 250 см³ фильтрата, используют в расчете при определении тиосульфат ионов.

9.2. Определение концентрации сульфит - ионов

В коническую колбу вместимостью 500 см³ помещают 10 см³ или большее количество титрованного рабочего раствора йода (в растворе должен быть избыток йода), 10 см³ раствора уксусной кислоты (1:9), 250 см³ фильтрата, 2 – 3 см³ раствора крахмала и титруют избыток йода рабочим раствором тиосульфата натрия до обесцвечивания (для сточной воды до первого видимого изменения окраски). Объём раствора тиосульфата натрия, пошедший на обратное титрование 250 см³ фильтрата, используют в расчете при определении сульфитионов.

Одновременно с каждой серией проб анализируют холостую пробу. В качестве образца берут 400 см³ дистиллированной воды и проводят через весь ход анализа.

10. ВЫЧИСЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Концентрацию тиосульфата натрия X_{τ} (мг/дм³) рассчитывают по формуле:

$$X_{\tau} = \frac{(V_{u} - V_{xon}) \cdot 0,01 \cdot K_{u} \cdot 158 \cdot V_{\phi} \cdot 1000}{V \cdot V_{I}},$$
 где

 X_{τ} – содержание тиосульфата натрия, мг/дм³ $Na_2S_2O_3$;

 $V_{\rm H}$ – объём раствора йода, 0,01 моль/дм³ эквивалента израсходованного на титрование пробы, см³;

 $V_{\text{хол}}$ – объём раствора йода, 0,01 моль/дм³ эквивалента, израсходованного на титрование холостой пробы, см³;

 V_{ϕ} – общий объём фильтрата, см³ (500 см³);

К_н – поправочный коэффициент для приведения концентрации раствора йода к точно 0,01 моль/дм³ эквивалента;

V – объём фильтрата, взятого для определения, см³ (250 см³);

 V_1 – исходный объём пробы воды, взятой для анализа, см³ (400 см³);

158 - молярная масса эквивалента Na₂S₂O₃, мг/моль

При необходимости представления результата анализа выраженного в расчете на тиосульфат-иона (X_{S2O3} , мг/дм³), его вычисляют по формуле:

$$X_{S2O3} = X_{\tau} \times 0,709;$$

Концентрацию сульфит-ионов мг/дм³ рассчитывают по формуле:

$$X_{SO3} = \frac{[K_{\tau}(V_{\tau \times o,n} - V_{\tau}) - K_{\mu}(V_{\mu} - V_{\mu \times o,n})] \cdot 0,01 \cdot 40,03 \cdot V_{\phi} \cdot 1000}{V \cdot V_{1}}$$

где X_{SO3} – содержание сульфит-ионов (мг/дм³);

 K_{τ} —поправочный коэффициент для приведения концентрации раствора тиосульфата к точно 0,01 моль/дм³ эквивалента;

 $V_{\text{т хол}}$ — объём 0,01 моль/дм³ эквивалента раствора тиосульфата натрия, израсходованного на обратное титрование холостой пробы, см³;

 V_{τ} – объём 0,01 моль/дм³ эквивалента раствора тиосульфата натрия, израсходованного на обратное титрование, см³;

 K_u — поправочный коэффициент для приведения концентрации раствора йода к точно 0,01 моль/дм³ эквивалента;

 V_{u} – объём 0,01 моль/дм³ эквивалента раствора йода, израсходованного на титрование пробы при определении тиосульфат-ионов, см³;

 $V_{\text{и хол}}$ — объём 0,01 моль/дм³ эквивалента раствора йода, израсходованного на титрование холостой пробы при определении тиосульфат-ионов, см³;

 V_{ϕ} – общий объём фильтрата, см³ (500 см³);

V – объём фильтрата, взятого для определения сульфит-ионов, см³ (250 см³);

 V_1 – исходный объём пробы воды, взятой для анализа, см³ (400 см³);

40,03 - молярная масса эквивалента SO₃² иона, мг/моль.

Если измеренные концентрации в пробе превышают для тиосульфатов — 15 мг/дм³, а для сульфитов 10 мг/дм³, допускается проведение повторного определения из не законсервированной пробы с разбавлением.

10. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1. Результаты количественного анализа в протоколах анализов представляют в виде:

$$X \pm \Delta$$
, мг/дм³ (P = 0,95),

где $\Delta = \delta \cdot 0.01 \cdot X$;

δ – значения характеристики погрешности (см. табл. 1).

Х - концентрация определяемого иона.

Результаты измерений округляют с точностью:

При содержании от 1,0 до 10 мг/дм 3 – 0,1 мг/дм 3 ;

При содержании свыше 10 мг/дм^3 — 1 мг/дм^3 .

11. ОЦЕНКА ПРИЕМЛЕМОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости) осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (г). Значения г приведены в таблице 2.
- 12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений,

полученными двумя лабораториями не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 2.

Таблица 2
Значения пределов повторяемости, воспроизводимости и критической

pashoci u upu Beponthoci u T - 0,95				
Диапазон измерений, мг/дм ³	Предел повторяемости г, %	Предел воспроизводимости (N=2) R, %		
	Питьевые воды			
Сульфиты				
от 1 до 10 вкл.	17	28		
св. 10 до 50 вкл.	11	20		
Тиосульфаты				
от 1 до 10 вкл.	14	25		
св. 10 до 100 вкл.	8	15		
	Природные и сточные вод	цы		
Сульфиты				
от 1 до 10 вкл.	28	42		
св.10 до 50 вкл.	17	28		
Тиосульфаты				
от 1 до 10 вкл.	22	35		
св.10 до 100 вкл.	14	25		

12. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

- 12.1. Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
 - контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
 - контроль стабильности результатов измерений (на основе контроля стабильности погрешности и среднеквадратического отклонения повторяемости и внутрилабораторной прецизионности).

Рекомендации по приготовлению образцов для контроля приведены в Приложении 2.

12.2. Контроль процедуры выполнения измерений с использованием образцов для контроля:

Анализируют образец для контроля, приготовленный с использованием веществ гарантированной чистоты. Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_Z = X - C$$
,

где Х-результат анализа;

С-аттестованное значение сульфитов и тиосульфатов в образце для контроля.

Для оценки качества процедуры выполнения анализа рассчитывают норматив контроля К по формуле:

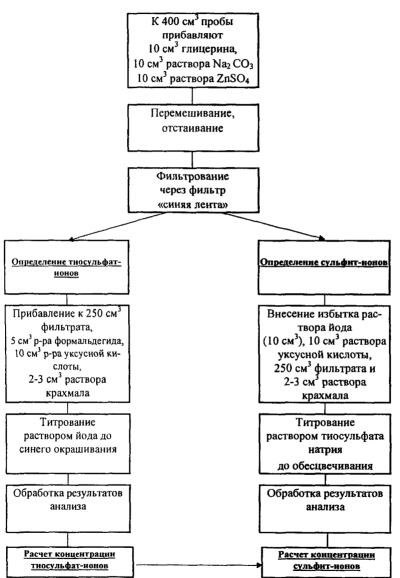
$$K = X \cdot \delta_a \cdot 0.01$$

где $\pm \, \delta_\pi \, - \,$ характеристика погрешности результатов анализа, соответствующая аттестованному значению ОК

Примечание: На первом этапе допускается считать, $\delta_n = 0.84 \cdot \delta$ где δ – показатель точности МВИ, приведенный в Таблице 1.

Если результат контрольной процедуры удовлетворяет условию:

$$|K_{\bullet}| \leq |K|$$


процедуру анализа признают удовлетворительной. Претензии к качеству процесса измерений не предъявляют.

При невыполнении условия контрольную процедуру повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

12.3. Процедуру контроля стабильности показателей качества результатов анализа (повторяемости, внутрилабораторной прецизионности и погрешности) проводят в соответствии с порядком, установленным в лаборатории.

приложение 1

БЛОК-СХЕМА АНАЛИЗА ПРИ ОПРЕДЕЛЕНИИ КОНЦЕНТРАЦИИ СУЛЬФИТ-ИОНОВ И ТИОСУЛЬФАТ-ИОНОВ В ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ

приложение 2

Приготовление образцов для контроля для проведения контроля стабильности результатов измерений

Исходные концентрированные растворы сульфит- и тиосульфат-ионов готовят из соответствующих сухих солей гарантированной чистоты. Рекомендуемая концентрация исходных растворов от 200 до 1000 мг/дм³ в расчете на определяемый анион. Далее соответствующие аликвотные части исходных растворов прибавляют к 1000 см³ подготовленной матрицы пробы, в которую предварительно добавлено 0,2 – 0,4 г (2 – 4 гранулы) гидроксида натрия и 10 см³ глицерина. Исходные растворы быстро прибавляют в матрицу, во избежание окисления определяемых компонентов. В качестве матрицы используют отстоянную (без хлора) водопроводную или природную воду, не содержащую определяемые компоненты.

Для приготовления образцов для контроля используют только свежеприготовленные исходные растворы.

Образцы для контроля готовят с концентрациями сульфит- и тиосульфат-ионов близкими к концентрациям в анализируемых лабораторией пробах и могут отличаться от концентраций, указанных в нижеприведенном примере.

Пример приготовления образца для контроля с концентрацией сульфит-ионов 1 мг/дм³ и тиосульфата натрия 2 мг/лм³

Готовят два исходных раствора сульфит-иона и тиосульфат-иона:

- 1. Раствор сульфит-иона с концентрацией 500 мг/дм³ готовят растворением 0,080 г сульфита натрия в 100 мл дистиллированной воды.
- 2. Раствор тиосульфата натрия с концентрацией 1000 мг/дм³ готовят растворением 0,157 г тиосульфата натрия $Na_2S_2O_3 \cdot 5H_2O$ (или 0,1 г безводного тиосульфата натрия) в 100 мл дистиллированной воды.

В мерную колбу вместимостью 1000 см³ прибавляют приблизительно половину матрицы, гидроксид натрия и глицерин, перемешивают до полного растворения щелочи и доливают полученный раствор матрицей на 5-10 см³ ниже метки. Далее быстро прибавляют по 2 мл каждого из исходных растворов. Объем раствора доводят матрицей до метки. Тщательно осторожно перемешивают, не встряхивая содержимое колбы. Анализируют в соответствии с п. 9 данной метолики.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

№ 223.1.01.02.122/2008

Методика выполнения измерений

массовых концентраций сульфитов и тносульфатов

наиментвание измеряемой величний; объекта

в питьевых, природных и сточных водах титриметрическим методом,

и метода измерений

разработанная Аналитическим центром контроля качества воды ЗАО «РОСА» (г. Москва),

изименование организации (предприятыя), разработавляей МВИ

аттестована в соответствии с ГОСТ Р 8.563.

Аттестация осуществлена по результатам

метрологической экспертизы материалов

по разработке методики выполнения измерений

вы расот метрологическая экспертиза материалов по разработке МВИ, теоретическое или экспериментальное исожедованик МВИ, другие анува рафот

В результате аттестации установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками, приведенными в приложении.

Приложение: метрологические характеристики МВИ на листе

Зам, директора по научной работе

Зав. даборяторией

Дата выдачи:

Срок действия:

Г.И. Терентьев

С.В. Медведевских

Рассия, 620000, г. Екатеринбург, ул. Красноармейския, Г men.: (343) 350-26-18, diase: (343) 350-20-39. E-mail: unitimidjunitim.ru

Приложение к свидетельству № 223.1.01.02.122/2008 об аттестации методики выполнения осний массовых концентраций сум фитов и тиссуль фат

нзмерений массовых концентраций сульфитов и тиосульфатов в интьевых, природных и сточных водах титриметрическим методом

1 Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости

		~~~~~~~ <del>~</del>			
Диапазон	Показатель	Показатель	Показатель	Показатель	Показатель
измеренни,	повторяемо-	воспроизводи-	воспроизводи-	точности	точности [†]
мг/дм ³	СТИ	мости	мости	(границы	(границы
	(относительное	(относительное	(относительние	отпосительной	относитель- ной
	значение средне- квадратического	значение средие- квалратического	значение средне-	погрешности при	погрешности
	отклонения	отклонения вос-	отклонения вос-	Р≕0.95 и п=1),	при
	повторыемости).	производимости	произволимости		вероктности
	σ ₀ %	при n∞1), $\sigma_R$ ,%	при n=2),	± δ,%	Р≔0.95 и
		11711 11 175 OF R 5.75	$\sigma_R$ ,%		n==2),
					±δ,%
		Питьевые во	ДЫ		*
Сульфиты					
от 1 до 10 включ.	6	10	8,5	20	17
св.10 до 50 включ.	44	7	6	14	12
Тиосульфаты					
от 1 до 10 вкаюч.	5	9	7,5	18	15
св. 10до 100 включ.	3	5,5	4,5	11	9
		Природные и сточ	ные воды		
Сульфиты		<u> </u>			
от 1 до 10 включ.	10	15	13	30	26
са. 10 до 50 включ.	6	10	8,5	20	17
Тиосульфаты					
от 1 до 10 включ.	8	12,5	11	25	22
св. 10до 100 включ.	5	9	7,5	18	15
Примечание… п-	- количество результи	тов параздельных опр	елелений, необходи:	нинэрукоп жкк жым	огонительного
результага измерений					

2 Диапазон измерений, значения пределов повторяемости, воспроизводимости и критической разности при вероятности Р≈0.95

Диапазон измерений, мг/дм ³	Предел повторяемости (относительное значение лопускаемого расхождения между двуми результатами парадлельных определений), г, %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя единичными результатами измерений, полученными в разных ла- бораториях), R, %	Критическая разность (относительное значение лопускаемого расхождения между двумя средними арифметическими резульгатами измерений, полученными в разных лабораториях при $n_1 = n_2 = 2$ ),
			CD _{0,95}
	Питьев	ые воды	
Сульфиты			
от 1 до 10 включ.	17	28	24
св. 10 до 50 включ.	- (1	20	
Тносульфаты			
от 1 до 10 включ.	14	25	21
св.10до 100 включ.		1.5	13
	Природные и	сточные воды	v 4
Сульфиты			
от 1 до 10 включ.	28	42	36
св. 10 до 50 включ.	17	28	24
<u>Тносульфаты</u>			
от 1 до 10 включ.	22	35	31
св.10до 100 включ.	14	25	21

Примета в нес.  $n_1$  - количество результатов паравлельных определений, полученных в первой лаборатории;  $n_2$  - количество результатов паравлельных определений, полученных во второй лаборатории.

^{*} Соответствует относительной расциренной неопределенности с коэффициентом охвата k=2

^{*}Соответствует относительной расширенной неопреледенности с коэффициентом охвата k=2

- 3 При реализации методики в лаборатории обеспечивают:
- оперативный контроль процедуры измерений;
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм контроля исполнителем процедуры измерений приведен в документе на методику выполнения измерений. Процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лаборатории.

Старший научный сотрудник даборатории 223 ФГУП «УПИИМ»

Убогоргина О.В.Кочергина