ЗАО «Фирма «СОЛИД»

OKI 52 6250

УТВЕРЖДАЮ:

Генеральный директор

ЗАО «Фирма «СОЛИД»

Ногу С. А. Клюшин

«29» декабря 2007 г.

СТАНДАРТ ОРГАНИЗАЦИИ СТО 23083253-001-2007

(взамен TV 5262-001-23083253-96)

ЛИСТЫ СТАЛЬНЫЕПРОСЕЧНО-ВЫТЯЖНЫЕ

технические условия

Дата введения в действие

« 29 » декабря 2007 г.

Санкт-Петербург 2007 Настоящие технические условия распространяются на просечно-вытяжные листы (далее по тексту - листы) из металлопроката, предназначенные для устройства покрытий полов, площадок и ступеней маршевых лестниц в производственных зданиях и инженерных сооружениях.

По согласованию с потребителем допускается применение листов для изготовления тары и различных ограждений.

Настоящие технические условия могут быть использованы для целей сертификации листов в системе сертификации ГОСТ Р в строительстве.

Листы предназначены для эксплуатации в условиях с расчетными температурами окружающей среды от -65°C в условиях воздействия не агрессивных сред.

Условное обозначение листов должно состоять из обозначения типа формы просечки, ширины и длины листа в мм, марки стали основы и обозначения настоящих технических условий.

Пример условного обозначения при заказе просечно-вытяжного листа с формой просечки типа 1. номера листа 508, шириной 900 мм и длиной 2500 мм, из проката стали Ст3сп по ΓΟCT 380-94:

> 508 x900 x 2500 TV 5262-001-23083253-96 Ст3сп ГОСТ 380-94

Перечень нормативной документации, на которую даны ссылки в настоящих технических условиях, приведен в приложении 1.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Листы должны соответствовать требованиям настоящих технических условий и изготавливаться по технологической документации, утвержденной в установленном порядке.

1.1. Листы должны изготавливаться посредством резки стального проката на отдельные заготовки шириной, равной ширине необходимого листа (b). Ячейки должны быть расположены вдоль направления волокон прокатки. (чертеж 1), а при применении листов для изготовления ограждений и тары ячейки могут располагаться как вдоль, так и поперек направления волокон прокатки.

12 ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ

1.2.1. Основные характеристики и размеры листов должны соответствовать величинам, приведенным в таблицах № 1, 2, 3 и 4. Величины прогибов, вызванных приведёнными нагрузками в вышеупомянутых таблицах, не превышают максимальный прогиб в 0,01 от величины пролета (ширины листов), в соответствии с Федеральными ТУ RRG-661B (США) и рекомендациями, обеспечивающими комфорт для пешеходов.

Равномерно-распределённая нагрузка при шарнирном опирании кромок листа, расположенных по его ширине.

Таблица 1.

10000	10 (10 to 10		5 444	Теорет топшина листа 5 мм	Размер вытяжки А. мм. не									orub	Teoper Bed 1 ks.ss.
	ter min		B. MM	не болсе	bonee		500	600	700	800	900	1000	1100	1150	неменее
306	3	6	90	12,3	15,5	2,78	169	98	61	41	29	21	16	12	8,4
308	3	8	90	15,6	15,5	2.18	301	174	109	73	51	37	28	22	10,8
310	3	10	90	18,4	15,5	1,84	470	272	170	114	80	58	44	34	12,8
406	4	6	90	12,6	16,5	2,93	304	176	111	74	52	37	28	22	10,7
408	4	8	90	16,1	16,5	2,29	540	313	197	132	93	67	51	39	13,7
410	4	10	90	19,2	16,5	1.93	844	489	308	206	145	105	80	61	16,3
506	5	6	110	12,9	19,0	3,32	387	224	141	94	66	48	36	28	11,8
508	5	- 8	110	16,7	19,0	2,58	688	398	251	168	118	86	65	50	15,2
510	5	10	110	20,0	19,0	2,15	1081	626	394	264	185	135	102	78	18,3
606	6	6	125	13,2	22,0	3,80	691	400	252	169	118	86	65	50	12,4
608	6	8	125	17,1	22,0	2,93	1229	711	448	300	210	153	115	89	16,1
610	6	10	125	20,7	22,0	2,42	1920	1111	700	469	328	239	180	139	19,5

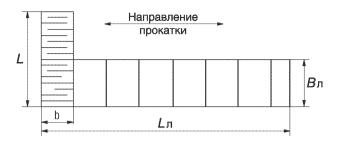
Равномерно-распределённая нагрузка при защемлённых кромках листа, расположенных по его ширине.

Таблица 2.

Man a	Tombers		110,000	Ha Ha	Теорет тоящина янста С мм	A see se		Равномерно-распределённая нагрузка на 1 п.м.в кгс при ширинг пяста (пролета), мм. Указанные нагрузкя вызывают прогиб не превышающий 0.01 от ширины листа (прелета).								Tenner Sections
	69.000		В.мм	не более	Conec	He Conce	500	600	700	800	900	1000	1100	1160	HE MENER	
306	3	6	90	12,3	15,5	2,78	338	197	124	81	56	42	34	25	8,4	
308	3	8	90	15,6	15,5	2,18	600	350	220	145	100	75	60	45	10,8	
310	3	10	90	18,4	15,5	1,84	937	547	344	226	156	117	94	70	12,8	
406	4	6	90	12,6	16,5	2,93	608	366	225	149	107	76	56	45	10,7	
408	4	8	90	16,1	16,5	2,29	1080	625	400	265	190	135	100	80	13,7	
410	4	10	90	19,2	16,5	1,93	1687	976	625	400	297	211	156	125	16,3	
506	5	6	110	12,9	19,0	3,32	775	450	280	190	130	100	75	60	11,8	
508	5	8	110	16,7	19,0	2,58	1380	800	500	340	240	175	130	100	15,2	
510	5	10	110	20,0	19,0	2,15	2160	1250	790	528	370	270	200	160	18,3	
606	-6	6	125	13,2	22,0	3,80	1384	798	506	337	236	174	129	101	12,4	
608	6	8	125	17,1	22,0	2,93	2460	1420	900	600	420	310	230	180	16,1	
610	6	10	125	20,7	22,0	2,42	3844	2219	1406	937	656	484	359	281	19,5	

Сосредоточенная нагрузка в центре листа при шарнирном опирании кромок листа, расположенных по его ширине.

Таблица 3.


Magaza Bacas	T05188848 200008	Подача Б мм	Har seess	Teoper Toniusia Betta Silia			Шири	не листа), am fip	иведенн	ые нагр,	/3KM BЫЗІ	JESTOT	Teoper Bed 1 Ke.M. Ki
	KUMM		5, 1816	не более	oonee	не оплее	500		700	800		1000	1100	1111	неменее
308	3	8	90	15,6	15,5	2,18	90	78	66	54	42	29	25	20	10,8
408	4	8	90	16,1	16,5	2,29	128	111	94	77	60	42	38	34	13,7
506	5	6	110	12,9	19	3,32	102	89	76	63	50	37	32	28	11,8
508	5	8	110	16,7	19	2,58	154	135	116	97	78	59	52	44	15,2
510	5	10	110	20,0	19	2,15	205	180	155	130	105	78	69	59	18,3
608	6	8	125	17,1	22	2,93	252	221	190	160	129	98	80	63	16,1

Сосредоточенная нагрузка в центре листа при защемлённых кромках листа, расположенных по его ширине.

Таблица 4.

Magaza antera	Толинна заготов- ки мм		Liar anaksa B. MM		Pagmes Sergaka A MM, He Some	8.5 /8/10/10/20	EURDR Door	не листа), MM (lp		sie Harry	3KH 66(3)	OBBIG	TERRET Bec 1 Kan Kr
308	3	8	90	15,6	15,5	2,18	135	117	99	81	63	43	37	30	10,8
408	4	8	90	16,1	16,5	2,29	192	166	141	115	90	63	57	51	13,7
506	5	6	110	12,9	19	3,32	153	133	114	94	75	55	48	42	11,8
508	5	8	110	16,7	19	2,58	231	202	174	145	117	88	78	66	15,2
510	5	10	110	20,0	19	2,15	307	270	232	195	157	117	103	88	18,3
608	6	8	125	17,1	22	2,93	378	331	285	240	193	147	120	94	16,1

- 1.2.2. Параметры просечно-вытяжных листов приведены в приложении 2. Отклонения фактических параметров от заявленных в таблицах 1,2,3 и 4, не должны превышать: подача «Б»±15%, шаг ячейки «В»±2,0%, толщина листа «S»±2,5 мм и вытяжка «А»±4,5 мм.
- 1.2.3. Длина изготавливаемых листов, не может быть менее 1.0 м. Длина листов устанавливается при заказе в пределах, согласованных с потребителем.
- 1.2.4. Предельные отклонения от размеров листов не должны превышать :
 - по ширине ± 10 мм;
 - по длине ± 25 мм на каждые 1 м длины листа.
- 1.2.5. Угол среза листов не должен превышать 5 мм на 1 м кромки.
- 1.2.6. Листы не должны иметь трещин напряжения длиной более 2 мм, а также заусениц и зазубрин величиной более 2 мм.
- 1.2.7. На одном из концов листа допускается наличие не просечённого участка длиной до 250 мм на всю ширину листа, если это специально не оговорено в заказе.
- 1.2.8. Не прямолинейность продольных кромок листов не должна превышать 2 мм на 1 м длины кромки.

Вл - ширина проката в состоянии поставки, равная длине заготовки листа;

Lл - длина проката в состоянии поставки;

b - ширина заготовки, равная ширине листа;

L - длина листа, равная длине заготовки Вл, умноженной на коэффициент вытяжки К:

$$K = \frac{\sqrt{A^2 + l^2}}{l}$$

где A - размер вытяжки, мм;

l - размер подачи, мм.

1.3. ТРЕБОВАНИЯ К МАТЕРИАЛАМ

1.3.1. Листы изготавливаются из листовой стали, соответствующей одному из стандартов: ГОСТ 14637, ГОСТ 16523, ГОСТ 9045, ГОСТ 19281 или ГОСТ 14918 из марок сталей по ГОСТ 380 или ГОСТ 1050 или ГОСТ 19281 толщиной 3 мм, 4 мм, 5 мм и 6 мм. По согласованию с потребителем допускается изготавливать листы меньших и промежуточных толщин.

1.4. МАРКИРОВКА И УПАКОВКА

- 1.4.1. Каждая упаковка листов должна иметь маркировку. Маркировка наносится методом чеканки на непросеченную часть верхнего листа упаковки или выполняется несмываемой краской на бирке (ярлыке), которая крепится к упаковке. Маркировка должна содержать:
 - наименование или товарный знак предприятия-изготовителя;
 - условное обозначение листов и их размеры;
 - номер заказа (партии) ;
 - вес нетто листов в упаковке либо их количество в штуках или квадратных метрах.
- 1.4.2. Листы должны плотно увязываться в пачки в поперечном направлении не менее, чем двумя обвязками из стальной проволоки по ГОСТ 3282-74 через каждые 1.0 1.5 м длины пачки. Вес пачки не должен превышать 5 т.
- 1.4.3. По согласованию с потребителем допускается применение других способов маркировки и упаковки, что должно быть оговорено при заказе.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

- 2.1. При монтаже листов необходимо предохраняться от возможности порезов о заусенцы и зазубрины, которые должны быть удалены после окончания монтажных работ.
- 2.2. Утилизация листов должна производиться сдачей их как лома с последующей переплавкой.
- Других специальных требований по безопасности и охране окружающей среды к листам не предъявляется.

3. ПРАВИЛА ПРИЕМКИ

- 3.1 Листы должны быть приняты техническим контролем предприятия-изготовителя.
- 3.2. Листы принимаются партиями. Партия должна состоять из листов одной марки стали, одного номера и одного размера по ширине и длине.
- 3.3. Для приемки от париии отбирается 5 % листов, но не менее трех листов.
- 3.4. При получении неудовлетворительных результатов хотя бы по одному показателю хотя бы одного листа, проводят повторные испытания по этому показателю на удвоенном количестве выборки.
 - Результаты повторных испытаний являются окончательными и распространяются на всю партию.
- 3.4. Каждая пария листов, принятая техническим контролем предприятия-изготовителя, должна сопровождаться паспортом (сертификатом качества), который должен содержать следующую информацию:
 - наименование (товарный знак) предприятия-изготовителя :
 - номер заказа (партии) ;
 - условное обозначение листов;
 - количество продукции: вес нетто или количество листов в штуках или количество в квадратных метрах;
 - дату выпуска:
 - обозначение настоящего стандарта;
 - отметку о приемке листов техническим контролем.
- 3.5. При приемке партии проверяют соответствие листов требованиям п.п. 1.2.1., 1.2.3. 1.2.7., 1.4. настоящих технических условий.
- При этом величины и размеры подачи, длины ячейки, вытяжки и массы на готовой продукции не контролируют, а устанавливают при наладке и регулировке технологического оборудования и обеспечиваются соблюдением персоналом технологического процесса.
- 3.6. Определение соответствия листов требованиям настоящих технических условий по показателю предельной нагрузки проводят как типовые испытания при постановке продукции на производство и изменении технологии.

4. МЕТОДЫ КОНТРОЛЯ

- 4.1. Определение геометрических размеров листов производят рулеткой по ГОСТ 7502-89*. Измерения производят с точностью ± 1 мм.
- 4.2. Угол среза листа определяется угольником по ГОСТ 3749-77* и линейкой по ГОСТ 8026-92.
- 4.3. Предельная распределённая нагрузка или нагрузка, сосредоточенная на площади 200 x 200 мм по центру листа, имеющего длину 1 м, определяется по методике, приведенной в приложении 3.
- Отсутствие трещин напряжения контролируют визуально с расстояния 1 м при естественном освещении.
- 4.5. Размеры заусенцев и зазубрин определяют штангенциркулем по ГОСТ 166-89*.

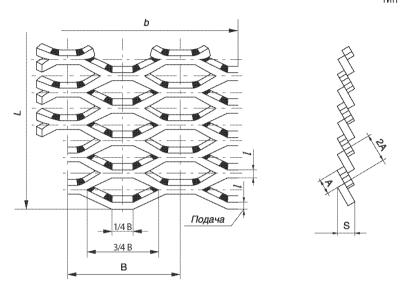
5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Транспортирование листов может осуществляться любыми видами грузового транспорта при условии соблюдения правил погрузки, крепления и перевозки грузов, действующих на данном виде транспорта.
- 5.2. При использовании крытых транспортных средств вес пачки листов не должен превышать 1 т.
- 5.3. Листы могут храниться в штабелях в горизонтальном положении при условии соблюдения следующих требований:
 - пачки должны быть устойчиво уложены на подкладки, исключающие образование остаточных деформаций листов;
 - подкладки должны быть толщиной не менее 50 мм и шириной не менее 100 мм;
 - прокладки между пакетами должны быть толщиной не менее 20 мм и длиной не менее 100 мм;
 - высота штабеля определяется его устойчивостью с учетом соблюдения характеристик погрузочно-разгрузочных средств и норм техники безопасности;
 - штабеля должны быть предохранены от попадания атмосферных осадков.
- 5.4. При проведении погрузочно-разгрузочных работ запрещается использовать обвязку пакетов для их транспортирования.

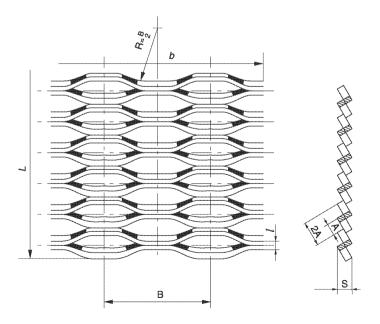
б. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Предприятие-изготовитель гарантирует соответствие листов требованиям настоящих технических условий при соблюдении потребителем порядка и правил транспортирования, хранения и эксплуатации.
- 6.2. Гарантийный срок устанавливается 12 месяцев со дня отгрузки листов потребителю или дня реализации листов через торговую сеть.
- 6.3. Срок безопасной эксплуатации листов устанавливается не менее 10 лет.

3АО « Фирма «СОЛИД»	CTO 23083253-001-2007	Лист 8 Всего листов 12
---------------------	-----------------------	-------------------------------


Приложение 1

ПЕРЕЧЕНЬ нормативной документации, на которую даны ссылки в настоящих технических условиях


NoNo пунктов ТУ	Обозначение НД
1.2.1	ТУ RRG-661B (США)
1.3.1.	FOCT 14637-79, FOCT 16523-89, FOCT 9045-93, FOCT 14918-80, FOCT 380-94, FOCT 1050-88
1.4.2.	ГОСТ 3282-74
4.1.	ΓΟCT 7502-89*
4.3.	FOCT 3749-77*, FOCT 8026-92.
4.6.	FOCT 166-89*

Приложение 2 (справочное)

Тип 1

Тип 2

Всего листов 12

Приложение 3

МЕТОДИКА испытаний просечно-вытяжных листов (ПВЛ) статической нагрузкой.

- Требования к образцам листов:
- 1.1. Все образцы листов должны иметь длину 1000 мм для всех пролетов (от 500 до 1150 мм) при определении величин нагрузок.
- 1.2. Образцы листов для определения жесткости должны иметь длину 250 мм и ширину 1100 мм.
- 1.3. Образцы листов должны быть плоскими не иметь трещин, надрывов, волнистости и резких изгибов; опирание листов на опоры при испытаниях должно осуществляться всеми точками «чешvи».
- 2. До начала испытаний необходимо выполнить контрольные обмеры листов (толщину заготовки, величину подачи, шаг ячейки, вытяжку).
- 3. Проведение испытаний по определению жесткости просечно-вытяжных листов (ПВЛ) на образцах 250 х 1100 мм.
- 3.1. Определение жесткости ПВЛ производиться как для балки на шарнирных опорах (одна неподвижная, а вторая подвижная) с рабочим пролетом 1000 мм при ее нагружении распределенной осевой нагрузкой по центру пролета.
- 3.2. Нагрузочная балка должна иметь достаточную жесткость, исключающую ее прогиб по длине и опираться на все элементы «чешуи» ПВЛ; ширина нагрузочной балки не должна превышать 1/30 пролета (наиболее целесообразно использовать стальную трубу диаметром 40 ÷ 50 мм); в качестве опор целесообразно использовать стальные трубы или валики диаметром 40 ÷ 50 мм.
- 3.3. Расстояние между центрами опор должно выставляться с точностью ± 1 мм.
- 3.4. Измерение прогиба испытываемого листа должно производиться с точностью не менее ± 0.01 мм (прогибомеры или индикаторы); измерительные приборы должны устанавливаться в 3-х точках по средней линии длины образца – 2 по осям опор и один в центре по линии действия нагрузки; расчет прогиба должен производиться с учетом возможной осадки опор.
- 3.5. Нагружение испытываемого образца следует производить равными ступенями, не превышающими величину 0,2Р, где Р – величина усилия, вызывающая прогиб ПВЛ, близкий к 1/100 пролета.
- 3.6. Точность измерения величины усилия нагружения не должна быть более 0.05 кгс.
- 3.7. Снятие показаний по приборам необходимо производить после стабилизации деформаций ПВЛ на каждой ступени.
- 3.8. После достижения величины прогиба 1/100 пролета производится разгрузка образца и после стабилизации показаний измерительных приборов определяется остаточный прогиб, величина которого не должна превышать 1/2500 пролета, что свидетельствует об упругой работе образца ПВЛ.
- 3.9. Число образцов для определения жесткости должно быть не менее 3-х для каждого типа ПВЛ.

- 3.10. После проведения испытаний каждой серии образцов ПВЛ строится совмещенный график зависимости прогиба от нагрузки (для каждого образца) и рассчитывается жесткость EJ.
- 4. Определение величины равномерно-распределенной нагрузки «q» при шарнирном опирании и допустимом прогибе ПВЛ, равном 1/100 пролета:
- 4.1. Испытания всех типов образцов ПВЛ при различных пролетах производятся как для шарнирно-опертой балки: размер образцов для каждого пролета «L» должен быть «L» + 100 мм при длине всех типов листов – 1000 мм; число образцов для испытаний каждого типа ПВЛ должно быть не менее 3-х.
- 4.2. Размеры штучных грузов в направлении пролета для нагружения должны быть ≤ 1/6 пролета.
- 4.3. Требования к образцам ПВЛ, устройству опор. установке и точности измерительных приборов по разделам 1,2 и 3.
- 4.4. Число равных ступеней нагружения должно быть не менее 5 при точности измерения величины нагрузки не более 0.5% (для каждой ступени).
- 4.5. Снятие показаний по приборам и обработка результатов испытаний по разделу 3.
- Определение величины сосредоточенной нагрузки «Р» в центре листа на пятне 200 x 200 мм при допустимом прогибе 1/100 пролета и шарнирном опирании ПВЛ:
- 5.1. Требования к числу образцов, устройству опор, установке и точности измерительных приборов, числу ступеней нагружения по разделу 4.
- 5.2. Штамп для передачи сосредоточенной нагрузки «Р» должен иметь избыточную жесткость по сравнению с ПВЛ (превышать жесткость ПВЛ не менее чем в 10 раз).
- 5.3. Точность измерения величины нагрузки на каждой ступени должна быть не более 0.5%; снятие показаний по приборам и обработка результатов по разделу 3.
- Определение величин нагрузок «q» (равномерно-распределенной) и «Р» (сосредоточенной 6. на пятне 200 x 200 мм в центре) при допустимом прогибе 1/100 пролета и защемлении листов ПВЛ на опорах.
- 6.1. Защемление листов ПВЛ на опорах осуществляется приваркой каждой полоски листа к опорным балкам швом толщиной, равной толщине заготовки листа, длиной 25-30 мм; при этом опорные балки должны иметь избыточную жесткость на кручение и изгиб по сравнению с листами.
- 6.2. Сварные швы должны доходить до граней балок, обращенных внутрь пролета; при этих условиях расчетный пролет будет равен расстоянию между внутренними гранями балок.
- 6.3. При проведении испытаний необходимо исключить возможность сближения опорных балок.
- 6.4. Требования к образцам ПВЛ, их числу, установке приборов, нагружению, снятию показаний по приборам и обработке результатов как в предыдущих разделах.

ЗАО « Фирма «СОЛИД»	CTO 23083253-001-2007	Лист 12 Всего листов 12
---------------------	-----------------------	-----------------------------------

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Изменение	Номера листов (страниц)	Всего листов (страниц)	№ документа	Входящий № сопрово- ди-тельного документа	Подписъ	Дата