ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ ИЗДЕЛИЯ И УЗЛЫ ЗАЩИТНЫХ СООРУЖЕНИЙ ГРАЖДАНСКОЙ ОБОРОНЫ

СЕРИЯ У-01-02/89

УНИФИЦИРОВАННЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ЗАГЛУБЛЕННЫХ ПОМЕЩЕНИЙ С БЕЗБАЛОЧНЫМ ПЕРЕКРЫТИЕМ

выпуск 0-1

СБОРНО-МОНОЛИТНЫЙ ВАРИАНТ КОНСТРУКЦИЙ ДЛЯ МАЛОВЛАЖНЫХ ГРУНТОВ МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ. МОНОЛИТНЫЕ КОНСТРУКЦИИ. РАБОЧИЕ ЧЕРТЕЖИ

ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ ИЗДЕЛИЯ И УЗЛЫ ЗАЩИТНЫХ СООРУЖЕНИЙ ГРАЖДАНСКОЙ ОБОРОНЫ

СЕРИЯ У-01-02/89

УНИФИЦИРОВАННЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ЗАГЛУБЛЕННЫХ ПОМЕЩЕНИЙ С БЕЗБАЛОЧНЫМ ПЕРЕКРЫТИЕМ

выпуск 0-1

СБОРНО-МОНОЛИТНЫЙ ВАРИАНТ КОНСТРУКЦИЙ ДЛЯ МАЛОВЛАЖНЫХ ГРУНТОВ МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ. МОНОЛИТНЫЕ КОНСТРУКЦИИ. РАБОЧИЕ ЧЕРТЕЖИ

РАЗРАБОТАНЫ

КИЕВСКИЙ ПРОМСТРОЙПРОЕКТ

ГЛАВНЫЯ ИНЖЕНЕР ИНСТИТУТА ДОСТЯТАРИТОНОВ И.Г.

НАЧАЛЬНИК ОТДЕЛА

CHITHUK AH.

ГЛАВНЫЙ КОНСТРУКТОР ОТДЕЛА

KOSHOB B.A.

ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА

ЛИБЕРМАН Г.А.

УТВЕРЖДЕНЫ ГОССТРОЕМ СССР письно № 6/6 - 1744 от 30.08.88 ВВЕДЕНЫ В ДЕЙСТВИЕ

КИЕВСКИМ ПРОМСТРОЙПРОЕКТОМ

ПРИКАЗ ОТ 14.09.88

No 117

MINTE CACCIDER CCCF. 1885

ительная записка клатура сборных железобетон- изделий и подбора марок конструкций и пасположения конструкций помеще- сеткой колонн (5+6)×6 м расположения конструкций помеще- сеткой колонн (6+6+6)×6 м расположения конструкций помеще- сеткой колонн (6+3+6)×6 м I I енты схем расположения сборных	3 13 17 18 19 20 21 _H
изделий и подбора марок конструкций и и подбора марок конструкций помеще- сеткой колонн (5+6)×6 м расположения конструкций помеще- сеткой колонн (6+6+6)×6 м расположения конструкций помеще- сеткой колонн (6+3+6)×6 м расположения сборных бенты схем расположения сборных	13 17 18 19
изделий и подбора марок конструкций и и подбора марок конструкций помеще- сеткой колонн (5+6)×6 м расположения конструкций помеще- сеткой колонн (6+6+6)×6 м расположения конструкций помеще- сеткой колонн (6+3+6)×6 м расположения сборных бенты схем расположения сборных	13 17 18 19
О пасположения конструкций помеще- сеткой колонн (5+6)×6 м расположения конструкций помеще- сеткой колонн (6+6+6)×6 м оссположения конструкций помеще- сеткой колонн (6+3+6)×6 м Г У	18 19 20
пасположения конструкций помеще- сеткой колонн (5+6)×6 м расположения конструкций помеще- сеткой колонн (6+6+6)×6 м расположения конструкций помеще- сеткой колонн (6+3+6)×6 м I Y	18 19 20
сеткой колонн (5+6)×6 м расположения конструкций потеще- сеткой колонн (6+6+6)×6 м расположения конструкций потеще- сеткой колонн (6+3+6)×6 м I Y енты схем расположения сборных	19
расположения конструкций потеще- сеткой колонн (6+6+6)×6м расположения конструкций потеще- сеткой колонн (6+3+6)×6 м I I енты схем расположения сборных	19
расположения конструкций потеще- сеткой колонн (6+6+6)×6м расположения конструкций потеще- сеткой колонн (6+3+6)×6 м I I енты схем расположения сборных	20
расположения конструкций потеще- сеткой колонн (6+3+6) х 6 м I У енты схем расположения сборных	20
сеткой колдин (6+3+6) х 6 м I <u>V</u> енты схем расположения сборных	-
I <u>V</u> енты схем расположения сборных	-
енты схем распаложения сборных	214
	-
nepekpumus .	22
пы опирания конструкций карка-	
дземных зданий на перекрытия	23
от единичных нагрузок в	23
HOÙ PAME NOU COMKE	
(6+6)×6 M	24
от единичных нагрузок в	
чной раме при сетке	-
	26
от единичных нагрузок в	
(6+3+6)×6 M	28
֡	*** OM EQUALIFIENT HAZPYJOK TO *** *******************************

Обозначение	Наименование	Cmp
4-01-02/89.0-1-11	Фундамент ФМ 1-1, ФМ 2-1,	<u> </u>
	ØM6-1, ØM7-1, ØM7-2	30
4-01-02/89.0-1-12	Фундамент Фм 3-1 Фм 5-1,	<u> </u>
	QM8-1 QM 13-1	31
y-01-02/89.0-1-13	Фундамент Фм 14-1 ФМ 15-2	33
4-01-02/89.0-1-14	Фундамент ФМ 16-1 ФМ 20-2	34
y-01-02/89.0-1-15	Фундамент Фм1-1 Фм20-2.	↓
	Ведомость расхода стали	37
Y-01-02/89.0-1-16	TAUMA DEDEKONMUS TM 1-1 TM 3-3	38
8-01-02/89.0-1-17	Уеол монолитный Ум1-1, Ум1-2	46
4-01-02/89.0-1-18	KOHCONS KHM 1-1 KHM 2-3	47
·		<u>L</u>
		T
		Τ.
		/
	,	
		1

 Испр Внесень: Инж. Икама/Икамеская 9.0.89г.

 (планста Козаба
 У-01-02/89.0-1

 Гий Либернан
 Содержание

 Кимитр Либернан
 Содержание

 Кимотр Либернан
 Проистой проект

кф 10086-01

OHIME HAHHE

- 1.1.Серия У-01-02/89 разработана в следующем составе:
- Выпуск О-I Сборно-монолитный вариант конструкций для маловлажных грунтов. Материалы для проектирования. Монолитные конструкции. Рабочие чертежи
- Выпуск 0-2 Сборно-монолитный вариант конструкций для водонасыщенных грунтов. Материалы для проектирования. Монолитные конструкции. Рабочие чертежи
- Выпуск I Сборно-монолитный вариант конструкций.

 Сборные железобетонные изделия. Рабочие чертежи
- Выпуск 2 Сборно-монолитный вариант конструкций. Сборные железобетонные изделия. Арматурные изделия. Рабочке чертежи
- Выпуск 3 Сборно-монолитный вариант конструкций. Монолитные конструкции. Арматурные изделия. Рабочие чертежи
 - I.2.Серия У-0I-02/89 разработана в соответствии со следующими нормативными документами:
- СНиП П—II—77 * "Защитные сооружения гражданской оборони"; СНиП 2.0I.07—85— "Нагрузки и воздействия"; СНиЙ 2.03.0I—84— "Бетонные и железобетонные конструкции";

СНиП П-7-81 - "Строительство в сейсмических районах".

2. ОБЛАСТЬ ПРИМЕНЕНИН

- 2.1.Конструкции предназначены для применения во встроенных / расположенных в подвальных этажах зданий/ и отдельно стоящих заглубленных помещениях классов A-IУ, A-II и A-II, согласно приложению I^* к СНиП Π -II- 77^* .
- 2.2. Исходя из усилий, передаваемых на встроенные заглубленные помещения каркасом вышестоящего здания, конструкции встроенных помещений могут онть применени во всех климатических районах СССР по снеговой и по ветровой нагрузке в несейсмических районах, а также в районах с сейсмичностью 7 и 8 баллов.

Отдельно стоящие сооружения могут бить применены во всех климатических районах СССР без ограничения по сейсмичности.

2.3. Нормативные жарактеристики принятых грунтовых условий: плотность грунтов $\gamma^{\text{M}} = 1.8 \text{ т/m3}$; угол внутреннего трения $\gamma^{\text{M}} = 28^{\circ}$ /0.49 рад/; удельное сцепление $C^{\text{H}} = 2 \text{HIa}$ / 0.02 KTC/cm2/; модуль деформации E = 15 MIa / 150 KTC/cm^2 /

Грунтовые воды отсутствуют- грунты маловлажные.

Конструкции фундаментов заглубленных помещений разработаны при различных расчетных сопротивлениях грунта 0.2...0.7 мна /2...7 кгс/см $^2/.$

Рук.ер.	CONOBLEGA		y-01-02/89.	0-1-113		
run	JUDEPMAH	.] ~ '				_
	(Cradus	Nucm	Nuemob
		,	Пояснитепьная	P	1	10
			3anucka	Kuel	CKUU	
	1.			MARKE	mani	npaekm
H. KOHM P	Лидерман	1			שטעוייי	· ibac CVIII

- 2.4.Вотроенные помещения проверены на нагрузки от ряда каркасных зданий различной этажности и с различными нагрузками на перекрытия по сериям I.020.I-83 и I.420-I2 / см. табл.I/.
- 2.5.Конструкции не предназначени для применения в сложных гидрогеологических условиях / вечная мерэлота, карстовие грунти, горные выработки, просадочные грунти П типа и т.д./ без дополнительной разработки специальных мероприятий.
 - З.ОБЪЕМНО-ПЛАНИРОВОЧНЫЕ И КОНСТРУКТИВНЫЕ РЕПЕНИЯ
- 3. I. Заглубленные помещения разработаны двух- и трехпролетные. При многопролетном помещении все средние пролеты выполняют по среднему пролету трехпролетного помещения.
- 3.2. Сетка колонн во встроенных помещениях соответствует сетке колонн вышестоящего здания и равна 6х6м, а для зданий по серии 1.020.1-83, в которой приведен вариант зданий с сеткой колонн /6 + 3 + 6/ х 6м, рассмотрена также и указанная сетка колонн.
 - В отдельно стоящих помещениях сетка колони равна 6 ж 6 м.
- 3.3. Привязка внутренних граней стен к продольним и поперечним координационным осям равна 200 мм.
- 3.4.Высота помещений от пола до низа перекрытия равна 3100мм, а до низа капителей— 2500 мм.
- 3.5.Основними конструкциями заглубленных помещений являются: фундаменты под колонны и ленточные / лотковые/ фундаменты под наружные стены, колонны, стены, перекрытия.

3.6. Фундаменти под колонни- отдельно стоящие, стаканного тика, из монолитного железобетона; фундаменти под стени- лен-точные, из сборных железобетонных лотков. При недостаточной несущей способности грунтов основания или при больших нагрузках под железобетонными лотками выполняют более широкий монолитний лен-точный фундамент.

Под фундаментами выполнить бетонную подготовку толимой 100мм из бетона класса В 3.5.

- 3.7.Колонны— сфорные железобетонные, квадратного сечения, с размерами сечения 600 х 600мм— для помещений класса А—И и А—П.
- 3.8.Стены приняты из сфорных ,вертикально установленных панелей, с номинальной шириной I.5м, плоских и ребристых.

Плоские панели устанавливают против колони по каждой продольной и поперечной координационной оси. Все остальние стеновне панели в этом варианте-ребристие.

Толщина стеновых панелей принята:

для помещений класса А—IV 300 мм; ---- А—II и А—II 400 мм;

3.9.Перекрытия запроектированы сборно-монолитными и собираются из плоских сборных плит, поверх которых бетонируется монолитная железобетонная плита, работающая совместно со сборными.

Толимна монолитной плиты зависит от класса нагрузки и равна:

для помещений класса А-IУ 300 мм --- А-Ш 350 мм --- А-II 450 мм

- 3.10.Для конструкций заглубленных помощений применяют следуюшие материали:
 - для монолитных конструкций бетон класса В25 :
 - для соорных конструкций бетон классов В25 и В30 :

Марку бетона по морозостойкости и водонепроницаемости устанавливают при привняке проекта.

Рабочая арматура всех конструкций принята из стали класса А-Ш, а распределительная, конструктивная и монтажная— из стали класса А-I.

3.II.Пол также является конструктивним элементом,воспринимарщим часть горизонтальных нагрузок, действующих на стенн.

Поэтому подготовку пола следует выполнять из бетона класса В 12.5 толимной:

- для помещения класса А-ІУ 150 мм;
- _ _"~

A-II - 170 MM 1

- -"-

- A-II 180 and
- 3.12.Заглубленные помещения рекомендуется располагать в пределах одного температурного отсека.

При длине отсека, превышающей 48м, должен бить произведен расчет на температурные возлействия.

- 3.13. над перекрытием необходимо выполнить грунтовую заснику , в соответствии с треоованиями СНиП Π - Π -T^{*}.
- 3.14. Опирание конструкций каркаса вышестоящих зданий на перекрытия встроенных помещений см. У-01-02/89.0-1-7
- 3.15.Гапровзоляция помещений должна быть выполнена по указамиям серии 03.005-1, вып.0 "Типроизольния убежищ гражданской обороны".

4. РАСЧЕТ КОНСТРУКЦИЙ

- 4.І.Расчет конструкций произведен в соответствии с требованеями нормативных документов, перечисленных в п.І.2.
- 4.2.При расчете конструкций на особое сочетание нагрузок учтени вертикальные и горизонтальные нагрузки по прил. I^{X} к СНиП I^{X} — I^{X} , а также нагрузки от собственного веса конструкций заглубленного помещения, грунтовой засипки, пола первого этажа и стапионарного оборудования на нем интенсивностью:
- 4.3.Для встроенных помещений произведен расчет также на основное сочетание нагрузок, включающий в сеоя вертикальные и горизонтальные / ветровне/ нагрузки от вышестониих аданий.

При этом рассмотрены здания, характеристика которых приведена в таблине I.

При расчете на основное сочетание нагрузск дополнительно учтена временная нагрузка на поверхности грунта у стен заглуб-ленного помещения интенисвностью 10 кПа / 1.0 тс/м2/.

•				Taomina	. 1		
Характерист помещений	ика	Здания по I.420-I2	серии	Здания по серии 1.020.1-83			
Сетка колони, м	класс	количество этелей	Норматив- ная наг- рузка на перекры- тия, кПа /тс/м2/	Количест- во эта- жей	Норматив- ная наг- рузка на перекри- тия, кПа /тс/м²/		
6 x 6	AIY AUI AII	4 4 4	10,0/1,0/ 15,0/1,5/ 20,0 /2 ,0/	4 5 6	I2,5/ I,25/		
/6+3+6/x6	AIY AII AII	-		4 5 6	12,5/1,25/		

4.4. Конструкции встроенных помещений проверены также на воздействие сейсмических усилий, передаваемых на них каркасом выщестоящих эданий / ом. табл. I/ при сейсмичности района строительства 7 и 8 баллов.

4.5. Расчетные схеми поперечних рам заглублениих помещений приведени на рис.1.

При расчате на роновное сочетание нагрузск и на сейсмические воздействия все горизонтальные нагрузки / ислеречные силы/ от нариасов вышестсящих зданий передаются местким лиском перекрития на поперечные торцовые стены и внутренние стены помещений, моно-литно связанные с перекритием.

Таким образом, при расчете на експлуатационные и сейсмические нагрузки учтены только вертикальные силы и изгибающие моменты, возникающие от воздействия горизонтальных сил на конструкции каркаса, а также боковое давление грунта.

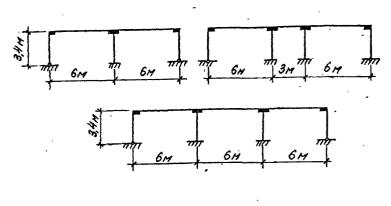


Рис. І. Расчетные схемы заглубленных помещений

В расчетах рассмотрены системы поперечных и продольных рам, причем на основании ранее выполненного анализа пространственной конструкции расчеты выполнены при оледующих данных:

- 4.5.1. Наружной стойкой рамы является полоса стены подвала шириной 6.0 м.
- 4.5.2. Ригелем в средних пролетах рами является полоса перемрития шириной 3м в средине пролета.
- 4.5.3. Ригелем в крайних пролетах является полоса перекрития переменной ширины: 6м у крайней опоры и 2,2м у средней опоры.
- 4.5.4. Усилия в конструкциях определени по граним участков повишенной жесткости / см. рис. 2/.

3am. 1. UHH. Ware / Wounceas 19.10, 895

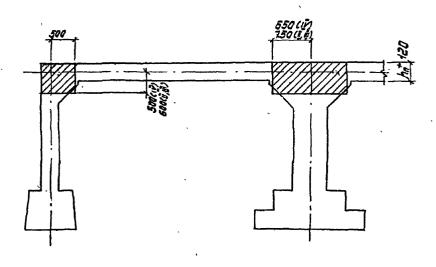


Рис. 2. Расчетная схема участков повышенной жесткости.

- 5. МАРКИРОВКА КОНСТРУКЦИЙ И УКАЗАНИЯ ПО ПРИМЕНЕНИЮ СЕРИИ
- 5.І.Конструкции обозначени марками, состоящими из буквенноцифровых групп. Буквенные группы приняты следующие:

Сборные изделия

ФЛ - фундамент ленточный :

К - колонна ;

КТ - капитель :

ПС - панель стеновая :

П - плита перекрытия .

Монолитные конструкции

Фм - фундамент монолитный ;

Пм - плита перекрытия монолитная ;

КПм- консоль монолитная,

Ум - угол монолитный

Первая цифровая группа характеризует типоразмер конструкции, вторая— ее несущую способность. Например, марка К I—I обозначает колонну сборную первого типоразмера / сечением 600 x 600 мм / первой несущей способности.

- 5.2. Марки конструкций принимать в зависимости от схемы и класса помещений по соответствующим ключам.
- 5.3. Марку фундаментов под колонны отдельно стоящих помещений принимать в зависимости от расчетного сопротивления групта основания по табл. 2.

5.4. Марку фундаментов под колонну встроенных помещений принимать в зависимости от расчетного сопротивления грунта основания и нормальной силы, действующей на фундамент от вышестоящего звания по соответствующим графикам, приведенным в данной пояснитель ной записко.

5.5. При несоответствии грунтовых условий п.2.3 и параметров вышестоящих зданий п.4.3, необходимо выполнить расчет на основное сочетание нагрузок с учетом п.4.5.

Для упрощения такого расчета в серии привелены таблицы усилий в рамах заглубленных помещений от единичных нагрузок /HOR. Y-01-02/89.0-I-8...-10/

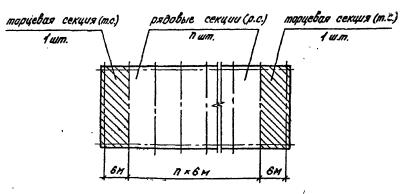
ТАБЛИЦА ДЛЯ ПОЛБОРА ФУНЛАМЕНТОВ В ОТЛЕЛЬНО СТОЯШИХ ПОМЕШЕНИЯХ

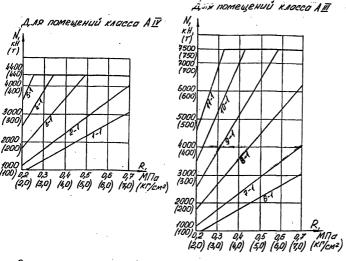
Таблипа 2

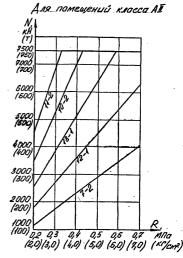
The state of the s	Фундаменты	Фм	
,	Для помен	ений класса	
Mīla, /kr/cm2/	AIY	AIII	· AII
0,2 / 2,0/	3-I	9-I	I3-I
0,8 / 8,0 /	2 – I	8-I	12-1
≥0,4 /4,0 /	I - I	7-I	7-2

5.6. Спецификации и расходы материалов приведены на один конструктивный элемент / фундамент под колонну, консоль. угол/ либо на рядовую и торцевую секции помещений / перекритие/.

Скема разбивки заглубленного помещения на рядовне и торцевые секции показана на рис. З.



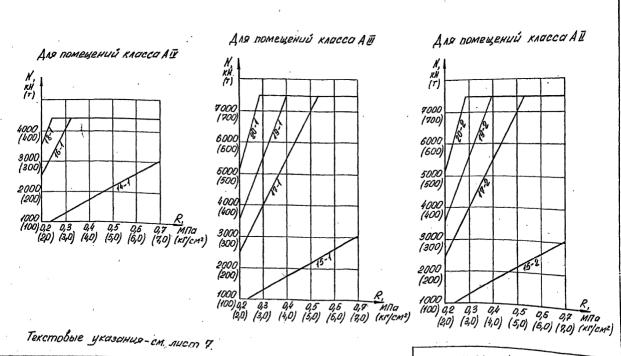

Рис. З. Схема разбивки помещения на секции.


5.7. Условное обозначение арматурных изделий:

каркас пространственный		сетка	
сетки в с	овмещенном	изображении	

3am. 1. Umm. Mars 1 Wounceas 1 9.10.895 4-01-02/89.0-1-173

Графики подбора фундаментов Фм под калонны встроенных помещений с сеткой колони (6+6)×6 и (6+6+6)×6 м


1. Росчетная нагрузка N и расчетное сопротивление грунта R приняты при коэффициенте надеясности 1. 2. В нагрузку N выпочены все виды нагрузак действующие на основание фундамента.

з. В моркох доундаментов условно опущен буквенный индекс.

4, Требуемая марка друндамента опре-деляется как ближайшая вышерасположенная к точке пересечения координат Nu R.

Y-01-02/89.0-1 - 113

Графики подбора фундаментов Рм под колонны встроенных помещений с сеткой колонн (6+3+6)×6м

4-01-02/89.0-1-173

Aue 7

K. 1008 E-01 11

6. УКАЗАНИЯ ПО ПРОИЗВОЛСТВУ РАБОТ

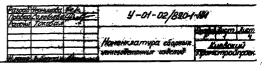
- 6.1. Производство строительных работ осуществлять в соответствии с требованиями следующих глав СНиП:
 - СНиП #-4-80 '- "Техника безопасности в строительстве" :
 - CHall II-8-76 "Земляные сооружения " :
 - CHeП 3.02.01-83[№] "Основания и фундаменты " ;
 - CHиII II-15-76 "Бетонные и железобетонные конструкции монолитные ":
 - -- CHEII II-I6-80 -- "Бетонные и жежезобетонные конструкции сборные " ;
 - CHell II-20-74 "Кровля, гипроизолиция, пароизолиция":
- 6.2. Строительные работы по возведению заглубленных помещений следует производить в соответствии с проектом производства работ /ППР/. Проект производства работ должен быть составлен с учетом комплексной механизации производственных процессов, и, по возможности, использования товарной бетонной смеси, приготовляемой на автоматизированных заводах.

"6.3.Ды перекритий в качестве несъемной опалубки используются сбореме железобетонные платы, являющиеся рабочим элементом сборем-монолитеого перекритик.

- 6.4. Армирование конструкций предусмотрено удугинации сипреним сетным и пространственним наркасами заволожого изготомакии, не тресуммам устройства смарких схимов ин иниции; процестика вниусков вертикальной арматури стеи с опорании сетный; перекрытия. Эти стыки следует выполнять с омощью ручной завитродуговой сварки электродами типа 342 /-а виде отипового сваркого соединения типа ССЗ по ГОСТ 14096-85/.
- 6.5. Транопортирование бетонной сыеси с завожная отователя товарного бетона и месту строительства следует осуществлять свещим циализированиным средствами транспорти: автобетоносымовтельным, автобетоновозами. Допускается транспортировать смесь в автосымостельных и бункерах, установленных на автомобилих или мельзиодог поних или прорыму.

Применяемие способи транспортировании должим исилимить возможность попадания в смесь атмосферних осадиля и натумение однородности смесь.

6.6. Укладку бетонной смеск в конструкции рекомендуется провеводить с помощью бетоновасосов, иневмонатиетсями, а такие депточных конвейеров.


Бетонная смесь должна уклащаваться в бетонируемую комотрумцию с уплотнением вибраторами горизонтальными слоком описаторам торизонтальными слоком описаторам торин без разрывов, с последовательным направлением уклащие в одну сторону во всех слоку. Толюна уклащиваемого бетоного слок определяется конструкцией вибраторов.

6.7. Монтак сборных железобетсяних конструкций реконвидуется вести с помощью иневмоколесных кранов КС-45627 / K-165/. К-63837 либо гусеничним краном МКТ-169. Монтак иниципация прином с заездом последнего в котлован методом и на себя.

6.8. Рекомендуется однужня последовательность производства бот:

- -Acadomorphy Mandament distribution 1
- -монтаж оборных фундаменков под стенк
- -монтаж колони и капителей ;
- -бетонирование полостей капителей :
- -MONTON CTOHOBER IBHORES ;
- -MONTHE HART REPORTERS ;
- -бетонирование монолитной плиты перекрытия.
- 6.9.Особенности производства работ:
- -монтаж плит перекрития произволить после приобретения бетоном, заполняющим полость капители, не менее 50% проектной прочности ;
- -при монтаже плят перекрития в углах здания установить четыре времению инвентерные стойки, которые подлежат разборке после присбретения бетоном монолитной плити перекрития не менее 70% проектной прочности;
- -сеполнение вертикальних швов между стеновими панелями производить цементним раствором марки 200, подаваемим под давлеимем сикку.

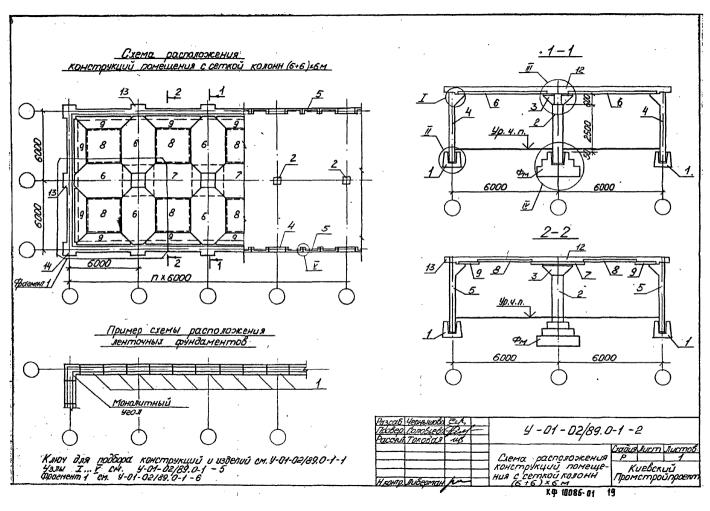
Hazum	æ .	Эскуз	Марка	Pa.31	теры ;	MM	Класс	Pase Marnep	i a sol	Macon
assemi 44A	24.4	30.03	1-icephic	. E	в.	·h	бетона	Bergor	Emails Kr	7
4		22	<i>\$11-1</i>	4000	1000	750		0,99	35,0	2,47
CHEHO	2/6/		P.11.2-1	1980	1200	900	825	1,29	42,8	3,22
Pyndtnehms/	JEHI IVA	1 1		,			:			
		14	K1-1	4050	600	600	825	1.12	96,0	. 2,82
1	1		K1-2	7000	, DG	000	830	1,13	2344	. 2,02
3	:	· . [K2-1				<i>B2</i> 5		114,7	
Колония		. 7	K2-2	4300	800	800	830	2,14	114,7	5,35
1			K2-3				825		197,4	
		161	K2-4				830		250,4	<i>*</i>
	1		KT1-1	1700	1700		825	0,82	78,9	2,05
1			.KT1-2	7700	7700	580	830		, , , ,	
Kanumenu			KT2-1 -	1900	1900		B25	1,01	128,3	2,52
fan			KT2-2	,,,,,,			830	"-"	9_	-,
	1	1						·		

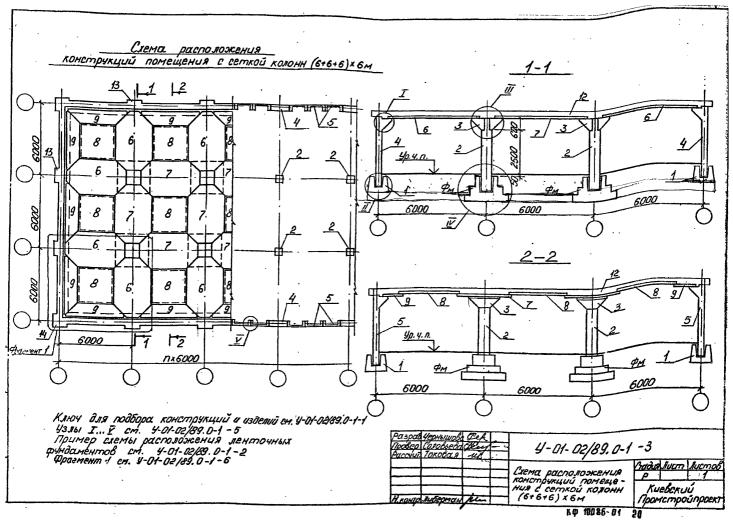
Hayre	30as	Manua	Разг	еры , г	4M	Krace	Pacx mames	od nob	Macca	ı
rouma 440	JIKUS	Марка	e	. 6	h	Бетона	Bemari Mª	ernam.	.75	l
277	_0	ПС1-1 ПС1-2	4000	1480	300	B25		213,1 235,3	4,93	
HEAU CHEWOSHE		ПС2-1 ПС2-2	4000	1480	400	B25	2,56	254,8 321,6	6,40	
Mare su	The Transfer of the Transfer o	ПС2-3 ПС2-4	,			<i>830</i>	,	254,8 321,6	,	
отеновые		ПСЗ-1 ПСЗ-2	4000	.1480	300	825	1,23	233,7 243,7	3,10	
Панели Опенад рабристые		ПС4-1 ПС4-2	4000	1480	400	825 830	1,47	287,5 318,1	3,68	
/law	Mark Street, S									
Mauma, neperpaimus		пі-2 п1-3	5100	3100	120	<i>B2</i> 5	1.61	.219,9 268,9	4,03	
N.Sumb.	2 18	П1-4 П1-5 П1-6				B30		303,5 361,2 426,5	1	

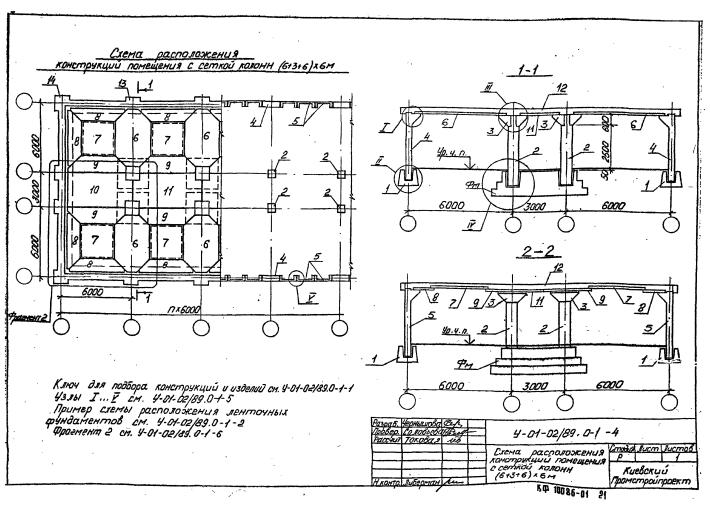
4-01-02/89.0-1-HH

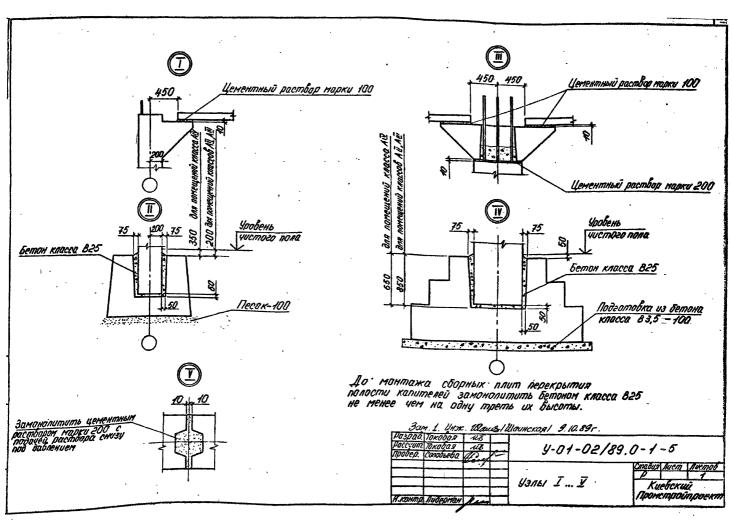
12

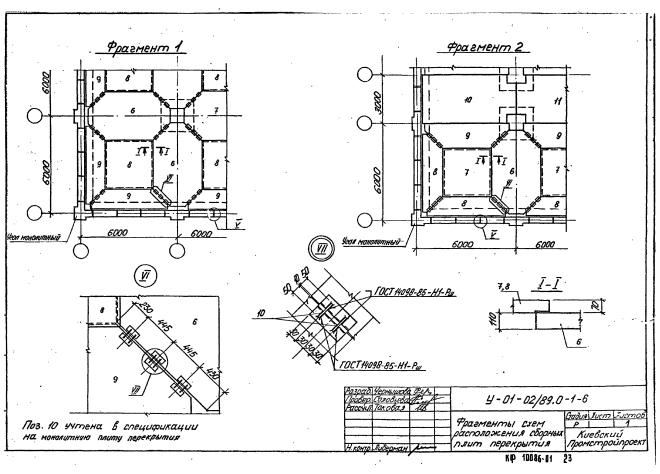
 Нацме- нобание конструк ций	Эскиз	Марка	Pa L	змеры В	, мм h	Класс бепона	Расхи матер Бетон М ⁸	18 <u>va.108</u> cma16 Kr	Macca T	
Trums reperps-	2 3	П2-1 П2-2	4800	1300	120	<i>B25</i>	0,64	80,0 99,7.	1,60	
Thums neperpol-	2 3	ПЗ-1 ПЗ-2 ПЗ-3	5100	1550	·120	<i>82</i> 5	0,80	111,9 136,7 154,2	2,00	
Пинты перекрытия	e s	П4-1 П4-2	3100	3100	<i>80</i>	825	0,76	83,7 110,2	1,90	

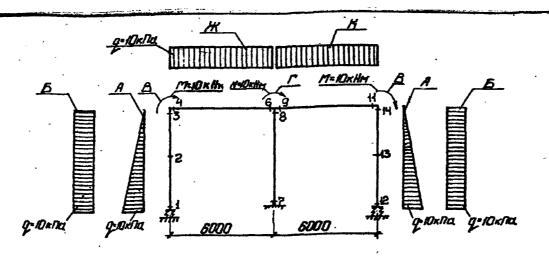

Наиме- нование констон щий	Эскиз	Марка	Pasi	черы , • В	мм h	Класс Бегпана	Pacxa Mame Semon	od ouasab cmass	Macca T
Taumsi nepenpamus		П5-1 П5-2 П5-3	5990	<i>2</i> 990	120	B25	1,98	233,4 271,7 314,2	4,95
Numer negretarias	e s	П6-1 П6-2 П6-3	5750	2990	120	<i>B25</i>	1,98	233,6 271,9 314,5	4,95

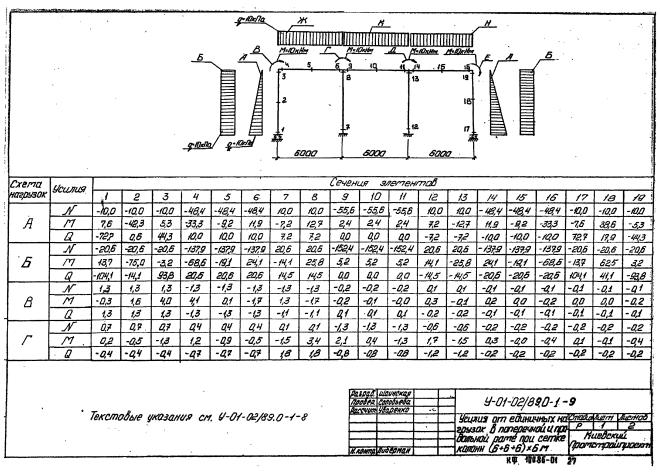

4-01-02/89.0HU


Ключ для подбора марок конструкций и изделий


מסת	еще	еристика. Ни и	1	2	3_	4	5	6	7	8	9	10	11	12	13	14	15
Сетка: Колони	Класс	Tun		Мар	ки сба	эрных	железо	бетонн	1618 LI	เรสะมนั้	(вып.	1)		Mapku ok/8 K	MOHOJU OHCI - 1041 OH - 10-1	HULL	
r 6M	RĪŸ	встраенное отд стоящ	PI 1-1	K1-1	KT1-1	17C1-1	TC3-1	111-3	111-2	174-1	П2-1		_	MM 1-1	VII.41	KHM2-1	Ym1-
19+9	A <u>I</u> II	встроенное отд. отоящ	<i>ФЛ</i> 2-1	K2-1	KT2-1	<i>17C2-2</i>	1704-1	171-4	171-3	174-2	/72-2	_	_	MH-2	KHm 1-2	KHM2-2	Ym 1-
2	АĪ	встроенное отд. стоящ	<i>₹₽∏ 2-1</i>	K2-1	KT2-1	<i>17C2</i> -4	1704-2	<i>111-6</i>	171-3	114-2	П2-2	_		MM 1-3	KHm1-3	KHM2-3	YM1-2
H9,	A į	встроенное этд стоящ	PJ 1-1	K1-1	KT1-1	<i>ПС1-1</i>	NC3-1	11-3	Π1-2	174-1	172-1	_		Лм2-1	КНм1-1	КНм2-1	YM1-
+6+6/x	£Ū	встроенное отд. стоящ	<i>\$1.2-1</i>	K2-1	KT2-1	<i>ПС2-2</i>	<i>ПС</i> 4-1	<i>171-4</i>	Π1-3	114-2	П2-2	_		MA2-2	KHM1-2	КНм2-2	YM1-
(64		встроенног отд. стоящ	<i>\$11 2-1</i>	K2-1 K2-2	KT2-1 KT2-2	TIC2-4	ΠC 4-2	Л1-6	171-3	<i>114-2</i>	<i>Π2-2</i>			Пм2-3	KHM1-3	KHH2-3	Ym 1-
м 9	£Ī		<i>ФЛ 1-1</i>	K1-2	KT1-2	<i>ПС1-1</i>	TC3-1	11-4	174-1	П2-1	лз-1	<i>1</i> 76-1	<i>[15-1</i>	Пм 3-/	KHm1-1	КНм2-1	YM1-
M9x(9+£+9)	A 🗓	ветроенное	PI 2-1	K2-3	KT2-2	<i>ПС2-2</i>	<i>1704-1</i>	Π1-5	174-2	П2-2	/13-2	Π6-2	115-2	Пм3-2	KHM1-2	КНм2-2	YM1-2
9	A <u>I</u>	bem	ФЛ 2-1	K2-4	KT2-2	ПС2-4	ПС4-2	П1-6	174-2	<i>112-2</i>	ЛЗ-З	<i>116-3</i>	/15-3	Пм3-3	KHM1-3	КНм2-3	ym1-


(D06en	θερικι <u>μοδα</u> Conobseba Τοκοδα.9	46 200	\equiv	4-01-02/89.0-1	-1
				Majook Kahirripakuuis Vii vääenuu	
a. Kornj	Либерпан	7		rd 18089-81	в





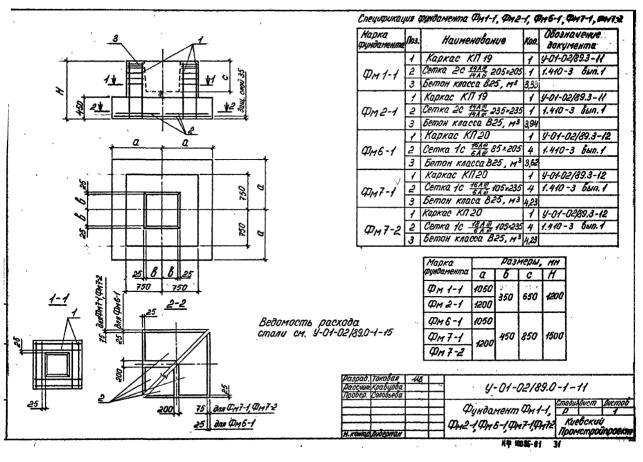
Cxema							Ceue	HUS	anem	ентов	7				****
HORPYSON	Ycurusi	1	2	·3	4	5	6	7	8	g	10	11	12	13	14
	·N	-11,5	11,6	-11,6	-49,3	-49,3	-49,3	23,2	23,2	-49,3	-49,3	-49,3	-115	-11,5	-11,5
A	M	7,2	-37.0	7,2	-35,7	-7.8	18,5	0,0	0,0	16,6	-7,8	-35,7	-7,2	37,0	-8,0
	Q	-71,8	15,9	45,2	11,5	11,5	11,6	0,0	0,0	-11,6	-H,5	-11,5	71,8	-15,9	45,2
	N	-24,1	-24,1	-24,1	-140,0	-/40,0	-1400	48,1	48,1	-140,0	-140,0	-140,0	-24,1	-24,0	-24,1
Б	M	13,0	-72,0	2.8	-13,9	-/6,2	34.3	0,0	0,0	34,3	-16,2	-73,9	-13,0	72,0	-2,8
,	Q	-102,1	14,9	95,9	24,1	24,1	24,1	0,0	0,0	-24,1	-24,1	-24,1	102,1	-14,9	-95,9
	N	1,3	1,3	1,3	-1,3	-1,3	-1,3	-1,3	7,3	0,0	-0,1	-0,1	01	0.1	4,1
B	M	-0,3	2,2	3,9	4,2	1,0	-1,8	1,6	-1,9	-0,1	-0,1	-0,1	0,1	-0.1	-0,1
	Q	1,3	1,3	1,3	-1,3	-13	-/,3	-1,2	-12	0,0	0,1	0,1	-0,1	-0,1	-0,1
	\mathcal{N}	0,9	0,9	0,9	. 0,6	0,6	0,6	0,0	0,0	-0,5	-0,6	-0,5	-0,9	-0,9	-0,9
	.М	+0,3	-0,9	-1,7	1,6	-0,5	-24	-0,5	2,8	2,4	0,5	-1,6	0,3	-0,9	-1,7
	Q	-0,6	-0,6	-0,6	-0,9	-0,9	-0,9	1,2	1,2	-0,9	-0,9	-0,9	-0,8	-0,5	-0,5


- і буквати А... Н обозначены схеты загружений раты.
- 2. Усилия даны по границам участков повышенной эксеткости.
- з. Усилия доны в кн т для тотентов и кн для нортольных и перерезывающих сил.
- 4. Положительный эмак в исилиях обозначост: в нартальных силах N-растяэксний, в изгибающих матентах М-для ригелей растяжение енизу, для етоекрастяжение слева, в перерезывающих силах Q направление исилий соответствиет эторя татентов.

H. KONMD JUBEDMAN	эсилия от единичных нагрязок в поперечной ра- те при сетке коланн (6+6)/6	P	KUE	ВСКИ	<u>e</u> ú
	Усилия от единичных	LTOC	العالي	cm Ji	ഗ്രനാർ
Разраб. Шаинскае Пробер. Солобьеба Рассчит убаренко	Y-01-02/89.0-1	-8	·		

Cxema	Усилия						Ce	чения	элег	TEHITTOL	3	, , , , , , , , , , , , , , , , , , , 			
нагрузак	ЭСЦЛЦЯ	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	N	-Q1	-0,1	-Q,1	- Q,1	-0,1	0,0	1,3	1,3	-1,3	-1,3	-13	-1,3	-1,3	-1,3
Д	M	Q1	-Q1	-0,1	Q1	0,1	0,1	16	-1,9	1,8	-1,0	-4,2	-0,3	2,2	39
	a	-0,1	-91	-0,1	-0.1	-0,1	0,0	-1,2	-12	1,3	1,3	1,3	1,3	1,3	1,3
	N	-0,9	-0,9	-0,9	0,5	0,5	4.6	0,0	0,0	-0,6	-0.5	-0,6	0,9	0,9	0,9
E	M	-0,3	Q9	1,7	-1,6	0,5	2,4	2,5	-2,8	-2,4	-0,5	1,5	-0,3	0,9	1,7
	Q	4,6	46	0,6	-0,9	-0,9	-0,9	-1,2	-1,2	-0,9	-0,9	-0,9	0,5	0,5	0,5
1	\mathcal{N}	197,7	-197,7	-197.7	-38,7	-38,7	-38,7	-208,1	-2081	6,6	6,6	6,6	11.0	11,0	11,0
Ж	M	-11,4	54,0	116,2	-51,4	73,2	-58,1	42,5	-82,0	-32,5	-9,5	15,8	-2,7	11,2	19,1
	Q	<i>38</i> ,7	38,7	38,7	123,4	-20,1	-100,0	-45,3	-45,3	11,0	11,0	11,0	6,6	5,5	5,5
	\mathcal{N}	H,O	11.0	11.0	-6,6	- 6,6	-6,6	-208,1	-208,1	38,7	<i>38,</i> 7	<i>38,</i> 7	-197,7	-197,7	-197,7
\mathcal{H}	M	27	-11,2	-191	16,8	-9,5	-32,5	-42,5	82,0	-68,1	73,2	-51,4	11,4	-54,0	-116,2
	Д	-66	-6,6	-6,6	11,0	11,0	11,0	45,3	45,3	-100,0	-20,1	123,9	-38,7	-38,7	-38,7
	•														
													-		
		۳													

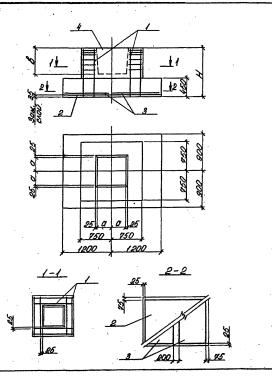
Cxema	Scurum									Сечен	UA 3	элеме	нтов							,
YOSHDY30K	Scaran	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	N	0,2	0,2	0,2	-0,2	-0,2	- <i>0,2</i>	0,6	+0,6	-1,3	-1,3	-1,3	-0,1	-0,1	44	0,4	0,4	-0,7	-0,7	-0,7
Д	M	0,1	-0,1	-0,4	0,4	0,0	-0,3	1.2	-1,5	1,3	-0,4	-2,1	-1,5	3,4	4.5	4,9	-1,2	0,2	-0,5	-1,3
	Q	-0,2	-0,2	-0,2	0,2	0,2	0.2	-1,2	-1,2	0,8	0,8	0,8	1.8	1,8	<i>a</i> ,7	0,7	47	-0,4	-0,4	-0,4
_	N	0,1	0,1	0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,2	-0,2	-0,2	1,3	1,3	-1,3	-1,3	-1,3	-1,3	-1,3	-1,3
E	M	0,1	4,0	-0,2	0,2	-0,0	-0,2	0,3	-0,1	0,0	0,1	0,2	1,3	-1,7	1,7	-0,1	-4,1	-0,3	1,5	4,0
	Q	- O;1	-0,1	- 0,1	0,1	0,1	0,1	-0,2	-0,2	-0,1	-0,1	-0,1	-1,1	-1,1	1,3	1,3	1,3	1.3	1,3	1.3
	N	-196,0	-196,0	-195,0	-37,2	-37,2	-37,2	-209,4	-209,4	12,4	12,4	12,4	9.8	9,8	0,9	49	0,9	0,7	0,7	0,7
Ж	M	-10,6	45,2	112,3	-47,6	72,8	-72,2	50,2	86,4	- 30,8	-8,2	14,4	-15,4	15,2	-0,7	4,8	2,2	-0,7	0,7	2,3
	Q	37,2	37,2	37.2	122,2	-21,8	-101,5	-49.7	-49,7	10,5	10,5	10,5	11,5	11,5	0,7	0,7	4,7	0,9	.0,9	0,9
	N	0,7	0,7	Ω,7	-0,9	-0,9	-0,9	9,8	9,8	-12,4	-12,4	-12,4	-209,4	-209,4	37.2	37,2	37,2	-195,0	-196,0	-196,0
Н	M	0,7	-0,7	-2,3	2,2	0,8	-0,7	15,4	-16,2	14,4	- 8,2	-30,8	-50,2	-86,4	-72,2	72,8	-47,5	+10.5	-45,2	-1123
	Q	-0,8	-0,9	-0,9	0,7	0,7	0,7	-11,5	-11,5	10,5	10,5	10,5	49,7	49,7	-10H, 6	-21,8	122,2	-37,2	-37,2	-37,2
=	N	5,7	5,7	5,7	2,8	28	2,8	-185,7	-185,7	-39,4	-394	-39,4	-185,7	-185,7	2,8	2,8	2,8	5,7	5,7	5,7
: K	M	0,8	-3,4	-8,5	6,8	-6,9	-18,8	-45,1	71,1	-51,3	54,2	-51,3	45,1	-741	-18,8	-6,9	5,8	-0,8	3,4	8,5
,	Q	-2,8	-28	-2,8.	-5,7	-5,7	-5,7	42,2	42,2	82,8	4,0	-82,8	-42,2	-42,2	5,8	5,7	5,7	2.8	2,8.	2,8



Схета	//								\mathcal{C}	ечения	3/10/	ченна	<u> </u>						
агризак	<i></i> ५cuлия	7	2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18
	N	-10,4	-10,4	-10,4	-48,5	-48,6	-48,6	10,4	10,4	-55,4	-55,4	10,4	10,4	-48.6	-48,6	-48,6	-10,4	-10,4	-10.
A-	M	7,4	-42.1	6,0	-34,0	-9,0	12,9	-7,1	11,5	5,2	5,2	7,1	-11,5	12,9	-90	-34.0	-7,4	42,1	-60
	Q	-72,4	4,8	44,6	10,4	10,4	10,4	6,2	6,7	0,0	20	-6,7	-6,7	-10,4	-10,4	-10,4	72,4	- 0,8	-44,6
	N	-21,5	-21,5	-21,5	-138,6	-138,6	-138,6	21,5	21,5	-152,4	-152,4	21,5	21,5	-138,6	-138,5	-1386	-21,5	-215	-21.5
5	17	13,4	-74,3	-1,4	-70,3	18,7	25,5	-142	23,6	11,0	11,0	14,2	-23,6	26,5	-187	-70,3	-13,4	74,3	1,4
•	Q	-103,5	-135	94,5	21,5	245	21,5	13,8	13,8	20	0,0	-13,8	-138	-21,5	-21.5	-21,5	103,5	135	-94,5
	N	1,3	1,3	1,3	-1,3	-1,3	-43	-15	-15	-0,3	-0,3	0,2	0,2	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1
В	M	-0,3	1,5	4.0	4,2	1.0	-47	1.3	-1,6	-0,4	-0,2	0,4	-0,2	0,2	0,0	-0.2	0.0	-0,1	-0,2
	Q	1,3	1,3	1,3	41,3	-1,3	-13	-10	-10	0,1	0,1	-0,2	-0,2	-0,1	-0,1	-0.1	-01.	-0,1	-21
	N	98	48	0.8	0,5	0,5	0,5	4.4	44	-24	-2,4	-5,3	-5,3	0,0	0,0	0,0	21	41	0,1
7"	M	02	-0,6	-1,5	1,3	-0,6	-2,3	-28	51	5,3	-1,5	2,9	-3,2	-0.5	-0,3	00	0,0	0,0	Qa
	Q	-0,5	-0,5	-0,5	-0.8	-0.8	-0:8	2.9	2,4	-5,2	-52	-2,4	-24	0,1	0.1 .	0.1	700	0,0	0,0

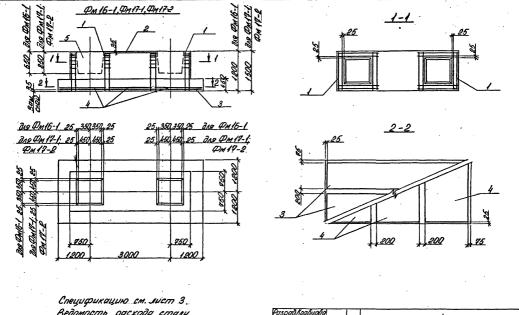
Текстовые указания см. У-01-02/89.0-1-8

			KØ 10026-04	
н.компр	Nuberman		KOMOHH 6+3+6)×6 m	Протстройпроект Протстройпроект
	-		pame nou ternie	TUBLIC BOODEKIT
			Epsock o Horrebethou	Киевский
			20030H A COCCOCHICA	01
			Grinia ou eginina	Connace Juch
Рассчит	YEARENKO	. 2	Усилия от едининых на- грузах в поперечной	Thorstol.
Mpgbep.	CODOBLEGA		□ <i>4-01-02/89.0-1-</i>	- 10
	MAUNCKAR			


Схета									Cey	EHUЯ	37EME	หตาดชื							
перчзок	YCUTUS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	N	-0,1	-0,1	-0.1	0,0	0,0	90	5,3	5,3	-2,4	-2,4	-4,4	-4,4	0,5	45	45	-0,8	-48	-0,8
Д	17	0,0	0,0	0,0	0,0	0,3	45	2,9	-3,7	1,5	-5,3	-2,8	5.1	-1,3.	0,5	2,3	0,2	-0,5	-1,5
	Q	0,0	40	40	-0,1	-01	-0,1	-2,4	-2,4	5,2	5,2	2,9	2,9	0,8	0,8	4,8	-0,5	-2,5	-45
	N	0,1	0,1	0,1	-0,1	-0,1	-0,1	-0,2	-0,2	-0,3	-0,3	1,5	1,5	-1,3	-13	-1,3	-1,3	-1,3	-13
Ε	M	0,0	-0,1	-02	4,2	0,0	-02	0,4	-0,2	0,2	0,4	1,3	-15	1,7	-1,0	-4,2	-0,3	1,5	4,0
	Q	-0,1	-0,1	-0,1	0,1	0,1	0,1	-0,2	-42	-0,1	-0,1	-1,0	-1,0	1,3	1,3	1,3	1.3	1,3	1,3
	N	-1931	-193,1	-193,1	-35,3	-35,3	-35,3	-231,9	-231,9	9,3	9,3	31,1	31,1	- Q,3	-0,3	-0,3	-0,8	-0,8	-0,8
Ж	M	-9,7	43,3	105,8	-42,5	71,1	-79,9	47,3	-75,4	-38,9	0,5	-10,9	15,5	3,0	1,3	-0,6	-0,0	-0,4	-0,9
	a	35,3	35,3	35,3	119,3	-24,6	-104,4	-44,6	-44,6	30,3	30,3	2,6	9,6	-0,8	-0,8	-0,8	-0,3	-0,3	-0,3
	N	-0,8	-0,8	-0,8	4,3	0,3	0,3	31,1	311	-9,3	-9,3	-2319	-231,9	35,3	35,3	35,3	-193,1	-1931	-193
Н	M	0,0	0,4	4,9	-QE	1,3	3,0	10,9	-15,5	0,5	-38,9	-47,3	75,4	-79,9	71,1	-42,5	9.7	-43,3	-1052
	Q	0,3	0,3	43	- 0,8	-48	-0,8	-9,6	-9,6	30,3	30,3	44,6	44,5	-104,4	-24,6	119,3	-35,3	-35,3	-35,3
	N	0,2	0,2	0,2	-0.1	-0,1	-0,1	-90,2	-90,2	-6,2	-6,2	-90,2	-90,2	-0,1	-0,1	-01	0,2	0,2	0,2
K	M	-0,0	0,1	0,2	-0,4	-0,8	-1,3	-6,6	10,3	0,8	-0,8	6,6	-10,3	-1,3	-0,8	-0,4	0,0	-0,1	-0,2
	Q	0,1	0,1	Q1	- 42	-0,2	-0,2	6,1	6,1	15,3	-15,3	-6,1	-5,1	0,2	0,2	0,2	-0.1	-0,1	-0,1

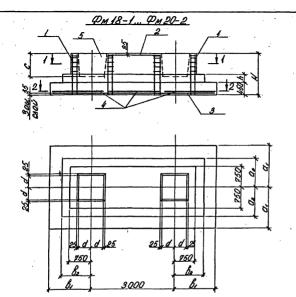
		Спецификаци	19	к фундаменту
Ма,ока рундамента	/103	Наименование	Kon.	Обозначение документа
	1	Καρκας ΚΠ 19	1	4-01-02/89.3-11
PM3-1	2	Cemka 10 16AM 145×295	4	1.410-3 BUT.1
4770 7	3	Бетон класса 825, м3	5,03	
	1	Kapkac KIT 19	1	y-01-02/89.3-11
ØM4-1	2	Cemka to 16A 11 165×355		1.410-3 BUD. 1
Ψη-1 1	3	Бетон класса В25, м3	7,83	
	1	Kapkac K1719	1	<i>Y-01-02/89.3-11</i>
PM 5-1	2	Cemka 10 16Am 205 x 415	.4	1.410-3 Bun. 1
40/40-1	3	Бетон класса В25, м3	10,80	
	1	Kapkac K/120	1	Y-01-02/89.3-12
mal	2	Cemka 10 16Am 145×295	4	1.410-3 Bun. 1
Ф <u>м</u> .8-1	3	Бетон класса В25, м3	6,66	
	1	Каркас КП20	1	Y-01-02/89.3-12
m n. 1	2	Gemka 10 18A # 165×355	.4	1.410-3 Bun. 1
Qm9-L	3	Бетон класса В25 , м3	8,44	
	1	Каркас КП21	1	Y-01-02/89.3-12
	2	Cemka 10 184 205×415		1.410 -3. BAIR.1
QM 10-1	3	Бетон класса 825, нз	12,52	J

Марка рунданента	<i>Поз</i> ,		Koa	Обозначение документа
	1	Καρκας ΚΠ21	1	4-01-02/89.3-1
DM 10-2		Cemka 10 20Am 205×415	4	1.410-3 Bun.1
1 200,100	3	Бетан класса 825 , м3	12,52	
	-	Kapkae KIT21	1	Y-01-02/89.3-1
OM 11-1		Cemka 10 20A# 225×475	4	1.410-3 BAR.1
μμπ-1	3	Бетон класса В25, м3	15,72	
<u> </u>	7	Κορκας ΚΠ21	1	y-01-02/89.3-1
	2	Cemka 10 25 Am 225 x 475		1.410-3 BAR.1
PH11-2	3	Бетан класса В25, м3	15,72	
	1	Καρκας ΚΠ21	1	Y-01-02/89.3-12
	2	CEMKO 10 18A # 145×295	4	
PM12-1	3	Бетон класса В25, м3	7,33	
<u> </u>	1	Kapkae RT121	7	4-01-02/89.3-12
	2	Cemka 1c 20 A # 165×355	4	1.410-3 BAIN.1
DM 13-1	3	Бетон класса В25, м3	9,12	



Марка рундамента	<i>710</i> 3.	Наименование	Kan	Обозначение документа
	1	Kapkac KN19	1	4-01-02/893-1
Om 14-1	2	Cemra 10 30A 1165×28	51	1.410-3 Bun. 1
4-70175	3	Cemka 10 12 18 105×175	2	·
	4	Бетон класса В25,м	3 3,31	
	1	Kapkac KIT 20	1	4-01-02/893-1
PM 15-1	2	Cemra 1c # 165×23.	51	1.410 -3 Bun. 1
	3	Cemxa IC 14A 105×175	2	1 1 1 m
-	4	<u>Бетон класса В25, м</u>	3.61	
	1	Каркас КЛ 20	1	4-01-02/89.3-1
PM15-2	2	Cemxa1072 165x23	51.	1.410-3 bain. 1
	3	Cemka le 6 1 105 x 175	2	
	4	Бетон класса В25, м	361	

Марка	Pasi	nepbi	, MM
рундамента	Ø	7	H
PM14-1	350	650	1200
Qn 15-1	1.50	050	1500
PM 15-1	450	800	7500


Ведомость расхода стали см. 4-01-02/89.0-1-15

Paspad	Korbuoba		Y-01-02/80	D_1_12
nooneo	Солобьева	-32	9-01-02/00	Cradus Auer Vacre
			Финдамент	D D
		-	PM 14-1 PM 15-2	Kuebekuu

Ведомость расхода стали cm. 4-01-02/89.0-1-15

Рассунт Колбирба Пообер Голобьева	<i>Y-01-02/89.</i>	<i>9-01-02/89.0-1-14</i>	
	<i>Фундамент</i>	Cradus Auer Aucrob	
W. конго Либерман	PM16-1 PM20-2	Киевский Промстройпроект	
	КФ 10086-01	35	

Марка розмеры, мм рундамент а, 0, 6, 6, 0, 0 об 350 350 300 1200 ФМ 19-2 ФМ-19-2 1800 1200 2400 1350 850 450 450 1800 1800 ФМ-20-2 1800 1200 2400 1350 850 450 450 1800

2-2 DAG PM18-1... PM19-2

Laspes 1-1 см. лист 1.

Paspes 2-2 для Фм 20-1... Фм 21-2 см. лист 1.

Специрикацию см. лист 3.

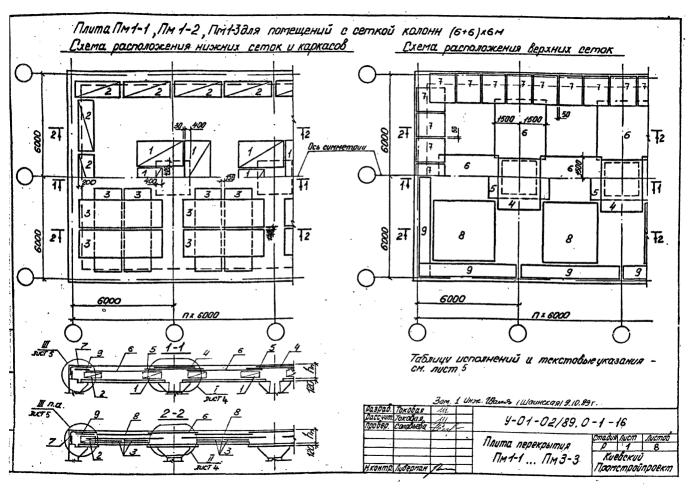
Ведомость расхода стали см.

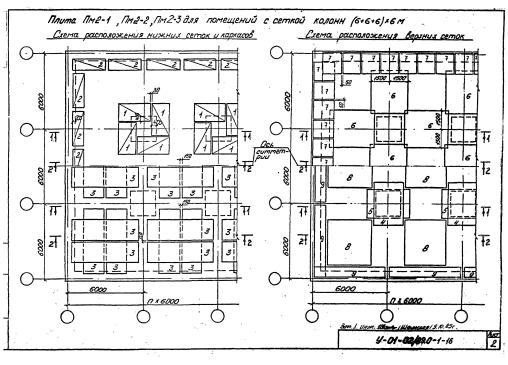
V-01-02/89.0-1-15

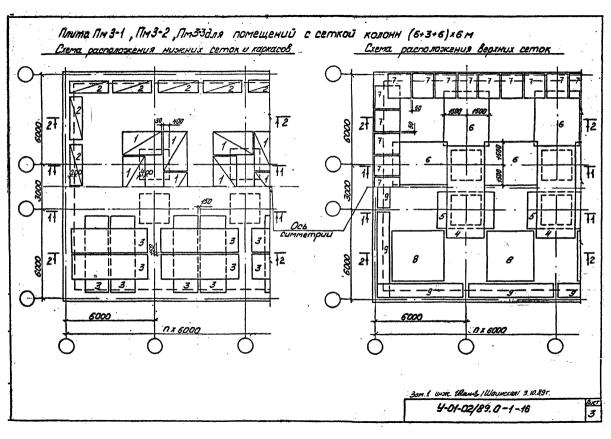
D-01-02/89.0-1-14

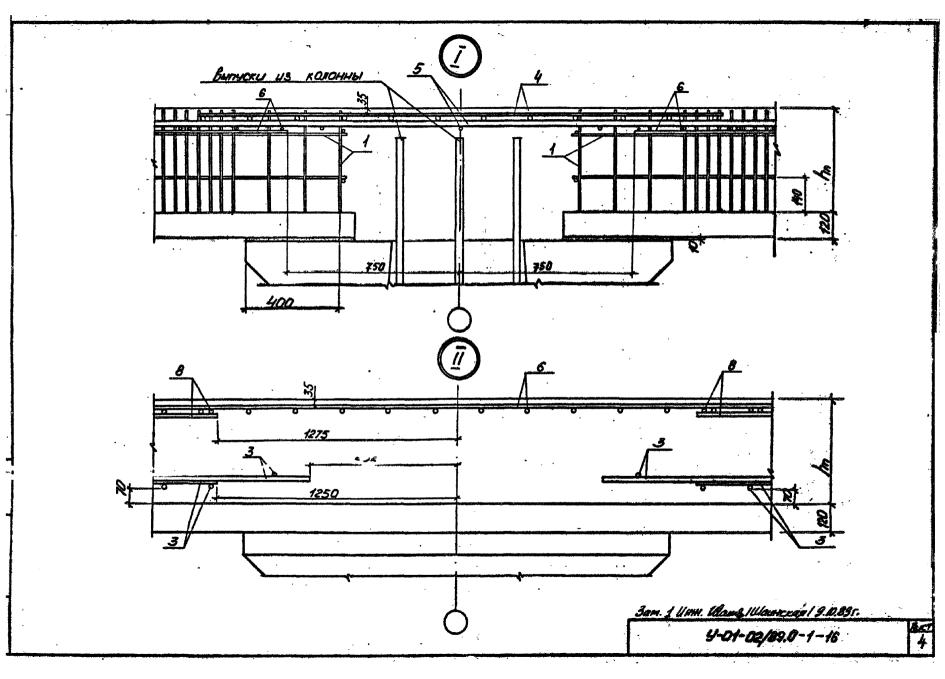
Марка фундамента	Поз	Наименование	Kan.	Обозначение Вокумента
	1	Καρκας ΚΠ 19	2	4-01-02/89.3-11
	2	Cemka C27	1	4-04-02/89.3-32
PM 16-1	3	Cemea Ic 16AP 105×535	2	1.410-3 Bun. 1
		Cernka Ic 181 165×235		
	5	Бетон класса В 25, м3	9,95	`
	1	Каркас КП 20	2	4-01-02/89.3-12
		Cemka C28	1	4-01-02/89.3-32
PM17-1	3	Cemka le 28 A 105 x 535	3	1.410-3 BOID.1
	4	Cemka Ic (4A) 165×235	4	
	5	Бетон класса В 26, м²	11.34	
		1	,	
	1	Каркас КП 20 Сетка С 29	2	U-01-02/89.3-12
	2	Cémka C29	1	<u> 4-01-02/89.3 - 32</u>
PM17-2		Cemka 10 25 105×535	3	1.410-3 BOID. 1
	4	Cemka 10 8/3 165×235	4	
	5	Бетон класса <u>В25, м</u> з	11,34	
		Καρκας ΚΠ19	2	V-01-02/89.3-11
				4-01-02/89.3-32
PM18-1	3	Cemra 1c 1848 145 1595	2	1.410-3 Bun. 1
,		Cemka 1c 4 185×295		
	5	Бетон класса B25, м³	13,41	
	 ,	Variable VO.00	-	// 04 00/00 2 15
* :	۲,	Kapkac KIT20		
m. 10 1	2		1	4-U1-02/89.3-32
PM 19-1	1	Cemka 10 464#145×595 Cemka 10 464#185×295	2	1.410-3 00/1.1
		Бетон класса B25, м3		
	۳-	DELIGION NAUCUU DES, Mª	7,47	

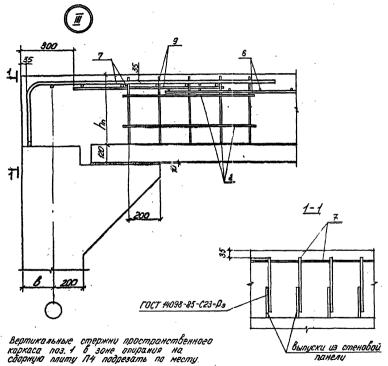
Марка фундамента	1103	Наименование	Kon.	Обозначение документа
	1	Каркас КП 20	2	4-01-02/89.3-12
	2	Cemra C29	1	4-01-02/89.3-82
PM19-2	3	Cemea 10 384# 145×595	2	1.410-3 BAIT. 1
	4	<u>Сетка Iс 201 и</u> 185×295	3	
	5	Бетон класса В 25, м3	154	·
	<u></u>			
	1	Kapkac KIT 21	2	4-01-02/89.3-12
	2	Cemka C28	1	4-04-02/89.3-3
PM20-1		Cemka 1c = 165x715		1.410-3 bun.1
	4	Сетка 1 с 10 кг. 225 x 855	3	
	5	Бетон класса В25, м³	22,39	
	1	Kapkac KIT 21	2	4-01-02/89.3-12
	2	Cemka C29		V-01-02/89.3-32
PM20-2	3	Cernka 10 58 1 165x715	2	1.410-3 buo.1
	4	Cemka 10 % 1 225×355		
*	5	<i>Бетон класса В25, м</i> 3	22,33	
4				


¥-01-02/89.0-1-14 KØ 10186-€+ 3€


Ведомость расхода стали на элемент, ке


			11. 0							,			_		-			
	-		H3QE			KAQ.		,			.	•	<u></u>		<u>H</u>	3den	UЯ	
Марка			- 74	man			ccu			Общий	١	Μαρκα	L		1	Apma	m	
элемента	-			ar c	A 🗓					расход	- 1	элемента						
		1		CT 5				_		ľĺ	- 1					100	Ť	
PM 1-1	. Ø6	ø8	910	914	916	918	920	Ø25	Итого	1 1	1		ø6	ø8	910	_	-	
QH2-1	+=	 	_	54,4		 -	1=	=	1204	120,4	1	PM 11-2	-	-	1	-	-	
PM 3-1	+-	115		68,2	-	<u> </u>	1-	=	1342		-	PM 12-1	+=	115	85,2 85,2		1	
PM 4-1	+_		66,0		148,8		_	-	2264	226,4	f	PM 13-1	+-	77,0			H.	
ØM 5-1	+_	73,0	66,0	_	201,6		1=	1=		283,2	ŀ	PM 14-1	111	-	109,6		F	
ØM6-1	3,2	-	101,6	-	288,0		_			389,6	ŀ	DM 15-1	1.4	Η_	70,1	1	-	
DM7-1	_	<u> </u>	79,1	_	64,8	-	_		147.1		ł		1,4	-	83,2	-	2	
PM7-2	3,6	<u> </u>	79,1	=	89,2	1-	_	_		171,9	ł	PM 15-2	1,4	-	79,1		+-	
PM8-1	3,6	_	79,1	_	_	1128	-	-		195.5	-	PM 16-1	10,7		132,0		1	
PM9-1			79,1	_	148,8	-	-	1		239,5	-	PM 17-1	1,7	21,5	158,2	_	12	
	1=	15,6	79,1	_	-	2552	-	1			1	PM 17-2	_	24,5	1582	-	Γ-	
PM 10-1	1=	_	1208	-	-	364,8	-	1		349,9	ļ	Фм 18-1	2,0	22,5	132,0	15,6	10	
OM 10-2		-	120,8	-	_	-	4504	-		485,6	1	PM 19-1	1,7	11,1	1762	-	19	
PM11-1	1-	-	129,6	-	_	-	562,4	-		571,2	- [PM19-2	Ι-	201	176,2	-	-	
		,	استستب		L	<u> </u>	1000,	_	692,0	692,0		PM20-1	1,7		219,7	_	1	
				•							ſ	m4202		-			+	


•	<u></u>		<u>H3</u>	deno	IA Q	OMOI	пурн	ые					r			
Марка	L		-	рма	тур	Q KA	acca					***************************************	05			
элемента .	· <u> </u>				A								Общий Расход			
		FOCT 5781-82														
	ø6	ø8	\$10	Ø12	Ø14	Ø16	Ø18	ø20	022	025	028	Итого				
PM 11-2		-	85,2	64,0	_	_	-	-	=	8756	-	10248	1024,8			
PM 12-1	<u></u>	11,6	85,2		=	-	1888	_	_			285,6	285,6			
PM 13-1	_	_	109,6		_	-	-	315,2	-	=	-	424,8				
PM 14-1	1.4	_	70,1	18,6	-	-	-	52,2	=	_	_	142,3				
PM 15-1	1,4	-	83,2		25,4	_	-	-	_	81,2	_	191,2				
PM 15-2	1,4	_	79,1	5,9	_	33,2	-	_	_	_	1022	221,8	221,8			
PM 16-1	10,7	_	132,0	_	_	101,4		_		_	_	316,1	316,1			
PM 17-1	1,7		158,2		121,8		_	_	287,4	_	_	590,6	590,6			
OM 17-2	_	24,5	1582	1	_	158,9	_	_		369,9	=	711,5	711,5			
Фм 18-1	2,0	22,5	132,0	15,6	106,8		1902		_	-	_	459,1	469,1			
PM 19-1	1,7	11,1	1762	-	19.4		_	_	284,0	_	_	632,2				
PM 19-2			176,2	=		25,3	-	218.4	-	_	4580		898,0			
PM20-1	1,7		219,7	_	19,4		255,3	_	_	494,2			990,3			
PM20-2	1-1		1953	35.2		253	-	9.152		_		_	1195.7			


Ρα3ραδ, Τοκοδαφ <u>Ραςεγυνή Κραδιμοδα</u> Προδέρ, <u></u> <u></u>	MB		Y-01-02/89.0-	
	-	_	Фундамент Фи+1.Фи20-2.	CMadu Aucm Aucmad
			Ведомость расхода	Киевский
H. round Junearian	-		CMONU	Проистройпроект

Марка	Размер помещения	ĥп, мм	B, MM
MM 1-1		300	100
MM 1-2	(6+6)×6	350	200
Пм1-3	_	450	200
M2-1.		300	100
M2-2	(6+6+6)×6	350	200
MA2-3		450	200
MM 3-1		300	100
Пм3-2	(6+3+6)+6	350	200
/7 _M 3-3		450	200

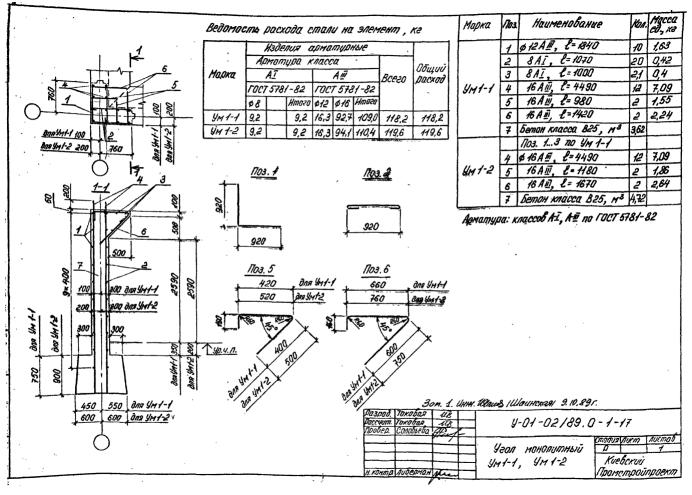
3am. 1 UHM. Black Illaunckar 9.10,895.

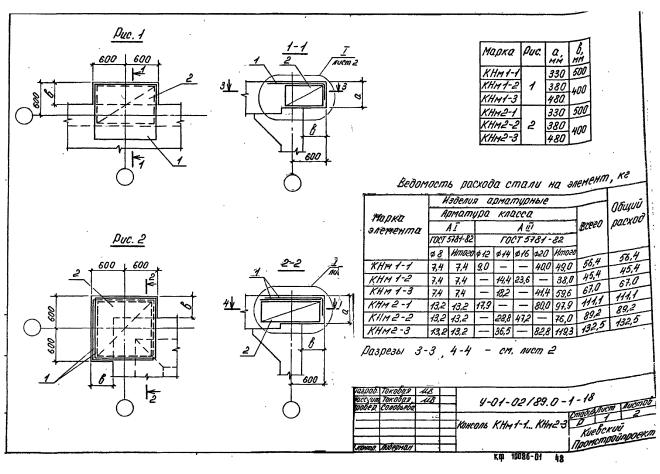
4-01-02/89.0-1-16

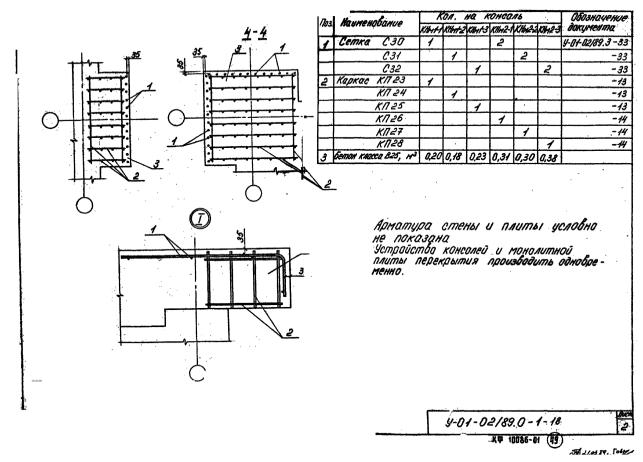
703	Наименование	L											mus				-			05-
	. naunenounge												12-3							
 	47.40	p.c.	m.c.	p.c.	m.c.	a.c.	m.c.	o.c.	m.c.	p.c.	m.c.	D.C.	m.c.	p.c.	m.c.	D.C.	m.c.	p.c.	M.C.	
1	Kapkac KIT 13	4	2					8	4					6	3					4-01-02/89.3-9
L	K17:14		J-	4	2					8	4			Π	Π	6	3			-9
	KN.15	T	Г			4	2			_		8	4	Г	Г		Γ	6	3	-9
2	K1716	4	7			Г		4	9			Г		4	8					-10
	K17.17 .		Г	4	7			_		4	9					4	8			-10
	K17.18					4	7			_		4	9					4	8	-10
3	Cemra 10 # 185× 475	8	8		Γ	Ť	İ	12	12			Ť		8	8					1.410-3, 6.1
	10 # 165×475	1	T	8	8	8	8	-		12	12	12	12			8	8	8	8	
4	10 28 225 x385	1	0,5	1		_														
	10 32 225×385	1			0,5				_	2	1	2	1							
	017	1				1	25													Y-01-02/89.3 -28
	10 25 225 ×385				_			2	1								·			1.410-3, 6.1
	10 22 225 × 685	1				Г								1	0,5					
	10 25 225 x 685	T				Г		_								1	0,5			
	10 28 225 × 685																		Q5	
5	10 25 225 × 385	1	Q5	_	Т			2	1					2	1					
	10 28 225 × 385												П			2	1			
	10 -32 225 × 385	T		1	0,5	1	0,5			2	1	2	1			·		2	1	

в спецификации количества изделий приведено раздельно для тарцебай секции (т.с.) плиты перекрытия Пт и рядовай (р.с.) Деление плиты Пт на секции сп. У-01-02/89.0-1 ПЗ (п. 5.6)

Ведомость расхода стали см. лист в Продолжение специрикации см. лист 7


y-01-02/89.0-1-16


<i>703</i> .	Наименование	TIM	MH1-1		MH1-2 M		11-3 /7		2-1	/IM	2-2	VIM	2-3	MM	11M 3-1	VIM	M3-2		3-3	Обозначение докимента	
		-		_			_	_		-	_	_	_			_			m.c,	OUKGITEIIIIQ	
6	Cemka C18	3	2	Г		Γ.		5	3,5					4	3					Y-01-02/89.3 -28	
	C19			3	2	3	2			5	3,5	5	3,5			4	3	4	3	-28	
7	C20	8	14			Ι.	Г	8	18					8	16	Π				-29	
	C22			8	14					8	18					8	16			-30	
	C23		1			8	14					8	18					8	16	-30	
8	C24	2	2	2	2	2	2	3	3	3	3	3	3	2	2	2	2	2	2	31	
9	C25	2	4	2	4	2	4	2	5	2	5	2	5	2	4,5	2	4,5	2	4,5	-31	
10	a22 A ± , ГОСТ 578+82, €m	7;033, 48	48	48	48	48	48	72	72	72	72	72	72	48	48	48	48	48	48	без черт.	
H	Бетан класса 825,	M3 2/3	22/9	25,55	27,09	3299	3478	3/53	32,84	37,57	3986	48,61	5/26	2694	27,95	32,08	3393	41,32	4347		


3am. 1. VIM. Wans Wourceas 9.10, 895. 4-01-02/89.0-1-16

Ведомость расхода стали на элемент, ке

	T								ЛЦЯ			рные								T
8	3						A	ama/	пура	KAL	zcca									
ğ	cexauu	AI AE 70CT 5781-82 70CT 5781-82													Bceeo	Общий				
Hapka		10	CT 5	781	-82															расход
	13	\$6	ø8	ø10		Итого	ø6	ø8	\$10	Ø12	\$14	\$18		_	\$28	Ø32		Kmozo	1	
	p.c.	125	1253	153,4		289,2	23,2	_	212,1	872,4	174,4		15,8	177,4	223,1			1698,4	1987,6	1987,6
NH 1-1	m.c.	19,1	122,5	153,4		295,0			235,6	617,4	281,5	<u> </u>	15,8	88,7	111,6			1373,8	1668,8	1668.8
7.11				153,4		299,5	_	41,6	92,0	835,7	4508	268,0	15,8	_		583,0		2286,9	2586,4	2586,4
MH1-2	m.c.		_	153,4		300,7	_	41,6	161,0	477,1	431,8	4696	15,8	_		291,5		1888,4	2189,1	21891
7.12		<u> </u>	_	153,4		298,0	_	41,6	100,6	980,3	431,8	256,8	15,8	355,7	_	291,5		24741	2772,1	2772.1
Лм1-3	m.c.	19,1	125,7	153,4		2982	_	41,6	176,1	549,4	422,3	448,8	15,8	177,8		145,8				2275,8
7.0	p.c.					448,9	34,8	_	295,5	15622	155,4		23,8			1				3230,2
/IM2-1	77112					439,6	34,8	_	341,5	1067,6	349,7	-	23,8	354,8	_	_			2611,9	
				230,1		468,9	_		92,0					_	_	11660				4329,3
M2-2				230,1		450,5		62,4	207,0	895,0	657,2	<i>603,8</i>	23,8	_	_	583,0				3482,5
7.03	p.c.					467,4	<u> </u>	624	100,6	1812,9	6952	256,8	23,8	_	_	11660			4585,1	
Пм2-3						447,2	_	62,4	226,4	10250	657,2	577,2	23,8	_	_	5830		3155,0	3602,2	3602,2
	p.c.	10,5	166,8	153,4		330,7	23,2	_	253,8	11583	155,4	_	261,1	354,8	_	_		22086	2537,3	2537.3
NM3-1						328,9	23,2	-	299,0	789,7	3108	_	138,5	177,4	_		_			2067,5
	p.c.	10,5	181,9	153,4		345,8	-	41,6	92,0	1218,4	4508	268,0	15,8	315,6	4462	_			3194,2	
MM3-2	m.c.	21,7	162,1	153,4		337,2	_	_	184,0					_					2655,0	
	p.c.	10,5	180,5	153,4		344,4	_		100,6						397,0	583,0			3611,9	
/IM3-3	m.c.	21,7	159,2	153,4		334,3	_		201,3						198,5	291,5			2857,9	

