Альбом I

типовой проект 902-2-332 аэротенк контактной стабилизации

производительностью 17-40 тыс.куб.метров в сутки

AJILISOM I

пояснительная записка

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ **FOCCTPOR CCCP** КИЕВСКИЙ ФИЛИАЛ

г.Киев-57, ул Эжена Потые № 12

97 Заказ Ng <u>1209</u> инв Ng <u>7580/Г</u> тираж <u>450</u> Сдоно в печать <u>26/Й</u> 1980 цен в <u>0</u>-72

Arradom I

TWITOBOX TIPOEKT 902 -2 -332

ASPOTEHK KOHTAKTHON CTAENJINSALIMIN ПРОИЗВОЛИТЕЛЬНОСТЬЮ 17-40 ТЫС.КУБ. МЕТРОВ В СУТКИ

AJINDOM I

COCTAB IIPOEKTA:

влошва паналетинопоп - I модаль

Альбом II - Технологическая, архитектурно-огронтельная и электротехническая части Альбом Ш - Нестандартизированное оборудование

Альбом IV- Заказные опецификации

ANDOOM Y - C M a T M Разработан проектным янститутом "УкрасоммунНИИпроект"

JEDOETOD ENGRETYTE

Главный инженер проекта

D.J.Matam С.Б.Козловокая

IDOCKTOM

КФ ЦИТП ИНВ № 7580/I

Техно-рабочий проект УТВЕРЖИЕН Менжилкоммунхозом УССР Прижаз № 67 от 28.02.1979 г. Введен в действие УкркоммунНИИ-

Приказ № 72 от 29.03.1979 года

902-2-332	Альбом І	2	7580/I
	ОГЛАЕ	ление	orp.
I.	Общая часть		l
	І.І. Назначение и область при	КИ Н ЭН ЭМІ	4
1 1	1.2. Технико-экономические по	втяеми проекта	8
2.	Технологическая часть		
1	2.I. Технологическая схема ра контактной стабилизации	боти аэрогенка	10
ŗ 1	2.2. Расчет аэрогенка контакт	ной отабилизации	13
3.	Архитектурно-строительная час	Tb	
	3.1. Природные условия и обла	сть применения	18
1	3.2. Объемно-планировочные и	конструктивные решения	19
1	3.3. Отделка и мероприятия по	защите от коррозии	22
t s	3.4. Расчетные положения		23
1	3.5. Соображения по производо	rny pador	25
4.	Электротехническая часть		
ĺ	4.Т. Общая часть		28
	4.2. Электроснабжение		28
	4.3. Силоное электрооборудова	ние	28
1	4.4. Сигнализация		31
· {	4.5. Зануление		32
5	Нестандартизированное оборудо	ЭКНИӨ	3 3

3

7580/1

щими нормами и правилами и предусматривает мероприятия, обеспечивающие взрывную, взрывопожарную и пожарную безопасность при эксплуатации эдания.

Главный инженер проекта

С.Б.Козловская

Типовой проект разработан в соответствии с действую-

902 - 2-332 Альоом I

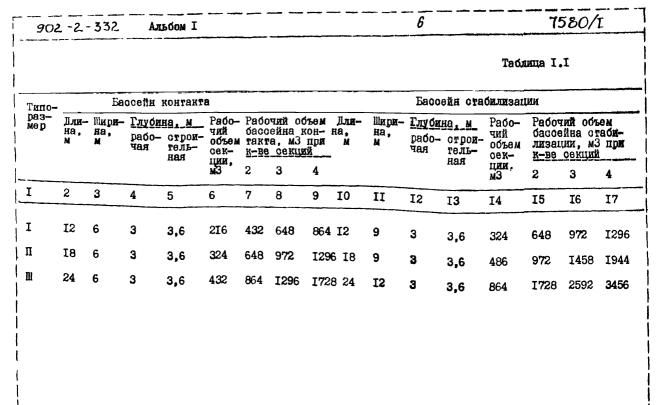
I. OBILAR YACTЬ

І.І. Назначение и область применения

Рабочие чертежи типового проекта аэротенка контактной стабилизации разработаны в соответствии с планом типового проектирования Гоостроя СССР на 1977 г. раздел 3 "Санитарно-технические осоружения и устройства" п.16 и заданием Минжилкоммунхоза УССР от 16.03.77г.

Аэрогенки контактной отабилизации предназначены для полной биологической очистки невзрывоопасных хозяйственно-бытовых сточных вод и близких к ним по составу производственных оточных вод с концентрацией загрязнений (поотупающих в аэрогенки) по $\text{БПК}_{\text{полн.}}$ до 300 мг/л, взвешенным веществам до I60 мг/л и температурой от 6 до 30°C .

Степень очистки в аэротенках контактной стабилизации по $\text{EIIK}_{\text{полн.}}$ и взвешенным веществам составляет 90-95%.


В зависимости от концентрации загрязнений (по ЕПК_{полн.}), поступающих в бассейн контакта, производительность разработанных аэротенков контактной стабилизации может изменяться в диапазоне от 8 до 68 тыс. хуб.метров сутки.

В основу технологических расчетов и конструкции аэротенков контактной стабилизации положены рекомендации НИКТИ ГХ МЖКХ УССР и данные опыта эксплуатации действующих сооружений, построенных по экспериментальному проекту, разработанному институтом "Укргипрокоммунстрой". В типовом проекте разработана компоновка аэротенков контактной стабилизации из 2,3 и 4 секций трех типоразмеров.

В габлице І.І. приведена основная техническая характеристика каждого типоразмера.

Подбор типоразмера производится по табл.I,2, в зависимости от концентрации загрязнений (по $\mathbf{H}\mathbf{K}_{\mathbf{HOMB}}$,) и ореднесуточного расхода сточных вод.

Распределение сточных вод по бассейнам контакта и циркулирующего ила по бассейнам стабилизации решается в каждом конкретном одучае при привязке проекта.

902 - 2 - 332	Α	ьбом І			7		7580/1		
							Таб.	лица І.2	
онцентра-			Типор	азмер					
ия загряз- ений по		I			11			III	-
HE HOME HOME HOME HOME HOME HOME HOME HO	тельнос	RBHFOTYS OHT E ATS OHTOSFNI	производи- .м3/сутки секций :	Среднесуточная производи- тельность в гыс.м3/сутки при количестве секций:		Среднесуточная производи тельность в тыс.мЗ/сутки при количестве секций:			
г/л	2	3	4	2	3	4	2	3	4
I	2	3	4	5	6	7	8	9	10
150	13,3	20,0	26,6	20,0	30,0	40,0	33,9	50,8	67 ,7
200	10,4	15,5	20,7	15,5	23,3	0, 18	26,4	39,6	52 ,7
250	8,7	13,0	17,3	13,0	19,5	26,0	22,1	33,0	44 , I
300	8,0	12,0	16,0	12,0	18,0	24,0	20,3	30,5	40,6

902	-2-332 Arbdom I	8	7580/1
	I.2. Технико-эконо	мические показатели проекта	Таблица І.З
14.16 1111	Наименование показателей	Един. изм.	Количество
I	2	3	4
ı.	Пропускная опособность	t.m3/oytkm	8-68
2.	ВКполн. оточных вод, поступающих		
	в бассейн контакта	мг/л	150-300
з.	Сметная стоимость строительства		
	общая	тис.руб.	44.84-124.95
	отроительно-монтажных работ	_4 <u>_</u>	37.33-110.08
	оборудования	_*_	7.51-14.87
4.	Установленная мощность	K _B ≈	136-272
5.	Потребляемая мощность	-"-	110-220
6.	Расход элентроэнергии	тыс.кВт час/год	964–1928

В табл. 1.4. приведены технико-экономические показателы строительной части.

90	2-2-332 Альоом I		<u>9</u>		7580	<u>/I</u>
					Таблица І.	1
Ne Ne	Наименование	Единица	Horasa	тели по тиг	горазме рам	
ш	1.0,22,112.0	ран од ом си	I тип	П тип	ll ren	
I	2	3	4	5	6	
	Cr	месоо йинакеткор				
I.	Компоновка из 2-х секций	Вм	1432,60	2125,70	3375,20	
2.	Компоновка из 3-х секций	ЖЗ	2139,40	3174,50	5044,10	
з.	Компоновка из 4-х секций	МЗ	2946,20	4223,30	6713,10	
	п	лощадь застройки				
ı.	Компоновка из 2-х секций	SM	377,00	559,40	888,20	
2.	Компоновка из 3-х секций	m 2	563,00	835,40	1327,40	
з.	Компоновка из 4-х секций	M2	749,00	IIII,40	1766,60	

Альбом I

2. TEXHOJOINYECKAS YACTL

2.I.Технологическая охема работы аэротенка контактной стабилизации

Аэротении контектной стабилизации являются одной из модификаций процесса бискимической очистии сточных вод с отдельной регенерацией ила с уменьшениым временем аэрации. Контактно-стабилизационный процесс охематически соответствует методу с отдельной регенерацией, но отличается по гидродинамическим условиям и технологической количественной характеристике. По гидродинамике аэротении контактной стабилизации с турбровэраторами соответствуют реакторам-смесителям с интенсивным турбулентным режимом. Путем интенсивного перемешивания, обеспечиваемого применением турбовэраторов, повышается сорбщионная емиссть активного ила и осуществляется бистрое изъятие загрязнений.

Время аэрации (контакта) оточной жидкости с активным илом определяется величиной, достаточной лишь для изъятия загрязнений. Соответственно в регенераторе (бассейн стабилизации) осуществляются процессы окисления, сорбированных загрязнений и стабилизация активного ила для восстановления его сорбиционной активности.

Таким образом, сущность контактно-стабилизационного процесса заключается в мопользовании биосорбционных свойств активного иля с удалением загрязнений в две стадии: сорбирование загрязнений на хлопьях активного иля в течение кратковременного контакти в условиях интенсивного перемешивания и аарирования и затем окисления сорбированных загрязнений на хлопьях ила после отделения их от воды, ки которой изъяти загрязнения.

Первая отадия происходит в бассейне контакта, вторая — в бассейне стабилизации, где активный ил окисляет загрязнения в процессе их усвоения (ассимиляция) и стабилизируется, карактеризуясь высокой степенью сорбционной опособности.

Аврогенк контактной стабилизации состоит из бассейна контакта для иловой смеси и бассейна стабилизации для циркулирующего активного ила, разделенных перегородкой с переливом водобливом. Активный ил из бассейна стабилизации поступает в бассейн контакта через водослив, устроенный в конце бассейна стабилизации.

Аэрация и перемещивание осуществляется турбовэраторами типа ТА-2, конструкция которых разработана НИКТИ ГХ МЖКХ УССР.

Применение механических аэраторов позволяет исключить из схемы воздуходувную станцию, подводяшие и распределительные системы воздуха.

Для опорожнения аэротенков контактной стабилизации в каждом бассейне контакта и бассейне стабилизации предусмотрены приямки и отводящие трубы диаметром 200 мм. Время опорожнения каждого бассейна колеблетоя от 2 до 10 час. в зависимости от типоразмера аэротенка, что определяется при привязке проекта.

2.2. Расчет авротенков контактной стабилизации

Расчет аэрогенка контактной стабилизации базируется на основных положениях теории биохимической очистки. В качестве основного критерия расчета принимается экспериментально полученияя скорость изъятия вагрязнений в единице объема бассейна контакта. Это вытекает из представлений с кинетике процессов быстрого изъятия загрязнений (биосорбщии), т.е. предпосылки, что время процесса изъятия загрязнений прямопропорционально начальной нагрузке на ил. $W_K = \frac{QL_0}{P_0}$, M^3 ,

Объем бассейна контакта определяется по формуле: - среднесуточный расход сточных вод в м3/сутки: где

- БІК_{полн} поступаршей в аэротенк сточной воды в мг/л;

(S. - начальная объемная нагрузка на бассейн контакта. Принимается для городских сточных вод

равной 5000 г. ЫКполи из/сутки. Время контакта равно :

$$t_{\kappa} = \frac{W_{\kappa}}{Q_{\gamma}(I+R)}, \ \gamma \ , \tag{2}$$

Wk - объем бассейна контакта в м3;

 Ψ_7 — чесовой расход сточных вод в мЗ/г.Принимаетоя в соответствии с указаниями, пр $_{
m co}$ венными в п.7.100 СНиП П-32-74:

- степень рециркуляции. Рекоменцуется принимать 50% от расхода поступающих сточных вод.

Соотношение между временем контакта и временем стабилизации рекомендуется принимать для город-

CHUX CTOTHUX BOR I:6, TO ECTS $t_{iT} = 6 t_{i}$, 4

(3)

(I)

Скорость удаления загрязнений в единице объема бассейна контакта составляет:

$$\ell_{W} = \frac{(L_{\circ} - L_{t}) Q}{W_{K}}, \quad \Gamma \quad \text{DIK BOAK.} / M^{\circ} \quad \text{Cyt.}$$
 (6)

(7)

Концентрация ила в бассейне стабилизации определяется из уравнения материального бальнов

$$S_{er.} = S_{k} \left(\frac{1}{R} + 1 \right), \Gamma_{k}$$

Общая масса ила в аэротенке контактной стабилизации равна:

Принимается равной 3 г/л.

$$G = S_{K} \times W_{K} + S_{er}, \times W_{er}, \quad kr$$
 (8)

Средняя скорость окноления загрязнений I г беззольной массы ила определяется по формуле:

$$p = \frac{(L_0 - L_{\pm})Q}{G(1 - \frac{2}{3}) \times 1000}, \quad \text{F BIIK NOAH / r HAA · GYT.}$$
(9)

902-2-332 Альбом I	14	7580/I
где z - зольность ила в толях единицы. Принимае Величине $ ho$ не должна превышать следующие з	тоя равной О,З. начения (в числителе -	мг ЫКп/г.ч., в знамена-
reлe - r EПК _п /r.oyr.) :		
для ЫК _{полн.} =150 мг/л	• • <u>15</u> 0,36	
для БПК _{полн.} =200 мг/л	• • <u>16</u> 0,38	
для БПК _{полн.} =250 мг/л	· . <u>17</u> 0,41	
для ПІК _{полн.} =300 мг/л	• . <u>19</u> 0,46	
Проверка выбранного типоразмера осуществляетс	ся путем определения ве:	личины О по формуле (9).
Если скорость окисления превысит указанные предельн		
типоразмер.		
Прирост ила в аэрогенках контактной стабилиза $\Delta S_{cyr.}$ = $\Lambda S_{yd.}$ (ации равен: L。- L _t) Q , г/eym ,	(10)
где A Syd - удельный прирост ила в г/г онятой ЫП	К, определяется по тебли	ще 2.1.

902-2-332	Альбом I		15	7580/I
	Завионмость между	скоростью окисления и уде	льным приростом ила	Таблица 2.I
Нагрузка в г БПК ₅ /г ила . с	y TKN		Удельный прирост кла г/г снятого ЫК ₅	The second se
гле a' - уле ЕП в' - поз	=) Эльное потребление ки К _{полн.} Принимае то я рав	й биологической очистке рег 1' (L. — L _t) Q + 6'C (1 — лорода еди ницей количества ым 0,52; эндогенное дыхание ила в 1	3) × 1000, г/сут., онятого БІК _{полн.} в г	(II) O ₂ /r.

Для аэрации и интенсивного перемешивания смеси активного ила и сточной жидкости применены турбовораторы типа ТА-2.

Производительность турбовэратора ТА-2 по киол ороду равна 15-30 кг $0_2/4$, в зависимости от заглубления верхней турбины. Рекомендуется принимать 20-22 кг/ч при оптимальном заглублении верхней турбины 0.4 м.

Из условий перемешивания и обеспечения незаилящихся скоростей на один трубоворатор ТА-2 принимается 400-450 из объема сооружения.

Количество турбовраторов, принятых к установке, определяется по лимитирующему показателю.

Напор на волосливе через который стабилизированный ил поступает в бассейн контакта, определяется из основного уравнения расхода при истечении через неподтопленный водослив с широким порогом.

$$H = \left(\frac{4uh}{mb\sqrt{2q}}\right)^{2/3}, \quad m, \tag{12}$$

Q_{ил} - расход ила в м3/с;

М - коэффициент расхода для неподтопленного водослива с широким порогом, Принимается равным 0,32. (Справочник по гидравлике, проф.В.А.Большаков К., 1977г.);

- ширина водослива в м. Принимается равной 3 м.

По формуле (12) определяется и напор над воронкой, отводящей иловую смесь из биссебию понтакта во вторичные отстойники.

В этом олучае доэффициент расхода принимается равным 0,42 как для незатопленного во-

Диаметры трубопроводов: a) подачи сточной жидкости от камеры распределения сточних вод до бассейна контакта;

- б) подачи ила от камеры распределения ила до бассейна стабилизации и
- в) отвода иловой омеси из бассейна контакта во вторичные отстойники рассчитываются на пропуск максимального часового расхода одной секции с коэффициентом К= I,4, учитывающим интенсификацию работы аэротенка контактной стабилизации.

3. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ

з. Г. Природные условия и область применения

Проект разработан для строительства в районах со следующими природными и климатическими усло-HMRNE:

- а) Рельеф местности спокойный, площадка с минимальным уклоном, обеспечивающим сток повержност-HHX BOIL:
 - б) Грунты сухие, однородные, непросадочные, непучинистые со следущими характеристиками:
- $\Psi = 28^{\circ}$; $C^{H} = 0.02$ krc/cm2; Y = 1.8 rc/m3; E = 150 krc/cm2; в) Расчетная зимняя температура наружного воздуха -20° ; -30° ; при средне-годовой температуре
- +6°:
 - г) Скоростной напор ветра принят для I и II районов по СНиП II-6-74 27 кго/м2: 35 кго/м2: п) Вес снегового покрова принят иля Ш района по СНиП П-6-74 - 100 кгс/м2:
 - е) Сейсмичность района строительства не выше 6-ти баллов.

Проект предназначен для строительства в сухих легкофильтрующих грунтах. При строительстве в слабофильтрующих грунтах должны быть проведень технические мероприятия, исключающие возможность появления фильтруемой из сооружений воды в уровне подготовки дница и ниже его на 50 см. Проектом не предусмогрены особенности строительства в районах вечной мерэлоты, на микропористых и водонасыщенных грунтах. на подработках горными выработками, в условиях оползней, основи, карстовых явлений и т.д.

Аэрогенк контактной стабилизации представляет собой прямоугольное в плане, водолодержащее сооружение, сблокированное из 2-х, 3-х и 4-х секций.

Секция соотоит из 2-х бассейнов - бассейна контакта и бассейна стабилизации. На плотаджах обслуживания каждого из бассейнов устанавливается по два турбоаэратора типа Та-2.

В проекте разработаны аэротенки трех типоразмеров:

- I тип секция, размером в плане 12.0 x 15.0 м;
- П тип секция, размером в плане 18,0 х 15,0 м;
- Ш тип секция, размером в плане 24,0 ж 18,0 м;

Аэрогенк контактной стабилизации запроектирован в оборно-монолитном железобетоне,

Днище - плоское, толщиной 150 мм из монолитного железобетоня, армируемое каркасами и сетками.

Стены и перегородки - из сборных железобегонных панелей консольного типа по серии 3.900-2 вып.7, заделываемых в паз монолитного днища.

Углы стен - монолитные железобегонные, запроектированы по рекомендациям серии 3.900-2 вып.7.

Площадки и мостики обслуживания выполняются из сборных железобетонных плит по сериям ИИ-24-2/70; ИС-ОІ-О4 вып.2; ИС-ОІ-О5 вып.2, опирающихся на отеновые панели и стойки,изготавливающиеся индивидуально в опалубке стоек К5-ІО по серии 3.0І5-І вып. П-І.

Лестницы и ограждения - металлические по серии 1.459-2 вып.4.

Стеновые пакели устанавливаются в паз дница по слою несхватившегося цементного раствора толщиной 50 мм с последующим замоноличиванием бетоном "M-300" на мелком щебне.

Стике межцу панедами приняти шпоночного типа и сваркой горизонтальных выпусков арматуры из

отенових панелей. Замоноличивание стиков осуществляется цементно-песчаним раствором механизированным опособом с подачей раствора снизу под давлением. (См. серию 3.900-2 вип. I "Рекомендации по замоноличиванию вертикальных и горизонтальных отиков емкостей бетоном (раствором) на напрягающем цементе" листи 16-26).

Для железобетонных конструкций стен, днище и оборных железобегонных элементов в зависимости от расчетной замней температуры наружного воздуха в зимний период приняты следующие марки бетона:

02-2-332 Алы	Som I		21	7580/I
				Таблица 3.1
Расчетная темпе-	Наиме нование	Проектная	теон в внотер видем и	
ратура наружного воздуха	конотрукции	о прочности на сжатие кго/ом2	по морозостойкости МРз	по водонепроницае- мости ГОСТ 4800-59
I	2	3	4	5
- 20°	Стены	200	100	B-4
	Лнище	200	50	B-4
	Стойки	200	100	B-4
- 30°	Стены	200	150	B-4
	Днище	200	50	B-4
	Стойки	200	150	B-4

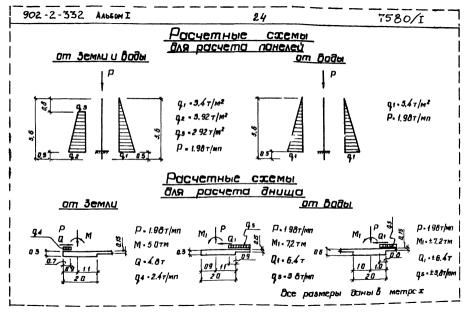
Бетонная подготовка и технологические набетонки выполняются из бетона "M-IOO". Для торкретштукатуки применяется цементно-песчаный раствор состава I:3.

Рабочая арматура диаметром 10 мм и более принята по ГОСТ 5781-75 класса A-III, маркт 25Г2С периодического профиля с расчетным сопротивлением $R_{\rm A}=3400$ кгс/см2, распределительная арматура — по ГОСТ 5781-75 класса A-I марки СТ ЗПС (мартеновская и конверторная). Требования к арматуре уточняется при привязке проекта по серии 3.900-2. вып.1. табл.3.

3.3. Отделка и мероприятия по защите от коррозии

Монолитные участки стен со стороны воды торкретируются на толщину 20 мм с последующей затиркой цементным раствором. Торкретирование наносится сложми по 10 мм. Со стороны земли монолитные участки стен затираются цементным раствором, а выше планировочных отметок штукатурятся.

Монолитные участки стен и панели со стороны земли окрашиваются горячей битумной мастикой за 2 раза по огрунтовке битумом, разведенным в бензине.


На технологическую набегонку наносится цементная стяжка толщиной 20 мм.

Все металлические столики, находящиеся в жидкости, обетонируются по сетке. Закладные детали для сварки конструкцией оцинковываются. Металлические конструкции лестниц и ограждений окрашиваются масляной краской за 2 раза по огрунговке.

3.4. Расчетные положения

Расчет железобетонных конструкций выполнен в соответствии с требованиями СНиП II-2I-75. Стеновые панели IIKVI-36-2 работают в вертикальном направлении, как консольные плиты, рассчитанные на нагрузки гидростетического давления жидкости, давления грунта и равномерно распределенной нагрузки на поверхности земли равной I то/м2.

Стеновне панели ПКУІ-36-І работарт в вертикальном направлении, как консольные плиты, рассчитанные на нагрузки от гидростатического давления жилкости.

Днище рассчитано как фундаментная лента на упругом основании, воспринимающая реактивные усилия от заделки в нее стеновых панелей, а также равномерно распределенную нагрузку от жидкости.

Расчет произведен при модуле деформации Е = 150 кгс/см2.

3.5. Соображения по производству

pador

Проект разработан для условий производства работ в летнее время. При производстве работ в зимнее время в проект должны быть внесены коррективы, соответствующие требовениям производства работ в зимних условиях, согласно действующим нормам и правилам.

Земляние работи должны выполняться с соблюдением требований СНиП Ш-8-76г. Способи разработки котлована и планировка дна должны исключать нарушение естественной структуры грунта основания.Обсыпка стенок резервуаров должна производиться олоями 25-30 см, равномерно по периметру с доведением
объемного веса скелета грунта до I,6-I,7 м/м3. Горизонтальная поверхность обсыпки планируется с
покрытием обсыпки слоем растительного грунта.

Арматурные и бетонные работы должны производиться в соответствии о требованиями СНиП II—45-76. Перед бетонированием днища, устанавленная опалубка и арматура должны быть приняты по акту, в котором подтверждается их соответствие проекту.

Днище бетонируется непрерывно параллельными полосами без образования швов. Ширина полос прини-

мается с учетом гозможного темпа бетонирования и необходимости сопряжения вновь удоженного бетона с ранее удоженным до начала охватывания последнего. Удоженная в днище бетонная смесь уплотняется вибраторами.

К монтажу сборных железобетонных панелей разрешается приступить при достижении бетоном днища 70% проектной прочности.

Непосредственно перед установкой панелей пазы днища очищаются и обрабатываются пескоструйным аппаратом, промываются водой под наперем : на дно паза наиосится олой выравнивающего цементно-песчаного раствора до проектной отметки.

Монтаж панелей производится с геодезическим контролем.

Выпуски арматуры стеновых панелей свариваютс, между собой с помощью накладок с контролем качества сварного шва. Замоноличивание стыков между стеновыми панелями осуществляется цементно-песчаным раствором механизированным способом с подачей раствора снизу под давлением. До замоноличивания
стыков не ранее, чем за двое суток стыкуемые поверхности стеновых панелей очищаются и обрабатываются
пескоструйным аппаратом, и непосредственно перед бетонированием промываются струей воды под напором

Приемка законченных монтажных работ, а также промежуточные приемки производятся в соответствии со СНиП III-I6-73.

Бетонирование монолитных участков стен производится после устройства стыковых соединений и заделки панелей в пазах дница.

Инвентарная опалубка при бетонировании устанавливается с внутренней стороны стены на всю высоту, а с наружной стороны - на высоту яруса бетонирования с нарашиванием по мере бетонирования.

Крепление опалубки производится к выпускам арматуры стеновых панелей. Стержни, креплиие опамубку, должны располагаться на разных отметках и не должны пересекать стык насквозь.

Бетонирование стен производится поярусно с тщательным вибрированием.

Бетонная смесь должна приготовляться на тех же цементах и из тех же материалов, что и стеновые нанели.

Уложенный бетон должен твердеть в нормальных температурно-влажностных условиях. Допускаемые отвленения при сооружении монолитных участков стен устанавливаются такие же как и при монтаже панелей.

Гидравлическое испытание производится на прочность и водонепроницаемость до засышки котлована при положительной температуре наружного воздуха, путем заполнения сооружения водой до расчетного горизонта и определения II сугочной утечки. Испытание допускается производить при достижении бетоном проектной прочности и не ранее 5 сугок после заполнения водой.

Испытание аэротенка контактной отабилизации производится в соответствии со СНиП II-30-74 п.н. 8.47 + 8.54: 8.64.

4. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

4.1. Общая часть

Электрогехническая часть типового проекта аэрогенка контактной стабилизации выполнена на основании технологической и строительной частей проекта. Все электросборудование принято заводокого изготовления и жибрано в соответствии с характеристикой окружающей среды.

Проект разработан о расчетом ведения электромонтажных работ индустриальными методами. Макоимальные нагрузки для различных вариантов исполнения аэротенка контактной стабилизации см. табл. 4.1.

4.2. Электроснабжение.

По обеспечению надежности электроснабжения аэротенк контактной стабилизации относится к потребителям П-й категории.

Питание аэротенка, как потребителя П-й категории электроснабжения, предусматривается по двум кабельным линиям (рабочая и резервная). Переключение на резервную линию при выходе из строя рабочей-ручное, с помощью рубильников.

Вибор источников питания и схема электроснабжения решартся при привязке проекта.

4.3. Силовое электрооборудование

Проектом разработаны гри типоразмера аэрогенка контактной стабилизации. Какдый типоразмер имеет

902-2-332 Альбо	M I		29	7580/I	
варианта исполнения:				Таблица 4.І	
Характеристика электротехнической		Количество остина авроговка			
		2 секции	3 секции	4 секции	
I		2	3	4	
Напряжение источников пит	ALER .		0,4 mB		
Количество питающих линий			2		
Тип вводов			жабельный		
веодны е мими	Тип Плавкая вставка	яытву -4 200	HEIBY-4 300	Я <u>ыну</u> —4 400	
Кабель от вводных ящиков :	R CIIM	ABBL 3x120	ABBT 3(3x95)	ABBT 2(3xI20)	
Кабель к конденсаторной у	отановке	ABBT 3x95	ABBT 3x150	ABBT 2(3x95)	
Распредпункт 0,4 кВ			CIIM 65-II-7		
Электродвигатели		Асинхронные, 1 0,4 кВ, мощно	короткозамкнутые н этью 17 кВт	а напряжение	

3	0	7580/c
2	3	4
136	204	272
122	183	245
186	276	372
0,9	0,9	0,9
I	ī	I
УК-0,38-72-4 УЗ	ук-0,38-108-3у3	УК-0,38-144-4УЗ
янву-2	яыву-4	яыву-4
150	250	300
	2 136 122 186 0,9 1 УК-0,38-72-4УЗ	2 3 136 204 122 183 186 276 0,9 0,9 1 1 УК-0,38-72-4УЗ УК-0,38-108-3УЗ ЯНІВУ-2 ЯБІВУ-4

31

902-2-332

типа АО2-71-6. мощностью 17 кВт. Электропвитатели турбовараторов поставляются комплектно с технологическим оборудованием. Распределение электроэнергии предусматривается со дита 0.4 кВ типа СПМ. Уэтановленного в шитовом помещении.

В качестве пусковой аппаратуры для электродвигателей приняты магнитные пускатели типа ПА. Управление электропвигателями турбоаэраторов дистанционное со шкафа управления, тотановленного в помешении шитовой и местное при помоши кнопочных станций, установленных у агрегатов.

Естественный коэффициент мошности всех типоразмеров аэротенка контектной стабилизации составляет 0.9.

Согласно "Указаний по компенсации реактивной мощности в распределительных сетях", введенных в жействие с I июня 1974г., проектом предусмотрены компенсирующие устройства. Молность компенсирующих УСТРОЙОТЕ ПРИНЯТЕ ИЗ УСЛОВИЯ ПОЛНОЙ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОШНОСТИ ЕТ ВИВОЛЬЯ В ВИВОЛЬЯ В ТОЙОСТВИ нагрузок. Тип и мошность компенсирующих устройств для различных вариантов исполнения аэрстенка см. табл.4.I.

4.4. Сигнализация

Оперативная сигнализация работы электродвигателей турбовараторов предусмотрена на шкабах управ-MOHMA.

Аварийние сигналы отключения эл. двигателей при дистанционном управлении передаются на шкаф сигнализации ДП площадки.

4.5. Зануление

Все корпуса электрооборудования и металлические конструкции, которые могут оказаться под напряжением воледотние повреждения изоляции, должны быть занулены.

Нейтраль траноформатора соединяется с нулем распредпункта 0,4 кВ и металлическими элементами электроустановок с помощью защитных проволников.

В жачестве нулевых защитных проводников используется нулевая жила питающего кабеля, стальные полосы, стальные трубы электропроводки, алюминиевые оболочки кабелей.

Магистраль зануления и присоединения к ней выполнить сваркой внажлест.

Магистраль занудения проложить на высоте 0,8 м от уровня пола и окрасить в черный цвет.

5. HEC L'AHJIAPTMENT OBAHHOE OBOPY JOBAHME

Механический турбинный аэратор ТА-2 преднавначен для аэрации и перемешивания циркулирующего ила и иловой смеси.

TA-2 состоит из вертикального мотор-редуктора, упругой муфты, вертикального вала и двух турбинок -- верхней и нижней.

TA-2 устанавливается на опору - сварную конструкцию, которая своим основанием устанавливается на мостике оболуживания аэротенка контактной стабилизации.

Привод предназначен для передачи вращения на вал с турбинами и представляет собой планетарный стор-редуктор.

Упругая муфта служит для соединения двух валов и компенсирует толчки и вибрацию.

Турбинки авратора выполнены в виде оварной конструкции и состоят из диска и приварных к нему онизу лопастей. В диске перед лопастями сделани отверстия для поступления воздуха к лопастями распределения его в объеме жидкости.

Конструкция турбинного аэрагора ТА-2 разработана НИКТИ IX. Турбоаэрагоры ТА-2 выпускаются Киевским экспериментальным производотвенным объединением "Укркоммунмам".

6.1. Технологическая часть

При привязке типового проекта аэрогенков контактной стабилизации необходимо:

- I. Подобрать по табл.I,2 типоразмер и количество секций аэротенков контактной стабилизации в зависимости от БПК_{полн.} поступающих на аэротенк сточных вод и среднесуточного расхода.
- 2. Рассчитать по формулам (7-10) концентрацию или в бассейне стабилации, общую массу ила в аэротенке, окорость окисления загрязнений и прирост ила в аэротенках контактной стабилизации. Если полученная скорость окисления превысит указанию предельные величины, то следует принять ближайший больший типоразмер.
- 3. Определить по формуле (12) напор на водосливе и над воронкой, отводящей иловую смесь из бассейна контакта и уточнить отметки уровней на чертежах ТХ-4, ТХ-5, ТХ-6.
 - 4. Проставить на чертежах абсолютную отметку, соответствующую относительной ± 0,000.
- 5. В проекте предусмотрены сальники в монолитных участках бассейнов контакта для пропуска подводящих и отводящих трубопроводов, рассчитанных на максимальный расход.

При привязке проекта расчетом уточняются диаметри указанных трубопроводов, в соответствии о чем производится корректировка принятых в проекте диаметров грубопроводов и сальников.

6. Предусмотреть помборы технологического контроля для измерения общего расхода циркулирующего

активного ила на напорном трубопроводе.

7. Для равномерного распределения расходов циркулирующего ила и оточных вод, поступающих на каждую секцию аэротенков, предусмотреть камеру распределения сточных вод по бассейным контакта и камеру распределения активного ила по бассейнам стабилизации.

6. 2. Архитектурно-строительная часть

При привязке проекта к конкретным климатическим и инженерно-геологическим условиям площадки необходимо:

- I. Произвести контрольную проверку прочности огражующих конструкций на измененые физикомеханические свойства грунгов (угол внугреннего грения φ ; коэффициент оцепления C^H ; объемный вес χ) по охемам приведенным в данной записке.
- 2. Произвести пересчет днища как балки на упругом основании с применением модуля деформации Е, определенного для конкретных физико-механических свойств грунта.
- З. В зависимости от климатического района строительства установить марку бетона по прочности, водонепроницаемости, морозостойкости, а также арматуру и вид цемента, рекомендуемых для бетона конструкций по табл. I-3 серии 3.900-2 внп. I и табл. 3.1 настоящей записки.

Так как проект разработан для аэрогенка ит 4-х секций, при привязке с меньшим количеством секций (2 или 3) необходимо вычеркнуть среднис (две или одну) секции из4-х секционного аэрогенка, оставив опецификации расхода материалов для привязанного варианта.

6.3.Электротехническая часть

При привязке электротехнической части типового проекта аэротенка контактной стабилизации необхолимо выполнить оделующее!

- I. В зависимости от количества секций аэрогенка по табл.4.І определить тип вводных ящиков с рубяльниками и плевкие вставки к ним, тип конденсаторной установки.
- 2. Привязать количество шкафов в зависимости от количества секций аэротенка, т.к. в проекте разрасотан шкаф управления на 4 турбоваратора одной секции аэротенка и кабельная разводка на каждый типоразмер аэротенка.
- 3. Проверить плавкие вставки на фидерах в зависимости от мощности грансформатора, сечения и длины питающего кабеля. Плавкие вставки на фидерах к электродвигателям выбраны из условия отключения однофазного тока короткого замыкания.

Суммарное сопротивление петли фаза-ноль питеющего кабеля и $-\frac{1}{3}$ -Зодлового траноформатора должно быть не более 0,85 Ом для Іїнго типоразмера; 0,825 См для Іїнго типоразмера; 0,78 Ом для Іїнго типоразмера.