СТАНЛАРТЫ ОРГАНИЗАПИИ

ДЕТАЛИ И СБОРОЧНЫЕ ЕДИНИЦЫ

ИЗ ХРОМОМОЛИБДЕНОВАНАДИЕВЫХ СТАЛЕЙ
ПАРОПРОВОДОВ ТЕПЛОВЫХ СТАНЦИЙ
С АБСОЛЮТНЫМ ДАВЛЕНИЕМ р≥4,0 МПа
И РАСЧЕТНЫМ РЕСУРСОМ 200000 ЧАСОВ

ОТКРЫГОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ПО ИССЛЕДОВАНИЮ И ПРОЕКТИРОВАНИЮ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ № И.И.ПОЛЗУНОВА" (ОАО "НПО ЦКТИ")

СТАНДАРТЫ ОРГАНИЗАЦИИ

ДЕТАЛИ И СБОРОЧНЫЕ ЕДИНИЦЫ ИЗ ХРОМОМОЛИБДЕНОВАНАДИЕВЫХ СТАЛЕЙ ПАРОПРОВОДОВ ТЕПЛОВЫХ СТАНЦИЙ С АБСОЛЮТНЫМ ДАВЛЕНИЕМ р≥4,0 МПа

И РАСЧЕТНЫМ РЕСУРСОМ 200000 ЧАСОВ

СТО ЦКТИ 321.05-2009÷СТО ЦКТИ 321.08-2009, СТО ЦКТИ 318.04-2009÷СТО ЦКТИ 318.06-2009, СТО ЦКТИ 462.05-2009÷СТО ЦКТИ 462.08-2009, СТО ЦКТИ 520.02-2009, СТО ЦКТИ 313.02-2009, СТО ЦКТИ 720.24-2009, СТО ЦКТИ 720.24-2009, СТО ЦКТИ 038.02-2009, СТО ЦКТИ 839.05-2009, СТО ЦКТИ 837.01-2009

Санкт-Петербург 2010 год

В соответствии с положением пункта 4.13 ГОСТ Р 1.4-2004 «Стандарты организаций. Общие положения» предлагаются следующие организационнотехнические мероприятия по подготовке и применению стандартов на детали и сборочные единицы для трубопроводов тепловых станций на ресурс 200 тыс. часов (64 стандарта):

- 1. Стандарты 2009 года утверждения вводятся в действие с 01.05.2010 для нового проектирования трубопроводов тепловых станций.
- 2. Стандарты на детали и сборочные единицы трубопроводов тепловых станций 1982 года издания на ресурс 200 тыс. часов используются на переходный период до 30.04.2011 с применением ОСТ 24.125.60-89 в качестве общих технических требований для окончания работ по изготовлению элементов трубопроводов тепловых станций на ресурс 200 тыс. часов по действующим договорам с заказчиками. Допускается использование стандартов 1982 года издания после 30.04.2011 г. для проведения ремонтных работ по замене ранее изготовленных трубопроводов.
- 3. Стандарты на детали и сборочные единицы трубопроводов из хромомолибденованадиевых сталей на ресурс 100 тыс. часов остаются в действие без изменений (16 стандартов).

Зав. сектором НТД объектов котлонадзора и стандартизации энергооборудования ОАО «НПО ЦКТИ»

П.В. Белов

[©] Открытое акционерное общество «Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И.И.Ползунова» (ОАО «НПО ЦКТИ»), 2010 г.

Содержание

СТО ЦКТИ 321.05-2009 Отводы гнутые для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 321.06-2009 Отводы крутоизогнутые для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 321.07-2009 Отводы штампованные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 321.08-2009 Отводы штампосварные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 318.04-2009 Переходы точеные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 318.05-2009 Переходы обжатые для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 318.06-2009 Переходы штампованные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 462.05-2009 Штуцера для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 462.06-2009 Штуцера для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 462.07-2009 Патрубки блоков с соплами для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 462.08-2009 Штуцера для отбора импульса давления в блоках с соплами паропроводов тепловых станций. Конструкция и размеры93
СТО ЦКТИ 520.02-2009 Кольца подкладные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 313.02-2009 Соединения штуцерные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 720.15-2009 Тройники равнопроходные штампованные для паропроводов тепловых станций. Конструкция и размеры 115
СТО ЦКТИ 720.16-2009 Тройники переходные штампованные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 720.17-2009 Тройники равнопроходные сварные с обжатием для паропроводов тепловых станций. Конструкция и размеры 127
СТО ЦКТИ 720.18-2009 Тройники переходные сварные с обжатием для паропроводов тепловых станций. Конструкция и размеры 133
СТО ЦКТИ 720.19-2009 Тройники переходные сварные для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 720.20-2009 Тройники равнопроходные штампованные для паропроводов тепловых станций. Конструкция и размеры 145
СТО ЦКТИ 720.21-2009 Тройники переходные штампованные для паропроводов тепловых станций. Конструкция и размеры

СТО ЦКТИ 720.22-2009 Тройники равнопроходные штампованные с обжатием для паропроводов тепловых станций. Конструкция и размеры 157
СТО ЦКТИ 720.23-2009 Тройники переходные кованые для паропроводов тепловых станций. Конструкция и размеры163
СТО ЦКТИ 720.24-2009 Тройник равнопроходный кованый для паропроводов тепловых станций. Конструкция и размеры169
СТО ЦКТИ 038.02-2009 Ответвления паропроводов тепловых станций. Типы 175
СТО ЦКТИ 839.05-2009 Блоки с соплами для паропроводов тепловых станций. Конструкция и размеры
СТО ЦКТИ 839.06-2009 Сопла блоков для паропроводов тепловых станций. Конструкция и размеры193
СТО ЦКТИ 504.02-2009 Донышки приварные для паропроводов тепловых станций. Конструкция и размеры199
СТО ЦКТИ 530.02-2009 Бобышки для паропроводов тепловых станций. Конструкция и размеры207
СТО ЦКТИ 837.01-2009 Реперы для контроля остаточной деформации ползучести трубопроводов тепловых станций. Конструкция и размеры 215

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ПО ИССЛЕДОВАНИЮ И ПРОЕКТИРОВАНИЮ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ им. И.И.ПОЛЗУНОВА" (ОАО "НПО ЦКТИ")

СТАНДАРТ ОРГАНИЗАЦИИ

СТО ЦКТИ 462.07-2009

ПАТРУБКИ БЛОКОВ С СОПЛАМИ ДЛЯ ПАРОПРОВОДОВ ТЕПЛОВЫХ СТАНЦИЙ

Конструкция и размеры

Предисловие

Объекты стандартизации и общие положения при разработке и применении стандартов организации установлены ГОСТ Р1.4-2004 "Стандартизация в Российской Федерации. Стандарты организаций. Общие положения".

Сведения о стандарте

1 РАЗРАБОТАН открытым акционерным обществом «Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И.И.Ползунова» (ОАО "НПО ЦКТИ") и ЗАО «Энергомаш (Белгород)-БЗЭМ»

Рабочая группа

от ОАО «НПО ЦКТИ»: СУДАКОВ А.В., ГАВРИЛОВ С.Н., БЕЛОВ П.В., ТАБАКМАН М.Л., СМИРНОВА И.А. от ЗАО «Энергомаш (Белгород)-БЗЭМ»: МОИСЕЕНКО П.П., ЛУШНИКОВ И.Н.

- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Генерального директора ОАО "НПО ЦКТИ" № 373 от 14 декабря 2009 г.
- 4 B3AMEH OCT 108.462.14-82÷OCT 108.462.17-82
- 5 Согласованию с Ростехнадзором не подлежит

СТАНДАРТ ОРГАНИЗАЦИИ

ПАТРУБКИ БЛОКОВ С СОПЛАМИ ДЛЯ ПАРОПРОВОДОВ ТЕПЛОВЫХ СТАНЦИЙ

Конструкция и размеры

Дата введения: 2010-05-01

1 Область применения

Настоящий стандарт распространяется на патрубки блоков с соплами, устанавливаемые на паропроводах тепловых станций с абсолютным давлением и температурой среды:

p = 25,01 МПа, t = 545°C p = 13,73 МПа, t = 560°C p = 13,73 МПа, t = 545°C p = 13,73 МПа, t = 515°C p = 4,02 МПа, t = 545°C

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы: ПБ 10-573-03 Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды

СТО ЦКТИ 10.003-2007 Трубопроводы пара и горячей воды тепловых станций. Общие технические требования к изготовлению

ОСТ 108.030.113-87 Поковки из углеродистой и легированной стали для оборудования и трубопроводов тепловых и атомных станций. Технические условия

ТУ 14-3Р-55-2001 Трубы стальные бесшовные для паровых котлов и трубопроводов. Технические условия

ТУ 1310-030-00212179-2007 Трубы бесшовные горячедеформированные механически обработанные из углеродистой и легированных марок стали для трубопроводов ТЭС и АЭС. Технические условия

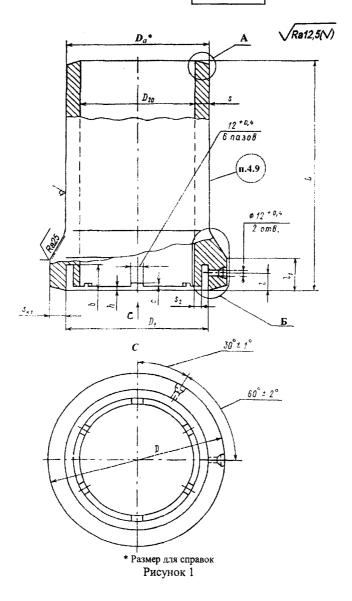
3 Конструкция и размеры

- 3.1 Конструкция, размеры и материал патрубков должны соответствовать указанным на рисунках 1-3 и в таблице 1.
- 3.2 Допускается изготовление патрубков с разделкой под сварку по типу C4 и C5 в соответствии с СТО ЦКТИ 10.003.

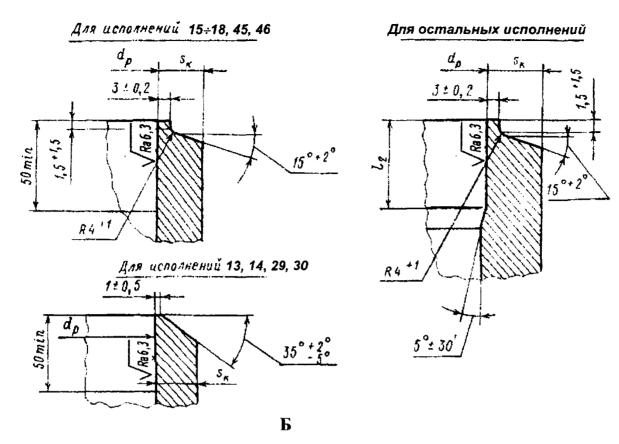
4 Технические требования

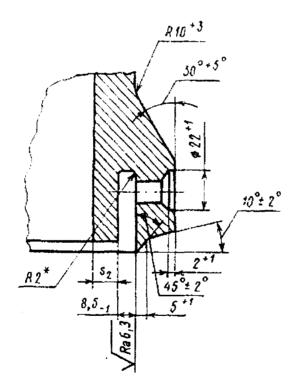
- 4.1 Допускается изготовление патрубков из двух частей трубы и поковки (рисунок 3).
- 4.2 Патрубки с условными проходами D_{ν} 50 и D_{ν} 65 должны изготавливаться цельными.
- 4.3 Материал трубы должен соответствовать указанному в таблице 1 по ТУ 14-3Р-55 или ТУ 1310-030-00212179, материал поковки группы II категории Т по ОСТ 108.030.113. Наплавленный металл по СТО ЦКТИ 10.003.
 - 4.4 Размеры швов устанавливаются предприятием-изготовителем в зависимости от

толщины свариваемых деталей. Нормы оценки качества сварного соединения – согласно требованиям ПБ 10-573 (Приложение 8).


- 4.5 Масса патрубков, указанная в таблице 1, расчетная, приведена для справки.
- 4.6 Исполнения, указанные в скобках, применять по согласованию с предприятием-изготовителем.
 - 4.7 Остальные технические требования по СТО ЦКТИ 10.003.
- 4.8 Пример условного обозначения патрубка исполнения 01 с условным проходом $D_{\rm v}150$:

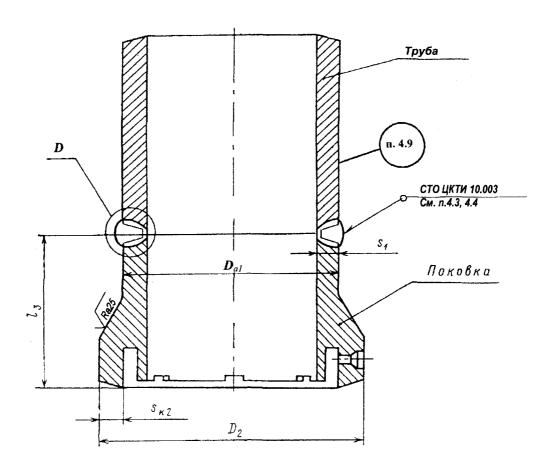
ПАТРУБОК 150 01 СТО ЦКТИ 462.07

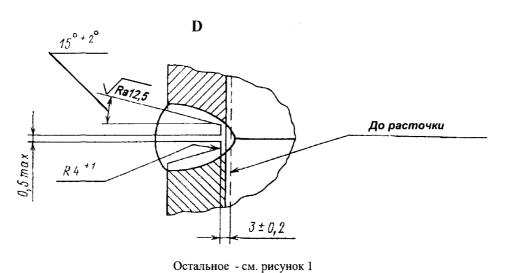

4.9 Пример маркировки:


01 CTO 462.07

Товарный знак

A





* Размеры для справок

Остальное - см. рисунок 1

Рисунок 2

_ -

Рисунок 3

Таблица 1

	Размеры в миллиметрах																													
ние	¥	sıŭ D,						D	20	(d_p	S	SI	s ₂	S_k	s_{kl}	S_{k2}		b					1	2	l	3			
Исполне	Исполнение Рисунок Условный	Услови проход	D_a^*	$D_{al}^{+l,\delta}$	D ^{+1,6}	D1±0,1	$D_2^{+1.6}$	номин	пред. откл.	номин	номин пред. откл.		не менее					номин	пред. откл.	c±0,2	h±0,2	<i>l</i> ±0,8	l_I^{+3}	номин	пред.	номин	пред. откл.	L±2,5	Марка стали	Масса, кг
	p=25,01 MIIa, t=545°C																													
01	3	150	245	250	280	177	- 290	149	±0,4	151		48	50		42	50	55			2,0	5,0		75	85		170		430		120,0
03	1	175	273	-	312	201	-	173	±0,5	175	+0,63	50	-	5	46	54	-	48	+0,62	2,5	5,5	40	80	85		-		470		155,0
04	3	1,,5,	275	280	- 372	201	322		20,5	10,3 173		52			63	59		-	2,5	3,3	40			1	180		4/0		1.55,0	
06	3	200	325	338	-	242	385	206	±0,6	208	+0,72	60	63	9	54	-	72			3,5	7,5		85	100	+5	200	,,	550	МІФ	258,0
07 08	3	225	377	- 388	428	276	- 445	238	±0,7	240	1,72	70	72	10	63	74	- 82			4,0	8,5		90	110	+3	220	±2	640	15X1M1Φ	401,0
09	1	250	426	-	475	308	-	268		270	<u> </u>	80	-	11	73	82	-	55	+0,74	4,5	10,0	45	95			-		770		
10	3	230	420	435	-	306	492	200	±0,8	270	+0,81	- 00	82	11	/3	-	90	33	70,74	4,5	10,0	43	93	50		240		720		568,0
(11)	3	300	465	- 488	532	348	- 556	306		308		80	82	12	74,5	90	102			5,0	12,5		105			250		800		705,0
	.				L		L		I		1		<u>p=</u>	13,73	МΠа	ı, t=5	60°C							L	<u> </u>	JJ				
13	1 3	50	76 -	- 78	110	74	- 110	50	±0,1	50	+0,15	13	- 14	3	-	17	- 17	35		1,0	1,0	25	45	-		-	-	120	ДФ	3,0
15	1 3	100	133	138	170	120	176	94	±0,2	94	+0,54	20	- 21	4	17,3	23	- 26	38	+0,60	1,5	2,0	30	55	70	+5	- 130	- ±2	300	12ХІМФ	22,9

Продолжение таблицы 1

	Размеры в миллиметрах																																		
ние	¥	ый <i>D</i> _y						$D_{2\theta}$		d_p		S	s_I	S2	Sk	Ski	s_{k2}	l	5					12		l	3								
Исполнение	Рисунок	\mathbf{Y} словный проход $D_{\mathbf{y}}$	D_a^*	$D_{al}^{+1,6}$	$D^{+1.6}$	D1±0,1	$D_2^{+l,6}$	НОМИН	пред. откл.	номин	пред. откл.			не м	енее			номин	пред. откл.	c±0,2	h±0,2	l±0,8	l_I^{+3}	номин	пред. откл.	номин	пред. откл.	L±2,5	Марка стали	Масса, кг					
	p=13,73 MIIa, t=560°C																																		
17	1	150	219		255	186	-	156	±0,4	156	+0,63	28		6	28,0	33	-	38		2,0	5,0	30	60	70		-	-	400		72,3					
18	3	130	217	225	-	100	264	150	20,4	150	10,03	20	33		20,0		37	50		2,0	3,0	30	00		į .	150	±2	100		72,3					
19	1	200	273	-	308	233	233	233	233	233	233	-	201 ±	+0.6	203	+0,72	34	-	7	31,5	36	-	40	+0,60	3,0	6,5	32	65	75	+5	-	-	520	20 15Χ1Μ1Φ I	129,0
20	3	200	2/3	276	-	2.73	320) 201 20,0	,	203	10,72		36	ļ.,	31,3	-	41		0,00		3,5	32			_	180	±2	320	137110114	125,0					
21	1	300	377	-	420	315	315	315	315	315	315	-	277	+0.8	281	+0.81	48	<u>-</u>	10	44,3	50	-	44		4,0	10,0	35	75	85		-	-	700		323,0
22	3	500] ,,	382			428	2,,,			,,,,,	49	49		177,5		54			4,0	10,0			65		200	±2		,,,,	323,0					
-			,										p	=13,7	3 MI	la, t=	545°(`. ≼	,								,								
23	1	175	219	-	260	197	-	169	±0,4	164	+0,63	26			24,0	30	-			2,0	5,0			65		-	-	415	12Х1МФ	68,0					
24	3	.,,,		225	-	17/	270	.07			,,,,,		28	8	2 1,0	-	34	38			3,0	30	60			140	±2		12211114	00,0					
25	1	200	273	-	312	243		209	+0.6	211	+0,72	30] "	27,3	33	-	' '	+0,60	3,0	6,5		00	70	+5	-	-	520		118,0					
26	3		2/3	278			320		25,0				32			-	37		,,,,,,,		,,,,			, 0		150	±2		15X1M1Φ	1 1					
27	1	250	325	-	368	285		249	+0.7	251	 +0,81	36	-	9	32,3	39	-	45		4,0	8,5	35	70	80		-		620	13711111	196,0					
28	3 230 323	330			375		20,7		. 0,01		38			-	43	1.5		.,0	.,,,,					150	±2			1,50,0							

СТО ЦКТИ 462.07-2009

Окончание таблицы 1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\frac{1}{2}$ 1	2,5 Марка Масса, стали кг									
<u>p=13,73 МПа, t=515°С</u>										
29 1 65 76 - 112 81 - 58 +0.1 58 +0.17 8 - 3 - 14 - 35 1.0 1.0 25 45	20									
30 3 65 - 80 - 81 112 58 ±0,1 58 +0,17 - 9 3 - 14 35 1,0 1,0 25 45	3,81									
31 1 100 133 - 168 135 - 105 ±0,3 106 +0,54 12 - 6 11,5 15 - 38 2,5 28 50 50	00 16,9									
32 3 100 133 135 - 133 100 10,5 100 10,5 - 14 0 11,5 - 17 38 2,0 2,0 2,3 28 30 30 130 ±2	10,9									
33 1 125 159 - 196 157 - 127 +0 3 128 +0 63 14.5 - 6 13 4 18 - 40 3 5	30 25,1									
34 3 163 - 200 - 17 - 20 130 ±2	25,1									
35 1 150 194 - 232 186 - 154 ±0,4 156 +0,63 18 - 7 16,5 21 - 40 2,5 5,0 70 - - - - - - - - -	00 12X1MΦ 42,9									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
37 1 175 219 - 260 209 - 175 ±0,5 176 +0,63 20 - 8 18,5 23 -	30 57,3									
38 3 173 219 222 - 265 173 ±0,3 176 (0,63 - 22 6 40 3,0 3,0 3,3 140 ±2 6 140 ±2										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30 102,0									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30 170,0									
42 3										
350 426 394 400 350 ±0,8 354 +0,89 13 31,6 44 45 6,0 12,5 35 65 80 400 4	50 15X1M1Φ 351,0									
44 3 430 - 480 1 - 38 - 41 180 ±2 - 402 MHa, t=545°C										
$oxed{45} egin{array}{ c c c c c c c c c c c c c c c c c c c$	40 12X1MФ 259,0									
* Размеры для справок										

УДК 621.311.22:621.643 Е 26 ОКП 31 1312

Ключевые слова: тепловые станции, паропроводы, патрубки блоков с соплами, конструкция, размеры, материалы

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

		Номера лис	гов (стран	ипп)	Номер	Срок	Подпись	Дата
Изм.	Измененных	Заменен-	Новых	Аннулиро- ванных	документа	введения изменений		
								-
				, , , , , , , , , , , , , , , , , , ,				
		-						
								-
		-						

Подписано в печать 30.03.10. Формат 60×90 \(^1/\)_8 Бумага офсетная. Гарнитура Times. Печать офсетная. Усл. печ. л. 31,5. Заказ № 54. Тираж 100.

Издательство ООО ИПП «Ладога» 191014, Санкт-Петербург, ул. Маяковского д. 17 E-mail: ladoga.05@mail.ru

Отпечатано в ООО ИПП «Ладога» 191014, Санкт-Петербург, ул. Маяковского д. 17

извещение об изменении

ОАО "НПО ЦКТИ"	Отдел №24	Извещение БВАИ.101-2012	07-2009							
ДАТА ВЫП	УСКА	Приказ ОАО "НПО ЦКТИ" № 449 от 25, 04, 2012	Лист	Листов 1						
ПРИЧИ	HA	Предложение ЗАО «Энергомаш (Белгород)-БЗЭМ» Код 9 исх. №0026 от 12.01.2012								
УКАЗАНИЕ О	ЗАДЕЛЕ	Не отражается								
УКАЗАНИ ВНЕДРЕН		По графику ТПП								
ПРИМЕНЯЕ	мость	Mile and diffe have been part and fact from								
РАЗОСЛ	АТЬ	ЗАО «Энергомаш (Белгород)-БЗЭМ», ОАО «ЗиО», ОАО «Красны котельщик», ОАО «Сибэнергомаш», БиКЗ								
ПРИЛОЖ	HNE									
изм.		содержание изменения								
1										

1. Таблица 1.

- исполнения 23, 24. В графе " D_{20} ном" заменить значение 169 на 163.
- в заголовке исполнений между 44 и 45 перед значением давления «=4,02 МПа» поставить букву «p».

СОСТАВИЛ Табакман 13,0 %, 12 НОРМО-КУБЫШКИН А.П. 17.04. 2012 ИЗМЕНЕНИЕ ВНЕС

The Meesemun