ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 8.659— 2009

Государственная система обеспечения единства измерений

СРЕДСТВА ИЗМЕРЕНИЙ ХАРАКТЕРИСТИК УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ ПРИ ТЕХНОЛОГИЧЕСКОМ КОНТРОЛЕ В НАНОФОТОЛИТОГРАФИИ

Методика поверки

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным Государственным унитарным предприятием «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП ВНИИОФИ)
- 2 ВНЕСЕН Научно-техническим управлением Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. № 972-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Содержание

1	Область применения
	Нормативные ссылки
3	Операции поверки
4	Средства поверки
5	Требования к квалификации поверителей
6	Требования безопасности
7	Условия поверки
8	Подготовка и проведение поверки
9	Обработка результатов измерений
10) Оформление результатов поверки
Бі	лблиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

СРЕДСТВА ИЗМЕРЕНИЙ ХАРАКТЕРИСТИК УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ ПРИ ТЕХНОЛОГИЧЕСКОМ КОНТРОЛЕ В НАНОФОТОЛИТОГРАФИИ

Методика поверки

State system for ensuring the uniformity of measurements. Instruments measuring the characteristics of ultraviolet radiation of technological testing of nanophotolitography. Verification procedure

Дата введения — 2011—01—01

1 Область применения

Настоящий стандарт распространяется на средства измерений (СИ) характеристик ультрафиолетового (УФ) излучения, используемые при технологическом контроле в нанофотолитографии, и устанавливает методику их первичной и периодической поверок.

Средства измерений характеристик УФ излучения при технологическом контроле в нанофотолитографии обеспечивают измерения в диапазоне длин волн от 10 до 30 нм следующих характеристик УФ излучателей:

- энергетической яркости в динамическом диапазоне, нижняя граница которого составляет не более 10^3 Вт/(м² · cp), верхняя не менее 10^8 Вт/(м² · cp);
- силы излучения в динамическом диапазоне, нижняя граница которого составляет не более 10^{-3} Вт/ср, верхняя не менее 10^2 Вт/ср.

Методы оценки погрешностей СИ характеристик УФ излучения при технологическом контроле в нанофотолитографии, представленные в настоящем стандарте, соответствуют рекомендациям № 53 Международной комиссии по освещению [1].

Межповерочный интервал — не более одного года.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.197—2005 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости в диапазоне длин волн от 0.04 до 0.25 мкм

ГОСТ 8.207—76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8.552—2001 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений потока излучения и энергетической освещенности в диапазоне длин волн от 0,03 до 0,40 мкм

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Операции поверки

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер раздела, подраздела,		ость проведения и при поверке
• •	пункта настоящего стандарта	первичной	периодической
Внешний осмотр	8.1	+	+
Опробование	8.2	+	+
Определение метрологических характеристик	8.3	+	+
Определение погрешности спектральной коррекции чувствительности	8.3.1	+	_
Определение погрешности абсолютной чувствительности в диапазоне длин волн от 10 до 30 нм	8.3.2	+	+
Определение погрешности, возникающей из-за отклонения коэффициента линейности от единицы. Определение границ диапазонов измерений энергетической яркости и силы излучения	8.3.3	+	_
Определение погрешности, возникающей из-за неидеальной коррекции угловой зависимости чувствительности	8.3.4	+	_
Обработка результатов измерений	9	+	+

4 Средства поверки

При проведении поверки применяют следующие средства поверки:

- установку для измерений энергетической яркости и силы излучения в диапазоне длин волн от 10 до 30 нм в составе вторичного эталона спектральной плотности энергетической яркости (далее ВЭТ СПЭЯ) по ГОСТ 8.197. Относительное суммарное среднее квадратическое отклонение (далее СКО) не более 3 %;
- установку для измерений спектральной чувствительности приемников излучения в диапазоне длин волн от 10 до 30 нм в составе рабочего эталона потока излучения и энергетической освещенности (далее РЭ ПИ и ЭО) по ГОСТ 8.552. Относительное суммарное СКО не более 3 %;
- установку для измерений коэффициента линейности чувствительности радиометров УФ излучения в составе РЭ ПИ и ЭО по ГОСТ 8.552. Относительное суммарное СКО не более 4 %;
- установку для измерений угловой зависимости чувствительности фотопреобразователей УФ излучения в составе РЭ ПИ и ЭО по ГОСТ 8.552, включающую в себя гониометр. Относительное суммарное СКО не более 5 %.

5 Требования к квалификации поверителей

Поверку должны проводить лица, аттестованные в качестве поверителей, освоившие работу с используемыми средствами поверки, изучившие настоящий стандарт и эксплуатационную документацию на средства поверки и средства измерений.

6 Требования безопасности

При поверке СИ характеристик УФ излучения при технологическом контроле в нанофотолитографии должны быть соблюдены правила электробезопасности. Измерения должны проводить два оператора, аттестованных по группе электробезопасности не ниже III, прошедших инструктаж на рабочем месте по безопасности труда при эксплуатации электрических установок.

7 Условия поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха 20 °C \pm 5 °C;
- относительная влажность воздуха 65 % \pm 15 %;
- атмосферное давление от 84 до 104 кПа;
- напряжение питающей сети (220 ± 4) В;
- частота питающей сети (50 \pm 1) Гц.

8 Подготовка и проведение поверки

Методика поверки СИ характеристик УФ излучения в нанофотолитографии включает в себя подготовку к поверке, внешний осмотр, опробование и определение метрологических характеристик. При подготовке к поверке СИ необходимо включить все приборы в соответствии с их инструкциями по эксплуатации.

8.1 Внешний осмотр

При внешнем осмотре должны быть установлены:

- соответствие комплектности СИ паспортным данным;
- отсутствие механических повреждений блоков СИ, сохранность соединительных кабелей и сетевых разъемов;
 - четкость надписей на панели СИ;
 - наличие маркировки (тип и заводской номер СИ);
 - отсутствие сколов, царапин и загрязнений на оптических деталях СИ.

8.2 Опробование

При опробовании должны быть установлены:

- наличие показаний радиометра при освещении УФ излучением;
- правильное функционирование переключателей пределов измерений, режимов работы СИ.

8.3 Определение метрологических характеристик

8.3.1 Определение погрешности спектральной коррекции чувствительности

Погрешность СИ, вызванную неидеальной спектральной коррекцией чувствительности, определяют по результатам измерений отклонений относительной спектральной чувствительности (далее — ОСЧ) поверяемого СИ от стандартной, равной единице в пределах рабочего спектрального диапазона 10 — 30 нм и нулю вне рабочего диапазона. ОСЧ поверяемого СИ сравнивают с известной спектральной чувствительностью эталонного фотопреобразователя УФ излучения, поверенного в ранге РЭ по ГОСТ 8.552 в диапазоне длин волн от 7 до 1100 нм. Измерения относительной спектральной чувствительности поверяемого СИ УФ излучения проводят с использованием источника синхротронного излучения, монохроматоров типов МДР-23, ВМР-2, ДФС-29, комплекта светофильтров из кварца и фтористого магния, фотоприемников типов AXUV, поверенных в ранге РЭ ПИ и ЭО ГОСТ 8.552. При определении погрешности измерений относительной спектральной чувствительности в диапазоне длин волн от 7 до 1100 нм эталонное и поверяемое СИ поочередно устанавливают за выходной щелью монохроматора таким образом, чтобы поток монохроматического излучения проходил в апертурную диафрагму. Показания эталонного радиометра $I^{\circ}(\lambda)$ и поверяемого СИ $I(\lambda)$ регистрируют поочередно пять раз на каждой длине волны с шагом 1 нм в диапазоне 7 — 30 нм, с шагом 5 нм в диапазоне 30 — 60 нм, с шагом 10 нм в диапазоне 60 — 1100 нм. Затем за выходной щелью монохроматора устанавливают светофильтр и регистрируют показания эталонного J° (λ) и поверяемого СИ $J(\lambda)$, соответствующие рассеянному излучению в монохроматоре. Результат *i*-го измерения ОСЧ поверяемого СИ $S_{r}(\lambda)$ рассчитывают по известным значениям ОСЧ $S^{\circ}(\lambda)$ эталонного СИ и отношению значений измеренных сигналов по формуле

$$S_{i}(\lambda) = S^{\circ}(\lambda) \left[I_{i}(\lambda) - J_{i}(\lambda) \right] / \left[I_{i}^{\circ}(\lambda) - J_{i}^{\circ}(\lambda) \right]. \tag{1}$$

Для каждой длины волны определяют среднее значение ОСЧ $S(\lambda)$. Оценку относительного СКО S_0 результатов измерений для n независимых измерений определяют по формуле

$$S_0 = \frac{\left\{ \sum_{i=1}^{5} [S(\lambda) - S_i(\lambda)]^2 \right\}^{1/2}}{S(\lambda) [n(n-1)]^{1/2}}.$$
 (2)

Граница относительной неисключенной систематической погрешности результата измерений ОСЧ Θ_0 определяется погрешностью РЭ ПИ и ЭО по ГОСТ 8.552 (из свидетельства о поверке).

Относительное суммарное СКО результатов измерения ОСЧ S_{Σ} определяют по формуле

$$S_{\Sigma} = (S_0^2 + \Theta_0^2/3)^{1/2}.$$
 (3)

Значение относительного суммарного СКО результатов измерений ОСЧ в диапазоне длин волн от 7 до 1100 нм не должно превышать 5 %.

Погрешность спектральной коррекции поверяемого СИ Θ_1 в процентах, вызванную отклонением относительной спектральной чувствительности $S(\lambda)$ от стандартной $S^{ct}(\lambda)$, определяют по формуле

$$\Theta_{1} = \begin{vmatrix} 1100 & 1100 \\ \int L(\lambda) S(\lambda) d\lambda & \int L^{cr}(\lambda) S^{cr}(\lambda) d\lambda \\ \frac{7}{1100} & \frac{7}{1100} - 1 \end{vmatrix} = -1 \begin{vmatrix} 1100 & -1 \end{vmatrix} = -1 \begin{vmatrix} 1100 & 1100 \\ \int L(\lambda) S^{cr}(\lambda) d\lambda & \int L^{cr}(\lambda) S(\lambda) d\lambda \end{vmatrix}$$
(4)

где $L(\lambda)$ — относительная спектральная плотность энергетической яркости контрольных источников УФ излучения;

 $L^{\rm cr}(\lambda)$ — относительная спектральная плотность энергетической яркости стандартного источника УФ излучения.

Для определения возможности применения поверяемого СИ при технологическом контроле в нанофотолитографии установлен перечень контрольных и стандартных источников излучения. Табулированные значения $L(\lambda)$ и $L^{\rm cr}(\lambda)$ приведены в таблицах 2 — 7. Значение погрешности спектральной коррекции чувствительности Θ_1 СИ характеристик УФ излучения для каждого контрольного источника должно быть не более 6 %.

Т а б л и ц а 2 — Значения $L^{\rm ct}(\lambda)$ для стандартного источника синхротронного излучения при энергии 450 МэВ и радиусе орбиты 1,0 мм

Длина волны, нм	$L^{e\tau}(\lambda)$	Длина волны, нм	$L^{cr}(\lambda)$	Длина волны, нм	$L^{cr}(\lambda)$
9,8	231	70	601	250	36,9
10	279	80	471	275	29,1
13	680	90	375	300	23,5
15	975	100	302	350	15,9
18,5	1385	110	249	400	11,1
20	1504	120	206	500	6,38
25	1663	130	173	600	3,33
30	1622	140	146	700	2,67
35	1493	150	124	800	1,89
40	1326	160	106	900	1,38
45	1172	180	81,4	1000	1,04
50	1020	200	63,6	1100	0,82
60	7791	225	47,8		

Т а б л и ц а 3 — Значения $L(\lambda)$ для контрольного источника — ртутной лампы среднего давления

Длина волны, нм	<i>L</i> (λ)	Длина волны, нм	L(λ)	Длина волны, нм	L(\lambda)
200	5,55 · 10 ⁻²	215	1,04 · 10 ⁻¹	230	1,18 · 10 ⁻¹
205	8,19 · 10 ⁻²	220	1,23 · 10 ⁻¹	235	1,02 · 10 ⁻¹
210	1,04 · 10 ⁻¹	225	1,29 · 10 ⁻¹	240	8,64 · 10 ⁻²

Окончание таблицы 3

Длина волны, нм	L(\(\lambda\)	Длина волны, нм	L(\(\lambda\)	Длина волны, нм	L(\(\lambda\)
245	4,87 · 10 ⁻²	535	9,77 ⋅ 10 ⁻³	825	5,18 · 10 ⁻³
	4,07 · 10		9,77 · 10		5,10·10 5,40,40 ⁻³
250	$9,05 \cdot 10^{-2}$	540	$6,49 \cdot 10^{-3}$	830	$5,19 \cdot 10^{-3}$
255	4,42 · 10 ⁻¹	545	7,18 · 10 ⁻¹	835	5,22 · 10 ⁻³
260	1,75 · 10 ⁻¹	550	5,61 · 10 ⁻³	840	5,25 · 10 ⁻³
265	2,93 · 10 ⁻¹	555	5,50 · 10 ⁻³	845	5,28 · 10 ⁻³
270	1,01 · 10 ⁻¹	560	5,40 · 10 ⁻³	850	5,31 · 10 ⁻³
275	$6,52 \cdot 10^{-2}$	565	$5,51 \cdot 10^{-3}$	855	$5,33 \cdot 10^{-3}$
	1,78 · 10		$6,27 \cdot 10^{-3}$		5,36 · 10 ⁻³
280	1,70 · 10	5 7 0	0,27 · 10	860	5,30 · 10
285	$2,15 \cdot 10^{-2}$	575	$9,48 \cdot 10^{-3}$	865	$5,38 \cdot 10^{-3}$
290	8,08 · 10 ⁻²	580	7,04 · 10 ⁻¹	870	5,41 · 10 ⁻³
295	l 1.21 · 10 ⁻ '	585	$5,47 \cdot 10^{-3}$	875	5,43 · 10 ⁻³
300	1,48 · 10 ⁻¹	590	5,07 · 10 ⁻³	880	5.45 · 10 ⁻³
305	$3,67 \cdot 10^{-1}$	595	$5,05 \cdot 10^{-3}$	885	5,48 · 10 ⁻³
310	1,20 · 10 ⁻¹	600	$5,02 \cdot 10^{-3}$	890	$5,52 \cdot 10^{-3}$
	1,20 · 10		3,02 · 10		5,52 · 10
315	6,09 · 10 ⁻¹	605	$4,98 \cdot 10^{-3}$	895	5,55 · 10 ⁻³
320	$1,50 \cdot 10^{-2}$	610	$4,99 \cdot 10^{-3}$	900	$5,58 \cdot 10^{-3}$
325	$1,19 \cdot 10^{-2}$	615	4,92 · 10 ⁻³	905	$5,62 \cdot 10^{-3}$
330	1,13 ⋅ 10	620	4,92 · 10 ⁻³ 4,97 · 10 ⁻³	910	5,65 · 10 ⁻³
335	1.03 · 10 ⁻¹	625	$4,94 \cdot 10^{-3}$	915	$5,70 \cdot 10^{-3}$
340	9,48 · 10 ⁻³	630	$4,92 \cdot 10^{-3}$	920	$5,72 \cdot 10^{-3}$
345	7,87 · 10 ⁻³	635	$4,95 \cdot 10^{-3}$	925	5,76 · 10 ⁻³
	7,07 · 10		4,90 10-3		5,70·10
350	$6,71 \cdot 10^{-3}$	640	$4,99 \cdot 10^{-3}$	930	$5,79 \cdot 10^{-3}$
355	$9,12 \cdot 10^{-3}$	645	$5,02 \cdot 10^{-3}$	935	5,82 · 10 ⁻³
360	9,51 · 10 ⁻³	650	5,07 · 10 ⁻³	940	5,84 · 10 ⁻³
365	1,000	655	$5,16 \cdot 10^{-3}$	945	5,87 · 10 ⁻³
370	$2,68 \cdot 10^{-2}$	660	$5.25 \cdot 10^{-3}$	950	$5.89 \cdot 10^{-3}$
375	$1,01 \cdot 10^{-2}$	665	$5,27 \cdot 10^{-3}$	955	5,92 · 10 ⁻³
380	$1,03 \cdot 10^{-2}$	670	$6,07 \cdot 10^{-3}$	960	5,96 · 10 ⁻³
	$7,87 \cdot 10^{-3}$		$5,22 \cdot 10^{-3}$		5,98 · 10 ⁻³
385	7,07 · 10	675	5,22 · 10	965	5,96 · 10
390	$2,27 \cdot 10^{-2}$	680	$5,21 \cdot 10^{-3}$	970	$6,01 \cdot 10^{-3}$
395	5,82 · 10 ⁻³	685	$5,23 \cdot 10^{-3}$	975	$6,04 \cdot 10^{-3}$
400	7,40 · 10 ⁻³	690	$5,82 \cdot 10^{-3}$	980	$6,05 \cdot 10^{-3}$
405	l 3.30 ⋅ 10 ⁻¹	695	l 5.27 · 10 ^{−3}	985	6,05 · 10 ⁻³
410	$7,52 \cdot 10^{-2}$	700	$5,25 \cdot 10^{-3}$	990	$6,07 \cdot 10^{-3}$
415	8,64 · 10 ⁻³	705	5,34 · 10 ⁻³	995	$6,08 \cdot 10^{-3}$
420	8,36 · 10 ⁻³	710	$7,11 \cdot 10^{-3}$	1000	0,00 10
425	$9,92 \cdot 10^{-3}$	715	5,05 · 10 ⁻³	1005	$6,09 \cdot 10^{-3}$
	9,92 · 10		5,05 10		$6,09 \cdot 10^{-3}$
430	1,39 · 10 ⁻²	720	$5,01 \cdot 10^{-3}$	1010	$6,23 \cdot 10^{-3}$
435	$6,38 \cdot 10^{-1}$	725	4,94 · 10 ⁻³	1015	7.66 \cdot 10 ⁻²
440	$2,37 \cdot 10^{-2}$	730	$4,89 \cdot 10^{-3}$	1020	6.18 · 10 ⁻³
445	l 1.20 · 10⁻⁴	735	4.90 · 10 ⁻³	1025	$6,09 \cdot 10^{-3}$
450	7,58 · 10 ^{−3}	740	4.93 · 10 ⁻³	1030	$6,08 \cdot 10^{-3}$
455	$6,42 \cdot 10^{-3}$	745	$4,92 \cdot 10^{-3}$	1035	$6,06 \cdot 10^{-3}$
460	5,43 · 10 ⁻³	750	$4,94 \cdot 10^{-3}$	1040	0,00 · 10
	5,43 · 10 5,19 · 10 ⁻³		4,98 · 10 ⁻³		$6,04 \cdot 10^{-3}$
465	5, 19 · 10 ·	7 55	4,90 · 10 ·	1045	$6,01 \cdot 10^{-3}$
470	$5,57 \cdot 10^{-3}$	760	$4,97 \cdot 10^{-3}$	1050	5,96 · 10 ⁻³
475	5,65 · 10 ⁻³	765	$4,99 \cdot 10^{-3}$	1055	5,93 · 10 ⁻³
480	l 5.38 · 10 ^{−3}	770	l 5.01 · 10 ^{−3}	1060	5,89 · 10 ⁻³
485	l 6.13 · 10 ^{−3}	775	5.04 · 10 ⁻³	1065	5,86 · 10 ⁻³
490	$1,79 \cdot 10^{-2}$	780	5,05 · 10 ⁻³	1070	5,82 · 10 ⁻³
495	$7,15 \cdot 10^{-3}$	785	$5,11 \cdot 10^{-3}$	1075	5,02 · 10
500	$4,26 \cdot 10^{-3}$		5,09 · 10 ⁻³	1073	$5,79 \cdot 10^{-3}$
	4,20.10	790 705	5,09 · 10		$5,75 \cdot 10^{-3}$
505	4,49 · 10 ⁻³	795	$5,11 \cdot 10^{-3}$	1085	$5,72 \cdot 10^{-3}$
510	4,63 · 10 ⁻³	800	5,14 · 10 ⁻³	1090	5,69 · 10 ⁻³
515	l 4.70 · 10 ^{−3}	805	$5,16 \cdot 10^{-3}$	1095	5,66 · 10 ⁻³
520	l 4.65 · 10 ⁻³	810	5 16 ⋅ 10 -3	1100	5,69 · 10 ⁻³
525	ا 4.69 ⋅ 10 [−] °	815	5,16 · 10 ⁻³ 5,18 · 10 ⁻³		0,00 - 10
530	4,74 · 10 ⁻³	820	5 18 · 10 ⁻³		
	r, r = 10	020	0,10 10		

FOCT P 8.659—2009

Т а б л и ц а 4 — Значения $L(\lambda)$ для контрольного источника — лазерной плазмы, тип I

Длина волны, нм	L(\lambda)	Длина волны, нм	$L(\lambda)$	Длина волны, нм	L(\lambda)
10,0	0,299	17,0	0,086	24,0	0,007
10,5	0,489	17,5	0,056	24,5	0,011
11,0	0,161	18,0	0,038	25,0	0,014
11,5	0,175	18,5	0,025	25,5	0,007
12,0	0,109	19,0	0,018	26,0	0,014
12,5	0,095	19,5	0,015	26,5	0,012
13,0	0,474	20,0	0,007	27,0	0,006
13,5	1,000	20,5	0,009	27,5	0,013
14,0	0,832	21,0	0,008	28,0	0,015
14,5	0,825	21,5	0,008	28,5	0,007
15,0	0,474	22,0	0,015	29,0	0,011
15,5	0,336	22,5	0,009	29,5	0,014
16,0	0,321	23,0	0,015	30,0	0,009
16,5	0,175	23,5	0,009		

 \top а б л и ц а 5 — Значения $L(\lambda)$ для контрольного источника — лазерной плазмы, тип II

Длина волны, нм	$L(\lambda)$	Длина волны, нм	$L(\lambda)$
9	1,00	60	0,14
11	1,44	80	0,074
13	5,62	100	0,035
13,5	6,40	200	$ \begin{array}{r} 1,60 \cdot 10^{-2} \\ 1,03 \cdot 10^{-2} \\ 5,90 \cdot 10^{-3} \end{array} $
14	5,84	300	$1,03 \cdot 10^{-2}$
15	3,80	400	$5,90 \cdot 10^{-3}$
16	2,61	500	$3,48 \cdot 10^{-3}$
18	1,32	600	$3,48 \cdot 10^{-3}$ $2,64 \cdot 10^{-3}$
20	1,02	800	6,05 · 10 ⁻³
30	0,87	1000	$2,02 \cdot 10^{-3}$
40	0,59	1100	3,23 · 10 ⁻⁴
50	0,21		0,20

Таблица 6 — Значения $L(\lambda)$ для контрольного источника — лазерной плазмы, тип III

Длина волны, нм	$L(\lambda)$	Длина волны, нм	$L(\lambda)$
10,0	0,009	20,5	0,084
10,5	0,009	21,0	0,079
11,0	0,009	21,5	0,086
11,5	0,010	22,0	0,083
12,0	0,013	22,5	0,082
12,5	0,0 39	23,0	0,086
13,0	0,106	23,5	0,079
13,5	1,000	24,0	0,085
14,0	0,508	24,5	0,088
14,5	0,267	25,0	0,082
15,0	0,164	25,5	0,087
1 5 ,5	0,113	26,0	0,083
16,0	0,1 32	26,5	0,085
16,5	0,109	27,0	0,084
17,0	0,096	27,5	0,083
17,5	0,094	28,0	0,086
18,0	0,092	28,5	0,084
18,5	0,087	29,0	0,083
19,0	0,0 7 4	29,5	0,085
19,5	0,081	30,0	0,083

Длина волны, нм	$L(\lambda)$	Длина волны, нм	$L(\lambda)$
8,00	0,175	12,50	0,095
8,25	0,226	12,75	0,153
8,50	0,263	13,00	0,474
8,75	0,3 36	13,25	0,803
9,00	0,584	13,50	1,000
9,25	0,504	13,75	0,978
9,50	0,460	14,00	0,832
9,75	0,474	14,25	0,788
10,00	0,299	14,50	0,825
10,25	0,394	14,75	0,672
10,50	0,489	15,00	0,474
10,75	0,292	15,25	0,394
11,00	0,161	15,50	0,336
11,25	0,146	15,75	0,285
11,50	0,175	16,00	0,321
11,75	0,102	16,25	0,263
12,00	0,109	16,50	0,175
12,25	0,073	,	

Т а б л и ц а 7 — Значения $L(\lambda)$ для контрольного источника — лазерной плазмы, тип IV

8.3.2 Определение погрешности абсолютной чувствительности средств измерений в диапазоне длин волн от 10 до 30 нм

Определение погрешности абсолютной чувствительности средств измерений в диапазоне длин волн от 10 до 30 нм проводят с использованием источника синхротронного излучения. Эталонное и поверяемое средство измерений энергетической яркости поочередно устанавливают на одинаковом расстоянии от излучателя и юстируют по углу для получения изображения излучающей области источника. Показания эталонного средства измерений I° и поверяемого средства измерений I° и поверяемого средства измерений рассчитывают по формуле

$$S = S^{\circ} I / I^{\circ}, \tag{5}$$

где S° — значение абсолютной чувствительности эталонного СИ.

Определяют среднеарифметическое значение абсолютной чувствительности поверяемого СИ, суммарное СКО результата измерений с учетом погрешности эталонного СИ по формулам (1) — (3). Предельная погрешность определения абсолютной чувствительности Θ_2 не должна превышать 6 %.

8.3.3 Определение погрешности, возникающей из-за отклонения коэффициента линейности средства измерений от единицы. Определение границ диапазона измерений энергетической яркости и силы излучения

Коэффициент линейности определяют по отклонению значения чувствительности СИ от постоянного значения в рабочем диапазоне измеряемой величины. Фиксируют ток источника синхротронного излучения I_1 , соответствующий нижней границе диапазона измерений энергетической яркости, указанной в паспорте поверяемого СИ, и составляющий не более 10^3 Вт/($\mathrm{M}^2 \cdot \mathrm{cp}$), или силы излучения, составляющий не более 10^{-3} Вт/ср. Увеличивают ток источника вдвое и регистрируют показания поверяемого СИ I_2 . Измерения проводят пять раз. Определяют средние значения измеренных сигналов, СКО S_0 , суммарное СКО результатов измерений, рассчитывают коэффициент линейности

$$K = (I_1 + I_2)/3 I_1 \tag{6}$$

и погрешность поверяемого СИ Θ_3 , вызванную нелинейностью чувствительности СИ,

$$\Theta_3 = 100|K - 1|. (7)$$

При определении границ диапазона измерений энергетической яркости и силы излучения поверяемого СИ ток излучателя увеличивают таким образом, чтобы значение энергетической яркости (силы излучения) увеличилось на порядок. Измеряют значения сигналов и рассчитывают соответствующее значение погрешности Θ_3 . Измерения повторяют до достижения верхней границы диапазона измере-

ний, указанной в паспорте поверяемого СИ и составляющей не менее 10^8 Вт/($\text{м}^2 \cdot \text{ср}$) для энергетической яркости и 10^2 Вт/ср для силы излучения. По результатам измерений определяют границы диапазона измерений энергетической яркости и силы излучения поверяемого СИ, в пределах которого значение погрешности Θ_3 не превышает 3%.

8.3.4 Определение погрешности средства измерений, возникающей из-за неидеальной коррекции угловой зависимости чувствительности

Поверяемое СИ устанавливают на поворотном столике гониометра с использованием в качестве излучателя источника синхротронного излучения. Регистрируют показания I (ϕ) поверяемого СИ в зависимости от угла падения потока излучения ϕ в пределах от 0° до 30° с шагом 1° . Показания СИ I (ϕ) для угла ϕ нормируют на показание СИ I (ϕ) при нормальном угле падения ϕ 0 потока излучения. Рассчитывают угловую зависимость f (ϕ) отклонения относительной чувствительности СИ от функции соз ϕ по формуле

$$f(\varphi) = 100 \{I(\varphi)/[I(\varphi_0)\cos \varphi] - 1\}.$$
 (8)

Косинусную погрешность СИ Θ_A рассчитывают по формуле:

$$\Theta_4 = \int_{0^{\circ}}^{30^{\circ}} |f(\varphi)| \sin 2\varphi d\varphi. \tag{9}$$

Значение Θ_{4} должно быть не более 3 %.

При превышении указанного значения косинусной погрешности допускается ограничивать угол зрения СИ.

9 Обработка результатов измерений

Обработку результатов измерений характеристик СИ и определение основной относительной погрешности проводят в соответствии с ГОСТ 8.207.

Относительное СКО S_0 результатов измерений для n независимых измерений оценивают по формуле (2).

СКО S_0 определяют по результатам измерений в соответствии с 8.3.3 в динамическом диапазоне $10^3 - 10^8$ Вт/(м $^2 \cdot$ ср) для энергетической яркости, в динамическом диапазоне $10^{-3} - 10^2$ Вт/ср для силы излучения.

Границу относительной неисключенной систематической погрешности Θ_0 определяют по формуле

$$\Theta_0 = 1, 1 \left(\sum_{j=1}^4 \Theta_j^2 \right)^{1/2}, \tag{10}$$

где Θ_i — составляющие неисключенной систематической погрешности:

 $\Theta_{1}^{'}$ — погрешность спектральной коррекции ($\Theta_{1} \leq 6 \%$ — по 8.3.1);

 Θ_2 — погрешность определения абсолютной чувствительности ($\Theta_2 \le 6 \%$ — по 8.3.2);

 Θ_{3} — погрешность линейности ($\Theta_{3} \leq$ 3 % — по 8.3.3);

 Θ_{4} — погрешность угловой коррекции ($\Theta_{4} \le 3 \%$ — по 8.3.4).

Предел допускаемой основной относительной погрешности СИ ∆ рассчитывают по формуле

$$\Delta_0 = K S_{\Sigma_0} = K \left(\sum_{j=1}^4 \Theta_j^2 / 3 + S_0^2 \right)^{1/2}, \tag{11}$$

где S_{Σ_0} — суммарное относительное СКО;

К — коэффициент, определяемый соотношением случайной и несключенной систематической погрешностей.

При $\Theta_0 > 8S_0$ случайной погрешностью по сравнению с систематической пренебрегают и принимают $\Delta_0 = \Theta_0$.

Результаты поверки СИ энергетической яркости и силы излучения считают положительными, если предел допускаемой основной относительной погрешности не превышает 10 %.

10 Оформление результатов поверки

- 10.1 При положительных результатах поверки оформляют свидетельство о поверке и СИ допускают к применению.
- 10.2 При отрицательных результатах поверки свидетельство аннулируют и выдают извещение о непригодности СИ.

Библиография

[1] CIE N53 Methods of characterizing the performance of radiometers and photometers. — 1982. — 24 p.

УДК 543.52:535.214.535.241:535.8:006.354

OKC 17.020 T84.10

ОКСТУ 0008

Ключевые слова: энергетическая яркость, сила излучения, спектральная чувствительность, средства измерений, ультрафиолетовое излучение, нанофотолитография, синхротронное излучение

Редактор Л.В. Афанасенко Технический редактор В.Н. Прусакова Корректор Т.И. Кононенко Компьютерная верстка В.И. Грищенко

Сдано в набор 02.04.2010. Подписано в печать 11.05.2010. Формат $60x84^1/_8$. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1,86. Уч.-изд. л. 1,20. Тираж 114 экз. Зак. 392.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6