ГОСУДАРСТВЕННЫЕ СМЕТНЫЕ НОРМАТИВЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГЭСНп 81-04-02-2001

ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ НА ПУСКОНАЛАДОЧНЫЕ РАБОТЫ

ГЭСНп-2001

Сборник № 2

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

ИЗДАНИЕ ОФИЦИАЛЬНОЕ

Федеральное агентство по строительству и жилищно-коммунальному хозяйству (Росстрой)

ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ НА ПУСКОНАЛАДОЧНЫЕ РАБОТЫ

ГЭСНп 81-04-02-2001

Сборник № 2

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

ББК 65.31 УДК 338.5:69 (083)

Государственные элементные сметные нормы на пусконаладочные работы ГЭСНп 81-04-02-2001 Автоматизированные системы управления Росстрой, Москва 2008 – 24 стр.

Настоящие Государственные элементные сметные нормы (ГЭСНп) предназначены для определения потребности в ресурсах (затратах труда пусконаладочного персонала) при выполнении пусконаладочных работ по вводу в эксплуатацию автоматизированных систем управления и используются для составления сметных расчетов (смет) ресурсным методом.

ГЭСНп-2001 являются исходными нормативами для разработки единичных расценок на пусконаладочные работы федерального, территориального, отраслевого уровней, индивидуальных и укрупненных норм (расценок) и других нормативных документов, применяемых для определения прямых затрат в сметной стоимости пусконаладочных работ.

РАЗРАБОТАНЫ Федеральным центром ценообразования в строительстве и промышленности строительных материалов, АООТ «Ассоциация Монтажавтоматика»

РЕКОМЕНДОВАНЫ К ПРИМЕНЕНИЮ постановлением Госстроя России от 23.07.01 № 84 с учетом изменений и дополнений (постановление Госстроя России от 09 03.04 № 40, письмо Росстроя от 08.08.07 № СК-2919/02).

Информация об изменениях к настоящему ГЭСН публикуется в ежемесячно издаваемом "Вестнике ценообразования и сметного нормирования", а текст изменений и поправок — в периодически издаваемых "Изменениях и дополнениях" к ГЭСН-2001 Соответствующая информация и уведомление размещаются также в информационной системе общего пользования — на официальном сайте Федерального центра ценообразования в строительстве и промышленности строительных материалов (www.fgufccs.ru).

ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ НА ПУСКОНАЛАДОЧНЫЕ РАБОТЫ

Сборник № 2

Автоматизированные системы управления

ГЭСНп-2001-02

ТЕХНИЧЕСКАЯ ЧАСТЬ

1. Общие положения

1.1. Настоящие Государственные элементные сметные нормы (ГЭСНп) предназначены для определения потребности в ресурсах (затратах труда пусконаладочного персонала) при выполнении пусконаладочных работ по вводу в эксплуатацию автоматизированных систем управления и используются для составления сметных расчетов (смет) на пусконаладочные работы ресурсным методом.

ГЭСНп являются исходными нормативами для разработки единичных расценок на пусконаладочные работы федерального (ФЕР), территориального (ТЕР) и отраслевого (ОЕР) уровней, индивидуальных и укрупненных сметных норм (расценок) и других нормативных документов, применяемых для определения прямых затрат в сметной стоимости пусконаладочных работ.

- 1.2. ГЭСНп отражают среднеотраслевой уровень технологии и организации пусконаладочных работ.
- 1.3. Настоящий Сборник распространяется на:
- автоматизированные системы управления технологическими процессами (АСУ ТП);
- системы централизованного оперативного диспетчерского управления;
- системы автоматической пожарной и охранно-пожарной сигнализации;
- системы контроля и автоматического управления пожаротушением и противодымной защитой; телемеханические системы.

Сборник не предназначен для определения затрат труда в сметной стоимости работ:

по прецизионным поточным анализаторам физико-химических свойств сред и продуктов, обращающихся в технологическом процессе: рефрактометров, хроматографов, октанометров и других аналогичных анализаторов единичного применения;

по комплексам программно-технических средств вычислительных центров экономической или иной информации, не связанной с технологическими процессами;

по системам видеонаблюдения (охраны) с использованием телевизионных установок, громкоговорящей связи (оповещения) и др., трудоемкость которых определяется по Сборнику на монтаж оборудования № 10 «Оборудование связи».

1.4. Сметные нормы Сборника разработаны исходя из следующих условий:

комплексы программно-технических средств (КПТС) или комплексы технических средств (КТС), переданные под наладку - серийные, укомплектованные, с загруженным системным и прикладным программным обеспечением, обеспечены технической документацией (паспорта, свидетельства и т.п.), срок их хранения на складе не превышает нормативного;

пусконаладочные работы производятся организациями, имеющими лицензию и/или разрешения на проведение данных видов работ, при выполнении работ на объектах, поднадзорных органам государственного надзора, дополнительно имеются лицензии этих ведомств. Работники-исполнители работ имеют квалификацию, соответствующую технической сложности автоматизированных систем, прошли необходимое обучение, аттестацию или сертификацию, обеспечены необходимым оборудованием, измерительными приборами, контрольно-испытательными стендами, инструментальным программным обеспечением, программаторами, калибраторами, инструментами, средствами индивидуальной защиты и т.п.;

пусконаладочные работы выполняются на основании утвержденной заказчиком рабочей документации, при необходимости – с учетом проекта производства работ (ППР), программы и графика;

- к началу производства работ пусконаладочной организации заказчиком передана рабочая проектная документация, включая части проекта АСУ ТП: математическое обеспечение (МО), информационное обеспечение (ИО), программное обеспечение (ПО), организационное обеспечение (ОО);
- к производству пусконаладочных работ приступают при наличии у заказчика документов об окончании монтажных работ, предусмотренных СНиП (актов, протоколов и др.). При возникновении вынужденных перерывов между монтажными и наладочными работами по причинам, не зависящим от подрядной организации, к пусконаладочным работам приступают после проверки сохранности ранее смонтированных технических средств и монтажа ранее демонтированных (в этом случае акт окончания монтажных работ составляется заново на дату начала пусконаладочных работ);

переключения режимов работы технологического оборудования производятся заказчиком в соответствии с проектом, регламентом и в периоды, предусмотренные согласованными программами и графиками производства работ,

обнаруженные дефекты монтажа программно-технических (ПТС) или технических средств (ТС), устраняются монтажной организацией.

- 1.5. Сметные нормы разработаны в соответствии с требованиями государственных стандартов, в частности, ГОСТ 34.603-92 «Информационная технология. Виды испытаний автоматизированных систем», стандартов «Государственной системы промышленных приборов и средств автоматизации», «Государственной системы обеспечения единства измерений», 3-й части СНиП «Организация, производство и приемка работ», Правил устройства электроустановок (ПУЭ), Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок (ПОТРМ-016-2001) РД153-34.0-03.150-00, Правил безопасности систем газораспределения и газопотребления (ПБ-12-529-03), Общих правил взрывобезопасности взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств (ПБ 09-540-03) и других правил и норм органов государственного надзора, технической документации предприятийизготовителей ПТС или ТС, утвержденных в установленном порядке инструкций, технических технологических регламентов, руководящих технических материалов и другой технической документации по монтажу, наладке и эксплуатации ПТС и ТС.
- 1.6. Сметными нормами учтены затраты труда на производство полного комплекса работ одного технологического цикла пусконаладочных работ по вводу в эксплуатацию АСУТП в соответствии с требованиями нормативной и технической документации, включая следующие этапы (стадии):
 - 1.6.1. Подготовительные работы, проверка КПТС (КТС) автоматизированных систем:

изучение рабочей и технической документации, в т.ч. материалов предпроектной стадии (технические требования к системе и др.), выполнение других мероприятий инженерно-технической подготовки работ, обследование технологического объекта управления, внешний осмотр оборудования и выполненных монтажных работ по АСУ ТП, определение готовности смежных с АСУ ТП систем (электроснабжения и т.п.) и т.л.

проверка соответствия основных технических характеристик аппаратуры требованиям, установленным в паспортах и инструкциях предприятий-изготовителей (результаты проверки и регулировки фиксируются в акте или паспорте аппаратуры, неисправные ПТС или ТС передаются заказчику для ремонта и замены).

1.6.2. Автономная наладка автоматизированных систем после завершения их монтажа:

проверка монтажа ПТС (ТС) на соответствие требованиям инструкций предприятий-изготовителей и рабочей документации;

замена отдельных дефектных элементов на исправные, выдаваемые заказчиком;

проверка правильности маркировки, подключения и фазировки электрических проводок;

фазировка и контроль характеристик исполнительных механизмов (ИМ);

настройка логических и временных взаимосвязей систем сигнализации, защиты, блокировки и управления, проверка правильности прохождения сигналов;

проверка функционирования прикладного и системного программного обеспечения;

предварительное определение характеристик объекта, расчет и настройка параметров аппаратуры автоматизированные систем, конфигурирование измерительных преобразователей и программно-логических устройств;

подготовка к включению и включение в работу систем измерения, контроля и управления для обеспечения индивидуального испытания технологического оборудования и корректировка параметров настройки аппаратуры систем управления в процессе их работы;

оформление производственной и технической документации.

1.6.3. Комплексная наладка автоматизированных систем:

доведение параметров настройки ПТС (ТС), каналов связи и прикладного программного обеспечения до значений (состояния), при которых автоматизированные системы могут быть использованы в эксплуатации, при этом осуществляются в комплексе:

определение соответствия порядка отработки устройств и элементов систем сигнализации, защиты и управления алгоритмам рабочей документации с выявлением причин отказа или «ложного» срабатывания их, установка необходимых значений срабатывания позиционных устройств;

определение соответствия пропускной способности запорно-регулирующей арматуры требованиям технологического процесса, правильности отработки конечных и путевых выключателей, датчиков положения и состояния;

определение расходных характеристик регулирующих органов (PO) и приведение их к требуемой норме с помощью имеющихся в конструкции элементов настройки;

уточнение статических и динамических характеристик объекта, корректировка значений параметров настройки систем с учетом их взаимного влияния в процессе работы;

подготовка к включению в работу систем для обеспечения комплексного опробования технологического оборудования;

испытание и определение пригодности автоматизируемых систем для обеспечения эксплуатации технологического оборудования с производительностью, соответствующей нормам освоения проектных мощностей в начальный период;

анализ работы автоматизированных систем;

оформление производственной документации, акта приемки в эксплуатацию систем в соответствии с требованиями СНиП;

внесение в один экземпляр принципиальных схем из комплекта рабочей документации изменений по результатам производства пусконаладочных работ, согласованных с заказчиком.

1.7. В нормах настоящего Сборника не учтены затраты на:

пусконаладочные работы, нормы затрат труда на которые приведены в соответствующих разделах ГЭСНп-2001-01 «Электротехнические устройства»: по электрическим машинам (двигателям) электроприводов, коммутационным аппаратам, статическим преобразователям, устройствам питания, измерениям и испытаниям в электроустановках;

испытание автоматизированных систем сверх 24 часов их работы в период комплексного опробования технологического оборудования;

составление технического отчета и сметной документации (по желанию заказчика);

сдачу средств измерения в госповерку;

конфигурирование компонентов и экранных форм, корректировку и доработку проектного математического, информационного и программного обеспечения, определяемых на основании нормативов на проектные работы; ревизию ПТС (ТС), устранение их дефектов (ремонт) и дефектов монтажа, в том числе доведение изоляции электротехнических средств, кабельных линий связи и параметров смонтированных волоконно-оптических линий связи (ВОЛС) до норм;

проверку соответствия монтажных схем принципиальным схемам и внесение изменений в монтажные схемы;

составление принципиальных, монтажных, развернутых схем и чертежей;

частичный или полный перемонтаж шкафов, панелей, пультов;

согласование выполненных работ с надзорными органами;

проведение физико-технических и химических анализов, поставку образцовых смесей и т. п.;

составление программы комплексного опробования технологического оборудования;

обучение эксплуатационного персонала;

разработку эксплуатационной документации;

техническое (сервисное) обслуживание и периодические проверки КПТС (КТС) в период эксплуатации.

1.8. Сметные нормы настоящего Сборника разработаны для автоматизированных систем (в дальнейшем изложении – системы) в зависимости от категории их технической сложности, характеризующейся структурой и составом КПТС (КТС), с учетом коэффициента сложности.

Категории технической сложности систем, их характеристики и коэффициенты сложности представлены в табл. 1.

Таблица 1

Категория технической сложности системы	Характеристика системы (структура и состав КПТС или КТС)	Коэффициент сложности системы
I	Одноуровневые информационные, управляющие, информационно-управляющие системы, отличающиеся тем, что в качестве компонентов КТС для выполнения функций сбора, переработки, отображения и хранения информации и выработки команд управления, в них используются измерительные и регулирующие устройства, электромагнитные, полупроводниковые и другие компоненты, сигнальная арматура и т.п. приборного или аппаратного типов исполнения	1
II	Одноуровневые информационные, управляющие, информационно - управляющие системы, отличающиеся тем, что в качестве компонентов КПТС для выполнения функций сбора, переработки, отображения и хранения информации и выработки команд управления, в них используются программируемые логические контроллеры (PLC), устройства внутрисистемной связи, микропроцессорные интерфейсы оператора (панели отображения)	1,313
	Одноуровневые системы с автоматическим режимом косвенного или прямого (непосредственного) цифрового (цифро-аналогового) управления с использованием объектно-ориентированных контроллеров с программированием параметров настроек и для функционирования которых не требуется разработки проектного МО и ПО	

Категория технической сложности системы	хнической ложности системы (структура и состав КПТС или КТС)	
	Информационные, управляющие, информационно — управляющие системы, в которых состав и структура КТС соответствуют требованиям, установленным для отнесения систем к I категории сложности и в которых в качестве каналов связи используются волоконно-оптические системы передачи информации (ВОСПИ) Системы измерения и (или) автоматического регулирования химического состава и физических свойств вещества	
	Измерительные системы (измерительные каналы), для которых необходима по проекту метрологическая аттестация (калибровка)	
III	Многоуровневые распределенные информационные, управляющие, информационно-управляющие системы, в которых состав и структура КПТС локального уровня соответствуют требованиям, установленным для отнесения системы к ІІ-ой категории сложности и в которых для организации последующих уровней управления используются процессовые (PCS) или операторские (ОS) станции, реализованные на базе проблемно-ориентированного ПО, связанные между собой и с локальным уровнем управления посредством локальных вычислительных сетей Информационные, управляющие, информационно — управляющие системы, в которых состав и структура КПТС (КТС) соответствует требованиям, установленным для отнесения систем к ІІ категории сложности и в которых в качестве каналов связи используются волоконно-оптические системы передачи информации (ВОСПИ)	1,566

Примечания:

- 1. Системы II и III категории технической сложности могут иметь один или несколько признаков, приведенных в качестве характеристики системы.
- 2. В том случае, если сложная система содержит в своем составе системы (подсистемы), по структуре и составу КПТС или КТС относимые к разным категориям технической сложности, коэффициент сложности такой системы рассчитывается согласно п. 2.2.
- 1.9. Сметные нормы разработаны для систем I, II и III категории технической сложности в зависимости от количества каналов связи формирования входных и выходных сигналов.

Под каналом связи формирования входных и выходных сигналов (в дальнейшем изложении – канал) следует понимать совокупность технических средств и линий связи, обеспечивающих преобразование, обработку и передачу информации для использования в системе.

В Сборнике учитывается количество.

каналов информационных (в т.ч. каналов измерения, контроля, известительных, адресных, состояния и т.п.), каналов управления.

В составе каналов информационных и каналов управления, в свою очередь, учитывается количество каналов:

дискретных – контактные и бесконтактные на переменном и постоянном токе, импульсные от дискретных (сигнализирующих) измерительных преобразователей, для контроля состояния различных двухпозиционных устройств, а также для передачи сигналов типа «включить» и т.п.;

аналоговых, к которым относятся (для целей настоящего Сборника) все остальные – токовые, напряжения, частоты, взаимной индуктивности, естественные или унифицированные сигналы измерительных преобразователей (датчиков), которые изменяются непрерывно, кодированные (импульсные или цифровые) сигналы для обмена информацией между различными цифровыми устройствами обработки информации и т.п.

В дальнейшем изложении используются условные обозначения количества каналов, приведенные в табл 2

Таблица 2

Условное обозначение	Наименование
Кª	Количество информационных аналоговых каналов
$\mathbf{K}_{\mathbf{u}}^{\mathtt{d}}$	Количество информационных дискретных каналов
K _y ^a	Количество каналов управления аналоговых
К ^д	Количество каналов управления дискретных
К ^{общ}	Общее количество информационных аналоговых и дискретных каналов

Кубщ	Общее количество каналов управления аналоговых и дискретных
гоет = (гоет + гоет)	Общее количество каналов информационных и управления аналоговых и
$\mathbf{K} = (\mathbf{K}_{H} + \mathbf{K}_{Y})$	дискретных

2. Порядок применения сметных норм

2.1. В таблице сметных норм Сборника приведены базовые нормы ($^{\mathbf{H}_{6}}$) затрат труда на пусконаладочные работы для систем I, II и III категории технической сложности ($^{\mathbf{H}_{6}^{\mathbf{I}}}, \mathbf{H}_{6}^{\mathbf{II}}, \mathbf{H}_{6}^{\mathbf{II}}$), в зависимости от общего количества каналов информационных и управления аналоговых и дискретных ($^{\mathbf{K}^{\mathbf{06}\mathbf{II}}}$) в данной системе. Базовые нормы для системы II и III категории технологической сложности (табл. ГЭСНп 02-01-002-003)

Базовые нормы для системы II и III категории технологической сложности (табл. ГЭСНп 02-01-002-003) рассчитаны на основе базовых норм для системы I категории технической сложности (табл. ГЭСНп 02-01-001) с применением к ним коэффициентов сложности, приведенных в табл.1:

$$H_6^{II} = H_6^I \times 1,313$$
 $H_6^{III} = H_6^I \times 1,566$

2.2. Базовая норма для сложной системы, имеющей в своем составе подсистемы с разной категорией технической сложности, определяется применением к соответствующей базовой норме для системы I категории технической сложности коэффициента сложности (С), рассчитываемого по формуле:

$$C = (1 + 0.313 \times K_{II}^{o6m} : K^{o6m}) \times (1 + 0.566 \times K_{III}^{o6m} : K^{o6m}),$$
(1)

гле:

$$K_{I}^{o b u}, K_{II}^{o b u}, K_{III}^{o b u}$$

- общее количество аналоговых и дискретных каналов информационных и управления относимых к подсистемам соответственно, I, II, III категории технической сложности;

$$\mathbf{K}^{\text{obm}} = \mathbf{K}_{1}^{\text{obm}} + \mathbf{K}_{11}^{\text{obm}} + \mathbf{K}_{111}^{\text{obm}} ; \tag{1.1}$$

В этом случае базовая норма для сложной системы рассчитывается по формуле:

$$\mathbf{H}_{6}^{c_{1}} = \mathbf{H}_{6}^{1} \times \mathbf{C} , \qquad (2)$$

или при
$$1 < C < 1,313$$
 $H^{6} = H^{6} \times C$ (2.1)

при 1,313
$$<$$
 С $<$ 1,566 $\,$ Н $^6=$ Н $^6\times$ С $:$ 1,313 $\,$ 2.3. При составлении сметных расчетов (смет) на пусконаладочные работы для учета характеристики

- 2.3. При составлении сметных расчетов (смет) на пусконаладочные работы для учета характеристики конкретной системы к базовой норме трудоемкости ($\mathbf{H_6}$) следует применять следующие коэффициенты:
- 2.3.1. Коэффициент $\Phi_{\rm H}^{\rm M}$, учитывающий два фактора: «метрологическую сложность» и «развитость информационных функций» системы

Коэффициент $\Phi_{\mathbf{H}}^{\mathbf{M}}$ рассчитывается по формуле:

$$\Phi_{\mu}^{M} = 0.5 + K_{\mu}^{a} : K_{\mu}^{obu} \times M \times M, \qquad (3)$$

где

М - коэффициент «метрологической сложности», определяемый по табл. 3;

И – коэффициент «развитости информационных функций», определяемый по табл. 4.

Таблица 3

№ пп.	Характеристика факторов «метрологической сложности» (М) системы Измерительные преобразователи (датчики) и измерительные приборы и т.п., работающие в условиях нормальной окружающей и технологической среды, класс точности:	Обозначение количества каналов	Коэффициент «метрологической сложности» системы (M)	
1	ниже или равен 1,0	Ка и М1	1	
2	ниже 0,2 и выше 1,0	Ка и М 2	1,14	
3	выше или равен 0,2	К ^а иМ ₃	1,51	

Примечание.

Если в системе имеются измерительные преобразователи (датчики) и измерительные приборы, относимые к разным классам точности, коэффициент М рассчитывается по формуле:

$$\mathbf{M} = (1 + 0.14 \times \mathbf{K}_{\text{HM}_{2}}^{a} : \mathbf{K}_{\text{H}}^{a}) \times (1 + 0.51 \times \mathbf{K}_{\text{HM}_{3}}^{a} : \mathbf{K}_{\text{H}}^{a}), \tag{4}$$

где

$$\mathbf{K}_{H}^{a} = \mathbf{K}_{HM_{1}}^{a} + \mathbf{K}_{HM_{2}}^{a} + \mathbf{K}_{HM_{3}}^{a}; \tag{4.1}$$

Таблица 4

№ пп.	Характеристика факторов «развитости информационных функций» (И) системы	Обозначение количества каналов	Коэффициент «развитости информационных функций» системы (И)
1	Параллельные или централизованные контроль и измерение параметров состояния технологического объекта управления (ТОУ)	$\mathbf{K}_{n\;N_1}^{ofm}$	1
2	То же, что и по п.1, включая архивирование, документирование данных, составление аварийных и производственных (сменных, суточных и т.п.) рапортов, представление трендов параметров, косвенное измерение (вычисление) отдельных комплексных показателей функционирования ТОУ	К ^{обш} и и д	1,51
3	Анализ и обобщенная оценка состояния процесса в целом по его модели (распознавание ситуации, диагностика аварийных состояний, поиск «узкого» места, прогноз хода процесса)	К ^{общ} и И ₃	2,03

Примечание.

Если система имеет разные характеристики «развитости информационных функций», коэффициент И рассчитывается по формуле:

$$\mathbf{H} = (1 + 0.51 \times \mathbf{K}_{\mathsf{H}\,\mathsf{H}_2}^{\mathsf{o}\mathsf{G}\mathsf{H}_2} : \mathbf{K}_{\mathsf{H}}^{\mathsf{o}\mathsf{G}\mathsf{H}_1}) \times (1 + 1.03 \times \mathbf{K}_{\mathsf{H}\,\mathsf{H}_3}^{\mathsf{o}\mathsf{G}\mathsf{H}_1} : \mathbf{K}_{\mathsf{H}}^{\mathsf{o}\mathsf{G}\mathsf{H}_1}), \tag{5}$$

гле

$$\mathbf{K}_{\mu}^{\text{obu}} = \mathbf{K}_{\mu H_{1}}^{\text{obu}} + \mathbf{K}_{\mu H_{2}}^{\text{obu}} + \mathbf{K}_{\mu H_{3}}^{\text{obu}}, \tag{5.1}$$

2.3.2. Коэффициент Φ_y , учитывающий «развитость управляющих функций», рассчитываемый по формуле:

$$\Phi_{y} = 1,0 + (1,31 \times K_{y}^{a} + 0.95 \times K_{y}^{b}) : K^{obs} \times Y$$
(6)

где:

У - коэффициент «развитости управляющих функций», определяется по табл.5

Таблица 5

№ пп.	Характеристика факторов «развитости управляющих функций» (У) системы	Обозначение количества каналов	Коэффициент «развитости управляющих функций» системы (У)
1	Одноконтурное автоматическое регулирование (AP) или автоматическое однотактное логическое управление (переключения, блокировки и т п.).	К ^{общ} у У ₁	1

№ пп.	Характеристика факторов «развитости управляющих функций» (У) системы	Обозначение количества каналов	Коэффициент «развитости управляющих функций» системы (У)
2	Каскадное и (или) программное АР или автоматическое программное логическое управление (АПЛУ) по «жесткому» циклу, многосвязное АР или АПЛУ по циклу с разветвлениями.	К общ	1,61
3	Управление быстропротекающими процессами в аварийных условиях или управление с адаптацией (самообучением и изменением алгоритмов и параметров систем) или оптимальное управление (ОУ) установившимися режимами (в статике), ОУ переходными процессами или процессом в целом (оптимизация в динамике).	К уу,	2,39

Примечание.

Если система имеет разные характеристики «развитости управляющих функций», коэффициент **У** рассчитывается по формуле:

$$\mathbf{Y} = (1 + 0.61 \times \mathbf{K}_{y \, \mathbf{Y}_{1}}^{\text{obm}} : \mathbf{K}_{y}^{\text{obm}}) \times (1 + 1.39 \times \mathbf{K}_{y \, \mathbf{Y}_{3}}^{\text{obm}} : \mathbf{K}_{y}^{\text{obm}}); \tag{7}$$

гле

$$\mathbf{K}_{y}^{\text{obm}} = \mathbf{K}_{y y_{1}}^{\text{obm}} + \mathbf{K}_{y y_{2}}^{\text{obm}} + \mathbf{K}_{y y_{3}}^{\text{obm}}; \tag{7.1}$$

2.4. Сметная норма затрат труда (Н) для конкретной системы рассчитывается применением к базовой норме,

установленной в соответствии с п. 2.2., коэффициентов Φ_{u}^{M}, Φ_{y} , которые между собой перемножаются:

$$\mathbf{H} = \mathbf{H}_{6} \times (\mathbf{\Phi}_{\mathsf{H}}^{\mathsf{M}} \times \mathbf{\Phi}_{\mathsf{y}}) \tag{8}$$

- 2 5. При выполнении повторных пусконаладочных работ (до сдачи объекта в эксплуатацию) к сметным нормам затрат труда необходимо применять коэффициент 0,537. Под повторным выполнением пусконаладочных работ следует понимать работы, вызванные необходимостью изменения технологического процесса, режима работы технологического оборудования, в связи с частичным изменением проекта или вынужденной заменой оборудования. Необходимость в повторном выполнении работ должна подтверждаться обоснованным заданием (письмом) заказчика.
- 2 б. В том случае, если АСУ ТП создана в составе автоматизированного технологического комплекса (АТК), включенного в план опытного или экспериментального строительства, либо в перечень уникальных или особо важных (важнейших) объектов (строек), либо АСУ ТП включает экспериментальные или опытные программнотехнические (технические) средства, к сметным нормам затрат труда применяется коэффициент 1,2.
- 2.7. В том случае, если пусконаладочные работы производятся при техническом руководстве персонала предприятия-изготовителя или фирмы-поставщика оборудования, к сметным нормам затрат труда следует применять коэффициент 0,8.
- 2.8. Указанные в пп. 2.5 2.8 коэффициенты применяются к сметным нормам затрат тех этапов работ (соответствующего количества каналов информационных и управления), на которые действуют вышеперечисленные условия. При использовании нескольких коэффициентов их следует перемножать.
- 2.9. Понижающий коэффициент для однотипных автоматизированных технологических комплексов (АТК) в соответствии с п. 2.5. МДС 81-40 2006 учтен нормами настоящего Сборника при условии особого порядка расчета, при котором сметная норма затрат определяется первоначально в целом для нескольких однотипных АТК в соответствии с проектом и, при необходимости, выделяется сметная норма трудозатрат для одного однотипного АТК.

Не допускается, при определении сметных норм затрат труда, искусственное, вопреки проекту, разделение автоматизированной системы на отдельные системы измерения, контуры управления (регулирования), подсистемы.

Например: Для централизованной системы оперативного диспетчерского управления вентиляцией и кондиционированием воздуха, включающей несколько подсистем приточно-вытяжной вентиляции, сметная норма затрат труда определяется в целом для централизованной системы управления; при необходимости, затраты труда для отдельных подсистем определяются в рамках общей нормы трудозатрат в целом по системе с учетом количества каналов, относимых к подсистемам.

2.10. При составлении смет сумма средств на оплату труда пусконаладочного персонала рассчитывается на основании сметных норм затрат труда с учетом квалификационного состава звена (бригады) исполнителей пусконаладочных работ (в процентах участия в общих трудозатратах), приведенного в табл. 6.

Таблица 6

	Категория		Доля, %, в о	бщих затратах т	руда (норме)	
Шифр таблицы	технической	∣ Ведущий ⊦	Инженер, категория			Техник I
или нормы	сложности системы		I	II	III	категории
02-01-001	I	10	20	45	20	5
02-01-002	II	20	20	50	10	-
02-01-003	III	60	35	5	-	-

Примечание.

Для сложной системы, состоящей из подсистем разной категории технической сложности, базовая сумма средств на оплату труда (ЗП) рассчитывается следующим образом:

$$3\Pi^{E} = 3\Pi^{L} \times C \times (0.14 \times C + 0.86), \tag{9}$$

гле

С - коэффициент технической сложности системы по формуле (1);

 $3\Pi^{\,h}\,$ - базовая оплата труда для системы I категории технической сложности (C=1) по табл. 6.

$$3\Pi^{B} = 3\Pi^{B} \times C: 1,313 (0,34 \times C + 0,56),$$
 (10)

где:

 $3\Pi^{\frac{1}{D}}$ - базовая оплата труда для системы II категории технической сложности (C=1,313) по табл. 6

2.11. При необходимости промежуточных расчетов за выполненные пусконаладочные работы рекомендуется использовать примерную структуру трудоемкости пусконаладочных работ по их основным этапам (если договором подряда не предусмотрены иные условия взаиморасчетов сторон), приведенную в табл.

Таблица 7

№	Наименование этапов ПНР	Доля затрат труда в общих
пп.	TIANIMENOBAHIC STATIOB IIII	трудозатратах, %
1	Подготовительные работы, проверка ПТС (ПС):	25
L '_	в т.ч подготовительные работы	10
2	Автономная наладка систем	55
3	Комплексная наладка систем	20
4	Всего	100

Примечания.

- 1. Содержание этапов выполнения работ соответствует п. 1.7. настоящей технической части.
- 2. В том случае, если заказчик привлекает для выполнения пусконаладочных работ по программно техническим средствам одну организацию (например, разработчика проекта или производителя оборудования, имеющих соответствующие лицензии на выполнение пусконаладочных работ), а по техническим средствам другую пусконаладочную организацию, распределение объемов выполняемых ими работ (в рамках общей нормы трудозатрат по системе), в том числе по этапам табл. 7, производится, по согласованию с заказчиком, с учетом общего количества каналов, относимых к ПТС и ТС.

3. Порядок подготовки исходных данных для составления смет

3.1. Подготовка исходных данных для составления смет осуществляется на основании проектной и технической документации по конкретной системе.

При подготовке исходных данных рекомендуется использовать «Схему автоматизированного технологического комплекса (АТК)», приведенную в приложении 1.

Подготовка исходных данных ведется в следующей последовательности:

3.1.1. В составе АТК по схеме выделяются следующие группы каналов согласно табл. 8.

Таблица 8

	Таблица 8
Условное обозначение	Содержание группы каналов
группы каналов	
КПТС→ТОУ (КТС)	Каналы управления аналоговые и дискретные ($oldsymbol{K}_y^a$ $oldsymbol{K}_y^b$) передачи управляющих воздействий от КПТС (КТС) на ТОУ. Число каналов управления определяется по количеству исполнительных механизмов. мембранных, поршневых, электрических одно- и многооборотных, бездвигательных (отсечных) и т п
ТОУ→КПТС (КТС)	Каналы аналоговые и дискретные информационные (\mathbf{K}_{u}^{a} и \mathbf{K}_{u}^{D}) преобразования информации (параметров), поступающей от технологического объекта управления (ТОУ) на КПТС (КТС). Число каналов определяется количеством измерительных преобразователей, контактных и бесконтактных сигнализаторов, датчиков положения и состояния оборудования, конечных и путевых выключателей и т.п., при этом комбинированный датчик пожарной сигнализации (ПОС) учитывается как один дискретный канал
Оп→КПТС (КТС)	Каналы аналоговые и дискретные информационные (Ки и и Ки) от оператора (Оп) на КПТС (КТС). Число каналов определяется количеством органов воздействия, используемых оператором (кнопки, ключи, задатчики управления и т.п.) для реализации функционирования системы в режимах автоматизированного (автоматического) и ручного дистанционного управления исполнительными механизмами без учета в качестве дополнительных каналов органов воздействия КПТС (КТС) для настроечных и иных вспомогательных функций (кроме управления) клавиатура терминальных устройств информационно-управляющих табло, кнопки, переключатели и т.п., панелей многофункциональных или многоканальных приборов пультов контроля ПОС и т п., а также выключатели напряжения, плавкие предохранители и иные вспомогательные органы воздействия вышеуказанных и других технических средств наладка которых учтена нормами настоящего Сборника
КПТС→Оп (КТС)	Каналы аналоговые и дискретные ($\mathbf{K}_{\mathbf{u}}^{\mathbf{a}}$ и $\mathbf{K}_{\mathbf{u}}^{\mathbf{d}}$) отображения информации, поступающей от КПТС (КТС) к Оп при определении числа каналов системы не учитываются, за исключением случаев, когда проектом предусмотрено отображение одних и тех же технологических параметров (состояния оборудования) более чем на одном терминальном устройстве (монитор, принтер, интерфейсная панель, информационное табло). Наладка отображений информации на первом терминальном устройстве учтена нормами настоящего Сборника. В том случае, при отображении информации на каждом терминальном устройстве отображаемые параметры ($\mathbf{K}_{\mathbf{u}}^{\mathbf{a}}$ и $\mathbf{K}_{\mathbf{u}}^{\mathbf{d}}$) учитываются $\mathbf{K}_{\mathbf{u}}^{\mathbf{a}}$ с коэффициентом 0,01. Не учитываются в качестве каналов индикаторы (лампы, светодиоды и т.п.) состояния и положения, встроенные в измерительные преобразователи (датчики), контактные или бесконтактные сигнализаторы, кнопки, ключи управления, переключатели, а также индикаторы наличия напряжения приборов, регистраторов, терминальных устройств щитов, пультов т.п., наладка которых учтена нормами настоящего Сборника.
CMC № 1, № 2,, № i	Каналы связи (взаимодействия) аналоговые и дискретные информационные (К и к и) со смежными системами, выполненными по отдельным проектам. «Учитывается количество физических каналов, по которым передаются сигналы связи (взаимодействия) со смежными системами: дискретные — контактные и бесконтактные постоянного и переменного тока (за исключением кодированных) и аналоговые сигналы, значения которых определяются в непрерывной шкале, а также, в целях настоящего Сборника, кодированные (импульсные и цифровые)». Различные виды напряжения электротехнической системы, используемые в качестве источников питания оборудования АСУ ТП (щиты, пульты, исполнительные механизмы, преобразователи информации, терминальные устройства и т. п.) в качестве каналов связи (взаимодействия) со смежными системами не учитываются.

3.1.2. По каждой группе каналов табл. 8 подсчитывается количество каналов информационных (аналоговых и дискретных) и каналов управления (аналоговых и дискретных), а также общее количество каналов информационных и управления ($\mathbf{K}^{\mathbf{o}\mathbf{b}\mathbf{u}}$).

- 3.1.3. На основании табл. 1 устанавливается категория технической сложности системы и, в зависимости от $\mathbf{K}^{\mathbf{o}\mathbf{6}\mathbf{u}}$, по соответствующей таблице ГЭСНп определяется базовая норма затрат труда ($\mathbf{H}_{\mathbf{6}}$), при необходимости, рассчитывается базовая норма для сложной системы ($\mathbf{H}_{\mathbf{6}}^{\mathbf{c}\mathbf{n}}$) с использованием формул (1) и (2)
- 3.1 4. Для привязки базовой нормы к конкретной системе рассчитываются поправочные коэффициенты $\Phi^{\rm M}_{\mu}$ и $\Phi_{\rm y}$ в соответствии с пп. 2.3.1 и 2.3.2, затем рассчитывается сметная норма по формуле (8).

ОТДЕЛ 01. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Таблица ГЭСНп 02-01-001 Автоматизированные системы управления І категории технической сложности

Измеритель: система

Автоматизированная система управления І категории технической сложности с количеством

каналов (К^{общ}):

02-01-001-01

Измеритель: канал 02-01-001-02

за каждый канал свыше 2 до 9 добавлять к норме 02-01-001-01

Измеритель: система 02-01-001-03

10

Измеритель: канал

02-01-001-04

за каждый канал свыше 10 до 19 добавлять к норме 02-01-001-03

Измеритель: система 02-01-001-05

20

Измеритель: канал 02-01-001-06

за каждый канал свыше 20 до 39 добавлять к норме 02-01-001-05

Измеритель: система 02-01-001-07

40

Измеритель: канал

02-01-001-08

за каждый канал свыше 40 до 79 добавлять к норме 02-01-001-07

Измеритель: система

02-01-001-09

80

Измеритель: канал 02-01-001-10

за каждый канал свыше 80 до 159 добавлять к норме 02-01-001-09

Измеритель: система 02-01-001-11

160

Измеритель: канал

02-01-001-12

за каждый канал свыше 160 до 319 добавлять к норме 02-01-001-11

Измеритель: система 02-01-001-13

320

Измеритель: канал

02-01-001-14

за каждый канал свыше 320 до 639 добавлять к норме 02-01-001-13

Измеритель: система 02-01-001-15

640

Измеритель: канал

02-01-001-16

Измеритель: система

за каждый канал свыше 640 до 1279 добавлять к норме 02-01-001-15

02-01-001-17

1280

Измеритель: канал 02-01-001-18

за каждый канал свыше 1280 до 2559 добавлять к норме 02-01-001-17

Измеритель: система

02-01-001-19

2560

Измеритель: канал 02-01-001-20

за каждый канал свыше 2560 добавлять к норме 02-01-001-19

Шифр ресурса	Наименование элемента затрат	Ед измер	02-01- 001-01	02-01- 001-02	02-01- 001-03	02-01- 001-04
1	Затраты труда в том числе	челч	13,4	6,45	65	6,3
	Инженер I категории	чел -ч	2,68	1,29	13	1,26
	Инженер II категории Инженер III категории	чел -ч челч	6,03 2 ,68	2,9025 1,29	29,25 13	2,835 1,26
	Ведущий инженер	челч	1,34	0,645	6,5	0,63
	Техник I категории	челч	0,67	0,3225	3,25	0,315

Шифр ресурса	Наименование элемента затрат	Ед измер	02-01-	02-01-	02-01-	02-01-
			001-05	001-06	001-07	001-08
1	Затраты труда	чел -ч	128	6,15	251	6,03
	в том числе	}	}	}		}
	Инженер I категории	чел -ч	25,6	1,23	50,2	1,206
	Инженер II категории	челч	57,6	2,7675	112,95	2,7135
	Инженер III категории	чел -ч	25,6	1,23	50,2	1,206
	Ведущий инженер	чел -ч	12,8	0,615	25,1	0,603
	Техник I категории	чел -ч	6,4	0,3075	12,55	0,3015
Шифр ресурса	Наименование элемента затрат	Ед измер	02-01-	02-01-	02-01-	02-01-
			001-09	001-10	001-11	001-12
1	Заграты труда	чел -ч	492	5,88	962	5,55
	в том числе					
	Инженер I категории	чел -ч	98,4	1,176	192,4	1,11
	Инженер II категории	чел -ч	221,4	2,646	432,9	2,4975
	Инженер III категории	чел -ч	98,4	1,176	192,4	1,11
	Ведущий инженер	челч	49,2	0,588	96,2	0,555
	Техник I категории	чел -ч	24,6	0,294	48,1	0,2775
Шифр ресурса	Наименование элемента затрат	Ед измер	02-01-	02-01-	02-01-	02-01-
тифр ресурса	танменование элемента затрат	Ед измер	001-13	001-14	001-15	001-16
1	Затраты труда	чел -ч	1850	5,19	3510	4,41
	в том числе			}		
	Инженер I категории	чел -ч	370	1,038	702	0,882
	Инженер II категории	чел -ч	832,5	2,3355	1579,5	1,9845
	Инженер III категории	чел -ч	370	1,038	702	0,882
	Ведущий инженер	чел -ч	185	0,519	351	0,441
	Техник I категории	чел -ч	92,5	0,2595	175,5	0,2205
Шифр ресурса	Наименование элемента затрат	Ед измер	02-01-	02-01-	02-01-	02-01-
шифр ресурса	Панменование элемента заграт	Ед измер	001-17	001-18	001-19	001-20
1	Затраты труда	чел -ч	6330	3,49	10800	2,83
	в том числе					
	Инженер I категории	чел -ч	1266	0,698	2160	0,566
	Инженер II категории	чел -ч	2848,5	1,5705	4860	1,2735
	Инженер III категории	чел -ч	1266	0,698	2160	0,566
	Ведущий инженер	челч	633	0,349	1080	0,283
	Техник I категории	чел -ч	316,5	0,1745	540	0,1415

Таблица ГЭСНп 02-01-002 Автоматизированные системы управления II категории технической сложности

Измеритель: система

Автоматизированная система управления II категории технической сложности с количеством

каналов (К^{общ}).

02-01-002-01

2

Измеритель: канал 02-01-002-02 за ках

за каждый канал свыше 2 до 9 добавлять к норме 02-01-002-01

Измеритель: система 02-01-002-03 10

Измеритель: канал

02-01-002-04 за каждый канал свыше 10 до 19 добавлять к норме 02-01-002-03

Измеритель: система 02-01-002-05 20 Измеритель: канал

02-01-002-06 за каждый канал свыше 20 до 39 добавлять к норме 02-01-002-05

Измеритель: система 02-01-002-07 40 Измеритель: канал

02-01-002-08 за каждый канал свыше 40 до 79 добавлять к норме 02-01-002-07

Измеритель: система 02-01-002-09 80 Измеритель: канал

02-01-002-10 за каждый канал свыше 80 до 159 добавлять к норме 02-01-002-09

Измеритель: система 02-01-002-11 160 Измеритель: канал 02-01-002-12

за каждый канал свыше 160 до 319 добавлять к норме 02-01-002-11

Измеритель: система

02-01-002-13

320

Измеритель: канал 02-01-002-14

за каждый канал свыше 320 до 639 добавлять к норме 02-01-002-13

Измеритель: система

02-01-002-15

640

Измеритель: канал

02-01-002-16

за каждый канал свыше 640 до 1279 добавлять к норме 02-01-002-15

Измеритель: система 02-01-002-17

1280

Измеритель: канал

02-01-002-18

за каждый канал свыше 1280 до 2559 добавлять к норме 02-01-002-17

Измеритель: система 02-01-002-19

2560

Измеритель: канал

02-01-002-20

за каждый канал свыше 2560 добавлять к норме 02-01-002-19

Шифр ресурса	Наименование элемента затрат	Ед измер	02-01- 002-01	02-01- 002-02	02-01- 002-03	02-01- 002-04	
1	Затраты труда	чел -ч	17,6	8,47	85	8,3	
	в том числе		, .	-,			
	Инженер I категории	чел -ч	3,52	1,694	17	1,66	
	Инженер II категории	чел -ч	8,8	4,235	42,5	4,15	
	Инженер III категории	чел -ч	1,76	0,847	8,5	0,83	
	Ведущий инженер	челч	3,52	1,694	17	1,66	
Шифр ресурса	Наименование элемента затрат	Ед измер	02-01- 002-05	02-01- 002-06	02-01- 002-07	02-01- 002-08	
1	Затраты труда	чел -ч	168	8,1	330	7,91	
	в том числе.						
	Инженер I категории	чел -ч	33,6	1,62	66	1,582	
	Инженер II категории	чел -ч	84	4,05	165	3,955	
	Инженер III категории	чел -ч	16,8	0,81	33	0,791	
	Ведущий инженер	чел -ч	33,6	1,62	66	1,582	
					00.01		
Шифр ресурса	Наименование элемента затрат	Ед измер	02-01- 002-09	02-01- 002-10	02-01- 002-11	02-01- 002-12	
1	Zarnom (mn) ro	+	646	7,71	1263		
	Затраты труда в том числе:	челч	040	/,/1	1203	7,29	
			120.2	1.542	252.6	1 450	
1	Инженер I категории Инженер II категории	челч	129,2 323	1,542 3,855	252,6 631,5	1,458	
		челч		1 '	,	3,645	
	Инженер III категории	челч	64,6	0,771	126,3	0,729	
	Ведущий инженер	чел -ч	129,2	1,542	252,6	1,458	
Шифр ресурса	Наименование элемента затрат	Ед измер	02-01- 002-13	02-01- 002-14	02-01- 002-15	02-01- 002-16	
1	Затраты труда	чел -ч	2430	6,81	4610	5,78	
	в том числе.						
	Инженер I категории	чел -ч	486	1,362	922	1,156	
	Инженер II категории	челч	1215	3,405	2305	2,89	
	Инженер III категории	челч	243	0,681	461	0,578	
	Ведущий инженер	челч	486	1,362	922	1,156	
			02-01-	02-01-	02-01-	02-01-	
Шифр ресурса	Наименование элемента затрат	Ед измер	002-17	002-01-	002-19	002-20	
1	Затраты труда	чел -ч	8310	4,58	14170	3,72	
	в том числе:						
	Инженер I категории	чел -ч	1662	0,916	2834	0,744	
	Инженер II категории	чел -ч	4155	2,29	7085	1,86	
	Инженер III категории	чел -ч	831	0,458	1417	0,372	
	Ведущий инженер	чел -ч	1662	0,916	2834	0,744	

Таблица ГЭСНп 02-01-003 Автоматизированные системы управления III категории технической сложности

Измеритель: система

Автоматизированная система управления III категории технической сложности с количеством каналов (К^{общ}):

02-01-003-01

Измеритель: канал 02-01-003-02

за каждый канал свыше 2 до 9 добавлять к норме 02-01-003-01

02-01-003-03

Измеритель: система 10

Измеритель: канал

02-01-003-04

за каждый канал свыше 10 до 19 добавлять к норме 02-01-003-03

Измеритель: система

02-01-003-05

20

Измеритель: канал 02-01-003-06

за каждый канал свыше 20 до 39 добавлять к норме 02-01-003-05

Измеритель: система

02-01-003-07

40

02-01-003-08

Измеритель: канал

Измеритель: система

за каждый канал свыше 40 до 79 добавлять к норме 02-01-003-07

02-01-003-09

80

Измеритель: канал

02-01-003-10

за каждый канал свыше 80 до 159 добавлять к норме 02-01-003-09

Измеритель: система

160

02-01-003-11

Измеритель: канал 02-01-003-12

за каждый канал свыше 160 до 319 добавлять к норме 02-01-003-11

Измеритель: система 02-01-003-13

320

Измеритель: канал 02-01-003-14

Измеритель: система

за каждый канал свыше 320 до 639 добавлять к норме 02-01-003-13

02-01-003-15

Измеритель: канал

640

02-01-003-16

за каждый канал свыше 640 до 1279 добавлять к норме 02-01-003-15

Измеритель: система

02-01-003-17

1280

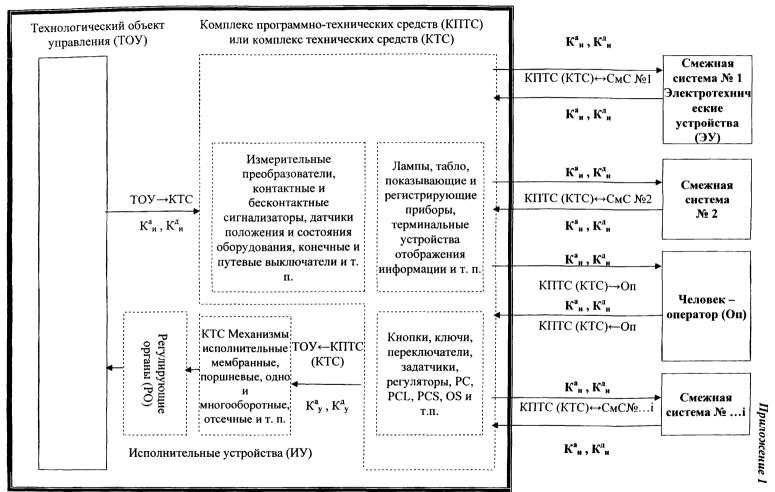
Измеритель: канал 02-01-003-18

за каждый канал свыше 1280 до 2559 добавлять к норме 02-01-003-17

Измеритель: система

02-01-003-19 Измеритель: канал

2560


02-01-003-20

за каждый канал свыше 2560 добавлять к норме 02-01-003-19

Шифр ресурса	Наименование элемента затрат	Ед измер	02-01- 003-01	02-01- 003-02	02-01- 003-03	02-01- 003-04
	2					
ı	Затраты труда	чел -ч	21	10,1	102	9,8
	в том числе					
	Инженер I категории	чел -ч	7,35	3,535	35,7	3,43
!	Инженер II категории	челч	1,05	0,505	5,1	0,49
	Ведущий инженер	чел -ч	12,6	6,06	61,2	5,88
Illuda accusas		F	02-01-	02-01-	02-01-	02-01-
Шифр ресурса	Наименование элемента затрат	Ед измер	003-05	003-06	003-07	003-08
1	Затраты труда	челч	200	9,63	393	9,44
	в том числе					
	Инженер I категории	челч	70	3,3705	137,55	3,304
	Инженер II категории	чел -ч	10	0,4815	19,65	0,472
	Ведущий инженер	чел -ч	120	5,778	235,8	5,664
IIIuda nooyaa	Herman	F	02-01-	02-01-	02-01-	02-01-
Шифр ресурса	Наименование элемента затрат	Ед измер	003-09	003-10	003-11	003-12
1	Затраты труда	челч	770	9,2	1506	8,7
	в том числе.					
	Инженер I категории	челч	269,5	3,22	527,1	3,045
	Инженер II категории	чел -ч	38,5	0,46	75,3	0,435
	Ведущий инженер	чел -ч	462	5,52	903,6	5,22

Шифр ресурса	Наименование элемента затрат	Ед измер	02-01-	02-01-	02-01-	02-01-
			003-13	003-14	003-15	003-16
1	Затраты груда	чел -ч	2898	8,12	5497	6,9
	в том числе				Ì	
	Инженер I категории	чел -ч	1014,3	2,842	1923,95	2,415
	Инженер II категории	чел -ч	144,9	0,406	274,85	0,345
	Ведущий инженер	чел -ч	1738,8	4,872	3298,2	4,14
1114	Illumina annua annua annua	Γ	02-01-	02-01-	02-01-	02-01-
Шифр ресурса	Наименование элемента затрат	Ед измер	003-17	003-18	003-19	003-20
1	Затраты труда	чел -ч	9913	5,47	16915	4,43
	в том числе					
	Инженер I категории	чел -ч	3469,55	1,9145	5920,25	1,5505
	Инженер II категории	чел -ч	495,65	0,2735	845,75	0,2215
				,		,

Схема автоматизированного технологического комплекса (АТК)

Приложение 2

ТЕРМИНЫ И ИХ ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗОВАННЫЕ В СБОРНИКЕ

Термин	Условное обозначе- ние	Определение
Автоматизированная система	AC	Система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций
Автоматизированная система управления технологическим процессом	АСУТП	Автоматизированная система, обеспечивающая работу объекта за счет соответствующего выбора управляющих воздействий на основе использования обработанной информации о состоянии объекта
Автоматизирован- ный технологи- ческий комплекс	АТК	Совокупность совместно функционирующих технологического объекта управления (ТОУ) и управляющей им АСУТП
Автоматический режим косвенного управления при выполнении функции АСУТП	_	Режим выполнения функции АСУТП, при котором комплекс средств автоматизации АСУТП автоматически изменяет уставки и (или) параметры настройки систем локальной автоматики технологического объекта управления.
Автоматический режим прямого (непосредственного) цифрового (или аналого - цифрового) управления при выполнении управляющей функции АСУТП		Режим выполнения функции АСУТП, при котором комплекс средств автоматизации АСУТП вырабатывает и реализует управляющие воздействия непосредственно на исполнительные механизмы технологического объекта управления.
Интерфейс (или сопряжение ввода – вывода)	_	Совокупность унифицированных конструктивных, логических, физических условий, которым должны удовлетворять технические средства, чтобы их можно было соединить и производить между ними обмен информацией. В соответствии с назначением в состав интерфейса входят: перечень сигналов взаимодействия и правила (протоколы) обмена этими сигналами; модули приема и передачи сигналов и кабели связи; разъемы, интерфейсные карты, блоки; В интерфейсах унифицированы информационные, управляющие, известительные, адресные сигналы и сигналы состояния.
Информационная функция автоматизированной системы управления		Функция АСУ, включающая получение информации, обработку и передачу информации персоналу АСУ или за пределы системы о состоянии ТОУ или внешней среды
Информационное обеспечение автоматизированной системы	ИО	Совокупность форм документов, классификаторов, нормативной базы и реализованных решений по объемам, размещению и формам существования информации, применяемой в АС при ее функционировании

	Условное	
Термин	обозначе- ние	Определение
Исполнительное устройство Исполнительный механизм Регулирующий орган	ИУ ИМ РО	Исполнительные устройства (ИУ) предназначены для воздействия на технологический процесс в соответствии с командной информацией КПТС (КТС). Выходным параметром ИУ в АСУ ТП является расход вещества или энергии, поступающей в ТОУ, а входным – сигнал КПТС (КТС). В общем случае ИУ содержат исполнительный механизм (ИМ): электрический, пневматический, гидравлический и регулирующий орган (РО): дросселирующий, дозирующий, манипулирующий Существуют комплектные ИУ и системы с электроприводом, с пневмоприводом, с гидроприводом и вспомогательные устройства ИУ (усилители мощности, магнитные пускатели, позиционеры, сигнализаторы положения и устройства управления). Для управления некоторыми электрическими аппаратами (электрические ванны, крупные электродвигатели и т п.) регулируемым параметром является поток
Измерительный преобразователь (датчик), измерительный прибор	_	электрической энергии и в этом случае роль ИУ выполняет блок усиления. Измерительные устройства, предназначенные для получения информации о состоянии процесса, предназначенные для выработки сигнала, несущего измерительную информацию как в форме, доступной для непосредственного восприятия оператором (измерительные приборы), так и в форме, пригодной для использования в АСУ ТП с целью передачи и (или) преобразования, обработки и хранения, но не поддающейся непосредственному восприятию оператором. Для преобразования естественных сигналов в унифицированные предусматриваются различные нормирующие преобразователи. Измерительные преобразователи разделяются на основные группымеханические, электромеханические, тепловые, электрохимические, оптические, электронные и ионизационные. Измерительные преобразователи подразделяются на преобразователи с естественным, унифицированным и дискретным (релейным) выходным сигналом (сигнализаторы), а измерительные приборы — на приборы с естественным и унифицированным входным сигналом.
Конфигурация (вычислительной системы)		Совокупность функциональных частей вычислительной системы и связей между ними, обусловленная основными характеристиками этих функциональных частей, а также характеристиками решаемых задач обработки данных.
Конфигурирование		Настройка конфигурации.
Косвенное измерение (вычисление) отдельных комплексных показателей функционирования ТОУ	_	Косвенное автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величин в результирующую (комплексную) измеряемую величину с помощью функциональных преобразований и последующего прямого измерения результирующей измеряемых величины либо способом прямых измерений частных измеряемых величин с последующим автоматическим вычислением значений результирующей (комплексной) измеряемой величины по результатам прямых измерений.
Математическое обеспечение автоматизированной системы	МО	Совокупность математических методов, моделей и алгоритмов, применяемых в АС
Метрологическая аттестация (калибровка) измерительных каналов (ИК) АСУТП		ИК должны иметь метрологические характеристики, соответствующие требованиям норм точности, максимально допустимым погрешностям. ИК АСУТП подлежат государственной или ведомственной аттестации. Вид метрологической аттестации должен соответствовать установленному в техническом задании на АСУТП. Государственной метрологической аттестации подлежат ИК АСУТП, измерительная информация которых предназначена для: использования в товарно-коммерческих операциях; учета материальных ценностей; охраны здоровья трудящихся, обеспечение безопасных и безвредных условий труда. Все остальные ИК подлежат ведомственной метрологической аттестации.
Многоуровневая АСУТП		АСУТП, включающая в себя в качестве компонентов АСУТП разных уровней иерархии.

Термин	Условное обозначе-	Определение
Одноуровневая АСУТП	ние	АСУТП, не включающая в себя других, более мелких АСУТП.
Оптимальное управление	ОУ	Управление, обеспечивающее наивыгоднейшее значение определенного критерия оптимальности (КО), характеризующего эффективность управления при заданных ограничениях. В качестве КО могут быть выбраны различные технические или экономические показатели: время перехода (быстродействие) системы из одного состояния в другое; некоторый показатель качества продукции, затраты сырья или энергоресурсов и т.д. Пример ОУ: В печах для нагрева заготовок под прокатку путем оптимального изменения температуры в зонах нагрева можно обеспечить минимальное значение средне-квадратичного отклонения температуры нагрева обработанных заготовок при изменении темпа их продвижения, размеров и теплопроводности.
Параметр		Аналоговая или дискретная величина, принимающая различные значения и характеризующая либо состояние АТК, либо процесс функционирования АТК, либо его результаты. Пример: температура в рабочем пространстве печи, давление под колошником, расход охлаждающей жидкости, скорость вращения вала, напряжение на клеммах, содержание окиси кальция в сырьевой муке, сигнал оценки состоянии, в котором находится механизм (агрегат), и т. д.
Программное обеспечение автоматизированной системы	ПО	Совокупность программ на носителях данных и программных документов, предназначенных для отладки, функционирования и проверки работоспособности АС
Регулирование программное		Регулирование одной или нескольких величин, определяющих состояние объекта, по заранее заданным законам в виде функций времени или какоголибо параметра системы. Пример: Закалочная печь, температура в которой, являющаяся функцией времени, изменяется в течение процесса закалки по заранее установленной программе.
Система автоматического регулирования (АР) многосвязная	_	Система AP с несколькими регулируемыми величинами, связанными между собой через объект регулирования, регулятор или нагрузку. Пример: Объект – паровой котел; входные величины – подача воды, топлива, расход пара; выходные величины – давление, температура, уровень воды.
Системы измерения и (или) автоматического регулирования химического состава и физических свойств вещества	_	Измеряемая среда и измеряемая величина для определения химического состава веществ: примерами измеряемых величин для газообразной среды являются: концентрация кислорода, углекислого газа, аммиака, СО+СО2+Н2 (отходящие газы доменных печей) и т.п., для жидкой среды: электропроводимость растворов, солей, щелочей, концентрация водных суспензий, солесодержание воды, рН, содержание цианидов и т.п. Измеряемая величина и исследуемая среда для определения физических свойств вещества: Пример измеряемой величины для воды и твердых веществ: влажность, для жидкости и пульпы — плотность, для воды — мутность, для консистентных масел — вязкость и т. д.
Технологический объект управления	TOV	масел – вязкость и т. д. Объект управления, включающий технологическое оборудование и реализуемый в нем технологический процесс

управления и информации о состоянии объектов с применением специальных преобразований для эффективного использования каналов связи. Средства телемеханики обсспечивают обмен информацией между объектами к КПТС. Совокупность устройств пумтка управления (ПУ), устройств контролиру и оператором (диспетчером), либо между объектами и КПТС. Совокупность устройств пумтка управления (ПУ), устройств контролируемого пункта (КП) и устройств путка управления (ПУ), устройств контролируемого пункта (КП) и устройств, предназначенных для обмена через канал связи информацией между ПУ и КП, образует комплекс устройств телемеханики. Телемеханики, дагников, средств обработки информации, диплетчерского оборудования и каналов связи, выполизовании, диплетчерского оборудования и каналов связи, выполизовании и связи с оператором в телемеханическую систему включаются также средства обработки информации на базе КПТС 1. Устройство для взаимодействия пользователя или оператора с вычислительной системой. Терминал представляет собой два относительно независимых устройства: ввода (клавиатуры) и вывода (экраи или печагающее устройство). 2. В локальной вычислительной сети – устройство, являющееся источником или получателем данных. Орукция АСУ, включающая получение информации о состоянии ТОУ, оценку информации, выбор управляющих воздействий и их реализацию оператору. УСИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации, воторые или формации (информеции) уого классифницируются по формам представления информации на сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и циформация (информеские) экраиные (информация) и специализированные (фрагментов средства указанного типа разделяются на универсальные (фрагментов средст		Условное	
Телемеханика объединяет ТС автоматической передачи на расстояние команд управления и информации о состоянии объектов с примелением специальных преобразований для эффективного использования и каналов связи. Средства телемеханики обеспечивают обмен информацией между объектами контроля и оператором (диспетчером), либо между объектами и КПТС. Совокупность устройств пункта управления (ПУ), устройств контроляруемого пункта (КП) и устройств пункта управления (ПУ), устройств контроляруемого пункта (КП) и устройств пункта управления (ПУ), устройств контроляруемого пункта (КП) и устройств пункта управления (ПУ), устройств контроляруемого пункта (КП) и устройств пункта управления и каналов связи, выполнющих законченную задачу централизованного контроля и управления территориалыши, диспетчерского оборуможвания и каналов связи, выполнющих законченную задачу централизованного контроля и управления территориалыши, диспетчерского оборуможвания и каналов связи, выполнющих законченную задачу централизованного контроля и управления территориалыши, диспетчерского оборуможного контроля и управления территориалыши, диспетчерского оборуможного контроля и управления перемативного контроля и управления перемативного контроля и управления перемативного контроля и управления пользователя или оператора связи с операторо в телемеханическую систему включаются также средства вничний в база кПТС 1. Устройство. 2. В токальной вычислительной сети – устройство, являющееся источником или получателем данных. 4. Оункция АСУ, включающая получение информации о состоянии ТОУ, оценку информации, выбор управляющих воздействий и их реализацию информации управления и информации управление информации управление информации и контрольную с представления информации и испетавления информации и испетавлено информации и испетавлено и на разделенной обмежения раздело в прические, комбинированные (диспейные), алфавитно – цифровые, г	Термин	обозначе-	Определение
управления и информации о состоянии объектов с применением специальных преобразований для эффективного использования каналов связи. Средства телемеханики обсспечивают обмен информацией между объектами к КПТС. Совокупность устройств пумтка управления (ПУ), устройств контролиру и оператором (диспетчером), либо между объектами и КПТС. Совокупность устройств пумтка управления (ПУ), устройств контролируемого пункта (КП) и устройств путка управления (ПУ), устройств контролируемого пункта (КП) и устройств, предназначенных для обмена через канал связи информацией между ПУ и КП, образует комплекс устройств телемеханики. Телемеханики, дагников, средств обработки информации, диплетчерского оборудования и каналов связи, выполизовании, диплетчерского оборудования и каналов связи, выполизовании и связи с оператором в телемеханическую систему включаются также средства обработки информации на базе КПТС 1. Устройство для взаимодействия пользователя или оператора с вычислительной системой. Терминал представляет собой два относительно независимых устройства: ввода (клавиатуры) и вывода (экраи или печагающее устройство). 2. В локальной вычислительной сети – устройство, являющееся источником или получателем данных. Орукция АСУ, включающая получение информации о состоянии ТОУ, оценку информации, выбор управляющих воздействий и их реализацию оператору. УСИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации, воторые или формации (информеции) уого классифницируются по формам представления информации на сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и циформация (информеские) экраиные (информация) и специализированные (фрагментов средства указанного типа разделяются на универсальные (фрагментов средст		ние	
вычислительной системой . Терминал представляет собой два относительно независимых устройства: ввода (клавиатуры) и вывода (экран или печатающее устройство). 2. В локальной вычислительной сети – устройство, являющееся источником или получателем данных. — Функция АСУ, включающая получение информации о состоянии ТОУ, оценку информации, выбор управляющих воздействий и их реализацию технотемы управления — Технические средства, используемые для передачи информации человеку – оператору. УОЙ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно – цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты неизменной формы с промежуточным носителем структуры фрагмента). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе функционирования автоматизируемого технологического комплекса и т.д.	Телемеханическая система	_	преобразований для эффективного использования каналов связи. Средства телемеханики обеспечивают обмен информацией между объектами контроля и оператором (диспетчером), либо между объектами и КПТС. Совокупность устройств пункта управления (ПУ), устройств контролируемого пункта (КП) и устройств, предназначенных для обмена через канал связи информацией между ПУ и КП, образует комплекс устройств телемеханики. Телемеханическая система представляет собой совокупность комплекса устройств телемеханики, датчиков, средств обработки информации, диспетчерского оборудования и каналов связи, выполняющих законченную задачу централизованного контроля и управления территориально рассредоточенными объектами. Для формирования команд управления и связи с оператором в телемеханическую систему включаются также средства
Функция АСУ, включающая получение информации о состоянии ТОУ, оценку информации, выбор управляющих воздействий и их реализацию оператору. УОИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно — цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты неизменной формы с промежуточным носителем структуры фрагмента). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе функционирования автоматизируемого технологического комплекса и т.д.	Терминал	~	1. Устройство для взаимодействия пользователя или оператора с вычислительной системой. Терминал представляет собой два относительно независимых устройства: ввода (клавиатуры) и вывода (экран или печатающее устройство). 2. В локальной вычислительной сети – устройство, являющееся источником
оценку информации, выбор управляющих воздействий и их реализацию Технические средства, используемые для передачи информации человеку – оператору. УОИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно — цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе функционирования автоматизируемого технологического комплекса и т.д.	Управляющая		
Технические средства, используемые для передачи информации человеку – оператору. УОИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно – цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагмента). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе функционирования автоматизируемого технологического комплекса и т.д.	функция		
Технические средства, используемые для передачи информации человеку — оператору. УОИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно — цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты неизменной формы с промежуточным носителем структуры фрагмента). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе функционирования автоматизируемого технологического комплекса и т.д.	автоматизированной	_	оценку информации, выбор управляющих воздействий и их реализацию
оператору. УОИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно — цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты неизменной формы с промежуточным носителем структуры фрагмента). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе функционирования автоматизируемого технологического комплекса и т.д.	системы управления		
	Устройства отображения информации	УОИ	оператору. УОИ разделяются на две большие группы: локальное или централизованное представление информации, которые могут сосуществовать в системе параллельно (одновременно) или используется только централизованное представление информации. УОИ классифицируются по формам представления информации на. сигнализирующие (световые, мнемонические, звуковые); показывающие (аналоговые и цифровые); регистрирующие для непосредственного восприятия (цифро-буквенные и диаграммные) и с закодированной информацией (на магнитном или бумажном носителе); экранные (дисплейные). алфавитно – цифровые, графические, комбинированные. В зависимости от характера формирования локальных и целевых экранных фрагментов средства указанного типа разделяются на универсальные (фрагменты произвольной структуры фрагмента) и специализированные (фрагменты неизменной формы с промежуточным носителем структуры фрагмента). Применительно к АСУ ТП фрагменты могут нести информацию о текущем состоянии технологического процесса, о наличии разладок в процессе
меновек-оператор т ол птерсован непосредственно велушии управление оръектом	Человек-оператор	Оп	Персонал, непосредственно ведущий управление объектом

=========== ДЛЯ ДОПОЛНЕНИЙ ============

СОДЕРЖАНИЕ:

ТЕХНИЧЕСКАЯ ЧАСТЬ	3
ОТДЕЛ 01. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ	13
Таблица ГЭСНп 02-01-001 Автоматизированные системы управления І категории технической	
сложности	13
Таблица ГЭСНп 02-01-002 Автоматизированные системы управления II категории технической	
сложности	14
Таблица ГЭСНп 02-01-003 Автоматизированные системы управления III категории технической	
сложности	15
Приложение 1. СХЕМА АВТОМАТИЗИРОВАННОГО ТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА (АТК)	
Приложение 2. ТЕРМИНЫ И ИХ ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗОВАННЫЕ В СБОРНИКЕ	19

Заказ № 98 Тираж 1000 экз. Отпечатано в тип. ООО «Корина-офсет», Б. Якиманка, 38 «А»