МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА ГЛАВТРАНСПРОЕКТ

СБОРНО-МОНОЛИТНЫЕ ОПОРЫ ИЗ КОНТУРНЫХ БЛОКОВ, АНКЕРУЕМЫХ АРМАТУРНЫМИ ВЫПУСКАМИ

РАБОЧИЕ ЧЕРТЕЖИ ШИФР 537 РЧ

РАЗРАБОТАНЫ ЛЕНГИПРОТРАНСМОСТОМ МИНТРАНССТРОЯ

ПРОЕКТИРОВАНИЯ РУКОВОДИТЕЛЬ ПРОЕКТА

Главный инженер института А.К. Васин Начальник отдела типового

С.С. Ткаченко А.И. Серебрянский ЭТВЕРЖДЕНЫ РАСПОРЯЖЕНИЕМ МИНИСТЕРСТВА ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА И МИНИСТЕРСТВА ПУТЕЙ СООБЩЕНИЯ ММ-2034/ГТ-204 0706.07.84 г. и 38526161 3 действие на срок

ЛЕНИНГРАД, 1983.

40076 3 Приведено в отде иним Ольбом

- Т.Г. Рабочие честежи "Сборно-монолитных опор из контурных блоков, анкеруемых арматурными выпусками" разработаны Ленгипро-трансмостом в порядке корректировки технорабочего проекта упо-минутых опор шитр 242ТРП. Корректировка выполнена на основании распоряжения Министерства тринспортного строительства от 15.04.83 ¥ ГТ-0365 и в соответствии с техническим заданием выданным Главмостостроем и согласованным Главтранспроектом.
- I.2. Корректировка проекта вчиолнена с учетом рекомендаций, изложенных в научно-техническом стчете ЦНИИС по теме ИС-XI-I-82 раздел 4 "Обобщить результати опытного строительства сборно-моножитных опор под пролетные строения длиной свыше 33м и разработать рекомендации по разработке е диного каталога на проектирование уни*ицированных опор".
 - І.3. Настоящий проект состоит из трех частей:
- Часть І. Материалы для проектирования
- Часть 2. Блоки заводского изготовления
- Часть 3. Производство работ.

2. ОСНОВНИЕ ПОЛОЖЕНИЯ РАЗРАБОТКИ

- 2. I. Сборно-монолитные опоры по настоящему проекту предназначены для применения в мостах под железную догогу на прямых участках пути и на кривых радиусом 300м и более, в обычних кличатических условиях и в Северной СКЗ, на сухололах и постоянно действурщих водотоках, в том числе и при наличии ледохода.
- 2.2. Опоры преднавначены под балочные разрезные пролетные строения по действукцим гиповым проемтам: железобетонные длиной I6,5м инв. 4 557, железобетонные длиной I8,7; 23,6; 27,6м инв. 4 556, сталежелезобетонные расчетными пролетами 33,6; 45,0; 55,0м инв. 4 739, стальные расчетными пролетами 66,0; 88,0; IIO,0м инв. 4 690.

Возможно применение опор данной конструкции и в других случаях — как индивидуальные решения, (например, для келезнолорожных и совмеденных мостов пролетами более ПОм, для автолорожных и совмеденных мостов и др.)

- 2.3. Временная нагрузка -14.
- 2.4. Монтажная масса блоков не превышает 6,5т.

2.5. Чариновка блоков определлет тип блока, условия его применения на сухототе или водотоке, положение блока в сечении тела опоры, условия применения по материалу:

BK - N - A, rae

5 - блок

положение блока в плане

- размер блока в плане по лицевой поверхности опоры в см

- климатические и гидрологические условия применения блока в соотретствии с таблицей 2.

Например:

Чарка контурного блока Б2-I2O-M2

Б **–** блоч

2 – перехолноя

120см - газмер блока в плане по лицевой поверхности опоры

- М2 опора на суходоле в Северной СКЗ при расчетной температуре туре пятидневки ниже минус 40°С и расчетной температуре чаисолее холодного месяца ниже минус 15°С.
- 2.5. Разработка рабочих чертежей настоящего проекта производилась в соответствии со следурщими основными нормативными токументами:

- CHиП П-1.7-62^x

- Мосты и трубы. Нормы проектирования

- CH 200-62

- Технические условия проектирования железнодорожных, автолорожных и городских мостов и труб.

- CH 365-67

- Указания по проектированию желевобетонныхи бетонных чонструкций желевнодорожных, автодорожных и городских мостов и труб.

- BCH IST-78

- Указания по проектирований и строительству железобеточных и бетонных конструкций железнодогожных, автодорожных и городских мостов и тгуб, предназначенных для эксплуатации в условиях низких температур (северное исполнение).

1 - 03 'e - 100 's 3 3 3 5 16 16 17 10 2 16 16 16 16 16 16 16 16 16 16 16 16 16	537P4 - 00 /13	
7	Поленительная записка	1

3. КОНСТРУКЦИЯ ОПОР

- 3.1. Опоры сборно-монолитные, состоят из контурных блоков и монолитного ядра заполнения. Подферменничи и прокладники приняты монолитными.
- 3.2. Контурные блоки по настоящему проекту позволяют собирать тело опоры прямоугольного в плане очертания (с закругленными углами) с шагом размеров вдоль оси моста - 0.3м; поперек -0.6м. начиная с размера 2.9м в обоих случаях: обтекаемой формы в плане с углом заострения 90°и радиусом закругления 0.75м, с шагом размеров вдоль оси моста - 0,4м; начиная с размера 2,9м; поперея - 0.3: 0.9м, начиная с размера 3.4м.

Компоновка сечений опор приведена на листах 537рч - I - 03.

- 3.3. Опоры собираются из блоков трех типов: прямых, переходных и концевых, при этом размеры блоков по лицевой поверхности изменяются, образуя всего 12 типоразмеров блоков (см. лист 537P4-I-OI). Высота блоков принята I, 5м, толщина 0.7÷I, 0м.
- 3.4. Размеры подферменников назначаются по условиям расположения опорных частей и домкратов для подъема пролетных строений. При необходимости устройства консоли для опоры контактной сети и проходов для осмотра опорных частей размеры и конструкция подферменников принимаются в зависимости от конкретных условий гривязки проекта: типа пролетных строений, системы смотровых приспособлений, типа опор контактной сети и т.п.
 - 3.5. Швы между контурными блоками:

горизонтальные - замкового типа на цементном растворе, для укладки которого используется канавка на верхней постели блока; вертикальные - заполняются раствором бетона монолитного ядра. при этом в качестве опалубки используются инвечтарные нащельники. Перевязка вертикальных швов по лицевой поверхности тела опоры принята 0,3м. Конструкция двов приведена на листе 537РЧ-І-06.

- 3.6. Елоки снабкены арматурными петлевыми выпусками, которые служат для анкеровки блоков в монолитном бетоне заполнения, а также используются для извлечения блоков из опалубки.
- 3.7. Предельные отклонения от проектных размеров в блоках и при монтаже опор не должны превішать величин, указанных в таблице I.

Tac	блица I
Отклонени я	Величины отклонений
I	2
А. При изготовлении блоков	
. Длина и высота блока по лицевой поверхности г. Отклонение от перпендикулярности (перекос) вер тикальных граней блоков относительно горизон-	
тальных (опорных) поверхностей 3. Суммарный размер по длине или высоте с учетом отклонения по перпендикулярности (между горизо тальными или вертикальными проекциями точек, расположенных на диагонали по лицевой поверхно	c-
ти) 4. Размеры, определяющие положение, глубину (высо	<u>+</u> 5 мм
ту) и ширину канавок опорных плочадок в блоках	
5. Отклонение от проектного очертания наружных гр	1 -
ней блоков (искривление) Б. При монтаже опор	_
 Отклонение от проектной горизонтальной плоское ти опорной поверхности углубления для установк первого ряда блоков в монолитном ростверке или 	ки
проклюднике	<u>+</u> IO mm
То же, опорной плоскости канавок каждого после- дующего ряда блоков	- <u>+</u> 5 мм
 Отклонения установленных блоков первого ряда с проектного положения опоры относительно осей 	
опоры	<u>+</u> 10 mm
4. Относительное смещение кромок смежных блоков каждого ряда в горизонтальной плоскости	2 мм
5. Относительное смещение по вертикали горизонтал поверхностей канавок соседних блоков одного ри	1
 Толщина вертикальных швов после установки оче- редного ряда блоков 	<u>+</u> 5 мм
7. Толщина горизонтального шва после установки о редного ряда блоков	<u>+</u> 5 mm

Таблица 1 (продолжение)

I	2
8, Отклонение оси опоры от проектного положения (в целом и по каждому ярусу) 9. Отклонение по высоте тела опоры	не более 0,004 высоты тела опоры, (но не более 50км) не более 3х л мм л-число рядов блоков по высоте

•••	марка по	Марка по морозостоякости						
Наименовани е	прочности	при <u>†</u> внше _15°C	при с ревной и ниже —15°C					
под*ерменники и прокоалд- ники	300	200	300					
Заполнение тела опор	500	100	200					
Заполнение швов горизон- тальных (цемпесч.раствор)	300	200	300					

Таблица 3

Елоки в процессе монтажа опоры устанавливаются на прокладки толщиной до 20мм, помещаемые в канавку нижнего ряда блоков. При установке блоков первого ряда в углубление ростверка тохщина прокладок ясжет быть увеличена до 40мм. Стклонение от вертикальности положения каждого блока по лицевой поверхности не допускается. Порядок установки блоков изложен в части 3 проекта "Произволство работ".

3.8. Цементный раствор запожнения горизонтальных швов рекомендуется принимать следурщего состава: $\frac{1}{\Pi} = \frac{1}{2.5}$ (по весу), где Π – цемент, Π – песок. Портланд-цемент по ГОСТ ІОІ78-76 марки 500-600 кг/м³.

Песок с ктупностью зерен не более 2,5мм- $1500 \, \mathrm{kr/m}^3$.

СЛБ - 0, 15% от веса цемента в пересчете на сухое ведество

СНВ $\sim 0.05\%$ от веса цемента в пересчете на сухое вещество B/U = 0.55 воды 330 π/m^3 .

Подвижность раствора золжна быть II-I3см.

Раствор должен быть проверен строительной лабораторией на прочность. морозостойкость и удобоукладчваемость.

3.9. Бетон заполнения ядра должен иметь подвижность 8-ICcm при обязательном введении добавок в соответствии с $\pi.4.26$ СНиП E-43-75.

HEANGETAN 4

4. Г. Естон.

Во всех элечентах опор используется тяжелый бетон, характеристики которого назначаются при привязке проекта на основании действующих нормативных документов (но неменее величин, приведенных в таблицах 2 и 3).

	У	словия пр	рименени	7				
наименование	то распо- ложению	по рас- четной толщине льда	по рас- четной темпе- ратуре пяти- цневки	по рас- четной темпера- туре наибо- лее хо- лочного месяца	Марка по проч- ности	Марка по морово- стой- кости	Марка по во- доне- прони- цаемос- ти	Индеко "Д" в марке блока
e e	на суходо-		равно и равно и	равн о и выше - 15°C	300	200	B4	Ī
контурные блоки	ле или вы- ше наивыс- шего уров-	-	-40°C	-15°C	300	300	84	2
X SO	ня воды		-40°C	-15°C	300	300	B6	M2
			выше	-20°C	400	300	B6	3
е блоки	Ha ho noro-	равно и ниже I,5м	-40°C	равно и ниже -20°C	400	400	B6	4
контурн (зоне пере- менного уровня воды)	,	равно и ниже -40°C	равно и ниже -20°C	600	400	88	м5
Š,		внше I, 5м	-40° С	равно и ниже -20°С	600	500	B8	M6

х) уарактеристики приведены в соответствии с письмом ЦНИИС за ъ 531118/485 от OI.10.82 4.2. Арматура.

Сталь класса АП ГОСТ 578I-82 марки ІОГТ ГОСТ $380-71^{X}$ и сталь класса АІ ГОСТ 578I-82 марки ВСТ3cn2 ГОСТ $380-71^{X}$ (для обычных климатических условий ВСТ3nc2).

- 5. МЕТО ТИКА ПРИВЯЗКИ ПРОЕКТА, ПРИМЕРЫ КОНСТРУКЦИИ ОПОР
- 5.I. При привязке проекта следует определить необходимый размер сечения опоры для конкретных условий.
- 5.2. Предварительное определение необходимого размера сечений производится в следующей последовательности.
- I. По таблицам на листах 537Р4-I-O2 определяется величина нагрузки по верху подферменника в зависимости от типа пролетного строения и положения пути в плане. Приведенные в таблице данные

являются исходними при составлении расчетных сочетаний нагрузок.

- 2. Используя данные по п.І определяются величины нагрузок на уровне рассматриваемого сечения.
- 3. По величинам нормативных нагрузок в сечении определяются минимальные размеры опоры вдоль А и поперек В оси моста по следурими формулам (методом подбора):

$$A = \frac{-P_1 + \sqrt{P_1^2 + 33.5M_1HB^2}}{1.5HB}$$

$$B = -P_2 + \sqrt{P_2^2 + 33.3M_2HA}$$
5 HA

- где $P_{\rm I}$ и $P_{\rm 2}$ суммарные вертикальные нормативные нагрузки соответственно вдоль и поперек оси моста в рассматриваемом сечении.
 - $M_{ extsf{T}}$ и $M_{ extsf{Q}}$ суммарнче изгибающие моменты соответственно вдоль и поперек оси моста
 - Н высота опоры (для одноярусной опоры) или ее яруса.
- 4. Из таблиц на листах 53794-I--ОЗ подбирается ближайшее по размерам сечение опоры.
 - 5.3. Окончательная проверка принятых размеров сечений опоры производится в соответствии с требованиями СН 200-62 и СН 365-67 и с соблюдением следующих условий (в соответствии с письмом ШИМС от 05.08.83 №53III7/445):

- проверка по ограничения положения равнодействующей активных сил от основных и дополнительных сочетаний нормативных нагрузок производится для сечения, газмеры которого принимаются по наружным его граням (т.е. по наружной по верхности контурных блоков).
- проверка на прочность от расчетных нагрузок основных и дополнительных сочетаний произвозится для сечения, размеры которого принимаются по внутренней стороне продольной канавки, расположенной на верхней постели контурных блоков.
- проверка на устойчивость против опрокидывания от расчетных нагрузок основных и дополнительных сочетаний производится для сечения, размеры которого принимаются по наружным граням блоков за вычетом фасок.

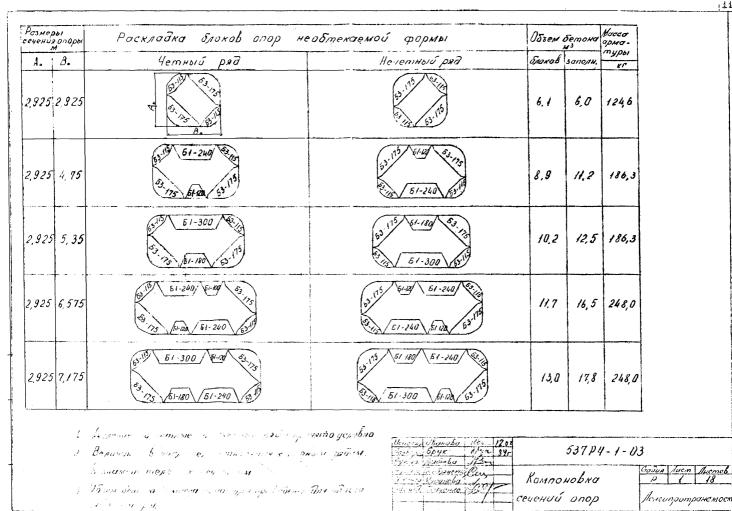
Примеры определения размеров сечений опор приведены на листах 537Р4-I-I2.

- 5.4. В проекте приведены примеры конструирования опор для различных условий:
- Пример I (листы 537Р4-I-08) опора одноярусная, расположена на суходоле, на кривой в плане радиусом 300м под железобетонные пролетные строения расчетным пролетом I5,8м по типовому проекту инв. 4 557, с фундаментом на естественном основании.
- Пример 2 (лист 537Р4-I-09) опора твухярусная, расположена на сухололе, на прямом участке пути, под сталежелезобетонные пролетние строения расчетным пролетом 33,6м по типовому проекту инв. № 739, со свейным *унламентом на сваях сечением 35х35см.
- Пример 3 (лист 537Р4-I-10) опора одноярусная, расположена на волотоке, пол стальные пролетные строения расчетным пролетом 65,0м по типовому проекту инв. # 690, фундамент свайный на сваях-оболочках диаметром 0.6м.
- Пример 4 (лист 537Р4-I-11) опора авухирусная, расположена на водотоке при наличии ледохода, под стальные пролетные отроения расчетным пролетом IIОм по типовому проекту инв. # 690, фундамент на сваях-оболочках диаметром 3,0м, заполненные бетоном.

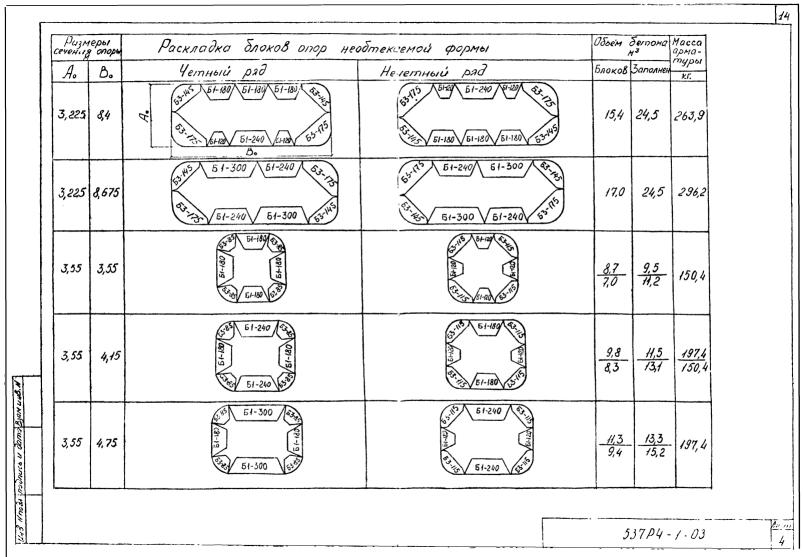
6. ОСНАСТКА. ПРОЕКТ ПРОИЗВОДСТВА РАБОТ

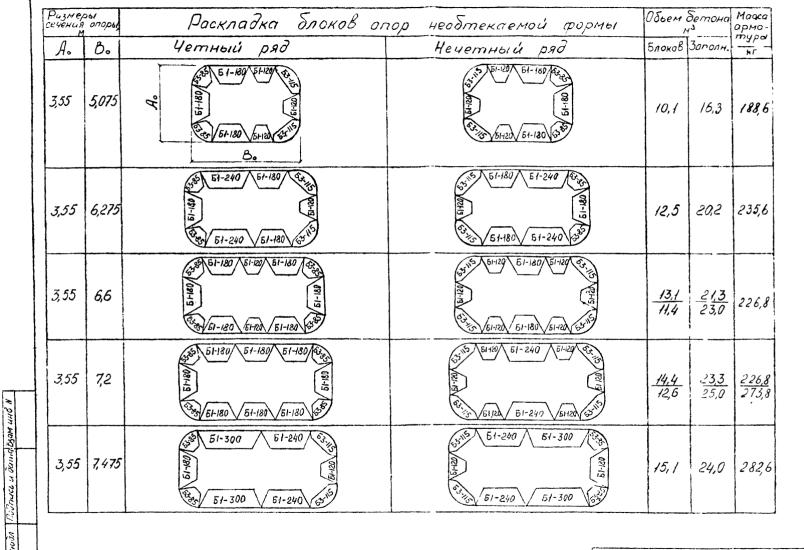
- 6.1. Часть 3 проекта "Произволство работ" разработана СКБ Главмостостроя.
- 6.2. При производстве работ по сооружению опор железнодорожных мостов следует руководствоваться следующими правилами и нормами техники безопасности:
- СНиТ II-4-80 Техника безопасности в строительстве.
- CHuП II-43-75 Мосты и трубы. Правижа произволства и приемки работ.
- CHull II-I6-80 Бетонные и железобетонные конструкции сборные.
 Правила птоизводства и приемки работ.
- CHull D-15-76 Бетонные и железобетонные конструкции монолитные Правила производства и приемки работ.
- Правила устройства и безопасной эксплуатации гругоподъемных кранов (утверждены ЦК профсоюза рабочих железнодорожного транспорта и Минтрансстроем в 1968г.)
- Рекомендации по обеспечению безопасности при производстве строительно-монтажных работ в условиях Северной зоны страны (разработаны ЦНИИОМТП Госстроя СССР и ВНИПИ труда в строительстве Госстроя СССР, Москва Стройиздат 1976г.)
- 6.3. Контурные блоки должны, как правило, изготавливаться на заводах МЖБЧ. Изготовление их на полигонах допускается в случаях, когда изготовление на заводе оказывается экономически нецелесо-образным.
- 6.4. Монтаж контурных блоков производится в соответствии с требованиями СНиП $\mathbb{Z}-43-75$ и части 3 настоящего проекта.
- 6.5. Работы по укладке раствора, установке на него контурных блоков и расшивке швов следует выполнять при среднесуточной температуре наружного воздуха не ниже плюс 5° С и минимальной суточной температуре не ниже 0° С. При более низких температурах монтаж блоков следует производить по специальному проекту, кооторый должен быть согласован с инстанцией, утверждающей проект моста.
- 6.6. При составлении проекта производства работ на основании вышеупомянутых нормативных документов и данных настоящего проекта, разрабатываются конкретние технические указания по сезопасному виполнению строительно-монтажных работ.

- 6.7. В рабочих чертежах конкретных объектов должны быть предусмотрены необходимые устрояства, обеспечивающие безопасность при эксплуатации опор (перила, счотровые приспособления); см.лист 537РЧ-1-07.
- 6.8. Проект произволства работ для конкретного объекта отроительства должен содержать разделы — "Техника безопасности" и "Зашита окружающей среды"...

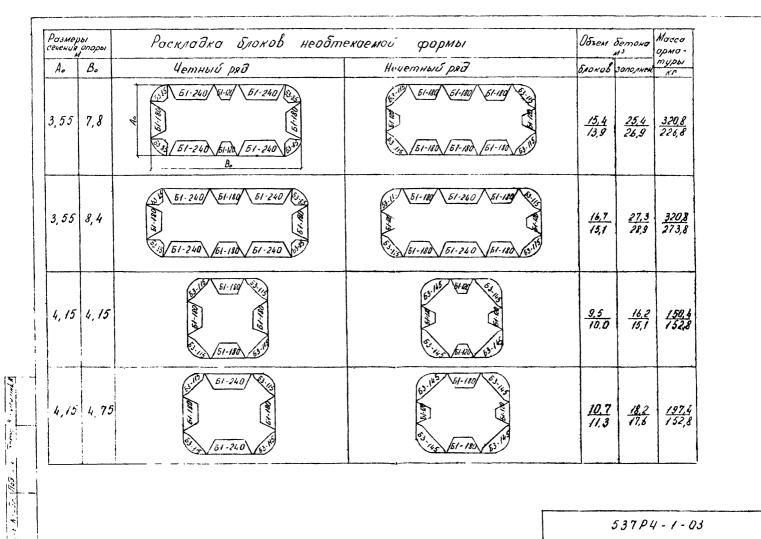

Эскиз	_	,,		2050F	MEPE	16		0632."	Macca	
	•	Hauns re8ano	•	α	h		Маси Блока	6610HG	प्राथायाः प्रथितिहास	
, a				MM	MM	MIH	<i>[17]</i>	м3	Kr	
0		OHOKO	61-300-1; 61-300-2	3000			6,5	2,71	42,6	
3		KOH GA	51-240-1; 51-240-2, 51-240-2M; 51-240-3; 61-240 4; 51-240-5M, 51-240-6M	2400		•	4,8	2,00	42,6	
10 T		SX X	51-180-1; 61-180-2, 51-180-2M, 51-180-3, 61-180-4, 51-180-5M; 51-180-6M	1800	1500	800	3,4	1,42	19,1	
\$		500	51-120-1; 61-120-2; 61-120-2M 61-120-3, 61-120-4. 51-120-5M; 61-120-6M	1200			1,9	0,79	19,1	
v a	J	18/15	62-150-1; 62-150-2; 62-150-2M; 62-150-3; 62-150-4; 62-150-5M, 62-150-6M	2748			4,3	1,79	42,6	
3 7	y I Th	Amylo.		2194		6-1-	3,6	1,50	42,6	
0		lepe.	52-90-1, 52-90-2, 62-90-2M; 62-90-3, 62-90-4, 62-90-5M; 52-90-6M	1640	1500	800	2,4	1,00	13,1	
31	100	puo/	62-60-1; 62-60-2, 52-60-2M; 62-60-3, 62-60-4, 62-60-5M, 62-60-6M	1086			1,7	0,71	19,1	
+ 1 60	1 1-6-	1 3	63-175-1, 63-175-2; 53-175-2M 63-175-3, 63-175-4, 63-175-5M 63-175-6M	2433		1000	5,0	2,05	43,8	
31		J God	53-145-1; 63-145-2, 63-145-2M. 63-145-3, 63-145-4, 63-145-5M; 63-145-6M	2008	1500	800	4,1	1.71	19,1	
, α,) h	KOMMUP.	53-115-1, 53-115-2; 53-115-2M 53-115-3, 53-115-4, 63-115-6M, 53-115-6M	1584		700	2,3	0,96	18,5	
\$ 3		BOX	63-85-1, 63-85-2, 63-85-2M; 53-85-3, 63-85-4, 63-85-5M, 63-85-6M	1160		720	1,8	0,75	18,5	
Характера Приведена	истика вс В пояснит	тона Ельной	БЛОКОВ Записле.	1,	PUN C	9,146h.c. R		7- 12AZ	<u> </u>	537 P4-1-01
				1.	ני מים יי יין פיי ייי	n ,,,	~~7,		μ	HEROTELO USGENUI POLO TO TO

Постоянная нагрузка	N=03	7c 173,1 155,8	N ICN)	16 210,7 189,5	PCAJ.	#c 281,8 253,7	PI FCM	26. 7c 348,2 313,4	ZCM —	333,4 300,0	6 1CM —	43 IC 4822 434,0	M rcM	H IC 604,5 544,1	,0 M FCM —	FC 288,1 259,3		88 75 479.5 431.6	PCAI	11 Fic 612,
NO CONTRACTOR OF THE CONTRACTO	12>1.0	201.6 162.4 203.1	60,9 76,2	251,2 178,1 221,7	66,8 83,1	334,5 210,5 258,9	97,1		199,7 1.22,6	371,5	130.0	437.2	196,7	500,4	225,2		276,5 315,6	124,0	384,1 434,4	879.5
NOTO NO BOARD OF THE PORT OF T	1>10	267.0 321.2	60,9	177.4 291,0 346,0		3422 3 97,0	<i>77,7</i>	391,6 449,6	_	481,9 549,8	1040	349,7 636,3 719,0		776,3 869,5		931,7 1032,3		579,2 1240,4 1364,4		1548, 1703,
BRANCOCTOR NO. THE STATE OF THE	0,81	256.9 16.6 13.3		276,7 18.9 15,1		317.6 23.8 19.1		359,5 27,9 22,3		440,0 34,4 27,5		575,2 45,5 36,4		695,6 55,5 44,4		826,4 66,6 53,3	_	1091,6 88,6 70,9		1362,
DA OTHOR	e 0.81	36.2	4,3 4,3 4,2	39,8 39,8	4,8	47.2 46.4 47.2	19.4		1 -	61,3 58,7 61.3		g	31,5 29,4 31,5 28,5	87,2	43,2 39,6 43,2 38,7	100,6	45,4 49,8		64,8 71,7	154, 138, 154,
MOONE, MO	n n	34,8 7,6 9,0 9,0	13,3	37.8 9.0 10.8 10.5	4.5 14.0 16.7 32.3	43,8 12,6 15,1	30,8	16,7	37,3	26,5		45,0 54,0	1	55,4 66,4	184,1	68,0	310,9	115.5	717,5 861,0	153,
TO STORY OF THE PROPERTY OF TH	7 -	13,6	32.4	12,6 15,5 14,7	38,8 38,0	16,8	59,6 60,2	210	18.8 19.8 13.2	27.0	ļ	38,2	222.7	56.9 46.8	1	55,9	127,5	65,5	195,7	92,5
Продольный ветер		Pacy			=			<u> </u>		Uen		- OYK	-	1201		15,6	93	27,7 33,3 -1-	15,5	1

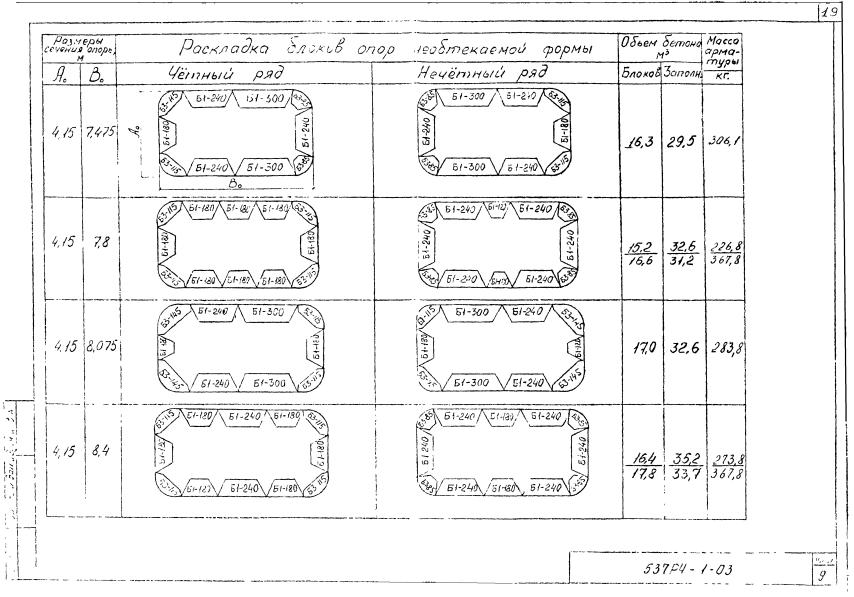

•	HOR	py3	OR	12 de 27	UH.	3.N557			UHB N				UHB.	N739
				Вгодимае коэффици- енто	/3 // // // // // // // // // // // // //	7,8 M	18,		22			5,9	33	6
	7		Γ	7 4	9,7	TOM	H FC	TCM	fc	ICM	H rc	TCM	H	MEM
			40 0340,4	12>10		41.7	10,1	47,4	12,6	63,9	16,1	88,1	18,6	105,
		8	ייניטיינינות אוריניתו		12,1	52,0	13.3	58,9	15,5	18,6	19,6	107,2	22,3	126,
		3000,4		0,8n	9,7	41,7	10,7	47.4	12,4	62,9	15,7	85,9	17,8	100,
		ر"	784X		16,0	68,8	17,4	77,1	20,5	103,9	23,4	128,0	28,9	163
		_	TPONETOX	12>1.0		83,0	20,7	91,7	23,8	120,7	26,9	147,1	33,0	187,
6/e				0,812	15,4	66,2	16,6	73,5	19,0	96,3	21,5	117.6	26,4	149,
H C	5		HO		16.2	69,7	17.8	78.9	21.1	107,0	25,8	146,6	31,0	175
000	0.0	1800n;	одном Проле те	12>1,0	20,3	87,3	22,2	98,3	26,0	131,8	32,6	178,3	37,1	210,
	d	180	riporere	0,81	16,2	69.7	17.7	78,4	20,8	1055	26,1	142.8	29.7	168,
\	Центробежная	, = d	HO	_	26,7	114,8	291	128,9		173,9	39,2	214.4	48.2	273
A O	72.	~	PAUX	12>1,0	32.1	138,0	346	153,3		201.8	450	2462	55.0	3/1
W	3		17/20/18/10X	0,82	25,7	110,5	27.7	122.7	31.8	1512	360	196,9	44.0	249
2	2	2	40	_	24.4	104.9	26.7	1183	31.6	1502	40,3	220,4		
0	Haj	1200M	ODHOM	12210		131,2	33,2	147,1	38,9				1	315
`	12	10	nogrete		24,4	1049		117.8		197,2	49,1	268,6		1
		300.	-		40,1	172.4	26,6	·	31,1	157,7	39,3	215,0	1-22	252
		35	7.	-	 	-		193,6	51,2	253,6	58.8	321,6		409
		0	PBYX	0.80	38,6	1650	1	2304	1	301,2	67,5	363,2		461
	L	L	1,20,11,00	0,072	100,0	17030	41,6	184,3	47,5	240,8	540	295,4	660	374


53794-1-02

^


Ind Woods, Rodners o Brown

537,24 - 1 - 03

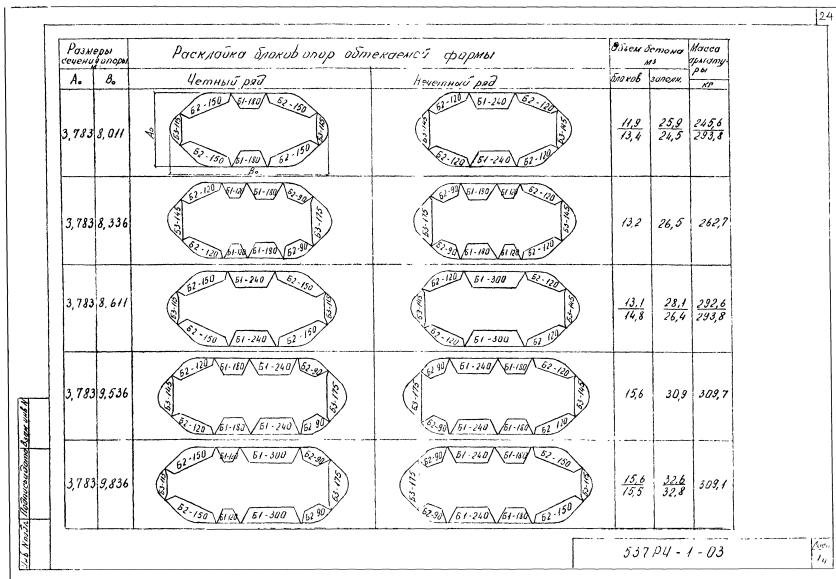

Vin

Pasmepul evonus unupul M	Раскладка Елохив необ.	текаемой формы		бетона 13	ODMO-
A. B.	Четный ряд	Нечетный ряд	бликив	30000H	mypoi
4, 15 5,075	51-150) 51-121 32-133 34 51-180 51-123 33-135 36 33 61-180 51-123 33-135 36 33 61-180 51-123 33-135	63.113 61.22 51-180 6350	11,3	13,6	212,1
4, 15 5, 35	51-300 Sills 51-300 Sills	63.45 \(\delta 1-240\) 63.45	<u>12,1</u> 12,4	<u>20,5</u> 20,2	<u>197,4</u> 199,8
4, 15 5, 675	51-180 51	63 113 51 120 51-180 (55 10)	12,0	22,6	189,8
4,15 5,975	51-240 61-14 63.45 02-16 02-16 03-	61-240 (5.5) 61-240 (5.5) 61-240 (5.5)	13,3	23,2	260,3
	(43) 51-240 61-00 63-147	51 20 / 61 240 (S)		<u></u>	

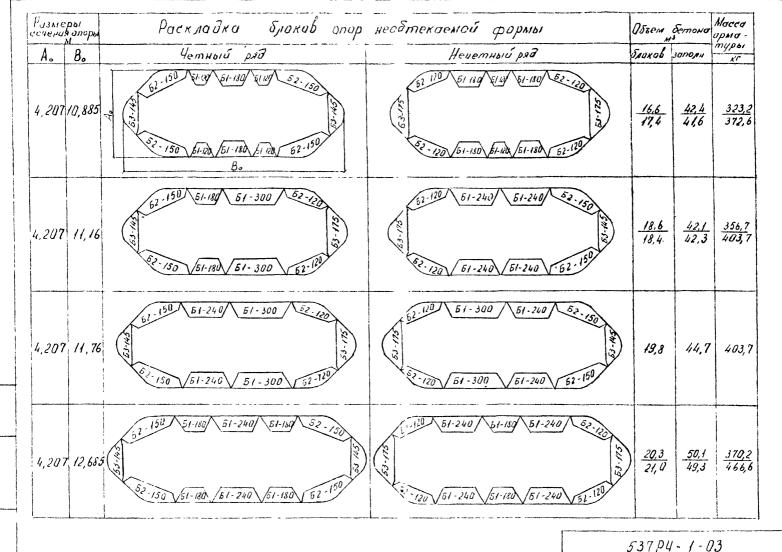
размеры чечения эпоры м	Раскладка блоков необте	каемой формы	Объем ,	ก็คุ <i>ก</i> าอผิ	Mucca apMa-
A. B.	Четный ряд	Нечетный ряд	блоков	заполнен	
4,15 6,275	62 175 \ \(\delta \) \(\delta	51-240 51 /SO (51.18) (51.18) (51.18) (51.18) (51.18)	13,7	24,7	259,1
4, 15 6, 6	\$3 \\ \(\operatorname{\operat	\$\\ \begin{align*} \b	12.7 14,3	27.7 26,1	226,8 273,8
4,15 6,875	63.16 51-240 51-180 63.145	63-145 51-180 51-240 63-163	14,4	27,7	236,8
4,15 7,2	\$\\\ \begin{array}{cccccccccccccccccccccccccccccccccccc	\$\\ \(\begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>/3 8</u> /5,5	30.3	273,8
4,15 7,2	61.12	Ser. 140)	<u>13 8</u> 15,5	<u>30.3</u> 28,6	

L 4 ... in As mucounding Box Oce to

evenus	опоры м	Ραςκπαθκα υποκοβ οπορ ο	бтекае 10й фармы *	OGBENI O		Мосса арма-
А.	В.	Четный ряд	Нечетный рад	блохов	Заполн	Mypы
2, 934	3,837	(2-30) (2	THE PACE AND THE P	6,1	6,7	114,0
2,934	5,362	\$3 99 \\$1-40\\$2.40	51-180/ Exp 51-180	7,5	12,0	<u>/5/,6</u> /52,8
2,934	8,087	\$\\\ \xi^2 \gamma \lambda \frac{\xi_1 \gamma \lambda \frac{\xi_1 \gamma \lambda \frac{\xi_1 \gamma \lambda \frac{\xi_2 \gamma \gamma \frac{\xi_2 \gamma \gamma \frac{\xi_2 \gamma	51-240 \ 51-180 \ 52-30	12,9	18,8	237,4
2,934	9,287	\$1.90\\\ 51-240\\\\ 51-300\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12 51 - 300 \ 51-240 \ \si2.90 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	15,5	21,3	284,4
2,934	10,212	10 κομπομοβίο το	51-240 51-180 51-240 51	15,6		275,0


537 P4 - 1 - 03

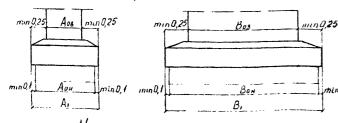
21


Vyen

PUSME	ры	Ρακπαθκα υποκυβ υ	ппир необтекаемой формы	1	бетона 43	Масса
A.	Во	Четный ряд	Не етный ряд	блакив	зиполн	туры
3,359	8,837	62 30 E1 14 51 180 E1 12 62 30 152 153 153 153 153 153 153 153 153 153 153	51-180 & 120 51-180 & 50 50 50 50 50 50 50 50 50 50 50 50 50	13 <u>.4</u> 14,3	25,4 24,6	229,2 218,6
3,359	9,112	62-150 61-128 51-240 52-120 162 162 162 162 162 162 162 162 162 162	62 120 51-180 51-180 62 150 62 120 51-180 61-180 62 150	13, <u>9</u> 14,0	26 <u>4</u> 26,3	330,8
3,35 9	9,437	62 120 E1 12 61-130 E1-13 52-120 E1 120 E1 E1 120 E1	\$2 90 \$1 180 \$1-180 \$51-180 \$2 90 \$1-180 \$1-	<u>13,9</u> 14,7	27,9 27,2	<u>322.0</u> 229,2
3 359	9,712	62 150 \61 180 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	62 120 51-240 51-18U 62-50 52 120 \(\beta 1-240 \) \(\beta 1 \) \(\beta 2 \) \(\beta 1 \) \(\beta 2 \) \(\b	15,1	28,1	330,8
3,359	10,312	62 150 51 130 51 -300 62 20 3	62 120 \ 51-240 \ 51-240 \ 52 130 \ 52 120 \ 51 240 \ 51-240 \ 52 130	16,6	29.7 300	330,8

537 P4 -1 - U3

Лист 15


DUZMEPHI EVEHUA UNOPH	Раскладка блоков опо	р обтекаемой формы		Semona M3	Насся
А. В.	Yerrhold pag	Нечепоный ряд	δλοκοξ	<i>אניגס</i> וום	туры
4,637 <i>8,29</i> 5	0 51-240 62-30 51-240 62-30 GZ-30 GZ	51-300 Sign Chings Chin	13,1 15,4	32,6 30,3	275,0
4,667 10,145	51-180 \ 51-	51-180 51-120 51	15.1 17.3	43,5	304,4
4,667 10,42	62.30 51-80 51-300 (ST. 1.3.2)	61-240 52-240 51-240 52) <u>17,8</u> 17,5	42,8	3/3,2
4,667 11,945	62-90 \ 61-180 \ \ 51-240 \ \ 51-	61-240 51-240 51-240 560 51-240 5240 51-240	18.8	<u>52,4</u> 50,3	351,2

A noon Pronuce a doro Brane with

537P4 -1-03

Ταδλυμο 1 1.1. Размеры подферменников MUNUMAMANO 20-NUCHUMANI POS-MED OPOPHI BO Типовой Росчетный Минимальные праект пролет розмеры подфернеобте - обтека-Amus Bmin Hmin DUPHON DUPHIN 10 peopuemoe 3,2 1.7 0.85 0,55 2925 3,75 4.65 minü minOl 18,0 1,8 UHB. N556 "Размер в скобках относится 22,9 Шифр 3. 0 5,0 102P4: 1.2 0.9 к пролетным строениям 1.0 2,0 26.9 Pacyemnoù Bruhoù 15,8 u 18,0m 2,0 33,6 3.2 0.75 1.0 Размеры подферменника определяются условиями: 11 H BN739 0.95 3,55 1,25 4,95 45.0 5,55 2,3 5.0 55.0 3,6 1) A > Amin no rpage 3 magnuyul 2.2 3.7 66,0 5.7 7.0 8.6 B > Bmin na 2page 4 magnuyol UHB V690 2 A > Ao +0,2M 88,0 110,0 B > Bo + 0,2M 1 Размеры в скибках отнасятья к падферменникам

1, 2.	газмеры	прокладникор

Минимальные размеры прикладника:

BITTIT = BON + 0.2M

Armin = Aun + 02m

DIIDD OB MEKBEMOLI COPMIN

2. Минимальные конструктивные размеры пидферменникав и приклайников ириведены на листах, спр. 32-34

Universe bour 6700 537P4 - 1 - 04 Вун ур Дибива Hay ST Troventa State Подферменники и проклабники Sensingerpanemuet

2. Примеры проектирования. подрерменников и прокладников.

2.1 PIDUMED 1 Подферменник для апоры прэмочгольной дгормы под прозетное строение 12660м (им маго) по расчету сечение попоры имеет расмеры Ao=3,55 M, Bo=7,2M Bmin = 9,0 m (cm n.1,7061.1 ep. 3,4) 1) Amin=3,7M 2) Учитывая расчетные размеры опоры и конструктив-

ные требования, назначены размеры подерерменника; A=3,55+0,2=3,75> Amin . B=6,5+0,2=6,7M < BATLA

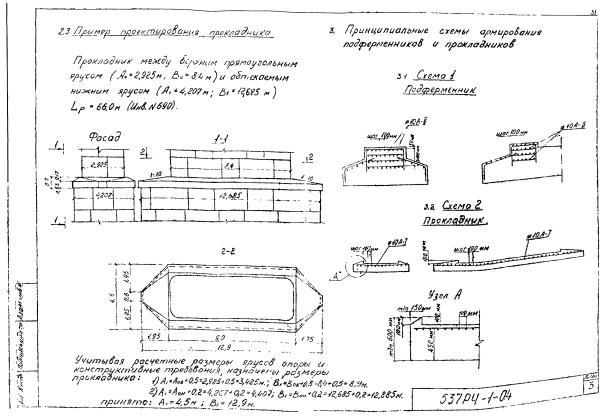
Принято А=3,75 м Принянто B= Bmin=9,0м Фасаб 80= 72

9,0

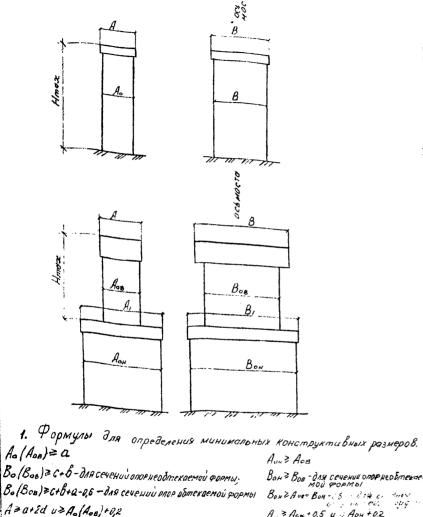
22 MPUMEP2.

Подферменник для одноярусной опоры автекаемой формы под пролетное строение 4,=33,6м (Инв. 739) По расчету сечение опоры имеет размеры Ao = 2,934 M Bo = 4,437 M Brin = 5,2m (cm. n.1.17951,12p3,4) Anica = 3,5 M 2) Учитывая ресчетные размеры и конструктивные тревования, назначены размеры подфертенника:

- - A=2,934+0,2=3,134m<Amin=3,5m B=5,362+0,2=5,562>Bmin=5,2. PDUHAMIO A=3,5M Pacad A = 3,5



537 P4-1-04


Прин91170 B=5,6M

TOBALLO 1 Расчетный Hmax M Минимальные конструктивные размеры, м ONOD HEOD DODARM meraemol Опоры необтеко Опоры обтекоемой формы, "> мной формы обно обногрусные обногрусные PRUMBIKAH формы н Кривой LIGUX ADOMEM HUX cmpae-HUÚ. Ao; Aou Bo; Bos Bυ A В R= 00 R= 300 15,8; 18,0 2,925 2,925 2.934 3.837 3,2 4.65 7,0 8,5 2925 4,75 2,934 5,362 5.6 3,5 22,9: 26,9 3 225 3225 (10,0) 3,359 4,562 5.0 3,6 2,925 4,75 2.934 5.362 3.5 5,6 33,6 8,5

3,225 3,225 3,359 5,162 3,6 5.4 8,5 2,925 4,75 2,934 3,5 5,362 5.6 450 3.55 3.55 3,359 3,6 10,0 5,162 5.6 2,934 5,362 3,5 5,6 550 2925 4,75 8.5 3.359 5.162 3.6 5,6 2,934 9,287 3.7 9,5 66.0 7,175 2,925 30 9,1 3,359 8,837 3.7 2,925 7,775 88. Q 2,934 9,287 4.1 9.5 30 7,475 3,225 7,775 10,212 4.1 2925 2934 10.5 3,0 110.0 9,4.37 7475 3.359 3,225

hoor Manuel Coord & seconds

B≥C+B+2C u≥80(808)+0,2

6 , 10 Cal

A, = Acm + 0,5 U .: Aon +02 B. > BOX -0.5 - BOH+02 2 Размер в скобках относится к пролетному строению 2р-2. Ям 3. Pasamams cobmecTHO C JUCTOM 537P4-1-04

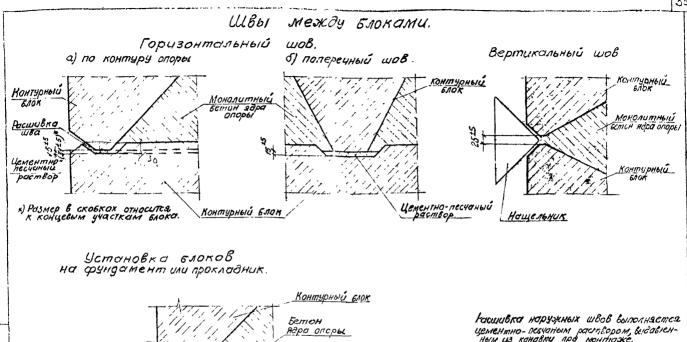
June 1995 1 Pare 1258

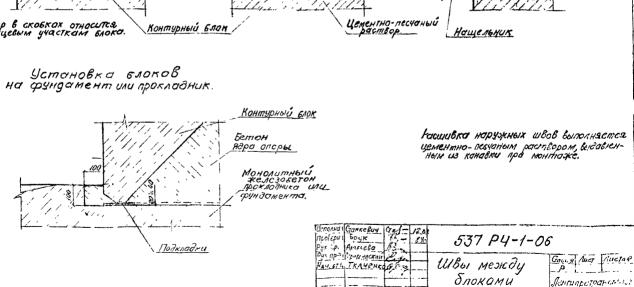
MUHUMELAUNDE 1 KOH CMPS KMUBHOIC

1) Минимальные конструктивные размеры под : помериков опорнеовтехасной формы приводины в таба. 2, стр 33,34

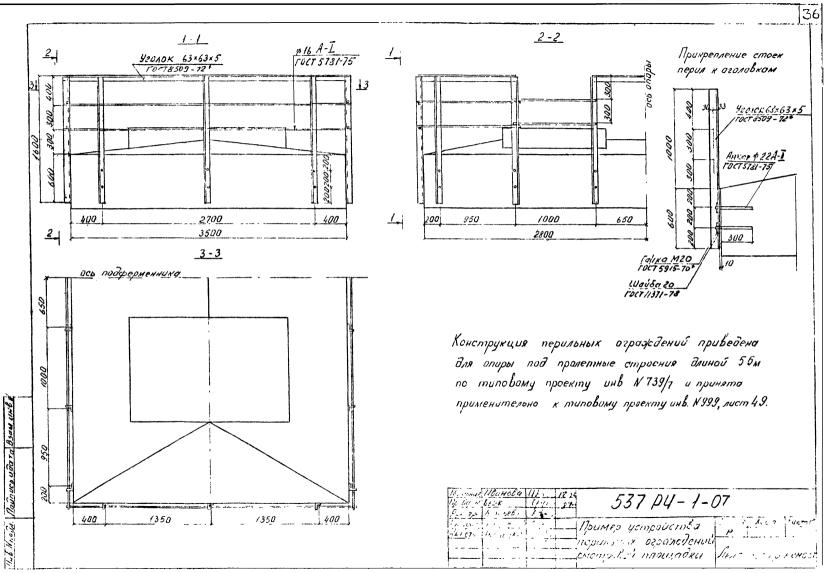
I will Epol or 3,0 April unputy age

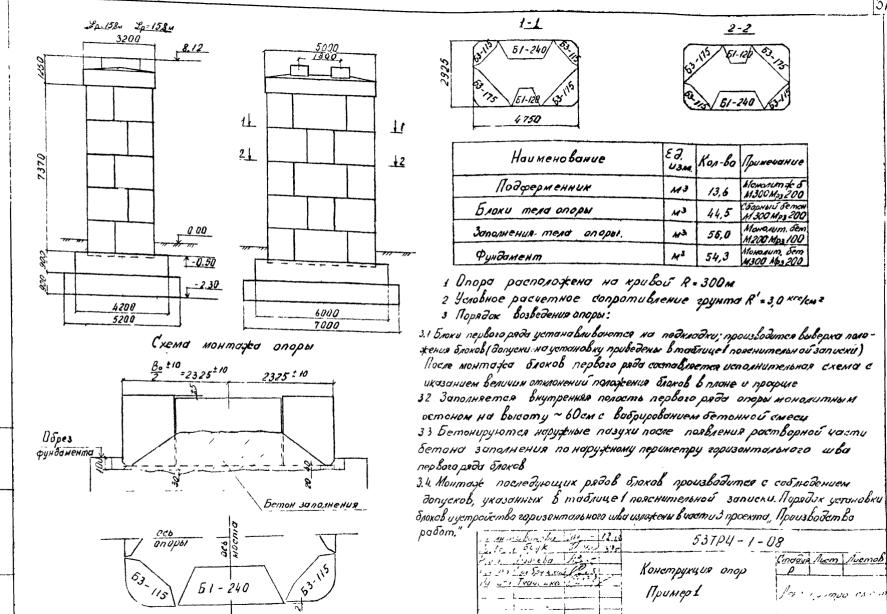
537P4-1-05

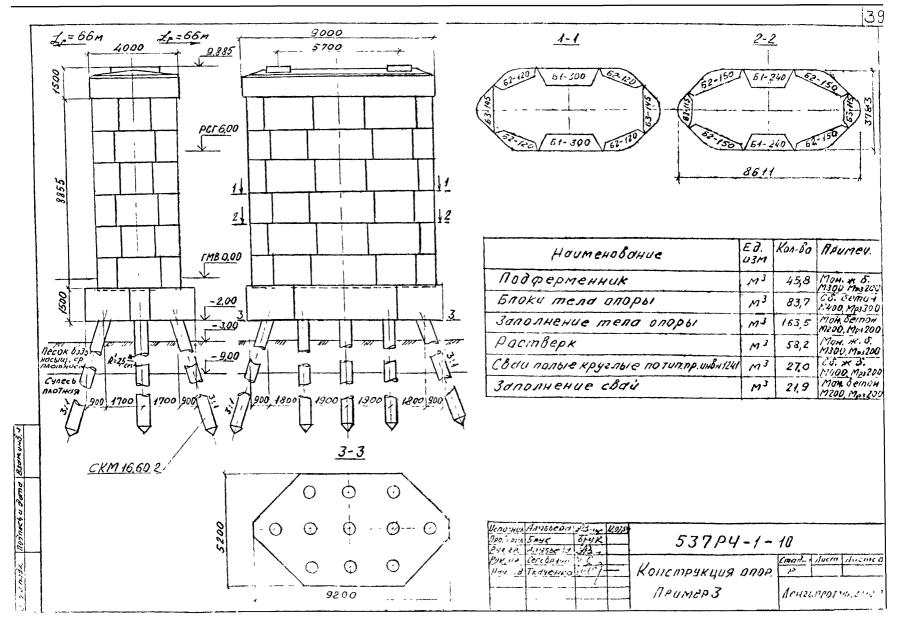

PEKOMEH	дуемые	1 , , , ,									
размерь ний опо текаем мы, м	TA HOOF	псен о ные нев май фо двухярус ним яру текаем	OHOREYC IME KQE - IME K GEPX IME C BEPX COM HEDE OÙ GOOPMM	Опоры Ягусом	двихъяру обтекс						
Ao, AoB	\mathcal{B}_{o} , \mathcal{B}_{og}	A	В	Аон	Вон	A,	31	Аон	Вон	A,	Β,
2,925	2,925	3,2	3,2	2,934	5,362	3,5	5,6	2,925	2,925	3.5	3.5
2,925	4,75	3,2	5,0	2.934	8 087	3, 5	8,3	2,925	4,75	3,5	5,3
			5,0	3,359	7,912	3,6	8,2	3,225	4,75	3,5	5,3
2.925	5,35	3,2	5.6	2,934.	8,087	3,5	8,3				0,3
-,02-	-,	0, 2	5,6	3,359	7,912	3,6	8,2	2,925	5,35	3,5	5,9
2,925	6,57,5	3,2	6,8	2,934	9,287	3,5	9,5	2.925	6.575	3,5	7/
2,925	7,175	3,2	7.1	2,934	10,212	3,5	10,5			0,0	7,1
,		J, Z	7,4	3,359	9,712	3,6	10,0	2,925	7,175	3,5	7,7
2,925	7,775	3,2	8,0	2,934	10,212	3,5	10,5	2,925	7,775	3,5	8,3
3.225	3,225	3.5	2.5	3,359	6,387	3,8	6,6.		1,7.75	0,0	0,3
	9,220	J, J	3,5	3,783	5,886	4,0	6,1		3,225	?5	3,8
3,225	4,75	3,5		3,359	7,912	3,8	8,2				-
			5,0	3,783	7,411	4.0	7,7		4,75		5,3
3,225	5,35	3,5	5,6	3,359	8.187	3,8	8,4	1	5,35		-
3,225	5,95	3,5	5,2	3,359	8,837	3,8	9,1	3,225			5,9
				3,783	8,611	4,0	8,9		5,95	3,8	6,5
3,225		3,5	6,5	3,359	9,112	3,8	9.4	0,223	6,275	٥,٥	-
3,225	6,875	3,5	7,1	3.359	9,712	3,8	10,0	İ	6,875		6,8
3,225	7,475	3,5	7.7	3,359	10.312	3,8	10,6	1		-	7,4
			',,	3,783	10,461	4,0	10,7		7,475		8,0
3,225		3.5	8,0		10,912	3,8	11,2	1	7.8		-
	8,075	ļ	8,3	3,359	10,512	J, D	1,2		7,8		8,3
3,225	8,4	3,5	8,6	2 160		20	_	1	8,4		8,6
3,225	8,675	1	8,9	3,350	11,837	3,8	12,1		8.675		9,2

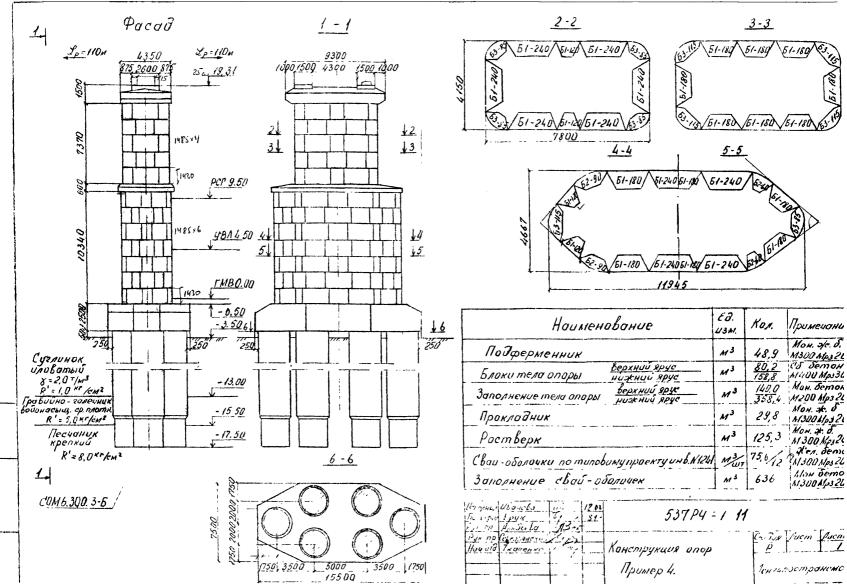

1 Размеры А и В Волжны быль не менее Ати и В тип, приведенных на листе 537 Р4-1-04.

537 14-1-05


									2.				3
		11							ица 2 (п,	одолж	enue)		-
Рекомен размерь опор не мой ф	ндуемые 1 сечений обтекие: ормы,	MUHU Unopei od Heosmekae Mei u Egy L BEPX HUI HEOSMEKA COOMEI	мальны ноярусные емой фар- къярусные м эрусом цемой	е конс Опоры нижно мой д	двухъя им яру	русные	размере С пека е -		двухъяр м ярусол пормы	усн ы е необл	с пека е -		
Ao, AoB	B_o ; B_{oB}	Α	В	Аон	Вон	Α,	Β,	AOH	BOH	Α,	Β,		
3,55	3,55	3,8	3,8	3, 783	6,811	4,1	7.1		3,55		4,1		
3,55	4,15	3,8	4,4	3, 783	7,411	4.1	7.7		4.15		4.7		
3,55	4,75	3,8	5,0	3,783	7,835	4,1	8,3 8,1		4,75		5,3		
3,55	5,075	3,8	5,3	3,783	8,336	4,1	8,6		5,075		5,6		
3,55	6,275	3,8	6,8	3,783	9,536 9,836	4,1	9,8		6,275		6,8		
3,55	7,2	3,8	7,4	3,783	10,461	4,1	10,7	3,55	7,2	6,6	7,7		
3,55	1,475	3, 8	7,7	3,783	10,461		10,7	3,33		4,1			
3,55	7,8	3,8	8,0	3,783	11,336 10,885	4,1	11,6		7,475		8,0		
3,55	8,4	3,8	8 8.6 3.183	3.183 12.261	4,1	1 12.5		7,8		8,3			
4,15	4,15	4,4	4,4	4,207	11, 76 7,835	4,5	12,0		8,4				
	 	—	 -	4,207	9,035	4,7	9,3		4,15		4,7		
4,15	4,75	4,4	5,0	4,667	8,295	4,9	8.5		4,75		5,3		
4, 15	5.075	4,4	5,3 5,6	4,207	9,035	4,7	9,3		5,075		5,6		
4,15	5,675	4,4	5,9	4,207	9.36	4.7	3,6	1	5,35 5,675 5,975 4	4.7	5,9		
4,15	5,975	4,4	6,2	4,207	9,96	4,7	10,2	4,15			6,5		
4,15	6.6	4,4	6,8	4.207	10,885	4,7	11,1	1	6,275	,	6,8		
	10,0	17,7		4,667	10,145	4,9	10,4	1	6.6		7,1		
4,15	6,875	4,4	7,1	4,207	10,885	4,7	11,1		6,875		7,4		
4,15	7,2	4,4	7,4	4,207	10,885	4.7	11,1	1			1		
4,15	7,415	4,4	77 - 80 -	4,207	11,16	4,7	11.4		7,2		7,7 .		
4,15	8,4	4,4	3,6	4,207	12,685	4,7	12,0	-	7,8 8,075		8,3		
		1	1	1,007	11,946	4,9	12,2		8,4	1	8,9	Harris	
												1 6371311 1 105	14


Schrungerparasions




Miximis u oras Bonerichian

38

ance a some Book und

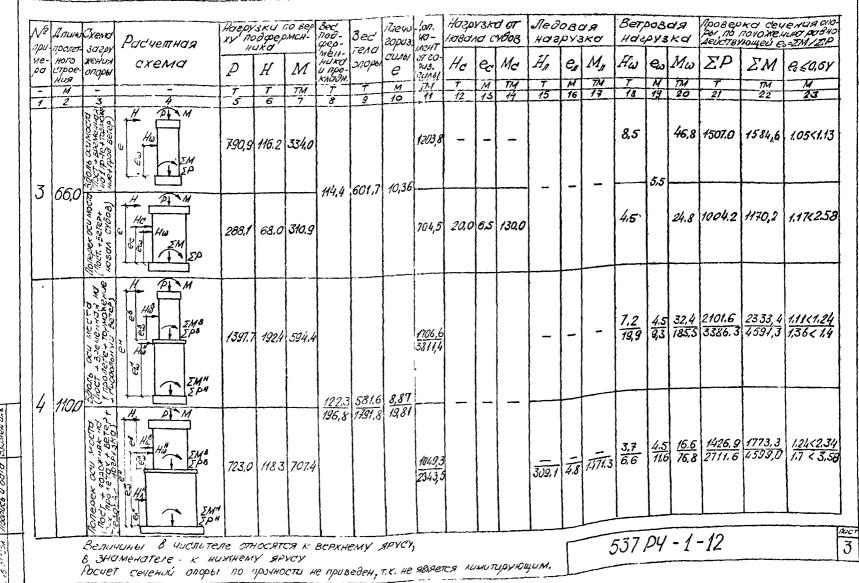
warod on	empoerus	В	ρ,	ρ,²	M1,	xW, xH×B	+33,3M.HB	V.P. + 33,3 M. HB	+ 102+333MHB	ΔA	ρ_{z}	p ₂ ?	M2	3xWxHxA	333M.HA	+ VP + + 33,3 M, H.	5HA	Δ
Las	2010	m	TC	TC 2	TCM	333	M.	4	4-6		TC	rc2	rcm	330	000	12.11	8.30	
8) downdu	5, 0	335,5	112560		519696	795,9	460,4	2,18	0.24	440,1	193688	6/3,8	375/80	754,2	3/4,1	3,42	0.0
10		3,42				35547/	684,1	348,6	2,42					416484	781,1	341,0	3, 35	0,01
<u> </u>		3, 35				348196	678,8	343,3	2,43					418205	782,2	342,1	3,34	
Ĺ	20	5,0	643,5	414092	482,3		930,3	286,8	2,04		360,9	130249	202,4	77272	455,5	94,6	1.65	
200	3 3	1,65			 	148930	750,3	106,8	2,3	-	ļ	ļ		87120	466,2	105,3	1,63	-
JANED	000	1,63		 		147175	749,1	105,6	23			-	·	87120	466,2	105,3	1,63	
du 2	SOH	5,0	794,3	565805	898,7	1818048	1564,9	770,6	2,54		794,3	565805	355,7	365543	965,1	170,8	1,11	
34,	A. 25.04	2,9		<u> </u>	ļ	1054468	1298,2	503,9	2,86	0,32							2.9	
2000	wx cop	5,0	1397,7	1953565	2342,0	3486090	2332,3	934.6	4.2		723,0	522729	1781.6	2227621	1658,4	935,4	5,0	
										1	1			1	1			

1. Обозначения приведены в пояснительной записне 2 Величины в рамках - онончательные размеры тела опоры, полученные методом подбора.

The in Nodum Clos 12 at 537 P4 - 1 - 12

The bost of the str. 537 P4 - 1 - 12

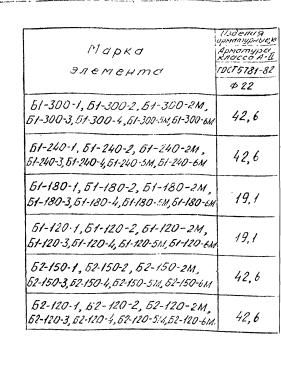
Pyr 12 Anodocto The confidence of the str. 11 to superior of the str. 12 to s


Town Jum &

704-	\ UM	Cremo 30epv	Росчетная	Ногрузки по верху подрер менника			goep-	menj.	0003.	WOUT OF	OT HOL	Sedoscia Harpyskel		Ветровая нагрузка			Npobepko čevenuR onop No nonomenuro pobrođevi CTBYIOЩEVI CS-ΣM/ΣP		
		жения	Схемо	P	\mathcal{H}	M	MEHINI. KOU NPO KNOO-	011 0 1201	e E	101 607	8011d CY806	Ha	Ma	Hw	eω	Мω	$\mathcal{Z}\mathcal{P}$	ΣM	€0 €0.6
_	M	-	-	77	/7	MAT	17	177	M	FM	11	/::	MAI	AT	M	MM	///	/r	M
1	16.5	to MOCTOR CA	H AM	<i>5</i> 335.5	36,2	65,2	34.0	245,7	8,62	312,0		75	-	3.3	4.1	13,5	18 615.2 719,8		20 Q64<0.82 Q.88<1.42
		TO STORE OF	BP EM							423,2									
		llowook Kumac (Ibct. + Boem HO IPO FEICH + HOW P FIROM EXPERIM BETE	o Hw	440.1	49.1	199.4													
2		SOONS OCU MORTO NOCT + SUEM HO 1 NOVE POTOMONEHUE + BOOOMHUU SETED)	TO THE SMA	643,5	61,3	134,2	The same of the sa	109.6 287.6	5,6 12,09	343,3 741,1				1.3	<u>2,81</u> 5.8	<u>3.6</u> 19,7	794.3 990.0	481,1	061<0.5 0.90₹1.0
	34.2	Check acu Moctor (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	M M M SMB	367.8	22.5	86,9				126,0 272,0							511.7 714,4	2/6.5 378,6	0.42<0.5 0.53 <1.0

ВЕЛИЧИНЫ В ЧОСЛАТЕЛЕ ОТНОСЯТСЯ Е ВЕРХНЕМУ ЯРУСУ, В ЗНОМЕНИТЕЛЕ — К НЕЖНЕМУ ЯРУСУ. РИСЧЕТ СЕЧЕНИЙ ОПОР ПО ПРОЧНОСТИ НЕ ПРИВЕДЕН, Т.К НЕ ЯВЛЯЕТСЯ ЛИМИТИРУЮЩИМ.

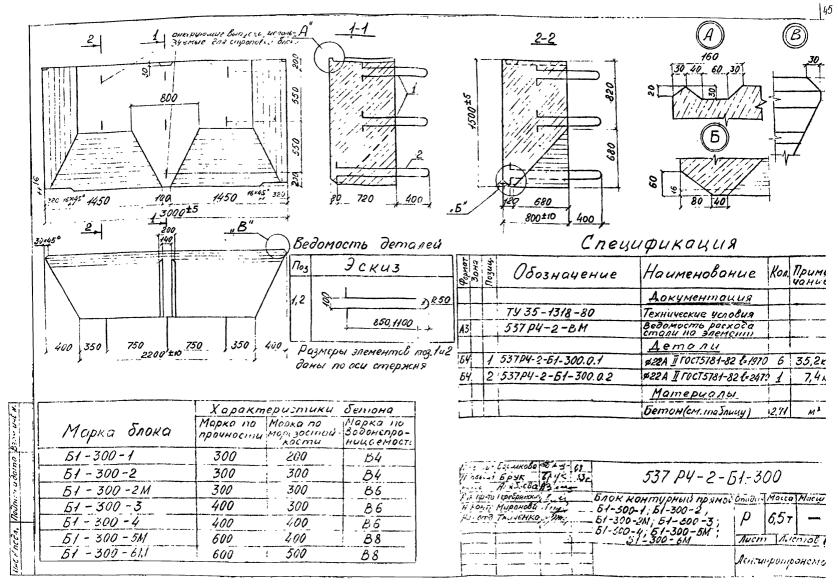
THE NASCA MOONINGS OF BOTH ASOM WAS IN

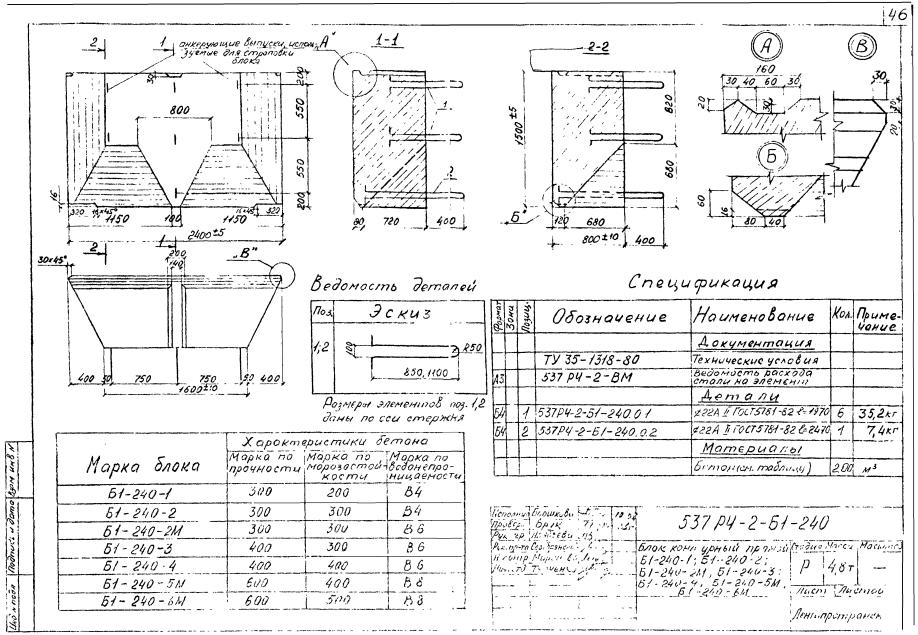

537 P4-1-12

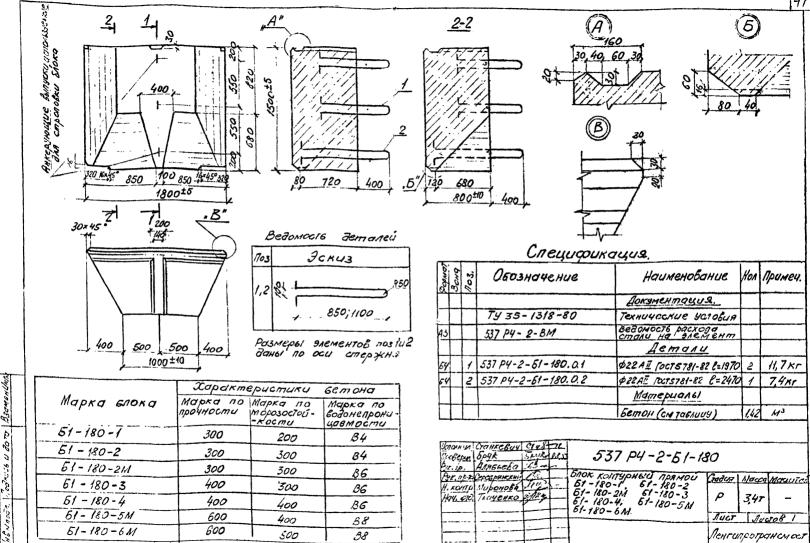
USDEJIUS

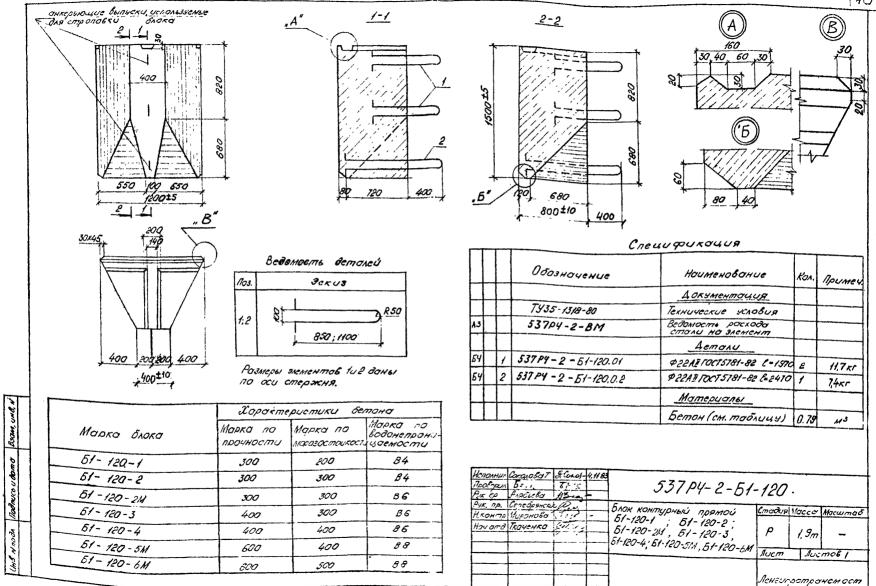
DAN NYPHOLEN

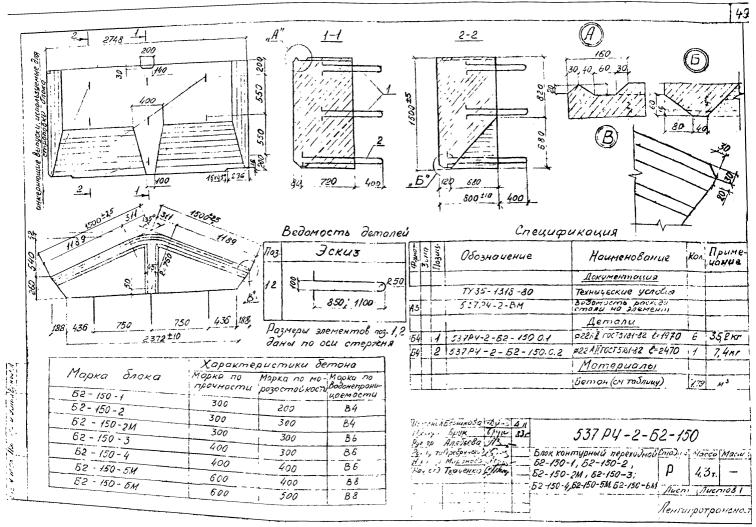
18,5

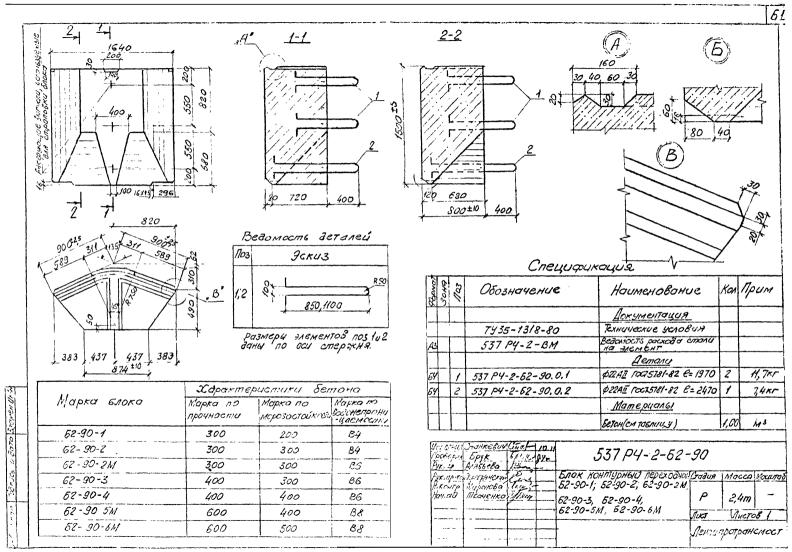


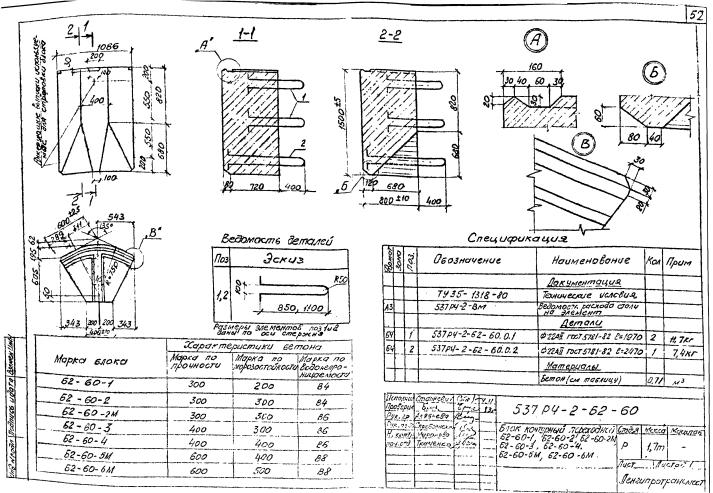

Марка Apriamypa Kildeca A-II 316MEHMA TOCT 5781-82 P 22 52-90-1, 52-90-2, 52-90-2M 19./ 52-90-3, 6-2-90-4,52-90-5M, 52-90-6M 52-60-1, 52-60-2, 52-60-2M. 19,1 52-60-3, 52-60-4, 52-60-5M, 62-60-6M 63-175-1, 63-175-2, 63-175-2M, 43,8 63-175-3,63-175-4,63-175-5M,63-175-6M 53-145-1,63-145-2.53-145-2M, 1,9,1 53-145-3,63-145-4,63-145-5M,63-145-6M 53-115-1.53-115-2.53-115-2M 18,5 63-115-3,63-115-4.63-115-5M 53-115-6M

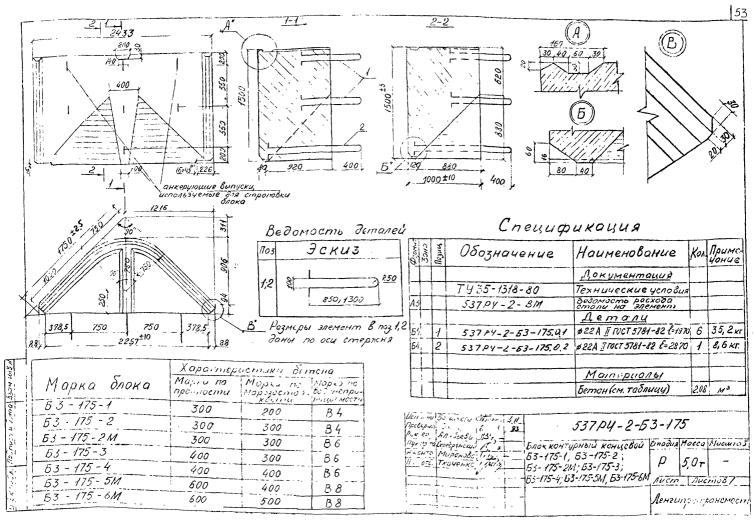

63-85-1, 63-85-2, 63-85-2M,

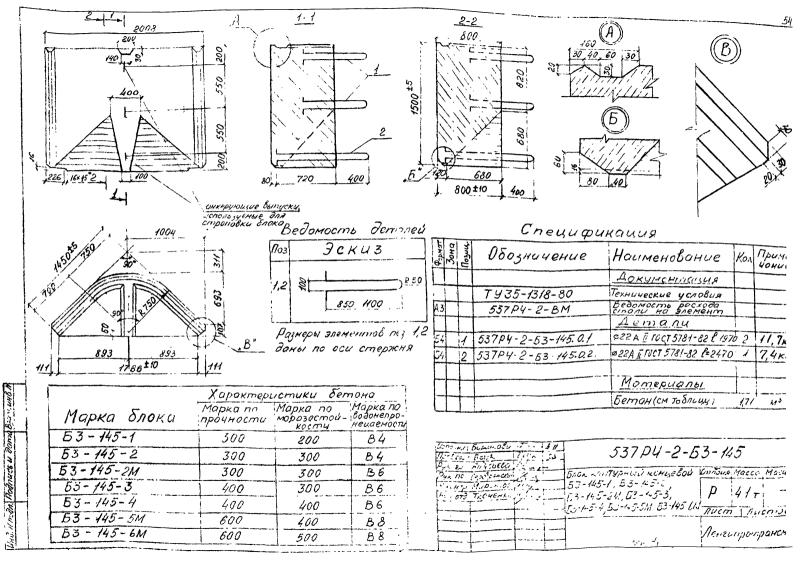

63-85-3,63-85-4,63-85-5M,63-85-6M

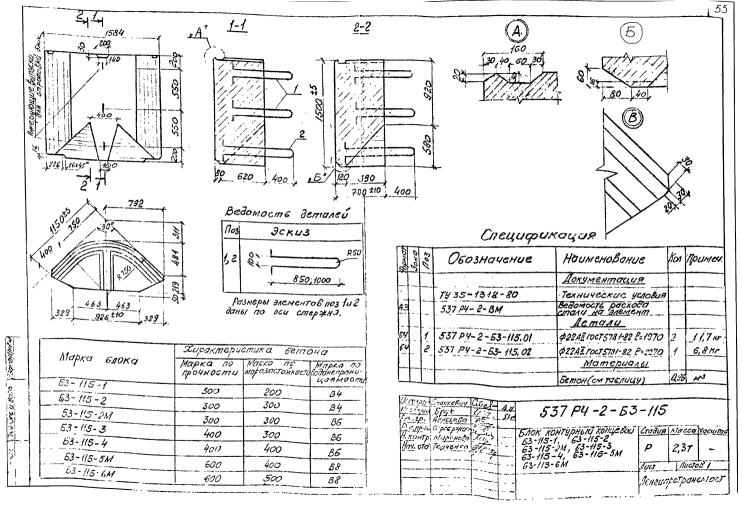

Wanterma CEANY rebource 83 537 P4-2-BM TYNOD AND CRA Buch PYK 11P-TACEPER CHAMPER BA CHABIL AUCH AUCH HISGORD TRAGETHO STATE Ведомость расхода стали на элемент Ленгипропрансмо










50

