Проект

СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ МОСТОВ ПРОЛЕТАМИ ДО 15 м. ПОД ЖЕЛЕЗНУЮ ДОРОГУ НОРМАЛЬНОЙ КОЛЕИ ДЛЯ ПРИМЕНЕНИЯ В СЕВЕРНОЙ СТРОИТЕЛЬ—

НО КЛИМАТИЧЕСКОЙ ЗОНЕ

I. Конструкция мостов

 Начальник Ленгипротрансмоста
 Подпись
 /Вас ильченко/

 /Гл. инженер Ленгипротрансмоста
 "
 /Винокуров/

 /Начальник отдела типового проектирования
 "
 /Артамонов/

 Гл. инженер проекта
 "
 /Шульман/

Утвержден для опытного строительствя прикязом МПС н. П-11289 от 21 япреля 1972 годя.

Москва 1975 г.

Няч. тех. ОТД. Гл. Спец. подпиов.

4 5

THPAK OKS. 1

Содержание

ушу Наименование	UHB.
4-9 Пояснительная записка	
10,11 Пример моста с опорами типа 19	
12,13 Пример моста с опорами типа 18	
14,15 Пример моста с опорами типа 18	
БП Пример моста с устоями типа 1°, БП промежуточными опоражи типа 3°	ļ
Пример моста с устоями типа 19 18 19 промеженточными опорами типа 4°	
10, Пример моста с устоями типа 1ª, 21 промежуточными опорами типа 4 ⁸ . 22. Пример моста с устоями типа 1 ⁸ .	
23 промежситочными опорамитипа 5 а.	
-26 no ux npumehehum.	
Основные дочные применяемых пролетных 27 строений.	
28, Устои Сворочный чертемс 29 5 Основные данные.	
30 г Промежиточные опоры. Сборочный чертеже. Основные данные	
31 В Условия применения опор на кривых и в сейсмических районах.	
32- Устои, Соорочный чертеж. -35 Основные данные.	
36 Устой. Сборочный чертеж.	
37. 8 Промежиточные опоры. Сбарочный чертем. Основные данные. 339. Усуовия применения опор на кривых	
40 Е Условия применения опор на кривых	
Опоры Промежсуточные опоры. Сворочный чертеж. Основные данные.	
Опоры Промежуточные опоры. Сворочный гипа 42 4° чертеми. Основные данные.	
поры Промежиточные опоры. Сворочный 13 54 чертеж. Основные ганные.	<u> </u>
44 288 Рундаменты. Сворочный чертеж. 45-884 Рундаменты. Область применения.	
51 Примеры опор по типом 18,38,48,58.	
52- Маркировочная ведомость блоков	
-55 0лор. 56-681-20 57 C81-30 Олалубачный и арматурный чертежи	<u>_</u>
57 <u>с81-3</u> с Опамианный и арматирный чертежи 58, Блоку 59 <u>882 саг</u> з Опамивочный и арматирный чертежи.	
60 блоки Опалубочный и арматурный чертеж ст C1-3° Саринорикания арматуры	u,
enegapanagan apmamapa.	
62 блоки С2-1° Опалябочный и арматярный чертежи.	·
63 Спецификация арматуры.	<u> </u>

) gows		Наименование	UH8. N
₹ 64	Блок	Опалубочный чертеж	
65,	WIC		
66		Арматирный чертеж.	
67 68	Блок	Опалубочный чертежс.	
69	Ш 4 ^С	Ярматурный чертеж.	
70	Блок	Опалубочный чертеж.	
7! 72	W5c	Арматирный чертеж.	
73	BAOKU WK-1º WK-4º WK-5º	Опалябочный и арматярный чертежи	
74	Блок	Опалубочный чертеж.	
75, 76	HY1°	Арматурный чертеж.	
77	Блок	Опалубочный чертеж.	
78 79	HY2C	Арматурный чертеже.	
80	EAOKU H1°UH2°		
81, 82	ENOK HIC	4	
83,	DIOK	Арматэрный чертежс.	
84	H2C 5.nok	Арматирный чертеже.	
85 86,	H4 ^C Блок	Опалубочный чертеж.	
87	H4C BAOK	Арматурный чертеж.	
88	H5C	Ополубочный чертеж.	
99 , 90	Блок H5°	Арматурный чертеж.	
91	Блок 5П1	Опалубочный и арматурный чертежи.	
92	510KU 5112-5114		
93	5AOKU	Опалябочный и арматярный чертежи.	
94	51÷53 510K 91°	Опалубочный и арматурный чертежи.	
_		Опалябочный и арматярный чертежи.	
95	DAOK DAOK	Опалубочный и арматурный чертежи.	
96	\$200	Опалябочный и арматярный чертежи.	
97	510K \$3-10	Опалувочный и арматурный чертежи.	
98	510K	Опалубочный и арматурный чертежи.	
99	510K \$3-20		
100	5,10K \$3-21C	Ополубочный и орматурный чертежи.	
	5 AOK	Опаливочный и арматирный чертежи.	
101	94c	Опалубочный и арматурный чертежи.	
102	Блок Ф41c	Опалубочный и арматурный чертежи.	

AUCTOB	A	Наименование	Инв. N
103	Блок Ф6-2°	Опалубочный и арматурный чертежи.	
104	БЛОК Ф6-21C	Опалубочный и арматурный чертежи.	
105	5Λοκ Φ71°C	Опалувочный и арматурный чертежи.	
106	BAOK BAIC	Опалубочный и арматурный чертежи.	
107	BAOK P gic	Опалубочный и арматурный чертежи.	
108	DAOK PIOC	Опалубочный и арматурный чертежи.	
109	DIOIC PIOIC	Опалубочный и арматурный чертежи.	
110	BAOKU ANI-1:ANI-3	Опалубочный и арматурный чертежи.	
111	БЛОКИ АП2-1÷АП2-3 БЛОКИ	Опалубочный и арматурный чертежи.	
112		Опалябочный и арматярный чертежи.	
113	AN4-1÷AN4-3	Опалубочный и арматурный чертежи.	
115	Блоки AП5-1÷AП5-4 Блоки	Опалубочный и арматурный чертежи.	
		Опалябочный и арматярный чертежи.	
118	АПТ-1:-АПТ-3 Блоки	Опалябочный и арматярный чертежи.	
119	ANA-I÷ANA-3 BAOKU	Опалубочный и арматурный чертежи.	
120		Опалубочный и арматурный чертежи.	
121		Опалубочный и арматурный чертежи.	
122	Насадки	Опалибочный чертеж	
123, 124	HYM3,° HYM11°	Армотурный чертеж	
125	,,,,,,,	Армирование подферменников	
126	Насадка	Опалубочный чертеж.	
127,	HM 5°		
128 129	C	_	
/30		етоек с фундаментными стаканами ная часть массивного фундамента пов 39,30,49,40,59,50	
131			
131	Проти	ары но четоях.	

Пояснительная записка

1. Введение

- 1.1. Проект (рабочие чертежи) сборных железобетонных мостов пролетами до 15м под железную дорогу нормальной колеи для применения в северной строительно-климатической зоне разработан Ленгипротрансмостом по плану
 экспериментального проектирования 1971 года (тема "Сборные
 железобетонные мосты пролетами до 15м для районов с расчетной температурой -40°С и ниже, для различных грунтовых
 условий, с учетом наледеобразований и сейсмичности свыше
 6 баллов") на основе технического проекта, разработанного
 в 1970 г. и утвержденного мпс 15 июня 1971 г.
- 1.2. При разработке проекта учтены замечания отдела экспертизы проектов и смет ЦПЭУ МПС, изложенные в заключениях НЦНЭ15/65 от 14 июня 1971г. и Н ЦНЭ 15/48 от в апреля 1972г.

2. Состав проекта

- 2.1. Проект состоит из двух частей: Часть \bar{l} Конструкция мостов;
- Часть [] Производство работ и оснастка для изготовления элементов.
- 2.2. Данная часть 1 проекта содержит примеры мостов, основные данные и чертежи конструкций элементов опор, указания по их применению в различных условиях, .-требования к материалам для изготовления конструкций и другие материалы.
- 2.3. Указания по производству работ и организации строительства мостов, технология изготовления элементов, чертежи оснастки для их изготовления и приспособления для монтажа приведены в проекте производства работ по строительству сборных железобетонных мостов и оснастки для изготовления элементов мостов, разработанных СКБ Главмостостроя (часть] проекта).

3. Область применения проекта

- 3.1. В проекте разработаны конструкции однопутных железнодорожных мостов, предназначенные для применения в районах с расчетной температурой минус 40°С и ниже, на периодически и постоянно действующих водотоках в различных грунтовых условиях (включая пучинистые и вечномерзлые грунты), при глубине промерзания грунтов до 4м.
- 3.2. Проектом предусмотрено сооружение мостов на кривых радиусани 300м и более и в сейсмических районах при расчетной сейсмичности до 9 баллов. Условия применения мостов на уклонах аналогичны типовому проекту инв. // 108/1.
- 3.3. Свайные и стоечные (на естественном основании и на свайном ростверке) промежуточные опоры (типов [а, [б, [в,)] могут применяться только в случаях сооружения их на неувлажненных грунтах. Для применения на болотах, марях и в других случаях увлажненных грунтов предназначены массивные опоры и стоечные опоры на массивных фундаментах (типов За.35,4а, 45, 5а, 56).
- 3.4 Мосты с массивными опорами могут применяться при наличии ледохода с толщиной льда до 50см.

4. Основные положения проектирования

- 4.1. Типовой проект разработан в соответствии с действующими нормами проектирования и техническими условиями:
 - СНИП II-Д.7-62* "Мосты и трубы. Нормы проектирования". — СНИН III-Д.2-62 "Мосты и трубы. Правила ореанизации
- снап шт.к.г-ог "тосты и труды. Прадила дреанизации етроительства , производства работ и приемки в эксплуатацию".
- СНИП <u>П</u>-А.12-69 "Строительство в сейсмических районах. Нармы проектирования:
- CH 200-62 "Технические условия проектирования железнодорожных, автодорожных и еородских мастов и труб!!
- СН 365-67 "Указания по проектированию железоветонных и бетонных конструкций железнодорожных, автодорожных и городских мастов и труб".
- ВСН 32-60 " Инструкция по гидроизаляции проезжей части и устоев железнодорожных мастов и вадапропускных труб"
- ВСН 151-68 "Указания по проектированию и страительству железобетанных и бетонных конструкций железнодорожных мостов и труб, предназначенных для эксплуатации в условиях низких температур (северное исполнение)"

При разработке проекта учитывались отдельные положения других нормативных документов, ссылки на которые приведены в соответствующих разделах проекта.

- В связи с отсутствием в настоящее время нормативных дакументов по проектированию фундаментов и опор мостов в Севернай строительно-климатической зоне, при разработке проекта руковадствовались соответствующими рекомендациями ЦНИИС, проектом технических указаний по проектированию и постройке малых мостов и водопропускных труб в Северной строительно-климатической зоне (ЦНИИС, 1970г.) и отдельными положениями СНИП П.Б. 6-66.
 - 4.2. Временная нагрузка-C14. 4.3. Высата насыпи от 2 до 6 м.
- 4. 4. Канструкция пролетных строений принята по типовому проекту инв. А 557/1. Длины пролетных строений—ат 6,0
 до 16,5 м. При сооружении мостов в сейсмических районах с
 расчетной сейсмичностью свыше в баллов пролетные строения
 принимаются по дополнению к типовому проекту инв. А 557/1
 для применения в сейсмических районах.
- 4.5 Минимальный радиус кривых 300м, принятый в проекте, определился условиями применения на кривых пролетных строений.

5. Конструкция мостов

5.1. Сжемы мостов

5.1.1. Разработанные в проекте конструкции опор и применяемые пролетные строения позволяют принимать следующие сжемы мостов:

ПХ6,0m; ПХ9,3m; ПХ11,5m; 6,0+ПХ9,3+6,0m; 6,0+ПХ11,5+6,0m; 6,0+ПХ13,5+6,0m; 6,0+ПХ16,5+6,0m; 9,3+ПХ13,5+9,3m; 9,3+ПХ16,5+9,3m; 11,5+ПХ16,5+11,5м. Здесь п — число пропетов, определяемое расчетным отверстием маста. Высата насыли мостов по указанным схемам может быть принята от 2 да 6 м в зависимости ат типа опоры.

5.1.2. Наиболее целесообразно применение при высоте насыпи 2-4м-мостов с пролетными строениями длиной 6,0 - - 11,5м; при высоте насыпи 5-6м — мостов с пролетными строениями длиной 9,3 - 16,5м.

5.2. Пролетные строения

В проекте применены сборные железобетанные пролетные строения длиной 6,0 м (плитные), 9,3; 11,5; 13,5 и 16,5 м (ребристые) по типовому проекту инв. И 557/1.

Основные данные пралетных страений приведены на листе N 27.

5.3. Опоры мостов

- 5.3.1. В проекте разработаны следующие типы опор: 1 а, 16, 16 — соответственно свайные, стоечные на естественном основании и стоечные на низком свайном ростверке устои и промежуточные опоры (листы н 28-40)
- За и 36 массивные монолитные промежуточные опары на естественном основании и свайном ростверке соответственно (листы н 41,51).
- 4a и 4б стоечные промежуточные опоры с массивными фундаментами на естественном основании и на свайном ростверке соответственно (листы м 42,63).
- 5a и 56 промежуточные опоры из крупных бетонных блоков на естественном основании и свайном ростверке соответственно (листы м 43,63).
- 5.3.2. Устои состоят из следующих элементов (таблица 1):

Ταδπυμα 1.

Типы опор Наименование	1a	16
Верхняя часть опоры	Шкафной блок Насадка	Шкафной блок Насадка Стойки сечением 35*35 или 40*40 см
Фундамент	Сваи сечением 35×35 или 40×40 см	Фундаментные стаканы фундаментные плиты

5.3.3. Промежуточные опоры састоят из следующих элементов (таблица 2):

Ταδπυцα 2.

Типы опор Наи мен о- Вание	1a	15	3а	4a	5a
Верхняя часть опоры	Насадка	Насадка Стойки сечением 35×35 или 40×40 см	Падфермен- ник Монолитное тело опоры	Насадка Стойки се- чением 35×35 или 40×40 ст Фундамент- ные стака- ны	Падфер- менник Бетонные блоки тела опоры
фундамент	Сваи сече- нием 35*35 или 40*40 см	Фундамент- ные стака- ны Фундамент- ные плиты	Анкерные плиты		1ента

5.3.2. Опоры типов 16, 36, 46, и 56 соответствуют аналогичным опорам на естественном основании при замене фундаментных или анкерных плит монолитной плитой свайного ростверка.

Свайный ростверк проектируется индивидуально с учетам местных инженерно-геологических условий и рекомендаций, приведенных в настоящем проекте. Примеры таких опор даны на листе м 51

5.3.3. Маркировка сборных элементов опор приведена на листах м 52-55 Краткая характеристика опор и рекомендации по их применению в различных инженерно-геалогических и гидрологических условиях — на листах м 24-26

5.4. Материалы

5.4.1. Бетон

Бетон элементов опор (марка 300) и бетон омоноличивания стыков (марка 400) должны отвечать требованиям ВСН 151-68

Основные технические требования к бетону и материалам для его приготовления принимаются в зависимости от положения элемента по отношению к уровню воды (см. табл. 3).

Для приготовления бетона должны применяться портландцемент с умеренной экзотермией, сульфатастойкий портландцемент и доражный портландцемент, отвечающие требованиям ГОСТ 10178-62^x и ВСН 151-68.

Требования к водонепроницаемости бетона, а также вид и марка цемента устанавливаются при привязке проекта в зависимости от жарактера и степени агрессивности грунтовых и поверхностных вод.

Ταδπυμα 3.

<i>∧</i> , <i>n</i> . <i>n</i> .	Наименование элементов	вид бетона в Зависимости От расположе- ния элемента по отнршению к уробню воды	Марка бетона по проч- ности	Марка бетона по мо- розо- стой- кости	Примеча- ние
1	2	3	4	5	6
1 2 3 4 5	Шкафные блаки Насадки устоев Насадки промежуточных апор Блоки подферменников Переходные подферменники Тротуарные консоли	бетон надводный	300		По ТИПО- баму ПРО- екту инб. и ТОВ По ТИПОБО- му ПРОЕК- ТУ ИНБ. И 357/1 По ТИПОБО- му ПРОЕК-
8 9 10	Сваи Стойки Фундаментные стаканы марок фв ^е и ф9 ^е Бетонные блоки тела	Бето <i>н</i> 30ны		300	My 1700 0K- TY UH6. N 708
12	опоры Монолитное тело опоры	Переменного	700		
13	Омоноличивание фунда- ментных стаканов	уровня воды	300		ПО ТИПОВОМУ ПРОЕКТУ ИНВ. Н 708.
14	Стыки свай и стоек с насадками Стыки стоек с фундамент-		400		По типово- му проекту инв. н 708.
15 16	ными стаканами Омоноличивание блокав				
	тела апоры Монолитная часть фунда-		300		
17	мента				_
18	Фундаментные стаканы За исключением ф8° и ф9°:	Бетон подводный	300	200	
19	Фундаментные плиты				му рраектУ инб. N 708
20	Анкерные плиты				

Определение агрессивности воды по отношению к бетону, выбор по условиям агрессивности вида цемента, а также, при необходимасти, применение дополнительных мероприятий для повышения стойкости бетона в агрессивных водах производятся в соответствии с СН 249-63* ("Инструкция по проектированию. Признаки и нормы агрессивности воды — среды для железобетонных и бетонных конструкций").

Расход цемента не должен превышать 450 кг/м³.

Пля удовлетворения требований по водостойкости и марозостойкости бетона следует вводить в бетонную смесь поверхностна активные органические добавки - пластифицирующие, воздухо-вовлекающией газовыделяющие.

Модуль крупнасти применяемого песка должен быть не ниже $M\kappa = 2,1$. Садержание примесей в нем (глина, ил и мел-кие пылевидные фракции, определяемые отмучиванием) не должно превышать 2% по весу.

Аля обеспечения постоянства зернового состава должен применяться песок, кривая просеивания которого укладывается в пределы, предусмотренные ГОСТ 10268-62.

Применяемый щебень должен состоять не менее чем из двух фракций, дозируемых при приготовлении бетонной смеси раздельна.

Количество в щебне глины, ила и мелких пылевидных фракций, определяемых отмучиванием, в озмме не должно превышать па весу 0,5%.

5.4.2. Цементный раствор.

Цементный раствор для подпивки под блоки и заделки стыков шкафных блоков и переходных подферменников с насадками-марки 400, должен изготовляться с применением портландцемента марки не ниже 500 по ГОСТ 10178-62.

Водоцементное отношение должно быть не выше 0,5 при подвижности раствора в пределах 4-6 см.

В качестве заполнителя далжен применяться промытый песок крупностью не более 3 мм по ГОСТ 8735-62.

Аналогичные материалы используются для приготовления жесткого цементного раствора марки 400, применяемого для зачеканки вертикальных швов между насадками и шкафными блоками. При этом учитываются требования, приведенные в "Технических указаниях по гидроизоляции стыков, отверстий для нагнетания и болтовых отверстий в сборных железобетонных обделках тоннелей, метрополитенов, сооружаемых закрытым способом"— ВСН 130-55.

5.4.3. Полимерцементный раствор.

Полимерцементный раствор для затирки стыков (мар-ки 400) изготовляется на основе портландцемента марки не ниже 500 по ГОСТ $10178-62^{\times}$, просеянного через сито N 200 (64 отверстия на 1cm²) без активных и наполняющих минеральных добавок.

Применяемый песок (крупнастью не балее 3 мм) должен быть промыт.

В качестве полимерного компонента рекомендуется применять водную поливинилацетатную эмульсию (ПВАЭ) по ГОСТ 1002-62 или латекс марки СКС-65ГП со стабилизатором типа ОП-7 или ОП-10. Допускается применение других водных полимерных эмульсий.

Состав и способ приготовления полимерцементного раствора принимаются в соответствии с "Указаниями по защите от коррозии и заделке повреждений бетонных и железобетонных канструкций мастов", разработанными ЦНИИ МПС и утвержденными ЦП МПС в 1966 г.

5.4.4. Ярматура

Элементы опор армируются стержнями периодического профиля из стали класса А-11 марки ЮГТ па ЧМТУ/ЦНИИЧМ 1-89-67 и гладкими круглыми стержнями из стали класса А-1 марки ВСТ 3 сп 2 по ГОСТ 380-71.

Долускается замена арматуры из стали класса A-II марки 10ГТ на арматуру из стали класса Р и марки 25Г2С в соответствии с табличей 4.

5.4.5. Материалы для закладных частей и металлоконструкций

Для несущих конструкций перил на устоях и металлических тротуарных консолей применяется прокат из низколегированной конструкционной мартеновской стали марки 10Г2с1Д или 15ХСНД по ГОСТ 5058-65 в нормализованном состоянии с ударной вязкастью не менее 2,5 кгм/см² при температуре -70°С и не менее 3 кгм/см² при температуре +20°С после механического старения.

Для вспомогательных деталей перил и смотровых приспособлений, а также для конструкций настилов для пропуска кабелей допускается применение проката из углеродистой мартеновской горячекатанной стали марки М16С по ГОСТ 6713-53.

Элементы крепления шкафных блоков, тротчарных консолей и перил изготовляются из арматурной стали марки ВСт 3cn2 по ГОСТ 380-71.

Зακπαθημίε ναστυ β ωκαφημώς δποκάς, πασαθκάς, τροτυθρημώς κομοοπές τι τροτυαρμώς ππυτάς υθεοτοδηθήτες με σταπιο μάρκο 10/2014 την 15ΧΟΗΑ πο 1001 5058-65.

5.5. Элементы олар

5.5.1. Конструкция и назначение сборных элементов опор приведены в маркировочной ведомости (листы м 52-55).

5.5.2. Насадки промежуточных опор типов 1a, 16, 16 на сваях и стойках сечением чах на пролетные строения длиной 9,3 \div 16,5 м (насадки марки $\text{Hm}\,5^c$, $\text{HYm}\,3^c$ $\text{HYm}\,11^d$) бетонируются на месте.

5.5.3. В проекте разработана конструкция монолитного тела опор типов За и 36 (см. листы м 41,44-51)и монолитной части фундаментов опор типов За, 36, 4a, 46, 5a и 56 (см. лист n 130)

5.5.4. Подферменные плиты (блоки БЛ1÷БП4) могут выполняться из монолитного железобетона. Армирование плит - аналогично приведенному на листах N31,92.

N N n.n.	Наименование з	лементов	Диаметры арматуры из стали 10ГТ	Минимальные диаметры арматуры из стали 25Г2С ГОСТ5058-65
1	Сваи и стойки	CB1-2 ^c , C1-2 ^c CB1-3 ^c , C1-3 ^c CB2-1 ^c CB2-2 ^c , C2-1 ^c CB2-3 ^c , C2-2 ^c	\$ 20A <u>II</u> \$ 25A <u>II</u> \$ 20A <u>II</u> \$ 25A <u>II</u> \$ 28A <u>II</u>	\$ 20AU \$ 25AU \$ 20AU \$ 25AU \$ 28AU \$ 28AU
2	Шкафные блоки	ш1 ^с Ш4 ^с , ш5 ^с	\$ 20AI] \$ 12AI] \$ 10AI] \$ 22AI] \$ 12AI]	\$ 18A <u>III</u> \$ 12A <u>III</u> \$ 10A <u>III</u> \$ 20A <u>III</u> \$ 20AIII
3	Насадки устоев	Hy1 ^c , Hy2 ^c Hym3 ^c , Hym 11 ^c .	\$ 10 A L \$ 16 A L \$ 22 A L \$ 20 A L	\$ 10AUI \$ 16AUI \$ 20AUI \$ 18AUI
4	Насадки проме- жуточных опор	H1 ^c , H2 ^c , Hm5 ^c H4 ^c , H5 ^c	\$ 20A <u>lī</u> \$ 25A <u>lī</u> \$ 16A <u>lī</u>	\$ 18 AIII \$ 25 AIII \$ 16 AIII
5	Блоки тела опоры	51°, 52°, 53°	ф 12А <u>Й</u>	ø 12 A <u>ii</u> i
6	Фундаментные стаканы	φ1 ^c , φ2 ^c , φ3-1 ^c φ3-2 ^c , φ4 ^c , φ6-2 ^c φ7 ^c , φ8 ^c , φ9 ^c ,φη ^c	ф 16 A <u>I</u> I Ф 12 A <u>I</u> I	Ø 16A <u>II</u> Ø 12AII
7	Анкерные плиты	An1-1 An2-1 An1-2, An2-2 An1-3, An2-3 An3-1-An3-3 An4-1+An4-3 An5-1+An5-4 An6-1+An6-4 An1-1+An7-3 An8-1+An8-3 An9-1, An9-2 An10-1, An10-2	Ø 2 <i>5A<u>ñ</u></i> Ø 32A <u>ñ</u> Ø 32A <u>ñ</u> Ø 25A <u>ñ</u>	\$ 25A <u>U</u> \$ 32A <u>U</u> \$ 32A <u>U</u> \$ 25A <u>U</u>

5.5.5. Конструкция переходных подферменников, фундаментных стаканов, фундаментных плит, тротуарных плит, стыков свай и стоек с насадками, крепления фундаментных стаканов к фундаментным плитам, крепления шкафных блоков и переходных подферменников и др. принимается по соответствующим чертежам проекта инв. м 708/1.

Конструкция тротуарных консолей на устоях принимается по типовому проекту инв. н 557/1.

6. Праизводетва работ

- 6.1. Изготовление и монтаж элементов сборных железобетонных мостов, оманоличивание стыков, гидроизоляция опор, отсыпка и укрепление конусов производятся в
 соответствии с действующими Страительными нормами и правилами СНиП <u>П</u>-Д. 2-62 и проектом производства работ (часть <u>П</u>
 проекта). При этом учитываются также приведенные ниже
 требования итребования, указанные на листах м 24-26,
 а также требования по технике безопасности, приведенные в СНиП П-Я 11-70 и в части П проекта.
 - 6 2. Изготовление сборных элементов
- 6.2.1. Сборные железобетанные элементы опор должны бетонироваться, как правило, в металлической опалубке, установленной в закрытых цехах заводов мжбк.
- 6.2.2. При бетонировании блоков на полигонах в зимнее время опалубка должна устанавливаться в тепляках и иметь перед бетонированием положительную температуру. Вводить в бетонную смесь химические добавки, ускоряющие твердение бетона на морозе — запрещается.
- 6.2.3. При тепловой абработке блоков состав бетана и характеристики цемента, а также режим пропаривания и контроль качества, должны приниматься по Техническим указаниям по тепловлажностной обработке элементов оборных железобетонных мостовых конструкций ВСН 109-64 с учетом требований ВСН 151-68.

При этом предварительную выдержку свежеотформованных элементов перед пропариванием следует производить при температуре не ниже +16°С. Время выдержки устанавливается в соответствии с п.22 ВСН 109-64 в зависимости от срока схватывания цемента и водоцементного отношения, но не менее 4 часов.

Необходимо обеспечить мягкий режим пропаривания:
—скорость подъема температуры в камере не должна превышать 5°C в час;

- температура изотермического прогрева не должна превышать 60°C (срок прогрева устанавливается при подборе состава бетона);
- скорасть снижения температуры в камере по акончании изотермического прогрева не должна превышать 8°С в час.
- продолжительность дальнейшего охлаждения элементов (вне камеры) должна быть не менее 12 часов при температуре среды не ниже $+5^{\circ}$ C.

При установке элементов в пропарочную камеру разность температур среды, в которой элемент выдер-живался до подачи в камеру и среды внутри камеры не должна превышать 5°С.

- выгрузка элементов из камеры пропаривания допускается при разности температур бетона и

окружающего воздужа не более 20°C.

Выдержка элементов на заводе и прочность бетона при их отгрызке назначаются в соответствии с требованиями п.40-42 ВСН 151-68.

- 6.2.4. Элементы опор следует бетонировать жесткими бетонными смесями, долускающими немедяенную распалубку
 свежеуложенного бетона. Бетонная смесь при этом далжна
 уплотняться настолько, чтобы после освобождения элемента
 от опалубки не происходило оплывание бетона и появление
 трещин. Верхние поверхности блоков должны быть гладкими.
- 5.2.5. Бетон сборных элементов и монолитных насадок, а также бетон омоноличивания должны приготовляться
 на бетонных заводах или бетонных зэлах при условии предварительного проектирования состава бетона (с экспериментальной проверкой результатов подбора), автоматического
 или полуавтоматического дозирования составляющих по весу.
 Необходим постоянный контроль прочности и однородности
 бетона бетонной лабораторией, подтверждающей соответствие
 их значений еруппе Я (п.1.13 СН 365-67).

6.2.6. Ужад за уложенным в конструкции бетоном производится в соответствии со СНИП 18-8.1-62. При этом должны быть исключены трещины в бетоне вследствие его пе-

ресыжания и неравномерной усадки.

- 6.2.7. Блоки насадок и шкафные блоки рекомендуется изготовлять в перевернутом положении. Кантовку блокав разрешается производить при кубиковой прочнасти бетона не менее 0,6 R₂₈. Способы кантовки принимаются по местным условиям. При этом должны быть предусматрены мероприятия, исключающие возможность откола челов бетона и образования трещин. После кантовки нижние стропочные летли должны быть срезаны на заводе.
- 6.2.8. При изготовлении свай и стоек следует руководствоваться ГОСТ 10628-63. При этом не менее двух свай каждой партии (не более 100 штук) подлежат испытанию на трещиностойкость по схемам, приведенным на листах м 57,59 Испытания проводятся на заводе при участии заводской инспекции. Сваи и стойки, в которых обнаружены трещины, должны быть забракованы.
- 6.2.9. Дапуски при изготовлении блоков принимаются согласно СНи Π $\bar{\underline{m}}$ - \underline{A} .2-62.
- 6.2.10. Максимальная крупность щебня не должна превышать:
- для бетона тротуарных консолей, тротуарных плит, стыков свай и стоек с насадками, стыков стоек с фундаментами и для бетона омоноличивания фундаментных стаканов-- 20 мм;
 - для прочих элементов 40мм.

6.3. Складирование и транспортировка элементов; погружение свай и устройство фундаментов опор на естественном основании в талых грунтах; монтаж блоков опор и омоноличивание стыков; монтаж пролетных строений и опорных частей; гидроизаляция выполняются в строгом соответствии с требованиями типовых проектов инв. N708/1 и 708/3, а также раздела "Работы на месте возведения соорхжений" ВСН 151-68.

6.4. Погружение свай в мерэлые грунты.

- 6.4.1. В соответствии со СНиП II-B.B-66 рекоменду-ются следующие способы погружения свай в вечномерэлые элумты:
 - а) забивка или вибропогружение в вечномерэлые
 - б) забивка в пробъренные скважины диаметром меньше маибольшего поперечного размера сваи (бърозабивные сваи);

в) погружение в пробуренные скважины, диаметр которых превышает наибольший поперечный размер

Способ поеружения свай определяется при привязке проекта в зависимости от принятого принципа использования грунтов основания, а также от мерзлотно-грунтовых условий, времени года проведения работ и имеющегося оборудования.

Рекомендуемые способы погружения свай в зависимости от грунтовых усповий и принципа использования мерзлоты

приведены в табл. 5.

6.4.2. Скважины в мерэлых грунтах для забивки и

установки свай рекомендуется прожадить:

- в пластичномерэлых глинистых грунтах, а также в грунтах с температурой до -2°C с содержанием крупнообло-мочных включений до 30% и в сезонномерэлых песчаных и глинистых грунтах преимущественно сваебайными машинами, снабженными металлическими трубчатыми лидерами для проходки скважин.
- в песчаных и глинистых грунтах без ограничения их температуры, содержащих до 30% крупнообломачных включений с крупностью фракций 15-20мм или не более 10% крупно-обломочных включений при крупности фракций до 45-60мм и при одиночных валунах диаметром до 100мм преимущественно станками вращательного бурения;

- в грунтах, содержащих более 30% крупнообломочных включений и большое количество валунов -преимущественно станками ударно-канатного и ударно-вращательного бурения, снабженными различными буровыми наконечниками.

6.4.3. Применение оттачвания грунта для погружения свай может быть допущено только для слоя сезонномерзлого грунта, подстилаемого талыми грунтами. Оттачвание вечномерзлого грунта аснования, используемого как по принципу [], так и по принципу [] - не рекомендуетоя.

N n/n		Наименование	Прин- цип	Рекомендуемый способ погружения свай			
		ерунтов	UC- ПОЛЬ- ЗОВ М Е Р- ЗЛОТЫ	забивка или вибро- погружение	забивка в скважины меньшего диаметра	преружение в скважины большего диаметра	
1	9 19	Песчаные и глинис- тые (в70,2), совер- жащие до 30% крупно- обломочных включений	-	+	-	-	
2	7 -	Те же, содержащие более 30% крупнооб- ломочных включений; глинистые (8<0,2)	-	_	+	(+)	
3	37.	см. Л . 1	77	+	(+)	-	
4	Лласт. мерзл.		<u> </u>		+	(+)	
5	твердо мерзя.	JIxO Obile	นิ นภน	I -	+	(+)	

Примечания: 1. "В" — коэффициент консистенции глинистых грунтов

- 2. Знаком "+" обозначен рекомендуемый способ погружения сбай.
- 3. Знаком "(+)" способ, применяемый в случаях, коеда применение рекомендуемого способа небозможно или затруднительно.

6.4.4. Для заполнения зазоров между боковыми поверхностями скважин и свай при отсутствии или наличии обсадных извлекаемых труб в немерзлых ерунтах и всех мерзяых ерунтах, используемых по 1 принципу, следует применять цементна-песчаный раствор. Зазоры в немерзлых песчаных ерунтах допускается заполнять местным песком. Если просадки поверхности ерунта около свай допустимы, то зазоры между боковыми поверхностями скважин и свай в водонасыщенных песчаных ерунтах можно оставлять без заполнения.

Заполнение зазоров производят одновременно с извлечением абсадных труб так, чтобы уровень заполнения не менее чем на 1 м превышал низ извлекаемой трубы, но с обсадной трубой не увлекалась погруженная свая. Для улучшения заполнения зазоров и аблегчения извлечения обсадных труб рекамендуется использовать вибрацию свай или трубы.

6.5. Устройство опор на естественном основании и свайном ростверке

6.5.1. При использовании мерэлого грунта по принципу 1 разработка котлованов под фундамент, как правило, должна производиться в зимнее время.

При выполнении земляных работ в летнее время необходимо предусматривать мероприятия, исключающие оттаивание ерунта основания (устройство тепляков, изолирующих прокладок, подсыпок и пр.).

Мерзлые грунты при этом разрабатываются буровзрывным спасабом или механическим спасабом с испальзованием специальных машин (например, экскаваторов с ковшами активного действия).

Поименение аттаивания гочнта запоещается.

6.5.2. В период отрицательных температур наружного воздуха возможна разработка коглованов с промораживанием ерунта без устройства коепления.

6.5.3. Применение шебеночной подготовки при монтаже фундаментных или анкерных плит и бетонировании плиты

постверка не допускается.

6.5.4. Для обеспечения устойчиваети оппа против морозного выпучивания обратная засыпка котлованов производится послойно (20см) с уплотнением:

а) при совружений опор в связных грунтах с казффициентам консистенции более 0.2 на менее 0.4-

местным ерунгом;
6) при сообижении опого в гринтах с когаришентом консистенции более 0.4- привозным гринтом с козф-Фициентом консистенции менее 0.4. После отсылки каждого слоя гринта отсыпается слой шебня толшиной не более Юсм и втрамбавывается в вринт

Козффициент Уплотнения ерунта далжен быть HP MPHPP 098

6.5.5. Пои четройстве монолитной плиты свайнова ростверка в случае использования мерзлого грунта по принципу 1 целеспобразно применение под плитой теплоизолирующих пракладок в виде слоя уграмбованного торфа, мха, шлака. толшиной 20-25см или из синтетических материалов.

6.6. Подготовка территории страительства

При строительстве на вечномерзлых ерунтах с использованием их по принципу і необходимо принимать меры для сохранения мерэлого состояния грунтов. Для этой цели рекомендуется не нарушать в процессе строительства повержностна- растительный и можовой покров, а очистку территории от кустарников и леса производить в минимально необходимых размерах. Для предохранения естественного покоова строи-Тельную площавку и повъезвные пути рекоменвуется засыпать слоем песка или вравия толщиной 15-30см. Пои частичном нарушении естественного покрова, например, при рытье котлованов необходимо его полностью восстановить по окончании соответетвующих работ.

7. Привязка проекта

7.1. Pacyeth

- 7.1.1. При привязке проекта к местным условиям необходимые расчеты выполняются в соответствии с действуюшими нармативными документами и с учетом приведенных ниже рекомендаций.
- 7.1.2. Расчет свай свайных опор и опор на свайных ростверках по грунту (на осевое сжатие) производится:

- в талых грунтах и в мерзлых грунтах, используемых по принципу ії, - в соответствии со Сни П ії Б.5-67;

- в мерзлых грунтах, используемых по принципу 1. в соответствии со СНиП 🗓 Б.6-66.

Максимальные нагрузки на сваю поивелены на сборочных чертежах опол

7.1.3. Pacyer chau на устойчивость постив выпучивания производится с учетом следующих рекомендаций составленных ИНИИС:

Расчет рекомендиется производить по формуле

$$n Q_n^{\prime\prime} \leq \kappa m Q^{\prime\prime} + n_i N_i^{\prime\prime};$$

- где п. коэффициент перегрузки сил выпучивания, принимаемый равным 1.2 при наличии в зимний периад ерунтовых вод в поеделах слоя селонного поомерация-- оттаивания и равным 1 при их отсутствии;
 - 0" нормативное значение касательной силы выпучивания (т). действующей на фундамент:

Кт - произведение коэффициентов однородности и условий работы грунта, принимаемое равным 0.9:

Q" - нормативное значение силы (т) , удерживающей от выпучивания вследствие смерзания баковой повержности свай с вечномералым грунтам при испальзовании ерунтов основания по принципу 1 или сопративлением сил трения немерзлога грунта по боковым поверхностям свай ниже стая сезонного промерзания - оттаивания.

Нормативные сопротивления мерэлых грунтов сдвигу (силы смерзания) по боковой повержности свай следует принимать по табл. 5 Снуп ў-Б. 6-66 в зависимости от температуры едунта.

Нормативные сопротивления трения немерзлых υπυ οτταυδακιμυχ εργητοδ πο δοκοδού ποδερχηροτιι свай следует принимать по табл. 2 Сни В ІІ-Б. 5-67 с. Умножением на понижающие козффициенты: для забивных свай - 0.9: для бурозабивных свай - 0.6: для свай, погружаемых в предварительно пробуренную скважину большего диаметра - 0.5:

П. - Коэффициент перегрузки постоянной наерузки, действующей на фундамент, принимаемый равным 0.9: N, - нормативное значение постоянной наерузки (т).

Нормативное значение касательной силы выпучивания (T) BUNUCARNOT NO COOMYRE:

$$Q_n^{H} = K_c \mathcal{T}^{H} \sum_{i=1}^{S} K_n U_{ni} h_i;$$

где: Т"- нормативное значение удельной касательной силы выпучивания (т/м²), принимаемое на основании опытных данных, а при их отсутствии - равной 12 7/м2:

Кс - коэффициент, учитывающий онижение силы выпучивания на участках со снежным покравом и принимае мый по табл.6.

Кп- казффициент, учитывающий шерожоватость баковай повержности и материала і-той части фундамента или сваи и принимаемый по табл. 7

Uni - перимета (м) поперечного сечения i - той части фундамента или свай:

hi - высота (м) i-той части фундамента или сваи;

S - количество частей фундамента с разными периметрами по высоте, расположенных в пределах расчетной елубины промерзания-оттаивания ерунта.

Значение коэффициента Ка

Высота снежного покрова	Kc
Снежный покров не превышает 20 см	1,0
Снежный покров 80 см и божее	0,5

Примечания: 1. Для снежного покрова высотой от 20 да 80 см значение коэффициента К, определяется по интерполяции.

> 2. Высоту снежного покрава поинимают наименьшей из ежегодных минимальных высат в период ноября-января по данным наблюдений метеостанили или снегомерных постов (за срок не менее 10 лет).

> > *Tสกิส*มนส 7

Значение казафициента Кл

Характеристика павержности	Kn
Выступы на повержности до 1 мм	1,00
Выступы на паверхности до 5мм	1,20

Примечания: 1. 8 пределах слоя промерзания-оттаивания не допускается применение фундаментов с местными неровностями поверхности балее 5 мм.

2. Для повержностей фундаментов, покрытых противокоррозийными синтетическими обмазками значение Ко следует принимать как для материала фундамента с учетом получа-емой шерожоватости покрытия.

Расчетное усилие Р (т), разрывающее фундамент или сваю силами пучения, определяют по формуле:

$$P = n Q_n^H - n_1 N_2^H;$$

еде n,Q_n^H и Ω_1 — имеют те же значения, что и в основ-

ной формуле; N₂ — нормативное значение постоянной нагрузки в (т), включая вес части фундамента или сваи, расположенной выше расчетного сечения.

Праверка фундаментов или свай на действие сил выпучивания должна производиться как для законченного сооружения, так и для условий незавершенного строительства: в последней случае нагрузка на фундамент или сваю определяется от фактического веса незаконченного сооружения. Если при этой проверке сила выпучивания акажется бальше удерживающей силы (вес фундамента или свай в возведенной части маста). та в праекте далжны быть предусматрены меры по предупреждению выпучивания сооружения.

- 7.1.4. Расчеты на выпучивание производить не требуется для указанных ниже конструкций, принимаемых в строгом соответствии с настоящим проектом:
 - всех опор на естественном основании (типов 15, 3a, 4a, 5a:
- свайных устоев в случаях, когда высата подходной насыпи равна или более глубины промерзания грунта;
- опор, сооружаемых вталых грунтах при глубине промерзания, не превышающей 2м, с соблюдением требований а минимальной глубине забивки свай, приведенной в настаящем проекте.
- 7.1.5. Марки свай, применяемых в опорах, определены расчетом; длина свай определяется при привязке проекта в зависимости от высоты насыпи и глубины погружения, определяемой по несущей способности свай по грунту (см. листы н 124-128 проекта инв. н 708/1), на сжатие, выдергивание и сопротивление их воздействию касательных сил пучения с учетом:
- заделки свай в насадку (65 cm для свай СВ1-2° и СВ1-3° и 75 cm для свай СВ2-1° - СВ2-3°);
- Запаса, определяемого конкретными геологическими Условиями или материалами пробной забивки, но не менее 50см.

Минимальная глубина забивки свай от дневной поверхности или от уровня теоретического размыва) принимается согласно таблице в (при отсутствии специальных мероприятий по уменьшению воздействия сил выпучивания или по увеличению сопротивления свай выпучиванию, разрабатываемых индивидуально).

При привязке проекта на рабочих чертежах должна быть указана минимальная глубина забивки свай и оговорены требования п. 4 раздела, "Погружение свай" гл. 17 пояснительной записки к проекту инв. А 708/1 и требования Л.Б.4. настоящей пояснительной записки.

7.1.6. При использовании опор на естественном основании необходимо учитывать, что марка стоек, применяемых в опорах, определена расчетом; длина их принимается в зависимости от высоты насыпи и елубины заложения фундамента.

Минимальная глубина заложения фундаментов принимается не менее 2,5м и не менее:

Нм+0,5м — для однорядных фундатентов и Нм+0,75м — для двухрядных фундатентов. Здесь и далее Нм — глубина промерзания грунта.

При привязке проекто, фундаменты опор на естественном основании обязательно должны быть проверены расчетом на Устойчивость против скольжения.

- 7.1.7. При привязке проектов высота насыпи устоев и промежуточных опор типов 1a, 1б, принимается с учетом грунтавых условий (см. табл. 9).
- 7.1.8. Применение конструкций мостов по настоящему проекту согласовывается утверждающей инстанцией в составе техническога проекта железнодорожной линии. При этом мосты со свайными и стоечными опорати, построенные в первые 2года применения настоящего проекто, по тредованию заказчика должны быть подвергнуты испытанию на прочность и устойчивость при воздействии выдергивающих сил на оваи (стойки), превышающих расчетные усилия с учетом сил морозного пичения не менее чем на 50%.

Ταδπυμα 8.

Глубина промер-	Минимальная глубина забивки свай в метрах при сооружении свайных опор в грунтах					
зания грунта	талых и мер	мерзлых при праектирова-				
М	песи плат-		ПЕСИ СЛАБЫЕ, 2ЛИНЫ И СУ- 2ЛИНКИ МЯЗКО ЛЛАСТИЧНЫЕ	CYEMUHKU TEKYYE-	HUU NA NPUH- UUNY 1	
2,0	6	8	10,		6	
2,1-2,5	7	9		///16///	6	
2,6-3,0	7	10		///18///	6	
3,1-3,5	8	10	////14////	///20///	7	
3,6-4,0	8		15	///22///	7	

Примечания:

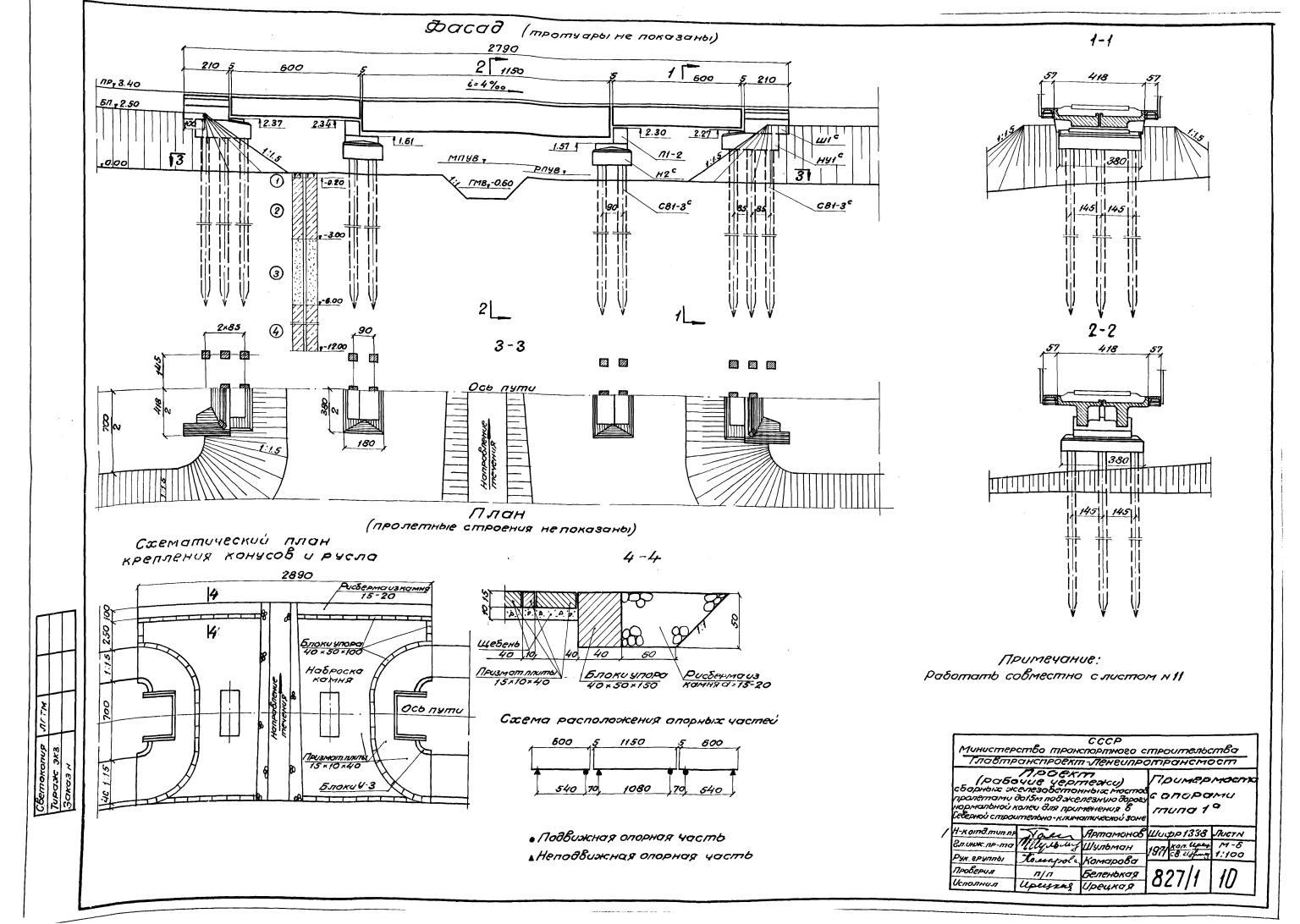
- 1. При проектировании по принципу 1 минимальная заделка свай в толще твердомерэлых грунтов назначается не менее 4м.
- 2. При проектировании по принципу 2 физикомеханические свойства грунтов определяются в оттаявшем состоянии.
- 3. Заштрихована часть таблицы, где применение свайных опор невозможно вследствие недостаточной длины свай

Таблица 9.

<i>∧</i> <i>п п</i>	Условия промерзания		Высота насыпи принимается в расчете:		
			устоев	промежуточ- ныж опор	
1	ниже раститель- ного слоя зале- гают грунты талые или мерз- лые, используе-	несвязные, плотные или средней плотнос- ти; связные при В < 0,4	Ннас.	Н Ннас.	
2	мые по принципу]]	несвязные рыжлые; связные при В = 0,4-0,6	Ннас+0,5м	HHac+0,5m	
3		илы и связные грунты при в 7 О.Б	Ннас+1,0м	Ннас+1,0м	
4	Ниже растительног мерзлые грунты, и принципу <u>ї</u>	а СЛОЯ ЗАЛЕГАЮТ СПОЛЬЗУЕМЫЕ ПО	HHac+0,5Hm	Ннас+0,5Нм	
5	Болото или марь		Ннас+Н8	применение дпор тилоб ја, 15- не дапуска- ется	

Обозначения:

- B коэффициент консистенции грунтов:
- Ннас высота подходной насыпи от бровки полотна до дневной поверхности грунта по оси устоя:
- Ннас условная высота насыпи промежуточных опор, равная: Ннас = Нап-90 см, еде Ноп возвышение падошвы рельса над дневной поверхностью грунта или линией теоретического размыва по аси опоры;
- Н6 глубина болота или мари:


7.2. Конструирование

- 7.2.1. Схема моста и конструкция опор назначаются на основе технико-экономического сравнения вариантов с учетам изложенных ниже рекомендаций.
- 7.2.2. При сооружении мостов на наледных водотоках отверстие моста и высота насыпи определяются с учетом свободного пропуска наледей или с учетом применяемых противоналедных мероприятий;
- 1.2.3. При сооружении опор на мерзлых грунтах, используемых по принципу 7, рекомендуется:
 - а) применять пролетные строения длиной не менее 9.3м.
- б) во всех возможных случаях предусматривать применение свойных опор.
- в) при назначении отверстия моста не допускать размыва русла. Предусматривать в необходимых случаях укрепление русла ветонными плитами или мощением с применением теплоизолирующих прокладок в виде слая утрамбованного торфа, мха и др.; толщина прокладок определяется теплотехническими расчетами, но назначается не менее 30см;
- 7.2.4. При выборе типа опор следует учитывать рекомендации, приведенные на листах м24-26 и в пояснительной записке.
- 7.2.5. В случаях, когда по местным инженерно-геоло-гическим или производственным условиям применение настоящего проекта в полном объеме невозможно или нецелесообразно, индивидуальное проектирование следует выполнять с учетом использования максимального количества элементов, приведенных в настоящем проекте.
 - С этой целью рекомендуется:
- применение железобетанных свай с местными уширениями (анкерами), конструкция которых должна обеспечивать их надежную заделку при работе на выдереивание в пучинистых грунтах;
- применение саставных железобетонных свай с равнапрочными стыками;
- применение конструкций, имеющих минимальную боковую повержность в пределах глубины промерзания.
- 7.2.6. При привязке опор на естественном основании при соответствующем технико-экономическом обосновании допускается предусматривать специальные мероприятия, повышающие устойчивость фундаментов (замена грунтов основания, укрепление грунтов и др.).

7.3. Требования к производству работ и технике безопасности

Проекты мостов, разрабатываемые с использованием настоящего проекта, должны содержать раздел "Производство работ", составляемый на основе части <u>й</u> проекта и с учетом указаний главы в пояснительной записки.

Этот раздел должен включать в себя требования и специальные мероприятия по технике безопасности, при разработке которых следует руководствоваться СНиП $\widehat{\mathbb{M}}$ -R. 11-70.

Тарактеристика грунтов

88	Наименование	Ommetku runacrob	Hapmare	BHOE SPSHTO	D. S.
JAMPOLES MONTO MONTO	грунта	грунта	Noboboc	No SOMO- BOU NO - SEPICHOCT	a dingodis Portomos Nortomos
1.	<i>Ρατπυπι</i> επομού οπού	00.20	-	1	
2.	Суглино к мягкоплос тичн. слабой плотности	-0.20 3.0	-	0.2	-0.5
3.	Пески мелкие и пыле- Ват. с прослоями суг∽ линка, влаженые	-3.06.0	1	3.0	
4.	Суглинок с просхожни впожи песка с включ. грабия полутв. В:0.2	-6.012.0	350	4.5	

Врунты талые

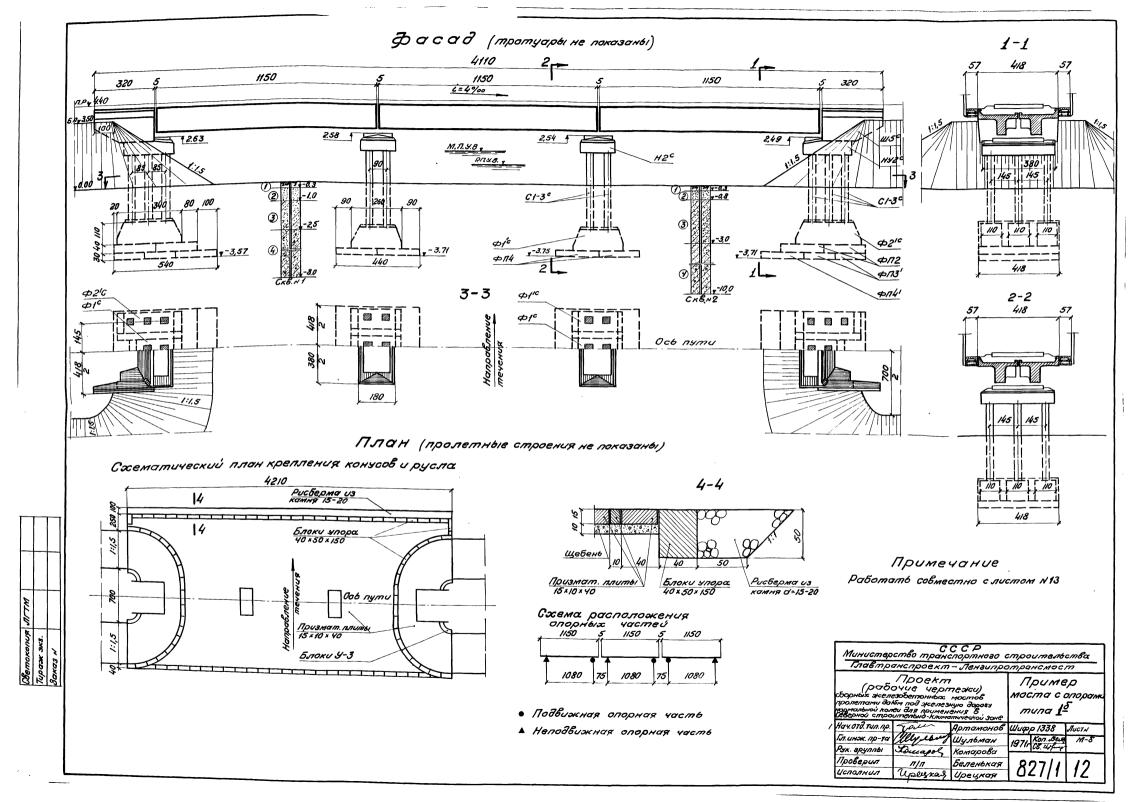
Спецификация блоков на мост

Mapka	Размеры	Объем	Kanu-	Obuci	Bec
δποκα	δποκοβ	<i>Блоко</i> м ³			
		M3	ШΠ	M ³	777
	rmhoe cmpoehue voù 6.0 m	4.85	4	19.4	14.1
<i>QNUHO</i>	тное строение ú 11.5 м	10.00	2	20.0	28.9°
cmp. d.	арные плиты пр. пиной 6.0 м	0.07	12	0.8	0.2
(IPOM:	уарные плиты пр Улиной 11.5 м	0.07	14	0.8	0.2
Ш1 ^с	210×107×418	1.9	2	3.8	4.8
HY1°	380×260×90	5.1	2	10.2	12.8
H2°	380×180×89	4.5	2	9.2	11.5
CB1-3°	35×35×1200	1.52	28	42.5	4.1
71-0	266×60×73	1.1	2	2.2	2.7
<i>171-2</i>					

Основные расчетные данные

אא ח/ח	Наименов	ание	U3M.	Вели- чина
1.	Максимальн ход воды		M3/cex	
2.	Расчетные воды			
3.	Расчетная течения	CKOPOCTO	M/cek	
4.	Максималь- ное давле-	ycmoeb	7	40
5	ние насваю	MPOMEOKYTOU HOLK ONOP	7	74
6.	Сейсмично	cmb	5anı	7
7.	MONIQUEROS	π6∂α x 0∂e	M	
8.	Данные	Уклон	%。	4
9.	nymu	KPUBOA	RM	_
10.	Миним.глубина логружен.свой	устоев	M	8
11.	в ерчнт	промежит. Опор	M	10.5
12.	глубина про	мерзания	14	3.0

Объемы основных рабопт


אא ח/ח	Наимен рабо		Материал	U3m.	K-80
1.	Пролетн	biecmpoenug	ЭКСЕЛ.Бет.М 300 МРЗ 300	m ³	41.0
	2. Блоки опор Сваи сечением 3. 35×35 длиной 12м Металл перил 4. и консолей			мз	25.7
3.				ШТ/3 М ³	28/426
4.			_	7	4.0
5.	Опорные	yacmu		7	2.1
6 .		а устоями	Дренирующий грунт	M3	130
7.	YKPETUTEHUE KONYCOB	Призм. Бет. Плиты	Бетон М300 Мез 300	MZ	310
		Камнем	Камень морозочет парод	M2	90

Состав проекта

א א ח/ח	Наименование чертежей	UHB. N MUNOSOE MPOCKM
1.	Пример моста	Настояч проект
2.	Пролетное строение длиной Б.Ом	557/[
3	Пролетное строение Влиной 11.5м	"
4.	<i>Шκαφ</i> μού δ <i>π</i> οκ	Настоящ, проект
5.	Насавка устор	"
6 .	Насадка промежуточ- ных опор	"
7.	Переходные подферменники	
₿.	CBau	Настоящ. проект
9.	Стыки свай с насадками	708
10.	Крепление шкафных блоков,	"
11.	Протчары на четоях	Настоящ проект
12.	Протуарные плиты устоев	708
13.	Протуарные плиты, консали, перила, изоляция прол.строений.	<i>557/</i> <u>I</u>
14.	Расположение анкеров на подферменной площодке	108
15.	Видроизоляция опор	"
16.	Опарные части	577, 557/ <u>I</u>
17	Укреплени е русла и конуса	823

- На чертеже прибеден пример свайно-эстакаднова маста через постоянно действующий водаток.
- Переход сложен талыми грунтами.
- 3. Материал пролетных строений и блоков опар — экслезоветон марки 300, омоноличивания опор – марки 400,
 - Морозостойкость всеж железоветонных конструкций моста включая элементы по типовому проекту инв. и 708 должна быть не менее Мез 300.
- 4. Работы по строительству моста должны выполняться в соответствии с действующими нормативными документами и проектом производства работ.
- 5. Вблизи моста должен быть устроен постоянный репер, устойчивый против выпучивания, для наблюдений за состоянием моста в период строительства и эксплуатации.
- 6. Кончеа и русла под мостом вне меженней воды укрепляются призматическими бетонными плитами 15×10×40см по щебеночной подготовке h×10см. В пределах меженней воды русло укрепляется наброской камня.
- 7. Повержности блоков опор и свай, засыпаемые грунтом, покрываются двумя слоями горячего битума.
- в. Работать совместно с листом и 10

Министер	ocmbo mp	СССР СССР	o cmpoumen	bcmba
SNORM	OHCHPOEK	m-Jieneunp	OMPOHEM	OCM
	TPOEKT 1900 YEP 1830 DEMONHE 15M NOO HEE 15M NOO HEE 15M NOO HEE	Примерм с олора типа 1° (продолжа	MU	
Н-к <i>от∂.т</i> ип.пр	Tour	Артамонов	Шифр 1338	Sucm N
2л инж. пр-та	allyear	Шульман		
Рук. группы	touspot	Комарова	1971 KON. Uparz	
Проверил		беленькая	וודרם	11
Исполнил		Ирецкая	827/1	17

Марка	Размеры блаков	OGZEM OGHOZO	Konu-	050000	Bec
<i>δποκα</i>	CM	δλοκα M3	wm	0баем м ³	ognoso Gnora m
C1-3°	35 × 35 × 500	0,61	12	7,3	1.7
C1-3c	35 × 35 × 450	0,55	16	8,8	1.6
HY2°	380 × 260 × 90	5,2	2	10,4	13,0
H2 ^c	380 × 180 × 89	4,6	2	9,2	11,5
Ш5 ^с	320 × 180 × 418	5,0	2	10,0	12,5
\$1°/\$11°	260 × 110 × 110	2,4	4/4	19,2	5,0
Ф2 ¹⁶	340 × 110 × 110	3,1	4	12,4	7,8
<i>ФП2</i>	418 × 220 × 40	3,7	4	14,8	9,2
Ф/73 ¹	418 × 160 × 30	2,0	4	8,0	5,0
ФП4/фП4 [*]	418 × 220 × 30	2,8	4/2	15,8	7,0
T/15	159 × 54 × 14	0,05	8	0,4	0,1
пролет	OHBIE NAUMBI HBIX CMPOEHUU	0,07	42	2,3	0,2
Пролет ฮิภบหอบ่	nbie empoenus 11,5m	10,0	6	60,0	28,9*

^{*)} Вес блока с изоляцией

Объемы основных работ

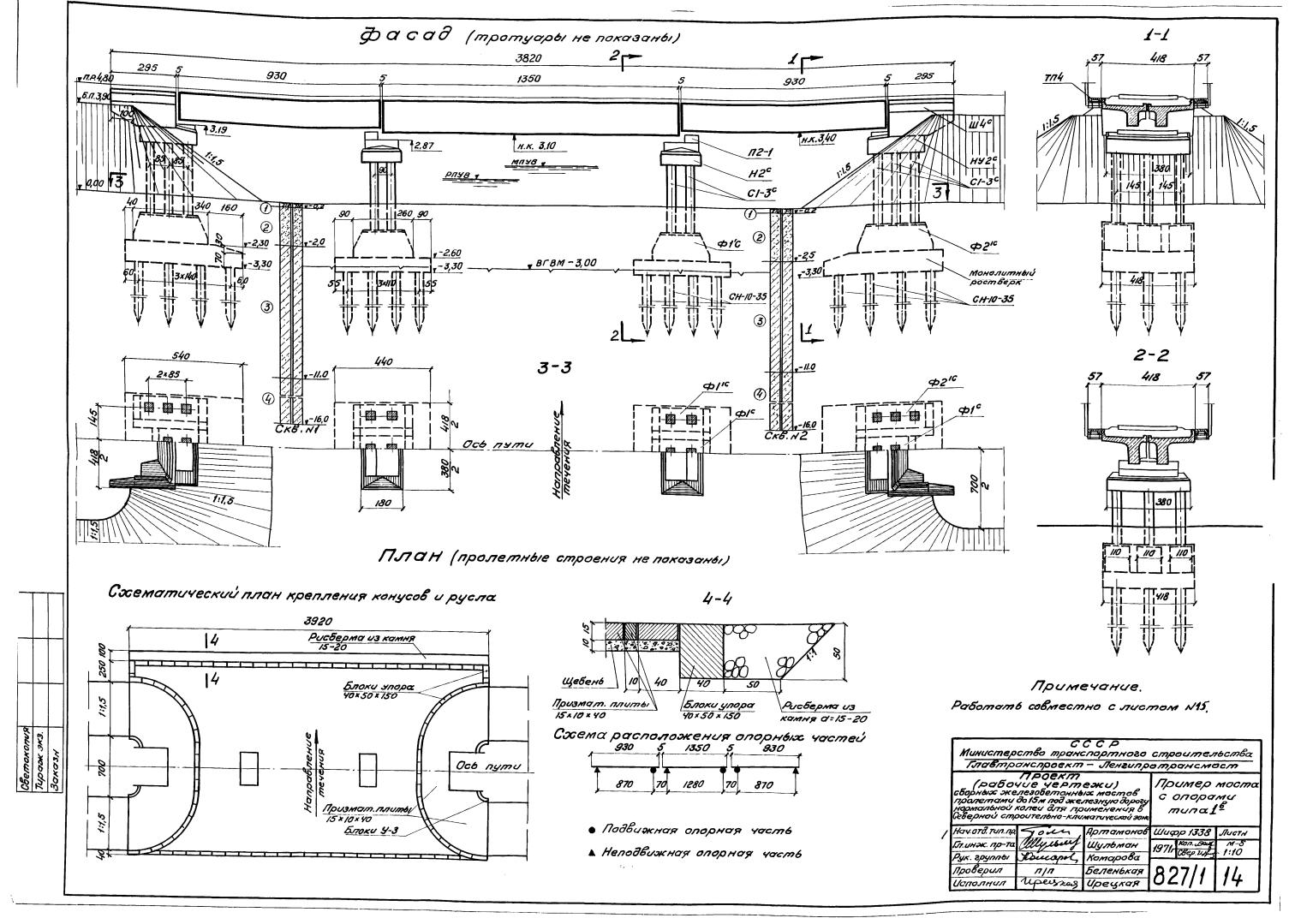
N N/n	Наимено рабо		Mamepuan	U3M.	KON.
1	Пролетные	строения	Жел.бет. М 300 Мрз. 300	m ³	62,3
2	Вержние блоки опор		N	"	30,0
3	Блоки фундаментов		Жел. Бет. M300 Мрз 200	"	71,2
4	Cmoúku		ЭКел. бет. М300 МРЗ 300	"	16,1
5	Бетон омоноличивания		Бетон M 400 Мрз 300	"	23,4
6	Металл перил и консолей		_	m	6,6
7	Onophbie	части	_	m	3,2
8	Земляные	Omcbinka konycob	Дренирующий грунт	м3	80
9	paãombi	Засыпка за устоями	"	M3	130
10	Укрепление кончсов и	Призматическ. плитами	Бетон М300 Мрз 300	M2	700
11	русла	Камнем			

Cocmab npoekma

N	Наименование чертежей	Инв. н типового проекта
1	Пример маста	Ηαςποφιμυύ προεκπ
2	Пролетное строение Злиной И,5м	<i>557/I</i>
3	<i><u>Cmoύκυ</u></i>	Hacmoguyuu npoekm
4	Шкафной блок устоя	"
5	Насадка устоя	"
6	Насадка промежуточных опор	"
7	Фундаментные блоки	4
8	Стыки стоек с насадками	708
9	Стыки стоек с фундаментными стаканами	Настоящий провкт
10	Крепление шкафных блоков	708
//	Мротуары на устоях	Hacmosuyuu NPOEKM
12	Мротуарные плиты устоев	708
13	Расположение анкеров на повферменникая:	21
14	Sudpousonayua anap	"
15	Мротуарные плиты, консоли, перила,изоляция пролетных стр.	557/I
16	Опорные части	557;557/I
17	Укрепление русла и конусов	8 23.
18	Лестничные сходы	524

Χαρακπερυςπυκα εργηποβ

Наименование	Отметку пластов грунта м			
грунтов	Cx8. N 1	CK6. N 2	8pynma R ⁱ R/ _{CM} 2	уровня грунт. вод
Растительный слой	0,00- - 0,30	0,00- -0,30	-	333
Мелкозернистью пески спрослойками супеси. Зрунты влажные	-0,30- 1,00	-0,30 - 0,80	_	0.70
Супесь пластичной с примесью гравия до 10% средней плотности		7	1,0	-0,30
Супесь твердая, плотная с примесью гравия и щебня до 30%	-2,50 - 8,00	-3,00 - 10,0	3.5	
	грунтов Растительный слой Мелкозернистые пески спрослойками супеси. грунты влажные Супесь пластичная с примесью врабия во 10% средней платовости Супесь твердая плотная Супесь твердая плотная	Паименобание пластерунт Скв. Н 1 Растительный 0,00- спой -0,30 Мелкозернистые пески спрослойками супеси. 200- 2рунты властичноя спримесью гравия об 10% средней плотности -2,50 Супесь твердая, плотная -250-	Наименобание пластов грунта м грунтов Скв. Скв. № 1 м2 Растительный 0,00- 0,00- 0,30 -0,30 Мелкозернистые пески с прослойками сулеси. грунты блажные Сулесь пластичная с гредней плотноя -2,50 -3,00 Сулесь твердая, плотная 2,50- 2,000 Сулесь твердая, плотная 2,50- 2,000	Наименование пластов врунта м копрот ворот м гопрот по гопрот гопрот по гопрот го


TOYHMBI Manble.

OCHOBHOIE PACYEMHDIE BANHDIE

N 1/1	Haumeno	вание	U3M.	Вели- чина
1	Makeumane	M3/GEK.		
2	Pagyemnbi d	"		
3	Расчетная течения	скорост6	M/cex.	
4	Максималь ное давлен.	ycmogmu	K8/	3,8
5	на врунт	Nod npome- akymovnomu onopamu	"	3,4
6	Сейсмичн	ocm6	балл	7
7	Данные	Уклон	%00	4
8	nymu	Кривая	М	∞
9	TAYBUHA A	омерзания	M	3,2

- 1. На чертеже приведен пример моста через периодически действующий водоток. Пережод спожен талыми грунтами.
- 2. Материал пролетных строений и блоков опор — железобетом марки 300, омоноличивания опор и маналитной кладки - марки 400. Морозостойкость всех навземных железоветинных конструкций мосто, бълючая элементы по типового проекту инжигов должна былы не менее 142300 порозостойкость элементоврындаментов-не менее 142300.
- 3. Повержности блоков опор и стоек, засылаемые грунтом, покрываются двумя споями гарячего битума.
- 4. Работы по строительству моста должны выпалняться в соответствии с действующими нармативными документами и проектом производства работ.
- 5. Фундаментные плиты опор укладываются на плотно утрамбованный слой щебня толщиной 10 м.
- 6. Вблизи моста должен быть устроен постоянный репер, устойчивый против выпучивания, для наблюдения за состоянием моста в период строительства и эксплуатации.
- 7. Конуса и русло под мостом укрепляются призматическими бетонными плитами 10×15×40 по изебеночной подвотовке h=10 см.
- 8 Работать совместно с листом N12

Главтра	HCDPOEKM-	.портново с Пенгипроі	прансмос	77
(РОБО Сборных же. пролетами до	TPOEKM YUE YEPM NE305EMOHH 15M NOT XEM	esku) Ibis macmab	MOCMA C C MUNA 15	ep nopamu
Ησν. στθ. τυπ. πρ.	Tour	<i>Артаманов</i>	Шифр 1338	SUCTH
Гл.инэк.пр-та	allyeary	Шульман	1971 Kan. Ba	M-5
Рук. аруппы			10 III Geep up	+ - -
Проверил	n/n	Беленькая	827/1	17
1/22221111	Upersons	1/2 244 22	1 0 Z I I I	17.7

Марка блока	Зеометрические размеры Блоков см	05гем одного блока м3	Kosi. wm	Obusuú Obsem M³	Вес одново Блоко т
C1-3°	35 × 35 × 450	0,55	28	15,4	1,5
HY 2°	380×260×90	5,2	2	10,4	13,0
H2°	380 × 180 × 89	4,6	2	9,2	11,8
T12-1	265 × 65 × 31	0,5	2	1,0	1,3
Ш4°	295 × 418 × 165	4,3	2	8,6	10,8
\$1°/\$1°	260 × 110 × 110	2,4	4/4	19,2	6,0
Ф2 ^{1C}	340×110×110	3,1	4	12,4	7,8
CH-10-35	35 × 35 × 1000	1,3	48	62,4	3,3
T/14	240 ×54 ×14	0,1	4	0,4	0,25
Mpomyap Hors cmp.	ные плиты пролет блиной 9,3 м	0,06	24	1,2	0,15
	ibie TIJUMBI APOA. HOÙ 13,5 M	0,06	16	99	0,15
Пролеті	HOE CMPOEHUE	7,65	4	30,6	22,3
Пролеті Әлиной	10e cmpoenue 13,5 m	13,12	2	26,24	37,3

^{*)} Βες δποκά ς υσοπριμεύ

Obsembi ochobibix pobom

N N/n	Наимено рабо		Материал	U3M.	KON.
1	Пролетные строения		Ж. 5. M 300 Mp3 300	мЗ	58,9
2	Вержние в	הממני מחסף	"	"	29,6
3	Блоки фун	даментов	Ж.Б. М 300 Мрз 200	"	31,6
4	<i>Cm</i> ούκυ		OK. 8. M 300 Mp3 300	,,	15,4
5	Монолитные ростверки		ж. б. м 400	"	69,3
6	Chau		W. 5. M300 Mps200	"	62,4
7	Бетон омоноличивания		Бетон м 400 Мрз 300	"	23,4
8	Металл пер	OUN U MEMON- OHCONEŮ	_	m	5,7
9	Onophbie 4	acmu	_	m	3,2
10	Земляные	Bachinka sa Yemormu	Дренирующий грунт	m ³	200
#	работы	Отсыпка конусов	-"-	мз	180
12	Укреплен. конусов и	Бетонными плитами	Бетон M 300 Мрз 300	M ²	860
13	русла	Камнем	Kameno mapasa-	m ²	_

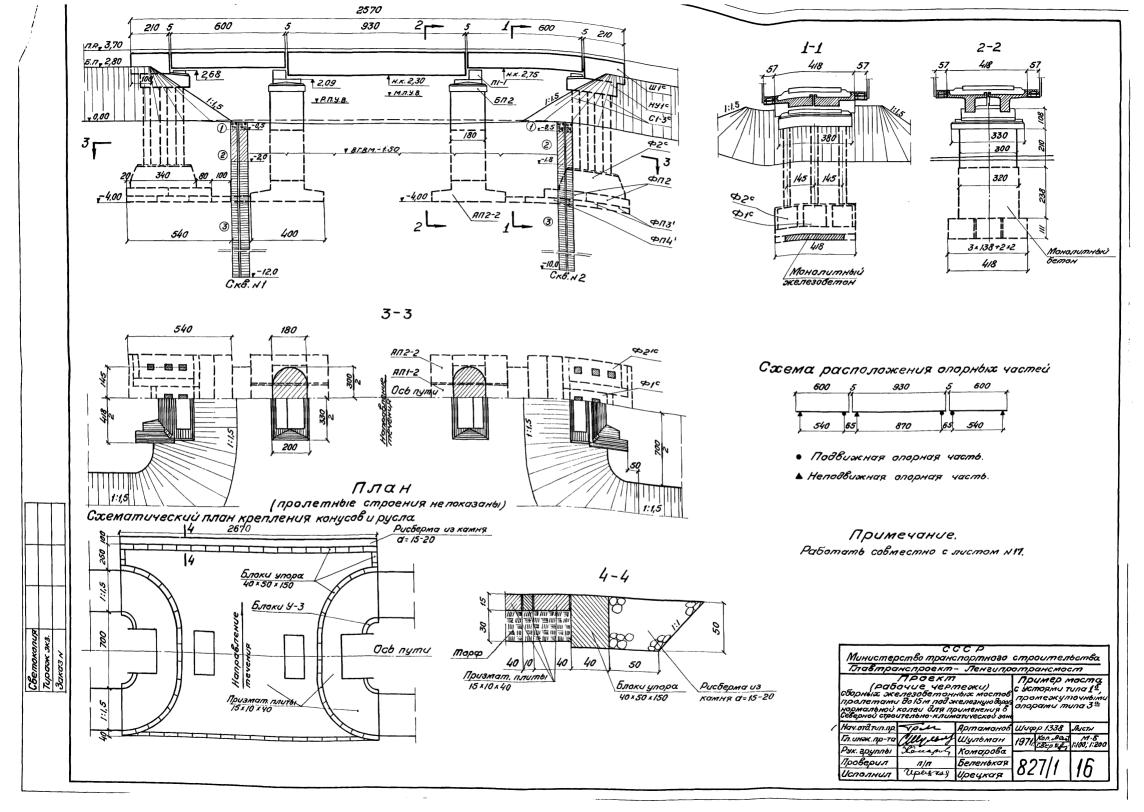
Cocmab nooekma

•	sociildo lipoekilla	
א חןח	Наименование чертежей	Инв. н типового проекта
1	Пример моста	Настоящий проежт
2	Пролетные строения длиной 9,3м и 13,5м	557/I
3	<i>Cmoύκυ</i>	Ηας πα σιμυύ ηρο εκ π
4	Преднапряженные сваи СН-10-35	596
5	Шкафной блок устоя	настоящий проект
6	Насадка устоев	"
7	Насадка промежуточной впоры	"
8	Фундаментные блоки	"
9	Стыки стоек с фундамент-	Настоящий проект
10	Стыки стоек с насадками. Крепление фундаментов	708
11	Крепление шкафных блоков	"
12	Переходиые подфермениики	"
13	Протуары на устояж	Настоящий проект
14	Протуарные плиты устав	708
15	Расположение анкеров на повферменниках	"
16	Sugpousonayua onop	"
17	Мротуарные плиты,пери- ла, изоляция прол. стр.	557/I
18	Опорные части	577,557/1
19	Укрепление русла и конусов	823
20	Лестничные сосоды	524

Lapakmenucmuka spymof

N n.mad	Наименование	mag sps	V MAG- IN MA N	SOC MO	Лобовое сопротив	
mab Bpyn ma	грунто в	CKB. NI	Cx6. N2	Коэфиц консист В	Температ. мерзлю- тові t°cpC	в уровне острия свай т/ м²
1	Растительный слой	0,00,20	0,00,20	-	-	-
2	Супесь с прослойка- ми мелкого песка с глубины I,5м-мерзлая	- 20	-0,20 — 2,5	0,6	- 0,4	-
3	Суглинки с прослой- ками мелкого песка с линзами льда	-2,0 - 11,0	-2,5 - 11,0	0,5	-0,7	_
4	Суглинки с прослойка- ми крупного песка пост аттачвания твервые	-7,0-	-11,0 - 16,0	0	-0,9 18 sipo 8 me octpus c8 ox	1100

ZDYHMbI BEYHOMEDBABIE


Ochobie pacyemnoie dannoie

N 1/1	Наимен	ование	U3M.	Велич
1	Makeumane pacxod eo		M3/cex.	
2	Расчетны воды	v paczał	"	
3	Расчетна течения	я скорость	M/cex.	
4	Максимально	Ycmoe6	m	60
5	давление на сваю	Промежуточн опор	m	54
6	глубина пре	омерзания	М	2,5
7	Сейсмичн	ocm6	Балл	8
8	Данные	Уклон	%00	-
9	пути	Κρυβαя	Rm	2000
10	Минимальная глубина	Ycmoe6	М	9,0
#	погруж. свай ниже под ф-та	Промежут. опор	"	9,0

- 1. На чертеже прибеден пример моста через перио-дически действующий водоток. Переход сложен вечномерэлыми грунтами, исполь-
- зуемыми в качестве основания по принципу П. 2. Материал пролетных строений и блоков опор--железобетон марки 300, омоноличивания опор и
- монолитной клавки марки 400. Морозостойкость всех надземных железобетонных конструкций моста включая элементы по типовому проекту инв. н 708 должна быть не менее Мрз 300.
- Морозостойкость элементов фундаментов не менее Мрз 200. 3. Сваи погружаются в предварительно пробуренные скважины
- диаметром 35 см. глубина погружения свай в грунт определяется по расчетному отказу, но должна быть не менее указанной в таблице и не менее 0,5 м ниже забоя лидирующих
- 4. Повержности блоков опор и стоек, засыпаемые грунтом, покрываются двумя слоями горячего битума.
- 5. Работы по строительству маста должны выполняться в соответствии с действующими нормативными документами и проектом производства работ.
- 6. Для наблюдений за состаянием моста и температурой вечномерзлыж врунтов в период строительства и эксплуатации BONDENSI BUMB HEMPORHEN:
- а) вблизи моста-постоянный репер, устойчивый против выпучивания.
- б) на расстоянии 10 м от подошвы откоса одного из конусов, обращенных в южную сторону - постоянная скважина.
- 7. Конуса и русло под мостом укрепляются призматическими
- бетонными плитами 10±15±40 по щебеночной подготовке h = 10 см 8. Работать совместно с листом N 14

Министерство тра			
Главтранспроект	- Ленгипроп	прансмост	
ПРОВНІ (РАБОЧИВ ЧЕРП сборньіх железобетонн прапетоми до 15м под же нармальной калеи для пр Северной строительно-клим	77 теаки) ных мостов пезную дарогу рименения б	Пример м с опорам типа 1	nocma ny i <u>e</u>
Hay ord run no. Vous	Вотамонов	Wyang 1338	SWETH

Hav.ard.run.np.	vous.	<i>Артамонов</i>	Wuqop 1338	SWETH
Гл. инок. проекта	Myesey	Шульман	1071 KON. Beref	M-5
Pyx. zpynnbi	towapely	Комароба.	10 111 Coep up	
Проверия	n/n	Беленькая	<i>R27/1</i>	115
UCHOSHUST	repenses	Ирецкая	021/1	10

Состав проекта

Наименование

Пример моста

BAUHOU 6,0M

PRUHOU 9,3 M

Cmoúku

YEDMEJKEÚ

Пролетные строения

Пролетное строение

Ψκαφρησύ δποκ yemog

промежуточных опор

Тротуарные плиты

Фунваментные стаканы

Фундаментные плиты

RPOME OKYMOYHOLE OROP

Стыки стоек с фунда-

ментными стаканами

Стыки стоек с насадками

Крепление шкафива

Протуары на устояж

на подферменниках FUDDOUSONAYUR ONOD Укрепление

KOHYCOB U PYCAA

Onophbie yacmu

Расположение анкерав

Протуарные плиты, консоло

перила, изоляция прол. строени

Янкерные плиты

Конструкция

Hacaðka yemoeb

Подферменники

подферменники

Пережодные

ycmoe6

устоев

ucmoes

блоков

UHB.N

ทนทอธิอะอ

проекта

Настоящий

708

Ηαςποριμού

708

Настоящий

708

823

55.7/I

577, 557/1

npoe Km

npoekm

npoekm

Характеристика грунтов

MBD3JOM

Отметки

PDUMEYAHUS:

- 1. На чертеже приведен пример моста через водоток болотного типа.
- 2, Пережод сложен твердомерзлыми арунтами массивной текстуры (Лв< 0,03). Финдаменты опор закладываются на естественном основании с использованием твердомерэлых грунтов по принципу I.
- 3. Материал пролетных строений и блоков опор--бетон и железобетон марки 300,омоноличива-HUR ONOD & MADKH 400.
- Морозостойкость анкерных плит, фундаментных стаканов и плит не менее Мрз 200, остальных элементов, включая элементы по типовому TOOKMY UHB. N 708 - HE MENEE Mps 300.
- 4. Повержности блаков опор и стоек, засылаемые грунтом, покрываются двумя слоями горячего битума.
- 5. Конуса и русло под мостом укрепляются призмотическими бетонными плитами 15×10×40 cm, уложенными на подвотовку: в конусож-из щебня h=10cm; Bpycne-us moppo h=30cm.
- б. В основании конусов и дренирующей засылки за устоями тордо далжен быть удален и заменен дренирующим врунтам.
- 7. Для наблюдений за состоянием моста и температурой вечномерзлых грунтов должы быть устроены:
- вблизи моста-пастоянный репер, устой-- на расстоянии 10 м от подошвы откоса
- одного из конусов, обращенных в южную сторону-постоянная скважина.

СССР Мунистерство транспортного строительства.

Шульман

Комарова

Беленькая

Ирецкая

Пример моста

промежуточным порами тила 3º Продолжение

APMICHONOS WURDP 1338 STUCTN

Главтранспроект- Ленгипротрансмост

Hav. ord. run.np 70

repensas

Гл. инэк.пр-та

YK. PRYNOSI

Проверил

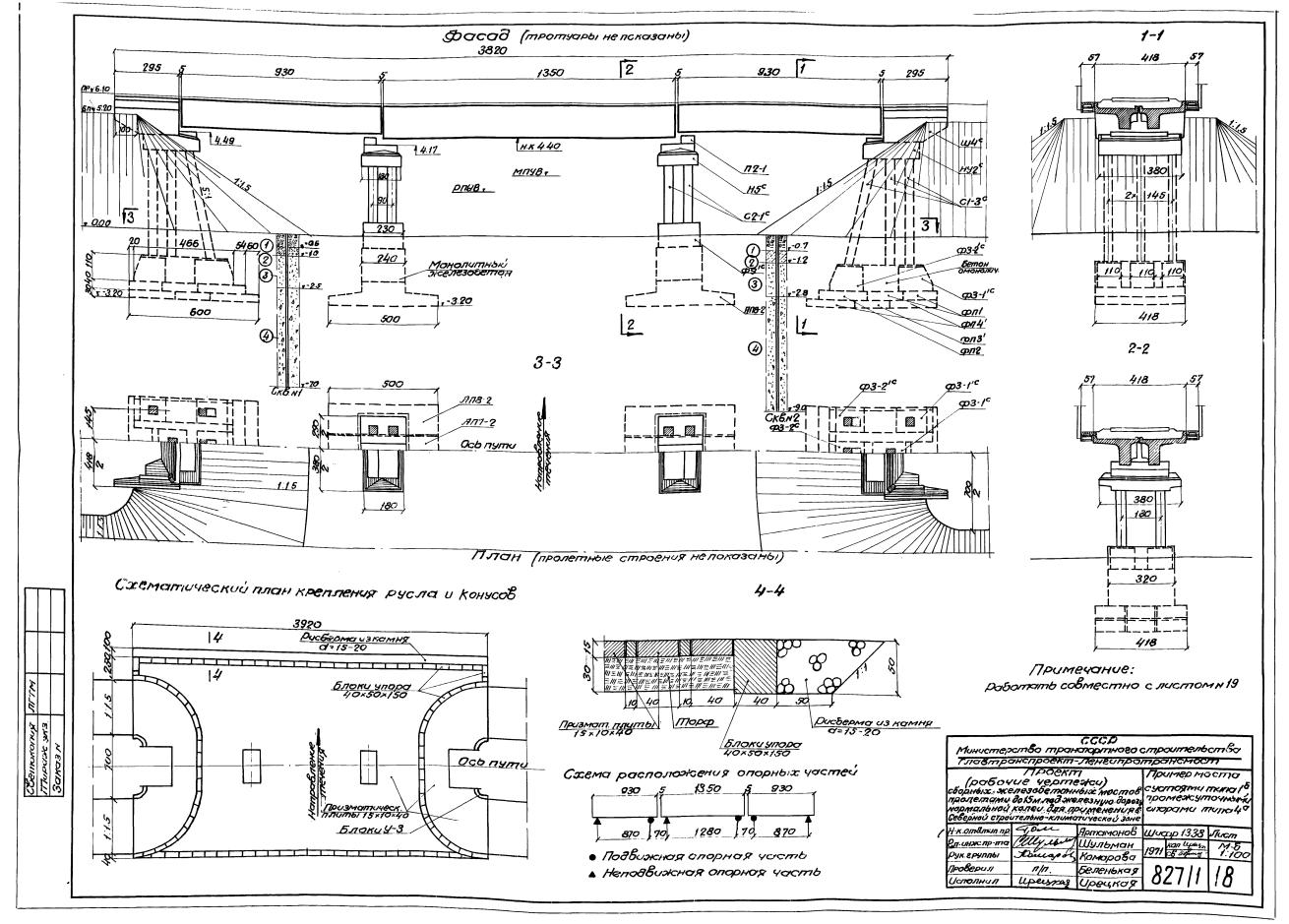
UCDOTHUI

8. Pabomamb	COBMECTHO C JUCTOM N 18	5.
-------------	-------------------------	----

H	есущая способность	OCA	овани	9
0	pedensemos no CHu N	11-5	6-66	

Марка Блока	Размеры блоков см	Объем Іблока м ³	Кал. Блаков шт	06щий 06гем м ³	Вес 16 лока 177
ШІС	210 * 107 * 418	1,9	2	3,8	4,8
HYIC	260×380×90	5,1	2	10,2	12,8
C1-3°	35 × 35 × 500	0,61	16	9,8	1,8
M-1	266×60×58	0,8	2	1,6	2,1
БП2	200×330×50	2,7	2	5,4	6,8
Ф2 ^к	340×110×110	3,1	4	12,4	7,8
Ф1°	260 × 110 × 110	2,4	2	4,8	6,0
<u> ЯП1-2</u> ЯП2-2	400×138×111	4,5	2/4	27,0	11,1
ФП2	220 * 418 * 40	3,7	4	14,8	9,2
Ф/73′	160 × 418 × 30	2,0	4	8,0	5,0
Ф74′	220 × 418 × 30	2,8	2	5,6	7,0
TIT 1	210 ×54 × 14	0,07	4	0.3	0,2
Прот прол. с	уарные плиты тр.длиной 6,0 м	0,07	12	0,8	0,2
	парные плиты тр. длиной 9,3 м	0,06	12	0,6	0,2
BRUHO	тное строение и 6,0 м	4,85	4	19,4	14,1
Прале	тное строение и 9,3 м	7,65	2	15,3	22,3"
	Блока с <i>изол</i>	RULE	j.		

Obsembly ochobyhow papar


~	Наименование			
Ŋn	ľ	Материал	Изм	Кол
7	Пролетные страения	Жел.бет. M300 Мрз-300	m ³	36,1
2	Вержние блоки устоеб и промежуточных опор	, ,,	"	21,0
3	<i>Επούκ</i>	"	"	9,8
4	Блоки Фундаментов	Жел.бет.М300 Мрз - 200	"	72,6
5	Бетон омоноличивания	Бетон М 400 Мрз -300	u/	13,0
6	Монолитная часть промежуточных апор	Бетон M-300 Мрз - 300	"	50,0
7	Металл лерил и консолей	_	m	3,8
8	Опорные части	_	m	2,1
9	Отсыпка конусов и за устоями	Дренирующій грунт	M	180
10	Укрепление Конусов	//pu3M97.ber.n/Wh 10×15×150 Hg we6He	M ²	150
11	Укрепление русла	Призмат, бет. плит на торфе	"	300

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		εριστίπου	W/	w2	R May Cm²	000	t°c	
Hacmoswyci npoekm 557/I	,	Морф	0- -0,5	0- -0,5			_	
w Hacmoswyd Npoekm "	2	Суглинок с прослойками мелкого песка с глубины 1,5м мерзлый	-0,5- -2,0	-0,5- -1,8	-	010-	_	
N N	3	Глина с прос- пойкоми гравия, мерэлота массивной текстуры	-2,0- -12,0	1	8,0		-2,0 f ypobre nodowbi p-ma	۱
708								•

Наименовани

OCHOBHBIE DACYEMHBIE BAHHBIE

١						n=10cm; в русле-из торфа h=300
:	N 1/1	Наиме	нование	Изм.	Вели- чина	6. В основании конусов и дрено за устоями торф далжен бы заменен дренирующим грун
	1	Makeumai paczod 6		M³/cex.		7. Для наблюдений за состоя
1	2	Расчетні воды	σιώ ρασχαθ	v		температурой вечномерзлы быть устроены:
1	3	Расчетно течения	ия скорос <i>т</i> ь	M/cex.		– вблизи моста-пастоянны чивый прот ив вы пучивания
1	4	Максималь- нов	В устояж	"	3,2	– на расстоянии 10 м от по одного из конусов, обращен
	5	давление на грунт	В промежутьч- ных опораж	"	4,3	сторону-постаянная ско 8. Работать совместно с ле
	6	глубина п	ромерзания	м	1,5	
	7	Данные	Уклон	%00	-	
-	8	пути	Кривая	RM	1800	СССР Министерство транспортного
	9	Geúcmuy	ность	Балл	7	Главтранспроект- Ленгипр ПРО ЕКТ (рабочие чертежи) сборных железобетонных мостов
	H	ecywar ch	000000000000000000000000000000000000000	новани	9	пролетами до 15 м под железную дорогу нармальной колеч для применения б Geверной строительно-климатической зам

Марка блока	Размеры блоков см	Объем одного блока м ³	Kanu- yecmbo wm	06uuu 06bem m³	Вес одного блоко т
C2-1°	40×40×350	0.56	8	4.5	1.6
C1-3 ^c	35 × 35 × 600	0.74	12	8.9	2.1
HY2°	380×260×90	5.2	2	10.4	13.0
H5°	380 × 180 × 99	4.9	2	9.8	12.3
W4°	295 × 418 × 165	4.3	2	8.6	10.8
72-1	266 × 65 × 31	0.5	2	1.0	1.3
\$3-1°\\$3-1°	130 ×110 ×110	1.2	2/4	7.2	3.0
73-2 ⁷ /73-2 ¹⁰	150 × 110 × 110	1.4	2/4	8.4	3.5
ත გ, _c	230 × 125 × 110	2.4	4	9.6	6.0
AN7-2	500×138×93	5.1	2	10.2	12.8
ЯП8-2	500×138 ×93	5.1	4	20.4	12.8
фл /	418 × 160 × 40	2.7	4	10.8	6.8
фл2	418 × 220 × 40	3.7	2	7.4	9.2
фл3'	418×160×30	2.0	2	4.0	5.0
фп4′	418×220×30	2.8	4	11.2	7.0
mn4	295×54×14	0.1	4	0.4	0.3
ПРОТУОРН СТРОЕНИЙ	BIE PAUMOI POREMABIX	006;0.05	24	1.2	0.15
Mpamyap	HDIE TIJUMDI PROJEMHATA EJIUHOÙ 13.5 M	0.06;0.05	16	0.9	0.15
	HOIR CITIPORNUS	7.65	4	30.6	22.3×
Пролети	13.5M	13.12	2	26.2	37.3

A) Bec GAORA C UZONALUEÓ

Объемы основных работ

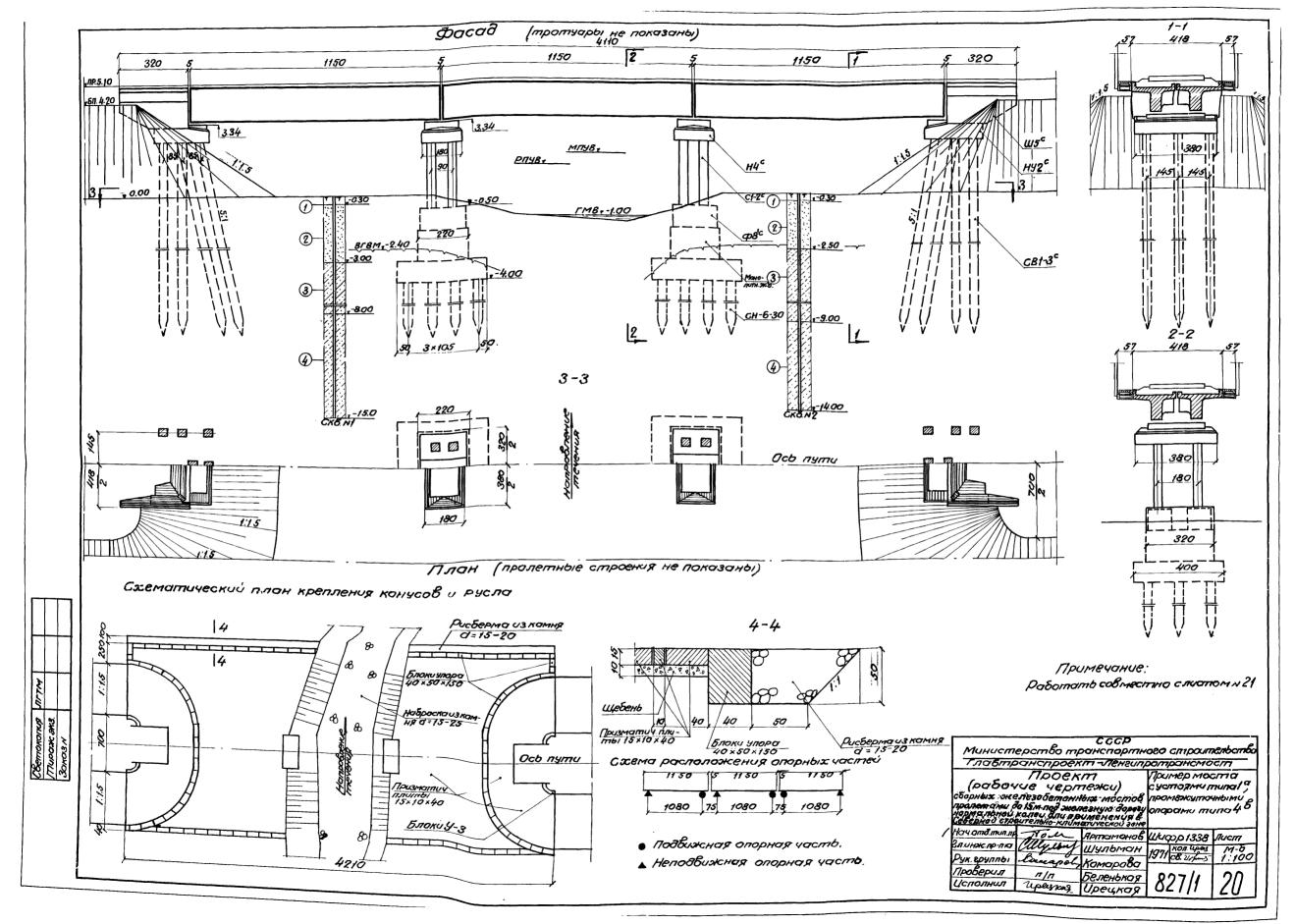
אא מ מ	Наимено рабо		Мотериал	UBM	K011-80
1	Пролетно	не строения	04C.5.M300 Mp3 300	M3	58.9
2	Верхние			"	30.2
3	Gmouke	· /		"	13.4
4	Фундаме ні	пные Блоки	Ж.Б. М 300 Мрз 200	"	25.2
5	Фундамені	пные плиты		"	64.0
6	Бетон ом	оналичивания	Бетон M400 Мрз 300	"	36.4
7	Монолитна, промвжут	9 Yacmb apyndam. aynbix o'no.p	HC 8. M300 MA3200	M3	13.1
රි	Метопл пе ческие ког	PPU II U M ema nnu HCONU	_	7	5.7
9	Опорные	400mu	_	7	3.2
10	Земляные	GCCPIUKA 3A	Д <i>ренирующий</i> 8 <i>рунт</i>	M3	350
11	ρ ο δο <i>π</i> οι	Omebinka Konycob	11-	M3	400
12	Укрепление конусов и	Бетонными плитоми	Бетон M300 Мрз 300	m ²	860
13	русла	Камнем	Камень морозо истойчив перед.	m ²	

Состав проекта

NN	Наименование	UHB. N MUNOBOEO
n/n	чертежей	проекто
1	Пример моста	Настоящий провкт
2	Пролетные строения алиной 9.3 и 13.5м	557/ <u>I</u>
. 3	<i></i> <i>Γm</i> ούκυ	HOSMORULUÚ NPOČKIM
4	Шκαφηού δποκ γεποя	,,
5	Насадка устоя	"
6	Насадка промежсуточной опоры	"
7	Фундаментные блоки	19
8	Фундаментные плиты	708
9	Янкерные плиты	Μοςποριμυύ ΠΡΟΦΚΙΠ
10	Переходные подфермен-	708
11	Стыки стоек с насад- ками	"
12	ными сшаканами Сшыки сшокк с фяндамент-	Hacmonwoù npoekm
13	Крепление шкафных блоков	708
14	Крепление фундаментов	"
15	Протуары на устоях	Настоящий проёкт
16	Протуарные плиты устоев	708
17	Расположение анкероб на подферменниках	"
18	видроизоляция опор	"
19	Протуарные плиты, перила, изоляция пролетн строений	557/ <u>I</u>
20	Опорные части	577, 557/[
21	Укрепление конусов	823
22	Лестничные сходы	524

$oldsymbol{x}$ apakmepucmuka epyhmo $oldsymbol{\delta}$

~~	Наименование	Отметки плас тов ерунта		conporm.	сопрот устано	
/ገ /ነባር ር) የም-ነጠር		CKB.N1	CAS~2	е <i>рунта</i> R кг/см²	70 BOXO6	YPOGHA PYMA.Boo M
1	Порф	0.0 - -0.6	0.0 - -0.7	-	-	
2	Супесь пластичная W=0,5	-0.6- -1.0	-0.7 - -1.2	1.0	1.2	
3	Пески мелкие, насыщ. Водой средн. плотности	-1.0 - -2.5	-1.2- -2.8	1.5	2.5	0.00
	Пески крупные с грабием, средней плотности	-2.5- -7.0	-2.8- -9.0	3.5	4.0	


Sрунты талые

Основные расчетные данные

אא ח ח	Haumer	нование	U3M.	Велич
1	Makeum	M3/cer.		
2	Pac46 pacxod	-11-		
3	Расче ско рос т	M/cek.		
4	Максимальное <i>давление</i>	noa yemoamu	KE/CM2	3.4
5	на врунт	пад промежуточ- ными опорами	"	3.3
6	Злубина <i>п</i>	РОМЕРЗОНИЯ	M	2.5
7	Данные	Уклон	%	_
8	กษากบ	KPUBAA	RM	می
9	Сейсмичн	Балл	7	

- 1. На чертеже приведен пример моста через бодоток болотного типа. Пережод сложен талыми грунтами.
- 2. Материал пролетных страсний и блоков опор-жеелезоветон Марки 300 омоноличивания опор марки 400, Морозостойкость всех надземных жеелезоветонных конструкций маста, включая элементы, по типовому проекту инв. и 708, должена выть не менее Мез 300. Морозостойкость элементов фундаментов не менее мез 200.
- 3. Побержности блоков опор и фундаментов, засыпасмые грунтом, покрываются двумя слоями горячеговитума.
- 4.Работы по строительству моста далжый быпалняться в соответствии с действующими нарматывными документами и проектом производства, работ.
- 5. Вблизи моста далжен быть устроен постоянных репер, устоичивый против быпучивания, для наблюдений за состоянием моста в период строитеньства и эксплуатоция
- 6,Конуса и русло под мостом укрепляются призматичес кими Бетонными плитоми 15×10×400м, уложенными на подготовку:в конусах-из щебня h=16cm; в русле-из торфа h=30cm.
- 7,В основании конусов и дренирующей засыпки за устоями торф далжен быть удален изаменен дренирующим грунтом.
- 8.Работать совместно с листом м18

Trabmpo	HCDPOCKM	-SICHEUNPOI	mpa	HCMOCI	77
CÓODHÓIX PICEI APOMEMOMU: C	TPOEKITI IUE YEPITI Jesobernanhb Josephan Men Konevans Mou Tenhho-Knuma	ONOPOMONIONO -			
Hoy.ama.mun.np	Tour	Артомонов	Uko	DP1338	TRICITIN
Гл.инж. пр-та	allyears	Шульман			
Рук. группы	Ducapol	Комарова	797/	CB Wfrug	1
Проверия	n/n	Беленькая	و 1	27/1	19
		UPCHKOR	- ^	, , , ,	: 7 U

Марка блока	Размеры блокав см	05ъем одново блока м³	Количес- л160 ш1	Общий объем м ⁸	Вес Одного блока Т
CB1-3°	35 × 35 × 1300	1.65	16	26.4	4.6
C1-2°	35 × 35 × 400	0.48	8	3.9	1.4
HY2°	260 ×380 ×90	5.20	2	10.4	13.0
H4°	380 x /80 x 8 9	4.90	2	9.8	12.2
Ш5 ^с	320 × 180 × 418	5.00	2	10.0	12.5
<i>ቀ8</i> ^{ເς}	200 ×110 × 110	1.80	4	7.5	4.8
CH-6-30	30 ×30 ×600	0.54	24	13.0	1.4
T/15	159 × 54 × 14	0.05	8	0.4	0.13
Протуар, Строений д	ные плиты пролетных пиной 11.5 м	0.07	42	2.3	0.2
Προπειπικό Βπυκού 11.	NE CMPORNUS SM	10.00	6	60.0	28.9*)

^{*)} Вес блока с изаляцией.

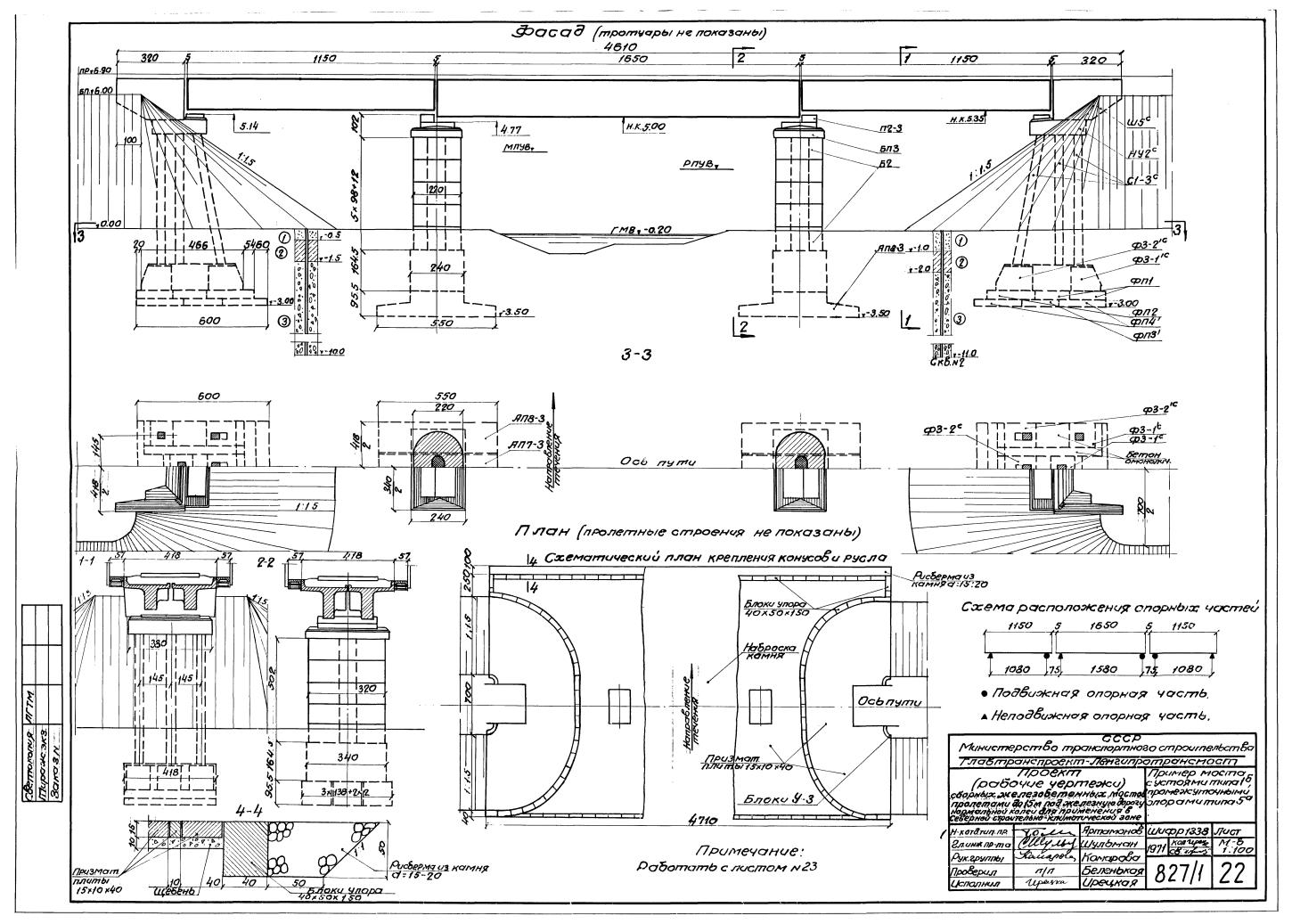
Объемы основных работ

אא	Haumei	нование			
n/n	ραδο	om .	Материал	U3M.	Кол-во
1.	Пролетнь	е строения	ЖелезобетонМ30 0 Мрз 300	M ³	62.3
2.	Вержние (блоки	n	"	30.6
3.	Блоки ф	индаментов	Ж.б. M300 Мрз 200	"	7.6
4.	Cmoύκυ		Ж.Б M300 Mp3 300	"	3.9
5 .		ый экелезобетан В и фундаментав	Бетон М300	n #	46.4
6.	Chau cl	31-3 ^c	Ж.Б. М 300 Мрз 300	"	26.4
7.	Сваи сн-6-30		ж.б. М300 Мрз 200	"	13.0
8.	бетон омон	ноличивания	Бетон M400 Mp3 300	"	8.3
g.	Металл п ческиж ког	ерил и металли- нсолей		7	6.0
10.	Опорные	части		7	3.2
Ħ.	Земляные	Засыпко за устоями	Дренирующий грунт	M ³	200
12.	работы	Отсыпка конуса	11	"	220
13.	Укрепление конусоб	Бетонными п литами	Бетон M300 Мгз 300	M ²	750
14.	и русла	Камнем	Камень марозо- устойчив. породы	"	190

Состав проекта

	• • • • • •	
~~ n/n	Наимено вание чертежей	Uнв, N типового проекта
1.	Пример моста	Ностоящий проект
2.	ПРОЛЕТНЫЕ СТРОЕНИЯ Влиной 11.5 м	557/I
3.	Γπούκυ, εβαύ	Ησεποπιμνύ προεκπ
4.	Преднапряженные сваи	596
5.	Шкафной блок устоя	Ησε ποπ ιμνί προεκπ
<i>6</i> .	Насадка устоя	"
7.	Насадка промежсуточной опары	"
8.	Фундаментные блоки	"
9.	Стыки стоек с фундаментными Блоками. Крепление фундаментов	Настоящий проект, 708
10.	Крепление шкафных блоков	708
11.	Протчары на устоях	Ησεποριμού προεκπ
12.	Протуарные плиты устоев	708
13.	Расположение анкеров на подферменниках.	"
14.	EUDPOUSONRUUR ONOP	"
15.	Протуарные плиты, перила, изоляция пролетных строений	557/[
16.	Опорные части	577,657/]
17.	Укрепление конусов	6 23
18.	Лестничные сжоды	524

Характеристика грунтов


nnaç.	Наименование			Hapmam.canpo-		/Tiemne- pomypa	Отнетка установ.
mat 2PyH- ma	вотничая	CKB.NI	CKB.N2	Nososot R ^M	Rose		SOO W
1.	Ραςπυπεπονοιύ ς πού	0 - 0.30	0 - -030	_	-	-	45
2.	Мелкозернистые и пьие- ватые пески сглубины 2.4м мерзлые		-0.30- -2.5	_	2.0	-0.1	-0.30
3 .	Супесь с прослойнами мелкого песка	-3.0 - -8.0	-2.5 - 9.0	_	3.5	-0.3	- 07
4.	Супесь с примесью круп- нова песка, после аттаи Вания – твердая	-8.0 — -15.0	-9.0- -14.0		6.5	-0.4	۲

Основные расчетные данные

~~ ~/~	Наименова	ИЗМ.	Велич	
1.	Максимальн расжод во	M³/cek.		
2.	Расчетный расход бой	16,	"	
3.	Расчетная течения	M/cex.		
4.	Максимальное	7	93	
5 .	давление на сваи	промежит. опор	"	55
6.	Влубина прог	1ерзания	M	2.4
7.	Полщина ль ледоходе	да при	M	_
8.	Сейсмично	:mb	<i>Балл</i>	7
9.	Данные	Уклон	%	-
10.	пути	Кривая	R M	_
11.	Минимальная глубина погру-	Ycmoeb	M	10.0
12.	жения свай	Промежут. Опор	M	6.0

- 1. На чертеже приведен пример моста через постоянный бодоток.
 Переход сложен пластично мерэлыми грунтами, используемыми в качестве основания по принципу [[].
- 3. Злубина повружения сбай в грунт принимается по расчетному отназу, но должна быто не менее указанной в таблице основных расчетных данных.
- 3. Материал пролетных строений и блоков опор-железоветон марки 300 отоноличивания опор марки 400. Моразостойкасть всех надземных железоветонных конструкций тоста, включая элементы по типовоту проекту инв. и 708, должна выть не менее Мрз 300. Моразостойкость влементов финдаментов не менее Мрз 200.
- 4. Паверхности блоков опор и стоек засыпаетые ерунтом, покрываются авутя слоями горячего битума.
- 5. Работы по строительству моста должны выполняться в саответствии с действующими нармативными дакумента-ми и проектом производства работ.
- 6. Для наблюдения за састоянием тоста и тетпературой вечномерэлых зрунтов в лериод строительства и эксплуатации должны быть устроены:
 а) вълизи маста-постоянный реперустайчивый против выпучивами
 - б) на расстоянии [Ом от подошбы откоса одного из кончеоб обращенных в юженую сторону, - постоянная скважина.
- 7. Конуса и русло под мостом бне пределов меженней воды укрепляются призматическими бетонующи плитоми уклюживом. по щебеночной подвотобке h:10 см. В пределож меженней воды русло укрепляется наброской комня.
- 8. Работать совместно с листом и 20

Минисі	перство тр	анспартного С С С Р	строител	bcmba
Suagu	ранспроект-	Ленгипротр	CHCMOCITI	
100 ak.d HOD	ПРОВКП 10 ЧИВ ЧВР 18л. бет. тостов 18л. бет. тостов 18. строительно-кл	ITTE AGU) NPONEMIAMUÕO SM NR NPUMEHEHUS	anapamu mur	una 1ª, inbimu na 4 ⁶
A Hay.om&mun	m Jour	Артамонов	Шифр 1338	Sucm N
[л.инэк. проек	ma (lely ser)	Шульман	KON. Zym	
Рук. группь	Decepol	Комарова	1971 CE. When	
Проверил	n/n	Беленькая	827/1	21
Uсполнил	Upeyras	<i>Црецкая</i>	02///	21

Характеристика грунтов

NN	Наименование	8POH		Условн conp. R'	५००० ५००६म
mob mob	8 рунгно б	GKEN	Crbn2	KP/ KM ³	грунт 808
,	Песак пылеватый водонаськиенный средней плотности		0 - -1.0	1.0	
2	Счелинок пластич- мый с садержа- нием гравия да15%, В=0.4	0.5 -1.5	-1.0 - -2.0	1.5	-0.10
3	Валечник с песчаным заполнением	-1.5- -10.0	-2.0- -11.0	3.5	

Ерунты талые

Наименование

Основные расчетные данные

Uzmep. Benuyu-

			HO
Максимальны	M ³ /Cex		
Расчетный ра	"		
Расчетная	M/cek		
Нормативна, промерзано	М	3.0	
Максимальное дабление	109 Acutolina	KE/	4.1
на грунт	под промежс. Опорами	"	3.7
Данные	Уклон	%	-
nymu	Kpubag	RM	⇔
Полщина ль ледоходе	М	0.4	
Сейсмичн	10cmb	балл	6

Спецификация блоков на мост

Марка	Размеры	1	Konu-		
Блока	Блоков		<i>५७</i> ०माई		15 nord
OSTORE	OHOROO	M3	WM	M3	M
ws°	320×180×418	50	2	10.0	12.5
HY2°	380×260×90	52	2	10.4	13.0
C1-3°	35 ×35×650	0.8	12	19,8	2.3
172-3	266×65×36	0.6	2	1.2	1.5
5/13	340×240× 5 5	3.5	2	7.0	8.8
52	320 ×220×98	5.3	10	53.0	13.3
\$3.1°	130 × 110 × 110	1.2	2/4	7.2	3.0
\$3-2°	150 × 110 ×110	1.4	2/4	8.4	3.5
<i>Ф</i> 111	418×160×40	2.7	4	10.8	6.8
Ф112	418 × 220 × 40	3.7	2	7.4	9.3
<i>Фп3′</i>	418 ×160 ×30	2.0	2	4.0	5.0
Фп4′	418 ×220 ×30	2.8	4	11.2	7.0
AN7-3 AN8-3	550×138×95,5	5.8	2/4	34.8	14.4
7115	159×54×14	0.05	8	0.4	0.13
	привів плиты прол. В Влиной 11.5м	0.07	28	1.5	0.2
	рные плиты пролётн я длиной 16.5м	<u>0.06</u> 0.07	36	2.2	0.2
D.MUHO	THE CITE CHUR DU 11.5 M	10.0	4	400	28.9°*
длино	THE CHIPOCHUS DÚ 16.5 M	17.65	2	35,3	49.2*

*) Вес блока с изоляцией

Οδъεμοι οςμοδηρία ραδοπ

ww	HOUMEHO	рвани е	Материал	U3M.	K-Bo
nļn	ραδι				
1	Пролетн	ыестроения	JHC&II.5&mM300 MP3 300	M3	79.0
2	Вержние в	ภอหน ५cm०୧६	//	گ ومبر	20.8
3	Gmoúku	,	ЭКСЕЛ.БЕТ, М300 МРЗ 300	"	9.6
4.	Лодферме и пережод	үнные блоки Мые подферы	, —"—	"	8.2
5.	BJOKU THE		БетонМ300 Мез 300	ν.	53.0
6	BAOKU OD	у <i>ндамен</i> -	ЖСЕЛ: БЕ ТМ300 МРЗ 200	"	83.8
7	Bemon on	MOHOMUNUBA. DEB	Жел.бет.М400 Мэз 300	,	16.2
8	<i>Монолитн</i> фундамені	19 4acmb 11. пром.опор	Эксел.Бет.М300 Мез.300	"	13.5
9		ежсут опор ежсут опор	Жел.Бет.М400 Мез 300	. "	6.4
10	Металл п	ерил и консо пе	ý <u> </u>	7	5.4
11	Опорны	e yacmu		7	3.2
12	Земляные	Засыпка За устоями	Дренирующий грунт	M ³	400
13	работы	Отсыпка конусов	— <i>"</i> —	'n	540
14	Укрепление Конусов	Бетонными плитами	Бетон M300 Mr3 300	M2	1000
15	n bacud	Kamuem	Камень маро- Зоуст. порад	m ²	350

Состав проекта

~~	Наименование	UHB N เกบกอธิอออ
n/n	чертежей	npoekma
<u> </u>		Ησοποπιμού
1.	Пример маста	npockm
	Пролетные строения	_
2.	อิภาบหอบ์ 11.5M U 16.5M	557/ <u>I</u> HOCHO RULYU
3	Ψκαφηού δποκ	npoerm
4	Насадка четоя	"
5	Подферменный блок промежиточной опоры	"
6	Переходной подфер исни и	708
7	<i>Οπο</i> ύκυ	Ησοποπιμού προφκητι
ક	Фундаментные стаканы устоев	11
9	Фундаментные плиты чстоев	70 8
10	Стыки стоек с насадками	11
11	Крепление шкафных Блоков	"
12	Стыки стоск с фундомент- ными стаканами	Настоящий проект
13	ПРОПУФРЫ НА УСПТОЯЖ	"
14	/ПРОтуарные плиты устоев	70 8
15	Расположение анкеров на подферменниках	"
16	Блоки промежсуточных опорстыки блоков между собой	Η οςπορ ιμού προεκπ
17	Монолитная часть фунда- мента промежуточных опор	,
18	פסחם בעשבתסבטסקסט	708
19	Протчарные плиты, консоли, перила, изсляция прол. сте.	557/፲
20	Опорные части	677, 557/]
21	Укрепление русла и конусов	
22	Лестничные сходы	524

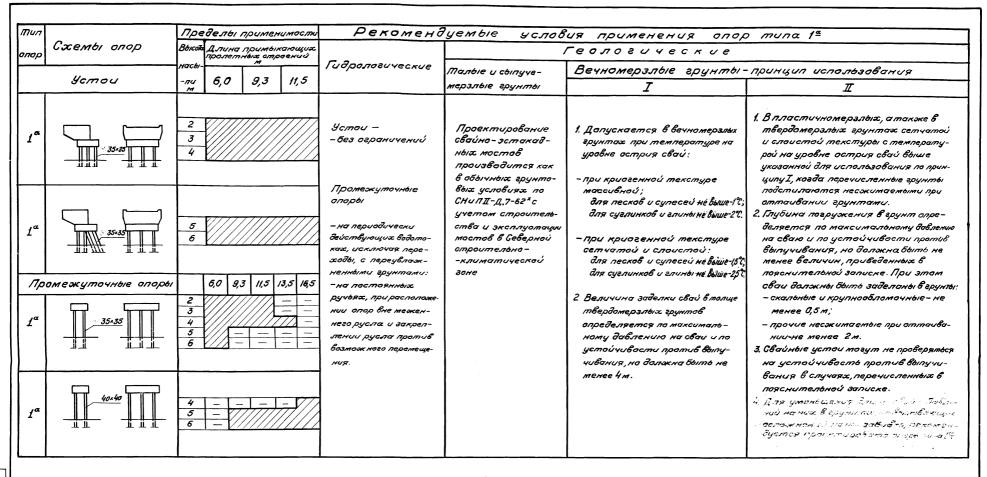
Примечания:

- 1. На чертеже приведен пример моста через постоянный водоток с опорами заложенными на естественном основании,
- 2. Μαιπερυαπ προπειπιρικ επιροεκού υδιλοκοδ οπορ-δειποκ υ ικεπεзοδειποκ Μαρκο 300, ομοκοπογυδακοπ οπορ Μαρκο 400

Морозостойкость всех надземных железобетонных конструкций моста, включая элементы по типовому проекту инв. и 708, должена быть не менее Мрз300.

Морозостойкость элементов финдамен тов не менее Мрз 200_

Морозостойкость бетона омоноличивания и монолитной части фундаментов промежсуточных опор должны быть не менее Mes 300,


- 3. Поверхности блоков опор и фундаментов, засыпаемые грунтом, покрываются двумя слоями горячего битума.
- 4. Укрепление конусов откосов насыпи и русла вне пределов межсеннего уровня воды производится призматическими бетонными плитами 10×15×40.

Дно русла в пределах межени укрепляет наброской камня.

При наличии местного камня морозостой ких пород допускается производить все укрепительные работы камнем.

- 5. Работы по строительству моста долэкны быполняться в соответствии с действующими нормативными документа ми и проектам производства работ.
- 6. Вблизи моста должен быть устроен постоянный репер, устойчивый против выпучивания для наблюдений за состоянием моста в период строительство и эксплуатации.
- 7. Работать совместно с листом и 22

Министерство транспортного строительства Влавтранспровкт-Ленеипротрансмост Пример моста с устоями типа 16 Проект (рабочие чертежи) промежсуточными апорами типа 5° Сборных экселезобетонных мостов пралето ми до 15м под ж.д нормальной колей для применения в Северной строительно-климатической зоне (продолжение) Угоса Потомоно АРтамонов Wurpp 1338 Jucma гл.инж. пр-та Комарова Pyk. epynnbi Проверил Беленькая **Исполнил** Uperxas Uperkas

Примечания:

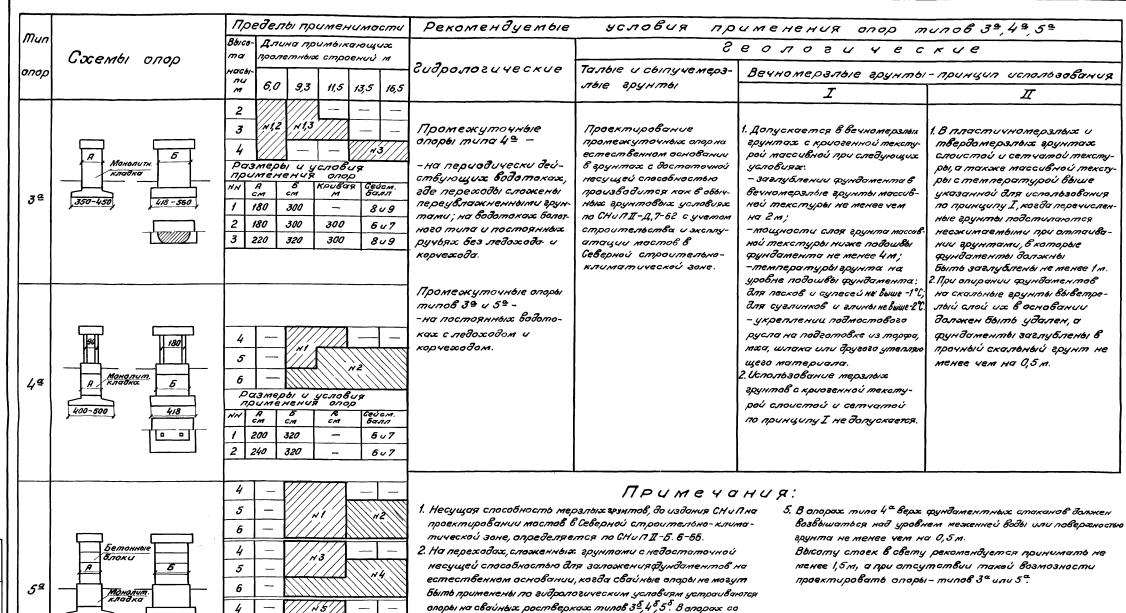
- 1. Свайные опоры проектируются с применением типовых нестыкованных свай.
 На переходах, на которых расчетная глубина погружения не обеспечивается нестыкованными сваями проектируются опоры на свайных роствер-ках типа 18.
- 2. В опораж обного моста не допускается применение разных принципов использования вечномерэлых грунтов.
- 3. Несущая способность свай при использовании вочномерэлых грунтов по принципам I и II, до издания СНИП на проектирование мостов в Северной строительно-климатической заме, определяется по СНИП II-5. 6-66

- 4. Погружение свай устоев рекомендуется производить в предварительно отсыпанные конуса насыли.
- 5. В грунтаж, вызывающих затруднения по забивке свай, рекомендуется погружение свай производить в лидирующие скважины с добивкой свай после достижения забоя скважин.
- 6. Не рекоминдуется у погружение свай методом оттаивания грунтов.
- 7. Строительство мостов должно выполняться без перерывов. При вынужденных перерывах должны выть приняты меры против выпучивания свай. Перед продолжением строительных работ состояние свайных опор необходимо подвергнуть комиссионному освидетельствованию.

8. Здесь и далее в графе "пределы притенитости" область возмажного притенения типов опор заштрихована.

Министер	С С ство транс	CP COPMHOSO	cmpoume.	пьства
		n - Jenzun		
Сборных же	70 15m nad жел колеч для пр	тежи) ных мостов позную дорогу именения в	Основно показател и рекомендо их примен	u onop
Hav.ora.tun.np.	Tour	<i>Артамонов</i>	Wwgpp1338	JUSTN
	allyering	Шульман	1971 Kon Buy	M-5
IJT. UHOK. NDOEKTO				
Гл.инок.проекта Рук. группы	Tomapol	Комарава	10/11 CBEP.ZLOP	<u> </u>
		Комарава Беленькая	827/1	24

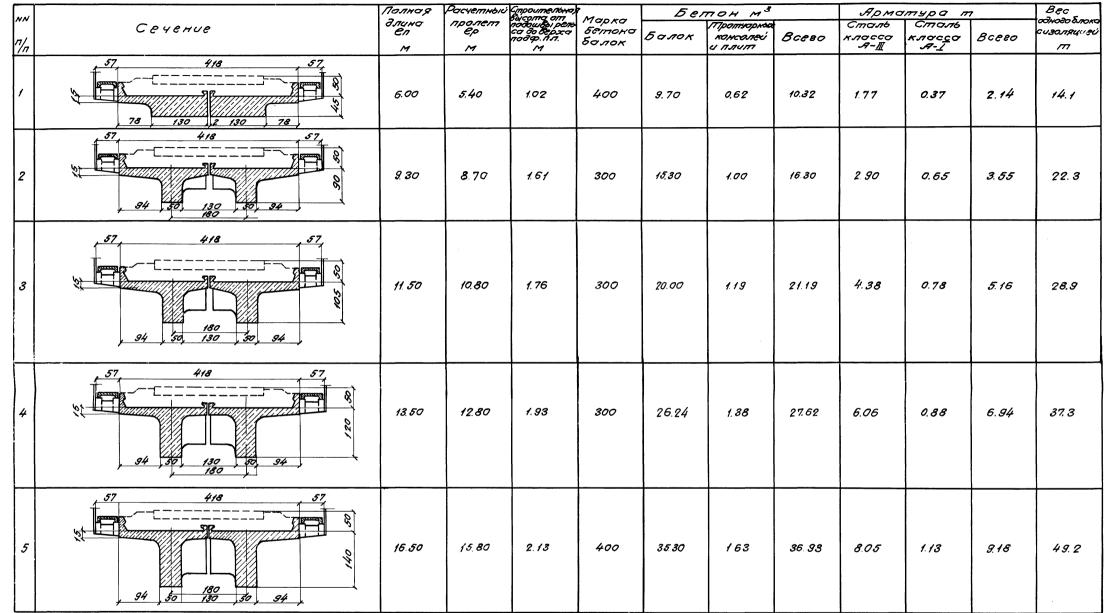
PRUMEYAHUS:


- 1. В опораж одного моста, как правило, не допускается применение разных принципов использования мерэлолы. При технико-экономическом обосновании допускается γεπρούεπδο οςκοδακού ραзπυνκοτο ποιο δ γεπορα σ промежуточных опорож.
- 2. Несущая способность мерзлых грунтов, во извания СН и Пна проектирование мостов в Северной строительно-климатической зоне, определяется по СНиП II-5.6-66.
- 3. На пережадаж, сложенных грунтами с невостаточной несущей способностью для заложения фундаментов на Comecimbe no mochoboniu, kosta chaúntie onopei ne mosum быть устровны по условиям применения нестыхованных chau, yempauhammen anophi na chaunhix paemheprax rung 18 чии разрабатываются индивидуальные проекты:
- В опораж со свайными ростверками фундаментные ПЛИТЬІ ЗАМЕНЯЮТСЯ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ
- 4. Для защиты стоек устоев от промерзания рекомендуется производить присыпку берм со стороны русла с соответствующим увеличением отверстия мостов.

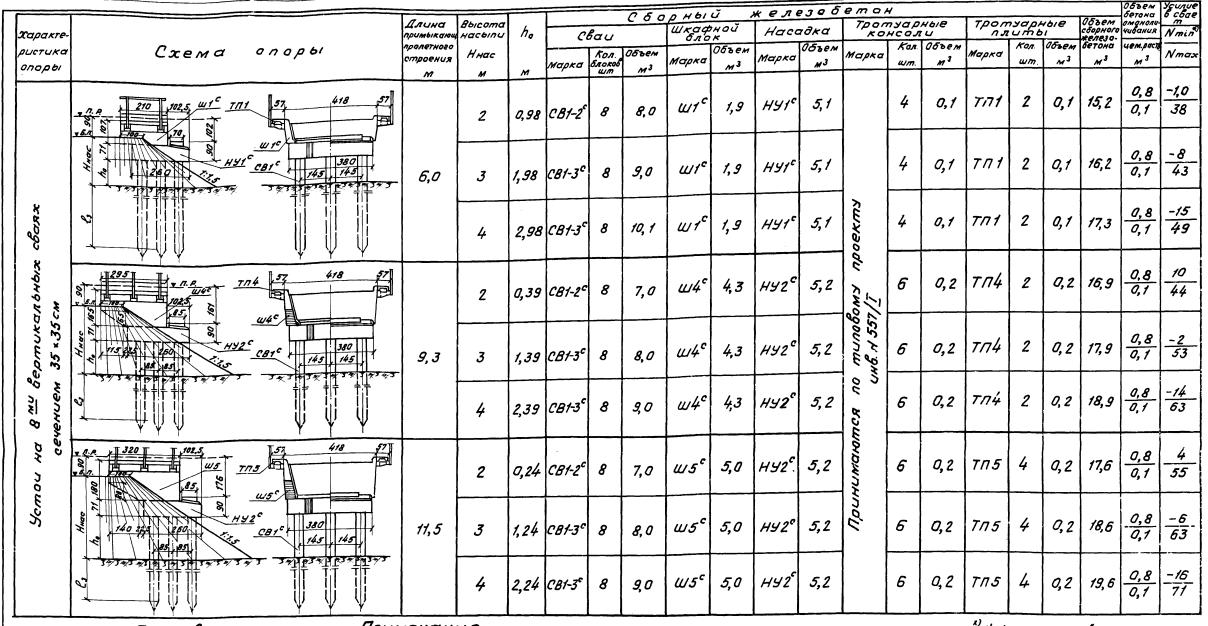
- 5. Рекомендуется производить отсылку конусов и уплотнение их до установки насадок и шкафных блоков устоев.
- б. Строительство мостов должно выполняться без перерывов. При вынужденных перерывах должны быть приняты меры против выпучивания фундаментов и разрыва стоек. Перед возовновлением строительных работ состояние отр необжодимо подвергнуть комиссионному освидетельствованию.
- 7. При использовании мерэлоты по принципу І разработка котлованов, как правило должна производиться при температуре наружного воздужа не выше -5°C. В случае выполнения котлованных работ при положительной температуре наружного воздужа необходимо предусматривать мероприятия, исключающие оттачвание грунтов основания.
- СССР Министерство транспортного строительства Главтранспроект - Ленгипротрансмост

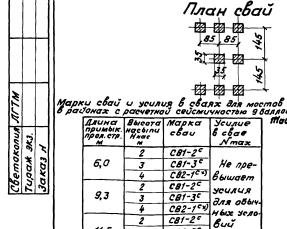
ПРОСКТ (Рабочие чертежи) Сборных железобетонных мостов пропетами до 15м под эжелезную дорогу мормальной колеи для применения в Севарной страительно-климатический эже Севарной страительно-климатический эже Основные показатель опор и рекомендации

no ux noumenenuro Продолжение.


Начаталиппр. Принц Пртамонов Шифр 1338 Гл. инж.пр-та Муревый Шульман Xouapoly Komapola Рук. группы Проверил n/nБеленькая Upergras Upeukas UCNOSHUS

			5				1,4
	5₫	Монолит. кладка	6				
1111			4	I =		45//	- [-]
		400-550 418-840	5			16	
			6	-			
9			1	POSME	enenu	9 000p	
8 3K3			NN	CM	5 GM	R CM	Сейсм. балл
Cbemoranus Tupam ara. Baras M			1	200	300	_	607
Ceem Tupos 3axa	}		2	220	320	-	607
			3	200	300	300	647
			4	220	320	300	647
			5	220	320	300	849
			6	260	340	300	809


- опоры на сваиных ростверках типов 5-, 4 , 5 . В длорох со свайными ростверхоми анкерные плиты заменяются монолитной железобетонной плитой. 3. Разработка котлобанов в мерзлых грунтах, используемых по принципу I, как правило, должна производится при темпе-
- ратуре наружного воздуха не выше-5°С. Выполнение котлованных работ при положительной температуре наружного воздуха должно предусматривать мероприятия, исключающие оттаивание грунтов основания.
- 4. Рекомендуется строительство мостов выполнять без перерывов. При вынужденных перерывах продолжению строительных работ должно предшествовать комиссионное освидетельствование состояния выполненных работ.


Ingsmp	THE POORK	п – Ленгипр	DOMPONEM	ocm
РОБО Сборных жел пролетами б нормальной к	TYVE YEPI TESOBEMOHN TO ISM NOT SKE THE STR NOV	TT TICOKU) IBIX MOCITIOB SINESHYIN BOPERY IMEHEHUM B ITUYECKOÙ SONE	Основн показател и рекомен по иж прим Продолж	и внению Нации
Нач.отд. тип.пр.	Tolly	Артамонов	Шифр 1338	SUGTN
Гл.инэк.пр-та	allyes	У Шульман	1971 Kon Bes	M-5
Рук. аруппы	tomapol	, Компрова	100. 0 Man	*
Проверия	n/n	Беленькая	827/1	26
Uconanua	Upeux	20 Upeyrag	104///	120

Примечание;
Пролетные строения приняты
по типовому проекту инви557/<u>Г</u>
(северное исполнение)

		m-Senzunpo	MONCMO	G/77
(ραδοί	MPOEKI WE YEP	TTP (TIPOSCU)	OCHOBHOI	е данчь
באבים של האבים של האבים	nesobemoi	HHOIDG MOCITION	S PDUMEHAE	MBIX
		пезную дорогу	пролетн	6120
μορμαπομού (Θεδερμού (πη	10,78U 0,791 M 10UMB/16H0-K	DUMEHEHU 9 B NUMAMUYECKOÙ 80H	e cmpoen	
Yay.omamun.n	Tour	- Артамонов	Wupp1338	Лист
	MADE	Addition to	//	
EN.UNDE NOTO	(Jelly les	MANDMON	mallagu	لہ
2 л.инак прто Рух группы	Rouges	ч Комарова	1971 CE 218	* –
2 л.инак прто Рух группы	Rouges			27

C81-3°

CB2-1°x) x) B 3mom Cryyae noumenrioman monorumhide Hacadku-Hym 11°- dra noor.cip.6.0m Hym 3°- dra np cip.9,3;11,5m

Примечания

1. На чертеже приведены устач под пролетные страения длиной 6м-плитные и длиной 9,3 и 11,5мребристые, расположенные на прямом участке пути, для районов с расчетной сейсмичностью не более 8 δαπποβ.

2. высота насыпи (Ннас) на подходах принимается от бровки полотна до естественной повержности грунта. При забивке свай в слежавшуюся насыль или в насыль, сооруженную способом видронамыва, Ннас принимается до ее поверхности. При спаружений мастов на болоте Ннас измеря-

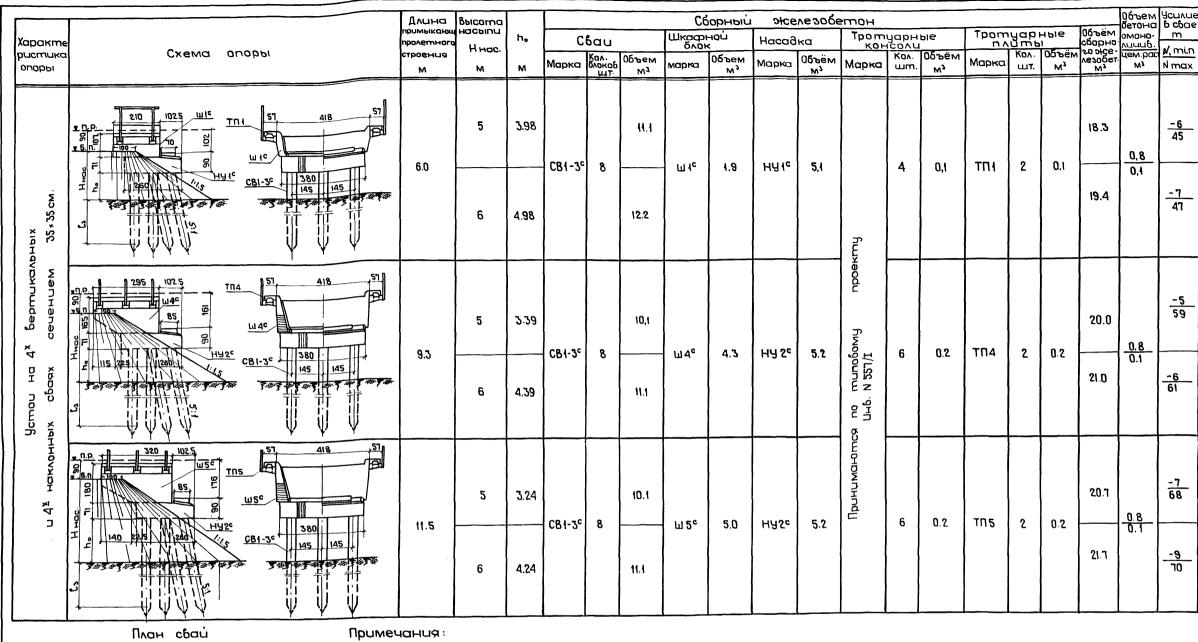
при сооруженой мостой на опете тиме общеря вется до его минерального дна.

3. Длина сваи устанавливается в зависимости от глубины забивки (l3), определяемой по усилиям в свае: Лтаж (максимальное расчетное сжимающее усилие) и Мтіп (минимальное расчетнае усилие), в учетом Указаний, приведенных в пояснительной записке.

При определении объемов работ принята елубина забивки, равная бм. 4. Протуарные плиты приняты по типовому проекту инв. 1708/1.

5. Омоноличивание стыков свай с насадками, крепление шкафных блоков к насадкам см. в проекте инв. А 708/1, канструкцию тротуаров см. на листе и 131.

6. Железобетонные тротуарные консоли BONYCKO EMCR SAMENAMB MEMORNUYECKUMU NO NDOEKNY UHB. N 557/T.


1. Забивка свай без применения направляющих каркасов запрещается.

8. При расположении моста на кривых SYACMKAR NYMU BROKU WIC, W45, W50 SAMEHRIOMER BROKAMU WK1°, WK 4° U WK5°

9. При сейсмичности Ядаллов марки chai cm. B madn. 1.

^{к)} N min со знаком "+" — Сокимающее чен CO 3HOKOM _-" - Bbidepzubarowee YCUJIUE

Trabmp	анспроект	ССР нспортного с т - Ленгипро	отрансмо	cm
	7000-			1.00
coophbiæ k npohemamu kopmanbhoù Cebephoù crp	eresobetohh 80 15m nad k Koreu dar Outerbho-ka	пежи) ыж мостов Келезную дорыг применения в иматическый гоны	Уст Сборочно (основно	ОЦ Ий чертеж Ие данные
Ησγ. στθ.τυπ. πρ.		Артамонов	Шифр 1338	
FA. UNH. NP-TO	allysty	Шульман	1971 Kondey	M 1:100
PYK. TPYNNbi	Komapol	Комарова	(B. 2)	4 111 1.700
Проверил	Louispa	Комарова	827/1	28
44	779.0	Серова	1 <i>02111</i>	$\perp Z \Omega$

☆·毋·卿

85 85

Марки свай и усилия в сваях вля мостов в районах с расчётной сейсмичностью 9 баллов.

				TOUN. T.
	DHUAD MUQN MQTO.QN	насыпи	Марка сбаи	ycuxue 6 cbae , m N max.
i	6.0	5	CBI - 3°	He
	0.0	6	CB2-2°*)	превыша
	,			em you -
	9.3	6		vna gva
	11.5		יסטו	орылных
	11.5	6	CB2-2 ^{c*)}	условий

і. На чертеже приведены устои под пралетные строения длиной вм-плитные и длиной 93 и 11.5м-ребристые, расположенные на прамом участке пути для районов с расчетной сейсмичностью не более в баллов.

2. высота насыпи (Ннас.) на подходах принимается от бровки полотна до естественной поверхности гринта. При забивке свай в слежсавшиюся насыпь или в насыпь, сооруженную способом гидронамыва, Ннас. принимается до её поверхнасти. При сооружении мастов на болоте Ннас. измеряется до его минерального дна.

з.Длина сваи устанавливается в зависимости от глубины забивки (С.), определяемой по усилиям в свае: Мтах (максимальное расчётное сэкцмающее усилие) и N min (минимальное расчетное усилие), с цчетом указаний, приведенных

объёмов робот прината глубина забивки, равная вм.

4. Тротирные плиты приняты по типовому npoekmy UHB.N708/1

5. Омоноличивание стыков свай с насадками, крепление шкафных блоков к насадкам см. в проекте инб. N708/1, конструкцию тротуаров см. на листе N/31

ЭКелезобетонные тротуарные консоли допускается заменять металлическими no npoekmy UHB. N557/I.

1. Забивка свай без применения направляющих каркасов запрещается.

в. При расположении моста на кривых участках пути блоки ш1°, ш4°, ш5° заменяют [л CF BAOKOMU WK1, WK4, WK5 (AUCH N73)

9. При сейсмичности 9 даллав марки свай см. В maås, 1.

CCCP
Министерство транспортного строительства.
Славтранспроект - Ленгипротрансмост
8-0-10

		1001110011011	10011
poekm	Опоры ти	ina la	
уча примен В энсе В примением В примением	Сборочный (оснобные	жэтаэр Эинны	
Your	Артамоноб	Wupp 1338	λucm
		1971 r. Cb. 2/ Jung	M 1:100
Farengrol,	Камароба	827/1	29
	poekm We yepm Nesabemanh NESA NOUMEH NOLL NOLL TOLL Toll T	роект ие чертежи) ие чертежи) ие чертежи ие черте	ие чертежий устов устовный сорочный сорочный одельно вы применения в Север (основные продолжено комарова комарова Комарова Комарова Комарова Комарова Комарова Комарова Комарова

») в этом случае применаются монолить в пояснительной записке. При определении ные насадки-нум 1150ля прол. стр. 6.0м нум 3°-для прстр. 3.3-11.5м.

			Длины	Условна Я	,		800Н	61 2	xenes	obemo	H Obdem	Объем бетона	9001 8 080	46
Xapakme-	Cness		примыкающ. пролетных	Beicoma Hacsiny	h.		694		Hacac		COOPHOTO	OMOHONU-	**)	
pucmuka onopbi	Схема	опоры	стровний М	H ^y Hac M	М	Mapka	K01-80 Wm	05ъем м ³	Mapka	0бъем м ³	железо- бетона м ³	M ³	Vmir	Nmax
	2 3			2	0.99	C81-2°	6	6.0			10.5	0.6	9	43
СМ	18d H/c	120		3	1.99	CB1-2°	6	6.8			11.3	0.6	7	45
HQ 35 × 35	20 2 C81	380	6.0+6.0	4	2.99	C81-2°	6	7.6	H1c	4.5	12.1	0.6	6	47
	1971	1 1 2 1 2 1		5	3,99	CB1-2°	6	8.3			12.8	0.6	4	49
опоры		$\emptyset \ \ \emptyset \ \ \emptyset$		6	4.99	c81-2°	6	9.1			13.6	0.6	2	50
мапнака 19 доио				2	0.40	CB1-2°	6	5.2			9.8	0.6	11	59
	8 H2		9.3+9.3	3	1.40	C81-2°	6	6.0	H2°	4.6	10.6	0,6	8	62
точные	6 + 180 P C81	380		4	2.40	C81-2°	6	6.8			11.4	0.6	6	65
8 3	20 1	145 145		2	0.25	CB1-2°	6	5.2			9.8	0.6	9	72
Промежу отикальны	191 2 19	A 20 20 20 20 20	11.5+11.5	3	1.25	c81-2°	6	6,0	H2°	4.6	10.6	0.6	5	76
o Me ikan	## %	# # #		4	2.25	C81-2°	6	6.8			11.4	0,6	2	79
Проме жул Вертикапьных		$\emptyset \emptyset \emptyset$	13.5+13.5	4	2.08	c81-3°	6	6.8	H2°	4.6	11.4	0.6	1	90
	-A.P. Hm5c			5	3.30	c82-2°	6	11.8	Hm5°	5.9	11.8		2	68
onopbl cbaxx 1.	T.P. HM3		9.3+9.3	6	4.30	c82-2c	6	12.7	<u> </u>	0.5	12.7		0	70
000	8		45.45	5	3.15	c82-2°	6	11.8	+) Hm 5°	5.9	11.8	_	-2	83
5/e 0 6/x 6 40cm.	1 1 1 1 1 1 1 1 1	380	11.5 + 11.5	6	4.15	c82-2°	6	12.7		3.3	12.7		-5	86
7461 16461 40×4	7. 1 90 CB2	c 145 145		5	2.98	CB2-2°	6	11.8	*)	50	11.8		-3	94
400 moy			13.5+13.5	6	3.98	c82-2°	6	12.7	Hm5°	5.9	12.7		-7	98
ky.	20 74 27	1 47 2 48		4	1.78	c82-2°	6	10.8		l	10.8		0	104
Промежуточные на вертикальных сечением НохНО		# # #	16.5+16.5	5	2.78	c82-2°	6	11.8	Hm5°	5.9	11.8		-5	109
Ara Cer	I Ü Ü—↓	$\mathbb{V} = \mathbb{V} = \mathbb{V}$		6	3.78	c82-3°	6	12.7	<u> </u>	l	12.7		-10	114

*) Насадка монолитная

Примечания:

- 1. На чертеже приведены промежуточные опоры под пролетные строения длиной б.Ом-плитные и под пролетные строения длиной 9.3 и 16.5м - ребристые, расположенные на прямых участках пути. Условия применения опор на kpubbix u b ceúcmuyeckux paúonax cm. na nucme N 31
- 2. Yenobhar bulcoma Hackiny Hyac dir npomeskymouhux onop измеряется до уровня теоретического размыва
- 3. Длина свач устанавливается в эчвисимости от глубины забивки (ℓ_3) , определяемой по усилиям в свае: N_{max} (максимальное расчетное сокимающее усилие) U Nmin (минимальное расчетное усилие), с учетом указаний, приведенных в пояснительной записке.

При определении объемов работ принята глубина 30548ku, pabhan 6m - ann chau cevenuem 35 x 35 cm 4 равная 8м - для свай сечением 40 × 40 см.

- 4. При опирании на опору пролетных строений разных длин применяются пережодные подферменники марок П1-1, П1-2, П1-3, П2-1 по типовому проекту инв. N708/1. 5. Омоноличивание стыков свай с насадками см.
- 8 npoekme 448. N 708/1.
- 6. Забивка свай без применения направляющих каркасов запрещается.

СССР Министерство транспортного строительства Главтранспроект - Ленгипротрансмост

Poekm (pasoyue yepmesky) coophia senesosemonhia mocmos Опоры тупа 19 Промежуточные опоры Сборочный чертеж пролетами до 15м под железную дорогу (основные данные) Минев Шульман

Нач. отд. тип. пр Apmamonos III upp 1338 Just Wynoman 1971 Konup: Kon Konganaga 1971 csep: wd. 1:100 Гл. инж. пр. Хомарова Комарова Pyk. rpynnoi Loucapo KomapoBa Проверия Ceposo *Исполния* Meno ac

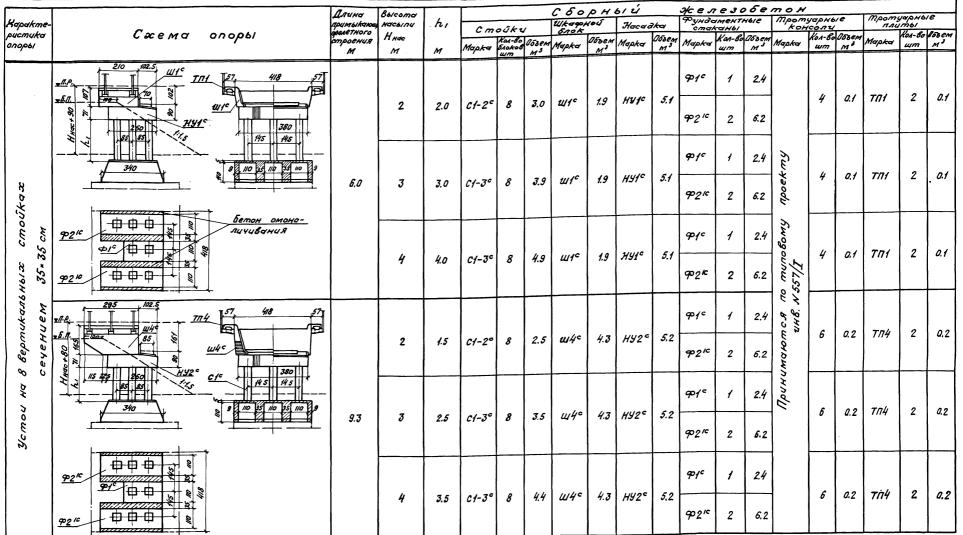
**) Nmin co 3Hakom "+"-сжимающее yeunue; co shakom "-Bыдергивающее

yeunue.

Пределы применимости промежуточных свойных опар в мастах, расположенных на кривых участках пути

	Радиус кривой	М	30	0 - 12	00		1500			1800			2000			3000	
Длины примыко ющих	Схемо	высота насыпи	cgan	y cu / B ci	Bae	cbau	y cu B cb		cgan	y cu i	вае	cbau	yeur Beb	σe	cbau	m	δσe
пролетн. строений М	опоры	H Hac	Морка	N _{min}	N _{max}	Марка	N _{min}	N _{max}	Марка	N _{min}	N _{max}	Марка	N _{min}	N _{max}	Марка	N _{min}	N _{max}
		2	C81-2°	8	78	C81-2°	9	72	CB1-2°	9	67	CB1-2	9	65	CB1-2°	9	58
		3	CB1-3 ^c	5	81	CB1-2°	7	74	CB1-2°	7	69	CB1-2 ^c	7	67	CB1-2°	7	60
6,0+6,0	0.0	4	CB1-3 ^c	3		CB1-3°	6	76	CB1-2°	6	71	CB1~2°	6	69	C81-2°	6	61
	<u> ¬ne</u>	5	CB2-2°	1		C81-3°	4	78	C81-3°	4	73	CB1-3°	4		COI -2°	4	62
		6	C82-3 ^c	-2		CB2-2°	2	80	CB1-3°	2		CB1-3 ^c	2		CB1-2°	2	64
		2	CB&- 1°	10		CB1 -2°	#	99	CB1-2°	11		CB1-2°	11		CB1-2°	11	82
	06+	3	CB2-2°	8	111	C82-1 °	8	102	CB1 -2°	8	95	CB1-2 ^C	8		CB1-2°	8	83
9,3 +9,3	T & S	4	CB2-2 ^c	5	114	CB2-2°	6	104	CB1-3°	6	97	CB1-3 ^c	8		CB1-2°	6	83
		5	C82-3 ^c	-1	118	C82-2°	3	107	CB2-2°	3	99	CB2-2°	3		C82-2°		85
		6			_	CB2-3°	0	110	CB2-2 ^c	0	102	CB2-2°	0		C82-2°	0	87
	# # #	2	C B2 -1 ^C	9	124	C82-1°	9	114	CB2-1 ^C	9	107	CB2-1°	9		CB1-2°	9	92
	, 1	3	CB2-2 ^C	5	128	CB2-1°	5	117	CB2-1°	5	110	CB2-1°	5		CB1-2°	5	94
11,5+11,5	- B · - B · - B · - B	4	CB2-3°	2	132	C82-2°	2	120	CB2 -1 C	2	112	C82-1°	2	108	CB1-2°	2	97
		5		_		CB2 -3°	-2	124	CB2-2°	-2	115	CB2-2°	-2	111	CB2-2 ^c	-2	99
	145 145	6					_		CB2-2 ^c	-5	118	<i>CB2-2</i> °	-5	113	CB2-2°	-5	100
		4				C82-2°	1	135	CB2-2°	1	124	CBZ-1 ^C	1	122	C81-3°		109
13,5 +13,5		5		_					CB2-2 ^c	3	129	CB2-2 ^c	-4	125	C82-2°	-4	110
		8										CB2-2 ^C	8	127	CB2-2 ^C	8	111

Марки свай для опор мостов, расположенных на кривых в сейсмических районах **)


Σĕ	2010		Pod	uyc	ĸ	ρυβ	οū	/	1		
Длины прим. пролет. стр.	HOCON	300-	1200	150	70	18	00	20		30	00
HELL	Высота н Н мос	Pac	четн	an e	ceūcm	UYHO	сть	в	δαλλί	7 X	
Anu	Ber	8	9	8	9	8	9	8	9	8	9
	2	CB1-2°	C82-2°	CB1-2°	CB2-2 C	CO1-2	CB1-3°	CB1-2°	CB1-3°	CBI - 2°	CB1-3 ^c
0,0	3	CBI-3°	CB2-3°	CB1-3°	C82-2 ^C	C81-2°	C82-2°	CB1-2°	CB1-3°	CB1-2°	C81-3°
١ ٠	4	CB2-2°	C82-3°	CB1-3 ^c	C82-3°	CB1-3°	C82-2°	CBI - 3 C	CB2-2°	C81-3°	CB2-2°
0'9	5	C82-2 ^c		CB2-2°		C81-3°	CB2-3°	CB1 - 3°	C82-3°	C81 - 3°	C82-3°
	6	<i>CB2</i> -3 ^c		C82-2°	_	C82-2°		CB2-25		CB1-3°	CB2-3°
	2	CB2-1°	C62-2°	CB/-3 ^c	CB2-2°	C81-2°	CB1-3°	CB1-2°	CB2-2 ^c	CB1-2°	C61-3°
15	3	C82-2°	CB2-3°	CB2-1°	CB2-3°	CB1-3°	CB2-3°	CB1 -3°	C82-3°	CB1-2°	C82-2°
,6 +	4	C82-3°	_	C82-2°	, –	C82-2°		C82-2°		C81-3°	CB2-3°
9,3	5	_		CB2-3°	_	C82-2°		CB2-2°	_	C82-2°	
	6	_		_		C82-3°		CB2-3 ^C	_	CB2-2°	
	2	CB2-1°	C82 -3°	C82-1°	CB2-3°	CB2-1°	CB2-2°	CB2-1°	C82-2°	CB1-2°	CB1-3°
11,5	3	CB2-2 °		CB2-2°		CB2-1°	C82-3°	CB2-1°	CB2-3°	CB1-2°	CB2-2°
1	4	C82-3°	_	<i>€82-3</i> °	_	CB2-2°	_	CB2-2 °		CB1-3°	_
11,5	5					C82-3°		CB2-3°		C82- 2 ^c	
	6									C82-3 ³	
3,5	4			C82-3°		CB2-2 ^c		C82-2°		CB2-2 C	
13,5 +13,5	5	_				C82-3 ^c		CB2-3°		CB2- 2 ^C	
15	6		-							CO2-3°	

м) N_{min} со знаком "+"—сжимающее усилие, со знаком "—"—выдергивающее усилие.

- 1. Марка свай назначена в соответствии с несущей способностью их по прочности, выносливости и трещино-стойности (ограничению раскрытия трещин величиной 0,1 мм).
- 2. Длина свай установливается в зависимости от глубины забивки, определяемой по усилиям в свае: N_{max} (максимальное расчетное сжимающее усилие) и N_{min} (минимальное расчетное усилие), с учетом указаний, приведенных в пояснительной записке.
- 3. Морки свай опор мостов, расположенных на кривых участках пути в районах с расчетной сейсмичностью 7 даллов соответствуют маркам опор мостов на кривых в одычных условиях.

		инспор тн ого		
Главтро	нспроек	т-Ленгипр	DOMPOHEM	oem
	D poekm		Onopbi mu	na 1º
(рас Сворных жел пролетоми до Нормальной г Северной строи	o 15m nod weal	Услов применено на кривых смических	ua gnop u 8 ceu-	
Нач.отд.тип.пр	Taun	Артамонов	Wuqp N /338	Aucm N
Гл. инж. пр-та	allyeby		1971 . Kan. Megum	
Рук. группы	toursely	Камарова	13111 CB Wifung	14 0 1.20
Проверил	Curs -	Спильчевская	827/1	31
Исполнил	Teuslean	Серова	02 1/1	JI

хж) Усилия в сваях не превышают усилий в сваях опор мостов на кривых в обычных условиях.

Примечания:

1. На чертерке приведены устои под пролетные строения длиной 6м-плитные и длиной 9.3 и 11.5м-ребристые, располаженные на прямом участке пути, для районов с расчетной сейстичностью не более в баллов.

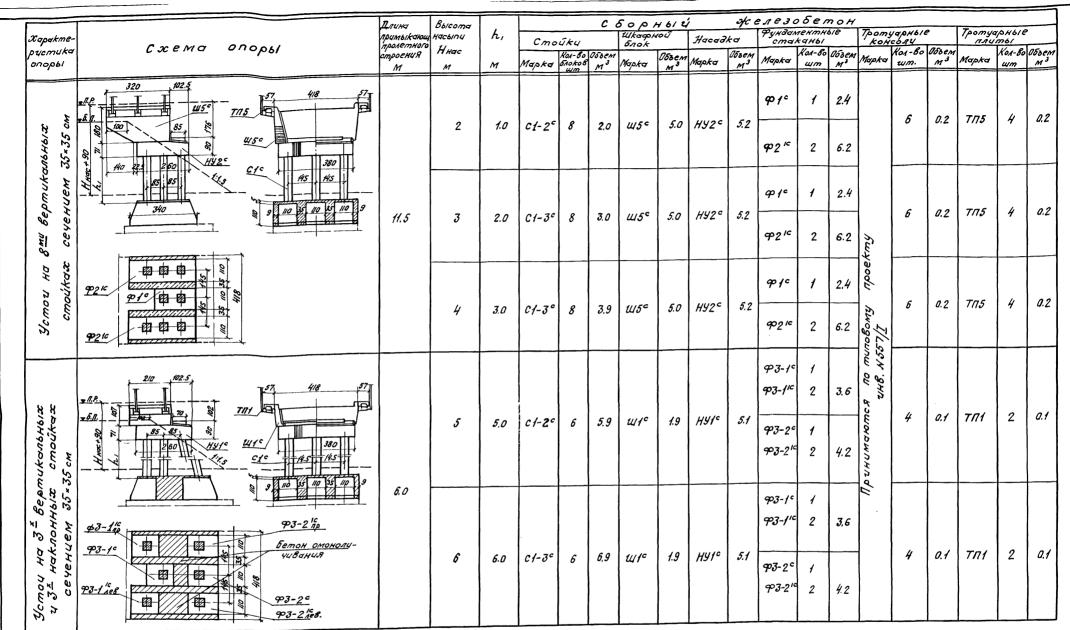
2. Высота насыпи (Н_{нас}) на подходах принимается от бровки полотна до естественной поверхности грунта или до поверхности слеокавшейся насыпи, а также насыпи, сооруженной способом гидронатыва. При сооружении мостов на болоте Н нас измеряется до его минерального дна.

13. Глубина запожения фундаментов-не менее глубины промерзания грунта +0.50м и не менее 2.50м. При сооружении опор в пучинистых грунтах необходито руководствоваться указаниями, приведенными в пояснительной записке.
4. Длина стойки (h,+1m) устанавливается в зависимости от

примыкающего пролема, от высоты насыпи и от глубины запожения доундамента.

5. Mpomyaphile плиты приняты по типовому проекту инв. N 708/1.

6. Отоноличивание стыков стоек с насадками, крепление шкарных блоков к насадкам см. в проекте инв. N 708/1, конструкцию тротупров см. на листе N 131


7. Железобетонные тротуарные консоли допускается заменять металлическими по типовому проекту инв. N 557/I.

8. Омоналичибание стыков стоек с фундаментными стаканами см. лист N129 крепление фундаментных стаканов см. в проекте чнв. N 708/1.

9. Сборочный чертеж фундаментных плит см. на листе N36

10. Πρυ ρατησησέρεμου μοτής τη Κρυβεία γνατηκάα πυμην δποκύ W1° υ W4° βαμελπίθητε δποκάμιυ W41° ν W44° (πνετη Ν13)

coophiliz glenesosembahbiz mocmos yc moz governamu do 15m rod glenesayur dopory (500044614 uppmanbahu koneu dan apumeherus 8 lesepadi capoumensko-kuwaruveckoi soye (0c406461e Hayomd.tur. no promission luvep 1338 In. way. no. (Illysta) Wynoman 1071 (1800. Reg	a 12			npoekm ·	
уормальной колей оля применения в северной строительно-климатической зоне (основные с моч. отд. тип. пр. — Приматонов Шифр 1338 Гл. имук. пр. — УШИДИВИТ Шультан 1071 (кт. пед		Onopus muna 1º	eacu)	oekm	Cogooy
The unge no. Villy sent Wynoman 1971 Kan Ray	і чертез данные,	Усточ Сборочный черт Основные данны	ia: Mocimot reshylo dopory mehenyh b natyveckoù 30HE	esobembaab 15m nod sken rev daa nov meabao-kau	ιδο όλιδι σε εξε Φοπετιαμό δι Φριμαπομού Κι Έθερμού επρο
TA. UNSK. AD. VILLYSELY WYAGMON 1971 KON. Roy	Лист	Шифр 1338 Лист	Яртамонов	your	Yay.omd.Tun.nd
	M-6	1971 Kon. Rey M-	Шульман	Ellyeon	TA. UNAC. Ap.
J pyrinor J			Комарова	Burgott	Pyk rpynnoi
Mosepun Stampol, Komapola 827/1	32	1827/f 132			

RPUMEYAHUA.

1. На чертеже приведены устои под пролетные строения дли-HOÙ 6M-MAUMHELE U BAUHOÙ 9.3 U 11.5M-pespuemele, paenonogeenные на прямом участке пути, для районов с расчетной сейсмич-

ностью не более в баллов.
2. Высота насыпи (Ннас) на подходах принимается от бровки полотна во естественной ловержности грунта или во повержности слежавшейся насыпи, а так-же насыпи, сооруженной способом гидронамыва. При сооружении мостов на болоте Н_{нас} измеряется до его минерального дна.

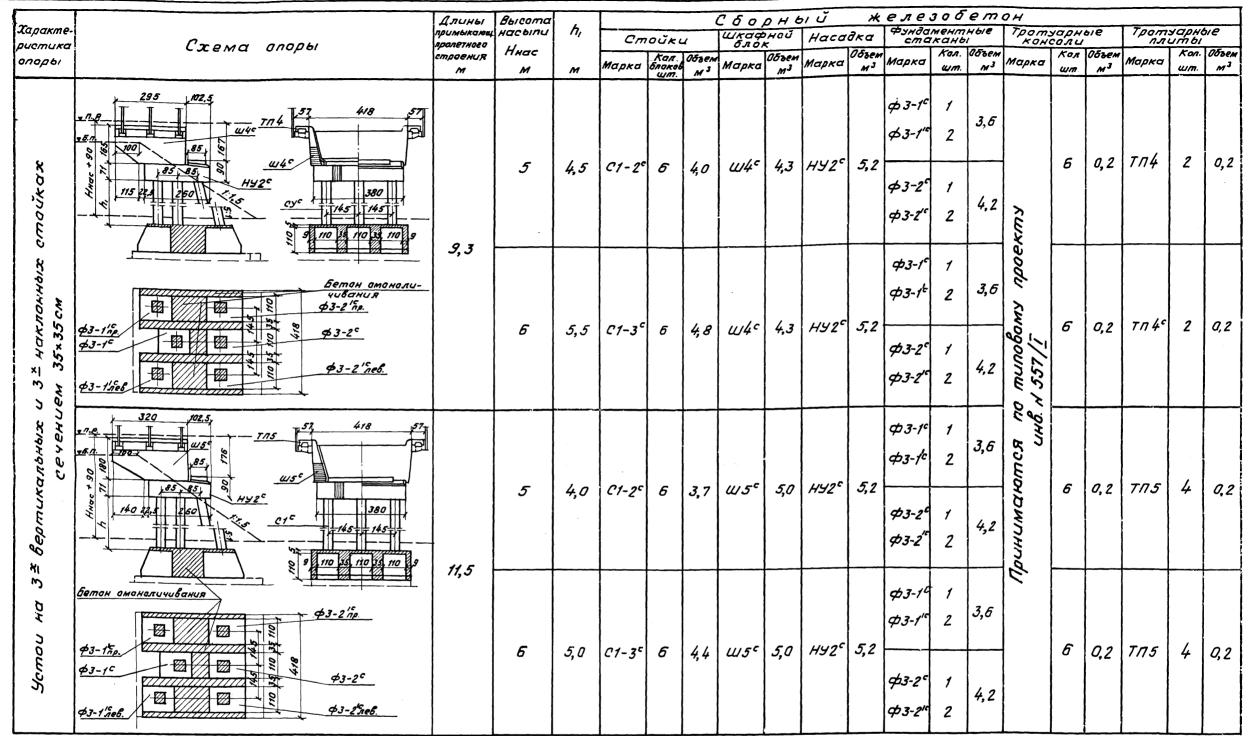
3. Глибина запожения фундаментов-не менее глубины промерзания грунта +0.50 м и не менее 2.50 м. При сооружении опор в пучинистых грунтах необходимо руководствоваться указаниями, приведенными в пояснительной записке.

4. Длина стойки (h_1+1M) устанавливается в зависимости от примыканищего пролема, от высоты насыли и от глубины

заложения фундамента.

5. Тротуарные плиты приняты по типовому проекту инв. № 108/1.

Омоноличивание стыков стоек с насадками, крепление шкароныге блоков к насадкам см. в проекте инв. N 108/1, конструкцию тротуаров см. на листе N 131


7. Железобетонные тротуарные консолу допускается заменять металлическими по типовому проекту инв. N 557/I.
8. Омоноличивание стыков стоек с фундаментными стаканами см. лист N 123 крепление фундаментных стаканов см. в проекте

9. Сборочный чертеж фундаментных плит см. на листе № 36

10. При расположении моста на кривых участках пути Broky WIE 4 W5 3 SAMEH SHOMES BROKAMU WK1 4 WK5° (MUCM N 73)

		портного стр т — Ленгип		
			Onopbi mui	na 15
Гравоч Горных Эсе Голетами О Грмальной К Верной стро	DESOBEMBAH PO 15M NOB XX RONEY DAR NA RUMENGKO-KAR	n e Ac U) 61 x Mocmob 21e 3 Hy D Bopory 1 Mamu 4 P C Boy 1 M C	Ycmol Copoyyblū Corobyble Oppdonyk	
14.0MD.TUN.N	rgin	<i>Пртамонов</i>	1110900 1338	Nucm
.инж. пр.	allyear	У Шульман	1971 KOND. Ka	M. 1:100
yk.rpynnbi ooBepun	Loucaso	5 Комарова 5 Комарова	827/1	
СПОЛНИЛ	Tavel	CepoBa	02111	100

490

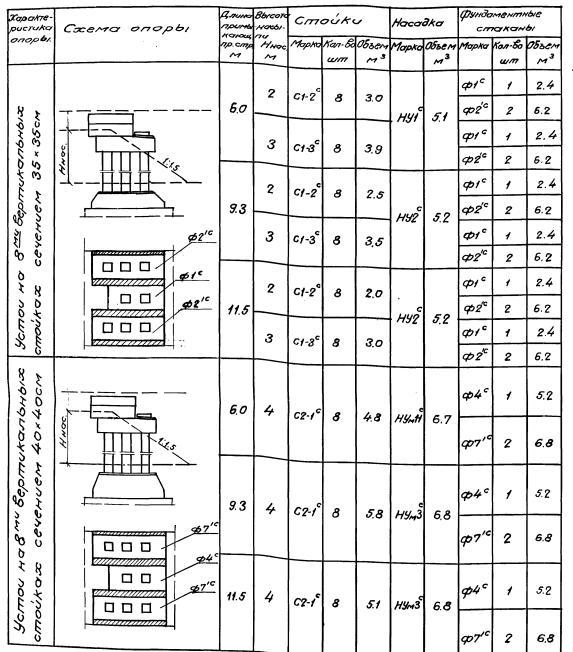
Примечания:

1. На чертеже приведены устои под пролетные строения длиной 6мплитные и длиной 9,3 и 11,5м-ребристые, расположенные на прятом участке пути, для районов с расчетной сейстичностью не более в баллов.

2. Высота насыпи (Ннас) на подходах принимается от бровки полотна до естественной поверхности ерунта или до поверхности слежавшейся насыпи, а также насыпи, сооруженной пособом до дороженной пособом дорожения дорожения

сопружении мостов на болоте ннас измеряется до его минерального дна. 3. Глубина заложения фундатентов - не менее глубины промерзания грунта +0,50м и не менее 2,50м. При сооружении опор в пучинистых грунтах необходимо руководствоваться указаниями; приведенными в пояснительной записке.

врзники необичени рэковосии в пояснительной настина в зависимости от при-4 Длина стойки (п,+1м) устанавливается в зависимости от примыкающего пролета, от высоты насыпи и от глубины заложения фундамента.


5. Мротуарные плиты приняты по типовому проекту инв. 1708/1.

6. Омоноличивание стыков стоек с насадками, крепление шкафных блоков к насадкам см. в проекте инв. н 708/1, конструкцию тротуаров см. на листе н 131.

7. Железабетонные тротуарные консоли допускается заменять металлическими по типобому проекту инб. 1557/1. 8. Омоноличивание стыков стоек с фундаментными стаканами см. листи129 крепление фундаментных стаканов см. в типовом проекте инб. н 708/1. 9. Сборочный чертеж фундаментных плит см. на листе и 36

3. Соорочный чертеж фундаментных плит см. на листем 10. При расположений моста на кривых участках пути блоки $W4^c$ и $W5^c$ заменяются блоками W_k4^c и W_k5^c (лист NT3).

Министерство транспортного	строительства
Главтранспроект-Ленгипро	трансмост
Проект	Onopbi muna 18
(Рабочие чертежи) Сбарных железабетонных мастов пролетами до 15м под железную дорогу нормальной калеи для применения в Себерной строительно-климатической гоне	(ochoonere outhous)
Нач. отд. тип. пр. Удес Яртамонов	Шифр 1338 Лист
Гл. инж. пр-та Шуру ШУЛЬМАН	1971 Kondeston M 1:100
Рук. группы Замарова	
Проверия Samapola Komapola	827/1 34
Исполнил Перова Серова	02111 04

Харак- терис-	Сжема олоры	Длина примы- кащ.	Harchinu	Cm	oúku		Had	;aðka		лака така	
тика опоры		Πρ.cmp	Ннас.	Марка	Кол-во шт	0бъем м³	Марка	Дбъем м ³	Марло	Кол-во шт	Объем м³
KJOH-		6.Q	4	C1-3°		3,7	મકાર્જ		ф3-1° ф3-1″	1	3,6
ых и З ^х на 85 × 35см									ф3-2 ^к	2	4.2
албных чиет 85		9.3	4	C1-3°	6	3.3	HY2°	5,2	ф3-1° ф3-1 ^{°е}	2	3.6
бертикальн : сечением	43-15 p					0.0	7792	0,2	Ф3-2° Ф3-2'°	1 2	4.2
Устои наз [±] вертикальных и З [±] наклон ных стоиках — сечением 35 × 35см,	23:1°	11.5	4	C1-3°	6	2.9	HY2°	5.2	ф3-1° ф3-1 °		3.6
									Ф3-2 [°] Ф3-2 ^{°°}	i	4.2
rakmon-		6.0	5	G2-1°	6	5. 8	<i>ห</i> ษ. เก็	6.7	Φ6-2° Φ6-2'° ΦΙΟ'°	1 2 1 2	4.8 3.3
VIE USEHOKA 40×40cm.			6	C2-1 ^C	6	6.7	יואָפּית	0.7	Φ6-2° Φ6-2° ΦΙΟ° ΦΙΟ'	1 2 1 2	4.8 3.3
Устои на 8 ²⁵ вертикальных иЗ*наклон- ных стойках сечением 40 х 40 см.		9.3	.5	C2-1°	6	5.3	HY~3	6.8	Φ 6-2° Φ6-2° ΦΙΟ ⁹ ΦΙΟ °	1, 2	4.8 3.3
bepme E Ce	\$10m		6	C2-1°	6	6.3		0.0	\$6-2° \$6-2° \$10,°	1.2	4.8 3.3
u на в $^{\underline{x}}b_{e}$ стоиках	\$6.2 pols		5	C2-1°	6	4.8			Φ 10'° Φ6-2° Φ6-2°	1 2	4.8
Устои ,		11.5					HY~3	6.8	\$10° \$10° \$6.2°	1. 2	3.3 4.8
23 28			6	C2-1°	6	5,8			\$6.2° \$10° \$10°	2	3.3

MPUMEYAHUA:

- 1. Ηα чертеже приведена конструкция устоев для сейсмических районов с расчетной сейсмичностью 9 баллов.
- 2. Работать совместно слистами № 32-34.

Министер Тарватор	cmbo mpo	СССР Энспортное	o cmpoume	nscriba
- (ραδ c εδορηθώς χες προπεπησινία	700EKT 940E 4ED ENE30BERTON 3015m nodske	TT PTTE HCU) HBIX MOCITIOS PRESHUIGADOS		ınα 1º
Cebephoù empe Hay oma mun ni	Volume	HOMENEHUS 8	(Npodosta	CHUE)
глинж.пр-то Рук.группы	(lly early	WANGWAH	1971 xon repen	
Проверил Исполнил	Louapoly 21 Shows	Комарова	827/1	35

المارة	7e- ка пента			ДЛИНА примыкающих	86100TA HAC61AU	ГЛУБИНЦ ЗДЛОЭКЕНИЯ ФУНДЦМЕНТО	Makca Aab.	MANSH. NEHUE PYNT	С 5 0 р Рундаме	HTHBIE MI		OBBEM	0 6 B em 6 e t o H a. 0 m o H a J u y U B a -	ОбЩИЯ ДЛИНИ ФУНДИ- МЕНТ.	Длина консоли
Lapakn puctuka onopei	Zapaki puctuk pshaam	ф У Н Д А МЕНТНЫЙ	<i>" </i>	пролетных строений Ем	H M	l' ' l	O ML PACYETH. CEUCNIS AO 7 B	II KT/OM PREYETH CEUCMY! AO 86		Количество шт.	0538M HCE NE3058- TO HQ M3	ЖЕЛЕЗОБЕТОК НА ОПОРУ М ³	HUR Lementhbiû Pactbop M3	MEHT. CTUKUHOB E \$ M	PR PR M
	WHI HOW	103, 103,	1,1/45 ,1 /451,1 	6,0	2,0	2,8	2,4	2,6	Φ//3'	3	6.0	32,2			,
етойках	BYXPAAH PSHAAM ANUHOÙ	20 / 340 720, 80 40		9,3	2,0	2,9	2,7	2,9	<i>ФП2</i>	2	7,4	<i>54</i> ,4	<u>6,5</u> 0,3	_	-
	4882 488	\$\\ \phi n 2 \\ \phi n 2 \\ \phi n 3' \\ \phi n 3' \\ \phi n 3' \\ \phi 80 \\ \phi 0 \\\ \phi 0 \\\ \phi 0 \\\ \phi 0 \\\ \phi 0 \\\\ \phi 0 \\\\\ \phi 0 \\\\\ \phi 0 \\\\\ \phi 0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, 418	11,5	2,0	2,55	3,1	3,3			,,,	34,6			
HA B BEDTUKATIBHBIX CEYEH UEM 35×35 CM	ент			6,0	3,0	2,8	2,6	2,8	·			<i>33,9</i>			
1 33	aam m		1,1745117451	.,,	4,0	,	3,0	3,2	φ <i>1</i> 12	2	7,4	34,9			
rep 7	8.52 2.42	- 4 4 4 - 780 - 78		9,3	3,0	2,9	2,8	3,0	φ <i>Π3'</i>	2	4,0	36,2	<u>6,5</u> 0,3		_
40%	1610 HOÜ	20/ 340 \ 80,100	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7		4,0		3,2	3,4	\$174 ¹	1	2,8	37,1	0,3		
0 40	PRAN	\$\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	418	11,5	3,0	2,55	3,3	3,5				36,4			
Устои	Двыхрядный фундамен) Длиной 5,4 м				4,0	Í	3,6	3,8				37,3			
z ax	тент	05.05	. 145 . 145 .	6,0	5,0	2,8	3,2	3,4				37,6		4,50	1,30
IIBHBI:	HAAR	85,85,	1770 7770 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,,,	6,0		3,7	3,9	\$171	2	5,4	38, 6		4,70	1,10
TUKA 5/Z 6	Двухрядный фундате Алиной 60 м	and the second		9,3	5,0	2,9	3,3	3,5	\$113'	/	2,0	38,4	13,1	4,40	1,40
3 KG	TAHE!	\$\\ \phi\(1\) \\ \ph\(1\) \\ \phi\(1\) \\ \phi\(1\) \\ \phi\(1\) \\ \phi\(1\) \\	Y	,	6,0	·	3,8	4,0	\$112°	1	3,7	39,2	0,3	4.60	1,20
и на 3 ⁴ . 14 накло	ann's	600	448	11,5	5,0	2,55	3,7	3,9	φπ4 [']	2	- 5,6	38,8		4,30	1,50
SCTOU U 3X	485				6,0		4,0	4,2				39,5		4,50	1,30

MPUMEYAHUA:

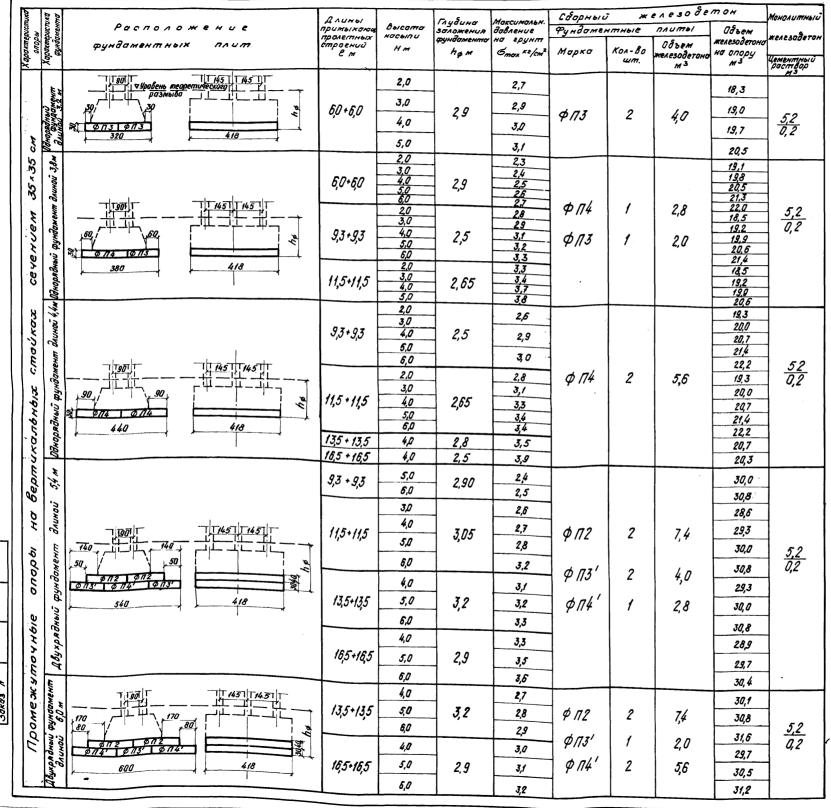
1. На чертеже приведены фундаменты для устоев под пролетные строения длиной от 6,0 до 11,5 м, расположенных в районах с расуетной сейсмичностью не более в баллов. Размеры фундаментов определены для грунтов с коэффициентом трения у = 0,5. Конструкции фундаментов для устоев, располо-женных в районах с расчетной сейсмичностью 9 баллов, разрабатываются индивидуально.

2. Условия применения опор на естественном основании в различных грунтах определяются величиной максимального давления на грунт под фундаментом б мах, которое не должено превышать расчетного сопротивления грунта основания, определяемого по сн200-62 при обязательной проверке устайчиваети положения фундамента против скольжения.

3 верхние ряды фундатентных плит в двухрядных фундатентах устанавливаются на подпивку из цетентного раствора, толщиной 10 mm.

4 Pasotate cormectho C suctamu N32-34

5. Крепление элементов фундаментов см. в проекте инв. № 108/1.


MUHUCI	CEPCTBO TP	C C C P C H C N O P T H O F O	CTPO	UTENL	278α		
TJACETH	PAHENPORI	KT-SIEHFURF	OTP	AHCMO	DCT		
(PASOYUE YEPTEMU)			ONOPHI TUND 15				
CEOPHHIX HCE TPOTETAMU, L HOPMATHHOÙ	1103060TOHH 1015M 110A 3H 110110H 110H 110H 110H 110H 110H 110H	BIT MOCTOB CENEЗНУЮ ДОРОГЬ PUMEHEHUR B UMOTUNECKOÙ ЗОН	1050A 1991	YCTOU DYHBIÚ Y HACIME! NJUTBI	IEPTESK THOIE		
Начота, тип пр.	Tour	APTAMONO8		pp 1338	TUCT		
Gr. и нонс проекта		MANPWAN	1971	KONUP STE	M		
Pyk. rpynn6i	Lawapol	,					
Проверил Исполнил	Beiner	FIRESEPORAL BETHOKOBAL	18%	?7 <i> </i> {	1.36		

Характе-	Сжема опоры	Длины притыкоющ пролетных страений М	H Y NOC		Сворный железоветон							
ристика				h, M	Стойки		Насадка		Тундаментные стаканы			
опары					Марка	Кол-во	Obsem m3	Марка	OSBEM M3	Марка	Кол-во шт.	OSSCM M3
Of a south	1 1:1901.1	6,0 + 6,0	2	2,5	C1-20	6	2.6	HIC	4,5	\$1° \$1°	1	7,2
			3	3,5	C1-26	6	3,3					
	\$ \$ \phi_G \text{45} \text{45}		4	4.5	C1-2c	6	4,0					
	9, 10, 50, 10, 59		5	5,5	C1-2C	8	4.8					
5 cm	260 \$ \$418		6	6,5	C1-2°	6	5,5					
Mome okymov sone were cmould be seen as condition of the seen as conditions and the seen as conditions		9,3+9,3	2	1,5	C1-2°	6	1.9	H2C :	4,6	\$1°	1 2	7,2
			3	2,5	C1-2C	6	2,6					
			4	3,5	C1-2C	6	3,3					
			5	4,5	01-20	8	4,0					
	- P.P.		8	5,5	C1-20	6	4,8					
	200 9 111 53 110 9 200 9 111 53 110 9	11,5 + 11.5		1,5	01-20	6	1,9	H2°		Ф1° Ф1°	1 2	7,2
			3	2.5	C1-2°	6	2,6					
			4	3,5	C1-2°	6	3,3		4,6			
			5	4,5	C1-2C	5	4,0					
			6	5,5	C1-2°	6	4.8					
	Бетон амоноличивания		4	3,5	C1-2°	6	3,3	H2º 4,6				7.2
		13,5 + 13,5	5	4,5	C1-2°	6	4.0		4,6	\$10	1	
			8	5,5	C1-3C	6	4.8			\$110	2	
		16,5 + 16,5	4	3,0	01-20	8	2,9	H2° 4,6		\$10	1 2	7,2
			5	4,0	C1-3C	8	3,7		4,6	PIC		
			6	5,0	C1-3C	8	4,4					

- 1. На чертеже приведены протежуточные опоры noð nparemhie empoenur örundu film - nrumhie u noð nparemhie empoenur örundu 93 ÷ 16,5 m - peðpu-omble, pacnaracenhble na nparhblæ yyacmkoæ nymu. Scríður npumenenur ang ma koliðblæ ú ö CEUCMUNECKUSE POÚDHOSE CM. NO JUEMOSE N40,41
- 2. Условная высота насыпи Н⁹нас для протежутачных опор измеряется до уровня теоретического pasmulba.
- 3. Глубина запожения фундаментов не тенее глубины протерзания грунта +0,50 м (от уровня теоретического разтыва) и не тенее 2,50 м.

- 4. Длина стойки (h; +1 m) устанавливается в зависи-тости от припыкающих праветав, от высоты насыпи и от гвубины запажения фундатента 5. При опирании на опору праветных страений разных ваин притеняются переходные подфертенники торок 11-1, 11-2, 11-3, 112-1 по типовату праекту инв. N 708/1.
- в. Омоналичивание стыков стоек с насадками крепление фундатентных стаконов ст. в проекте UHB. N 708/1, OMBIKU CHOEK C CONTROMENMISIMU CHO-KOHOMU CM. AUCH N129
- У Сворочный чертеж фундатентных плит CM. HO JUCINE N38

Министерство транспортного ст	проительства					
Главтранспроект - Ленеипроп (рабочие чертерки)	npancmocm Inapы muna 1€					
ငစ်စုကမ်းသံ သုံးခေးခေဒီစီကေတ်များသံ ကဝင်ကဝစိ ဂူဝင်ဂျီကေတ်မှု ပို့စုက်သေး သုံးခေးမှုမှာ အဝင်ကဝစိ မှလ်ရှာကရမ်းမှာ အာမေးမှုမှာ အပြောင်းမှ မှ ဖြစ်စုမှုလုပ် ကျော့ဝပကာအေမမှာ အာမေးမှာ အမေး ဖြစ်စုမှုလုပ် ကျော့ဝပကာအေမမှာ အမေးကြေးမှုမှုလုပ် အမေး	Протежуточные оподы Сборочный чертеж (основные банные)					
Hay ome mun no Joseph Apmamonos	Wugo 1338 Sucm					
Рук. группы Кашаров Котарова	19712 (Bep. Whan 1:100					
Проверия Домадов Комарова Исполния Терова	827/1 37					

1. На чертеже приведены фундаментные плиты промежуточных опор под пролетные строения от 6,0 до 16,5 м, расположенные но прямых участках пути.

2. высота насыпи принята да уровня теоретического розмыва.

теоретического розмыва.

3. Условия применения опар на естественном основании в различных грунтах определяются величиной максимального довления на грунт под фундаментом в тах, которое не должно превышать расчетного сопротивления грунта основания, определяетого по СН 200-62.

4. Верхние ряды фундаментных плит в двухрядных фундаментах устанавливаются на подливку из цементного раствора талщиной Онт.

5. Работать совместно с листом 137

6. Пои опирании на опоры порываниях

в. При опирании на опору пролетных строений различных длин к объемат подферменников.

7. Крепление элементов фундаментов см. в проекте инв. N 708/1.

Министерси	тва тран	C C C P	строител	ecm ba
אַ אַ אַ אַ אַ אַ	анспроект	п- Ленгипр	отрансмо	ומים
	700000		12000him	war in
сворных желе во 15м под же калеи для пр строительно-к	запетомных Рлевную доро В пенения	MOCTO & TODALTAI ZY HODMOALHOU Ce beamoù	CoppyHol CoppyHol Cyndam Anu	YMOYHBIE POI U YEPMEX EHMHBIE MOI
Нач. отд. тип.пр.	your	Артаманов	Wupp 1338	AUCT
Гл. инж. пр-та	cellyen	Шульман	1971 r. Kan. Acay	μ . , , , ς
Рук. группы	Dunger	¬ Комарова	1311. Cl. 21	we the
	+2.	Пезерава	327/1	38
Проверил	hiesepola	γπεσεράδο	1 27 111	1 4 0

Пределы применимости промежуточных опор на естественном основании на кривых участках пути

	Paduye k	ovboû V		300	7-120	20				150	0				1800	7				2000	·				3000	,	
Сжема опоры	I JUHO	Высьта Насыли	Mapka omoûku		Makcumansh. Gaba.Ha riyim Gmax ^{kr} lcm ²		167 2	Mapka emoûku	А, м	Makcumoush. Dasnen. Ha TPYHM Comax Krm²	A_2	3 3 6 8	Mapka cmoûku	A,	Makcumanbu. Gabaerue Ha Payum Kale			Mapka cmoúku	Я, м	Makeumonshuk Bodnehue Ho POHM PONE	Я2 М	Makcamarsna Babrayue Ha Bymm kel	Mapka cmoúku	A ₁	Makeumanbnoe Babaenue Ha Peynm Baar Kam	Я ₂ м	Makcumanshoe Basnonue na Poyum kn. e
		2	C1-2°		4.0	3.8	3.7	C1-2°		3.9		3.4	C1-2°		3.7		3.2	C1-2°		3.5		3.1	C1-2°		3.2		2.8
<u> </u>		3	C/-2°	3.2	4.5	J.,	3.9	C/-2°		4.1		3.6	C1-2°		3.8		3.3	c1-2°		37		3.2	c1-2°		3.3		2.9
	6.0+6.0	4						C1-2°	3.2	4.3	3.8	3.7	c1-2°	3.2	4.0	3.8	3.5	c1-2°	3.2	3.9	3.8	3.4	C1-2°	3.2	3.4	3.8	3.0
	0,010.0	5		_	_	_		C1-2°		4.5		3.9	c1-2°]	4.2		3.6	C1-2°		4.0		3.5	C1-2°		3.6		3.1
		6			_	_	_		_		_		c1-2°	3.8	3.8	4.4	3.4	c1-2°	3.8	3.7	4.4	3.4	C1-2°	3.8	3.1	44	2.9
		2	C1-2°	3.8	4.7	4.4	4.1	c1-2°		4.3		3.8	c1-2°		4.0			c1-2°		3.8		3.5	c1-2c		3.4		3.1
11 11 11 11 11 11 11 11 11 11 11 11 11		3			_	_	_	c1-2°	3.8	4.5	4.4	4.0	c1-2°	1	4.2		3.7			4.1		3.6	c1-2°		3.6		3.2
	9.3+9.3	4			_			C1-2°		4.7	İ	4.2	c1-2°	3.8	4.4	4.4	3.9	c1-2°	3.8	4.2	4.4	3.7	C1-2°	3.8	3.7	4.4	3.3
	0.0 4 0.0	5				_	_				_		c1-2°	1	4.6		4.1			4.4		3.9	c1-2°		3.8		3.4
		6				_	_							_	_		_	c1-3°		4.6		4.1	c1-2°		3.9		3.5
		2	c1-2°	3.8	5.4	4.4	4.7	c1-2°		4.9		4.3	c1-2°		4.6		4.1	c/-2°		4.5		4.0	C1-2°		4.0		3.6
		3	-		-		_	c1-2°	3.8	5.2	4.4	4.6	c1-2°	1	4.8	4.4		c1-2°	3.8		4.4	4.2	C1-2°		4.2		3.7
742)	JI C. JI C							c/-2°			5.4	4.2	c1-2°	1	5.1	"		c1-2°		4.9	, ,	4.3		3.8	4.3	44	3.8
4.0	11.5+11.5	5				_					J.7		c/-3°	 		5.4	4.1			4.5		3.9	c1-2°		4.5	4.4	3.9
		6			-	_					_		_	/ 	<u>"''</u>	_	<i></i>	c2-1°	4.4	4.7	5.4	4.1	62-1°		4.1		3.6
418								C/-34	4.4	5.4	5.4	4.7	C1-3°	4.4	5.1	5.4	4.4		4.4		5.4	4.2	C1-2°	4.4	4.3	54	3.7
ews	125.125	4				_					J.7		c/-3°		4.5	 	<u>"</u>	c1-3°		4.3		4.0	c1-3°		3.8	-	3.5
<u>Ось</u> Мосл	13.5+13.5	<i>5</i>		_					_				c2-1°	5.4	4.7	_		c2-1°	5.4	4.5	6.0	4.2	c2-1°	5.4	4.0	6.0	3.7
4 6 for ward 002M200		 -	_	_		_		c2-1°	5.4	5.3			C2-1°		50	_	_	c2-1°		4.8			c2-1°	-	4.2		3.9
Я, и Я2 - варианты размера Фундамента вдоль оси моста	10.5.10.5	4				_					_		c2-1°	5.4	5.2	_		C2-1°	5.4	4.9	_	_		5.4	4.4	6.0	4.0
7-5	16.5+16.5	5 6				_								=		_	_	c2-1°	"	5.0	_	_	c2-1°	1	4.6	_	1 =

1. Марка стоек назначена в соответствии с несущей способностью их по прочности, выносливости и трещиностойкости (ограничению раскрытия трещин величиной 0.1 мм).

2. Глубина заложения фундаментов — не менее глубины промерзания грунта + 0.5 м (от уровня теоретического размыва) и не менее 2.5 м.

При сооружении опор в пучинистых грунтах необходимо руководствоваться указаниями, приведенными в пояснительной записке.

3. Условия применения опор на естественном основании в различных грунтах определяются величиной максимального давления на грунт под фундаментом G_{max} , которое не должно превышать расчетного сопротивления грунта основания, определяемого по СН 200-62.

4.8 таблице приведены значения макситальных давлений на грунт, округленные в большую сторону до $0.1 \, {\rm kr/cm^2}$ при равной длине примыкающих пролетных отроений. При разной длине примыкающих пролетных строений значения максимальных давлений на грунт допускает-ся принимать по интерполяции.

5. При сооружении опор на кривых (при междупутье более 4100 мм) допускается устройство монолитных фундаментных плит шириной более 418 см - - симметричных или уширенных во внешнюю сторону крувой.

Конструкция плит разрабатывается при привязке проекта. Возможность применения опор при этом определяется расчетом.

6. Работать совместно с листами № 37,38

Министер	ocmbo m	C C C P οακεποβπικο	ro cmpoume.	nocmba
[Ja8mp	aHenpoe	Km-SeHI	Unpompatte	MOCM
, 17/	oekm	meoku)	Onophim	una 1º
οδόρμειας οχ πρόλ επαλι μό πορμαλεμού Κ	ELESOSEMO. PO 15M NOD . OLEY JIA N	ОМЕНСИ) НН61Ж МОСТО Железную боро. БИМЕНЕНИЯ В КЛИМАТИЧЕСКОЙЗ	B YCHOS	UA HUA ONOP Bbioc
		- Артамоно	g 14/490p 1338	
Th. UH HE. Mp.	cellyes	иульман	1971 Kon Ka	2 M.
PykoB. rpynnei		KOMUPOBO		
Проверия	Reporter	же Кузьменк Серовы	<i>2</i> 827 //	39

490

CXEMO ONOPOL Comparison of the comparison of		Paduye M	NACOOO					<u>~</u>										300	0							2000		
Протория постоя постоя и пост	Croud analy	COUCHU 8 OUA	YHOCM6			8		15.15.00			9		IS K			8		16		,	9							
2 C'-2° 3, 2 3, 2 3, 2 3, 2 3, 2 3, 3 3, 3 3,	схемо впоры	пролет. строен	HOCOINU	Марка		15.5 4.1	1	MOKCUMOROH GOBANGOGHI GROX KELCH			16	1 -	MOKCUMOTA BOBA HO EDYH GMOK KE OM E		1	3 × ×		1387		1	Moxcumanon. Oobn.noepym Gmax Re/CM2	R ₂		, <i>'</i>	A,	MOXCUMORON POBR HO EPYHIT Smox KE JOM 2	Я2 м	
60.60 V 0'-2' 3.8 35 28 0'-3' 38 3.5 2.8 0'-3' 38 3.5 2.7 0'-2' 3.8 3.4 4.4 3.1 0'-5' 3.8 3.5 4.4 0'-2' 3.8 3.6 0'-2' 3.8 3.6 4.4 3.1 0'-5' 3.8 3.8 0'-2' 3.8 3.6 4.4 3.1 0'-5' 3.8 3.8 0'-2' 3.8 3.8 0'			2			<u> </u>		\vdash			<u> </u>	_																1
50 + 50 10 10 10 10 10 10 10	<u>np.</u>		3		3,2		38			38		_			3,2			├ ──		3,8	3.9	44	3, 5	c/-2°	3, 2	3,8		
6 C1-2° 38 31 W 28 C2-1° 44 54 C1-3° 38 38 3.6 4 3.3 C1-3° 38 3.8 4.4 3.3 C1-3° 38 3.8 4.4 3.3 C2-1° 4.4 4.7 5.4 4.5 5.4 4.6 5.4 4.7 5.4 5.6 5.7 5.4 3.7 5.4 3.7 5.4 3.7 5.4 3.7 5.4 3.7 5.2 5.7 5.8 3.8 5.7 5.7 5.8 3.8 5.7 5.7 5.8 4.4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7		6,0+6,0	4				,,0	2,8	İ	""	3,5	_	<u> </u>				3,8	3, 2	C/-3°		4.2	ļ	38	C/ -2°		4.0	3,8	7
\$\frac{6}{5} \cdot	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5		3, 5	3,4						_	<u> </u>		38		4.4			_	_		4.1	C/-2°	2.0	3,6	41	-
3 C'-2° 38 32 44 28 C'-3° 84 30 54 25 C2-1° 54 38 30 C'-2° 38 30 C			5		3,8	3,/	4,4	2,8		4,4	3,4	_	<u> _ </u>	<u> </u>		-		_		<u> </u>		_	_	C/-3°	3,6	3,9	7.7	<i>-</i>
93+93 4 C1-2c 38 32 44 28 C1-3c 4,4 30 54 3.7 54 3.8 3.8 C1-3c 4,4 4.4 5.6 C1-3c 4,4 4.4 5.6 C1-3c 4,4 4.4 5.6 C1-3c 4,4 4.4 5.6 C1-3c 4,4 4.4 5.6 C1-3c 4,4 4.4 5.6 C1-3c 4,4 4.4 5.6 C1-3c 5.4 5.4 5.6 C1-3c 5.4 5.4 5.6 C1-3c 5.4 5.6 C1-3c 5.4 5.4 5.6 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.4 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6				+								_											3,3	C/-2°		3,9		
93.93 4 C/-2° 4.4 3.0 54 2.5 C2-1° 3.7 3.6 C/-2° 4.4 3.0 54 2.6 C2-2° 5.4 3.4 5.4 - C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 4.4 4.0 5.4 3.5 C/-3° 5.4 4.2 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4				ļ		<u> </u>	,,,,			עע	<u> </u>	_	↓=_		3.8		4.4	ļ		1 "		5,4	3,5	C/-2°		4.1		
6 C1-2° 4.4 31 54 2.6 C2-2° 5.4 3.4 2.9 C1-2° 3.8 3.0 C1-2° 3.8 4.4 4.0 54 4.4 54 4.4 54 4.4 54 4.4 54 54 54 54 54 54 54 54 54 54 54 54 54		9,3+9,3		ļ	3,8		7.7			1		_						<u> </u>	C/-3°		4.6	_	3,9			4.4	4,4	1
1/5+1/5 1/5+			<u> </u>		4.4	<u> </u>	5.4	<u> </u>			 	5.4			4.4		5.4			<u> </u>		_			144	4.1	5.4	4
3 C1-2° 3,8 3,6 4,4 3,3 C1-3° 4,4 4,8 C1-3° 4,4 4,8 C1-3° 4,4 4,9 5,4 4,2 C1-2° 3,8 4,7 4,9 5,4 4,2 C1-2° 3,8 3,8 4,4 3,3 C1-3° 4,4 4,3 5,4 3,7 C2-2° ———————————————————————————————————	1		6			ļ	<u></u>			5,4	 		-			<u> </u>				_	<u> </u>	_	_	C/-3°		4.4		_
11.5+11.5				+													,,,			1 // //						4.4		
1/5+1/5 1/5+			3		3.0		עע			עע					1 ′		4.4	<u> </u>			4.9	5,4	4.2	C/-2°	3,8	4.7	4.4	7
4 C1-2° 4.4 3,7 5.4 3,1 C2-2° — — 3,7 C2-1° 4.4 4,5 5.4 4.0 — — — — — С2-1° — — — — — — — — — — — — — — — — — — —		11,5+11,5	4		3,0		7, 7			1.7		5,4				ļ	***	-	C/-3°	_	<u> </u>		4.5			4,9		
4 C1-2° 4.4 3.6 5.4 3.1 C2-1° 5.4 3.5 6.0 3.2 C1-2° 4.4 4.5 5.4 4.0 C2-1° 6.0 4.8 — — — — — С2-1° 5.4 4.5 6.0 3.7 С2-1° 5.4 4.5 6.0 3.7 С2-1° 5.4 4.5 6.0 3.7 С2-1° 5.4 4.5 6.0 3.9 — — — — — С2-1° 5.4 4.8 — Фаменто вдоль оси моста			5		4.4		5.4								4.4		5.4				-	_	_		5,4	4.2	_	
13.5+13.5 5 C1-2° 5.4 3.8 6.0 2.9 — — — — С1-3° 5.4 4.3 6.0 4.2 — — — — С2-1° 5.4 4.5 6.0 4.2 — — — — С2-1° 5.4 4.5 6.0 домента вдоль оси моста 4 C1-2° 4.4 3.8 5.4 3.4 C2-2° 5.4 4.2 6.0 3.7 C2-1° 5.4 4.7 6.0 4.2 — — — — С2-1° 5.4 4.7 6.0 4.2 — — — — С2-1° 5.4 4.7 — С2	4/8			 				3,9		<u> </u>				 			-							C2-1C	_			_
6 C1-3° 5.4 3.4 5.0 3.0 C2-1° 5.4 4.6 6.0 4.2 C2-1° 5.4 4.7 6.0 3.9 C2-1° 5.4 4.8 - 3.5 5 5 C1-3° 5.4 3.5 6.0 3.2 C2-1° 5.4 4.7 6.0 4.2 C2-1° 5.4 4.8 - C2-1° 5.4 4.7 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0			<u> </u>		4,4		5.4		C2-1°	5,4			 			 	5.4		C'Z -/ *		4.8	_	_		4.4		5,4	4
UR ₂ - Варианты размера дамента вдоль оси моста 4 C1-2° 4.4 3.8 5.4 3.4 C2-2° 5.4 4.2 6.0 3.7 C2-1° дамента вдоль оси моста 16.5+16.5 5 C1-3° 5.4 3.5 6.0 3.2 — — — — С2-1° 5.4 4.7 6.0 4.2 — — — — С2-1° 5.4 4.7 6.0 4.2 — — — — С2-1° 5.4 4.7 6.0 4.2 — — — — С2-1° 5.4 4.7 —	7C6 HOCO	13,5+13,5			5.4		6.0			<u> </u>			 - -		5,4		6.0					_		C2-/C	5,4	4.5	6.0	,
дамента вдаль оси маста 16,5+165 5 CF 3° 54 3.5 6.0 3,2 — — — С2-1° 5.4 4,7 6.0 4.2 — — — С2-1° 5.4 4,7 —	·		 	 					-	-			77			+					_	_						4
54 5.0 6.0	-	16.8416.6	<u> </u>		4,4	1	5.4			3,4			3,/		J	L	6.0			_		_			5,4			_
		10,3 7,0,3	6	CF-3°	5.4	3.5	6.0	3,3		_				C2-1°	-	5.0		4.5		_		_		C2-/°	5,0	4,7 5,0		

1. Марка стоек назначена в соответствии с несущей способностью их по прочности, выносливости и трещиностойкости /огроничению раскрытия трещин величиной члмм)

2. Глубина запожения фундатентов-не менее елубины промерзания грунта +0,5 м ют уровня теоретического размыва) и не менее 2,5 м.
При сооружении опор в пучинистых грунтах необходимо руководствоваться указаниями, приведенными в пояснительной записке.

3. Уаловия применения опор на естественнот основании в розличных грунтах определяются величиной максимального давления на грунт под фундаментом G_{max} , которое не должно превышать расчетного сопротивления грунта основания определяемого по СН 200-62.

4. В таблице приведены эначения максимальных давлений на ерунт, округленные в дольшую сторону до 0,1 кг/ст²

При разной длине примыкающих пролетных строений значения максимальных давлений на грунт допускоется принимать по интерполяции.

5. При сооружении опор на кривых (при междупутье более 4100 мм) допускается устройство монолитных фундаментных плит шириной более 418 см симметричных или уширенных во внешнюю сторону кривой.

Конструкция плит разрабатывается при привязке проекта. возможность применения опор при этом определяется расчетом.

6. Работать совтестно с листоми NN 37,38.

Министер	mba mpak	ICAOPATHORO	cmpoumen	ocmba
2108m	OCHCAPOEN	m - Seneur	POMPOHEN	10CM
1000	POEKM		Onophimu	na 15.
copillix me nganemanu konev ann compoume	TABOOETTONHO DO 15 M DO AN TOUMENENUR TOHO - KRUMO 30HE	PEKU) SIL MOCITOB (B. MODMOJSHOU B. MODMOJSHOU BITTU VECKOU	HEA OBL	A ONOP
Hax OTA. TUN. NA	Tann	Артомонов	Шифр 1338	
Гл. инж. проект	Melyen	MYTOMON	1971 KON. Typus	11-5-
Рук. группы	tomapal	_ Комарова	C8 refung	
Проверия	Лемагов	Sendcosd	827/1	4/7
UCROAHUA	Crues -	Спильчевской	702/[/	1 4U

1. На чертеже приведены промежу точные опоры под пролетные строения длиной 6.0÷16.5 м.

2. Условная высота насыпи Ннас для промежуточных опор измеряется до повержности грунта или до уровня теоретического размыва.

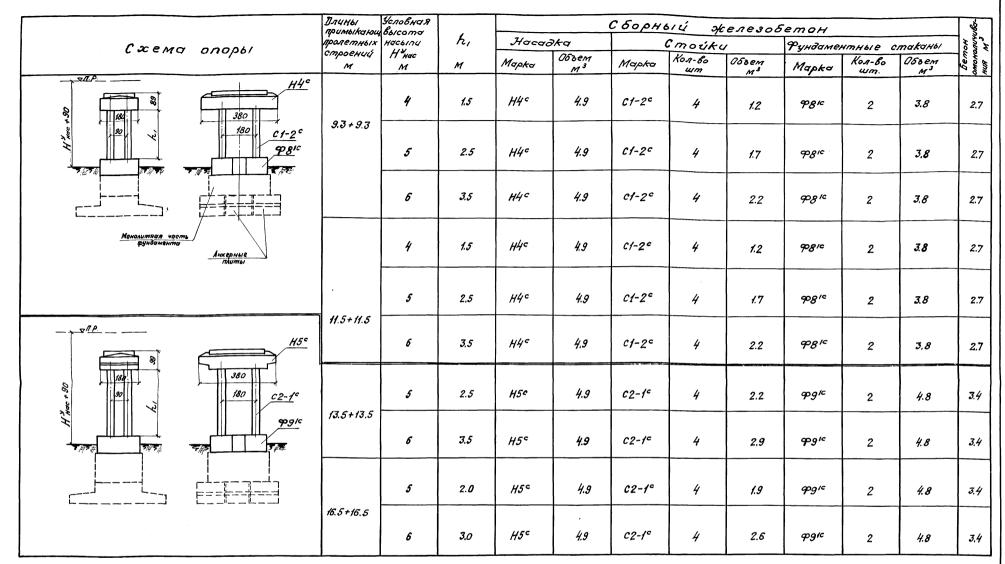
3. Глубина заложения фундамента-не менее глубины промерзания + 0,5 м и не менее 2.5 м.

4. Для обеспечения устойчивости опор против морозного выпучивания обратная засыпка котлованов производится послойно (20 см) с уплотнением:

а) при сооружении опор в связных грунтах с когрорициентом консистенции более 0.2, но менее 0.4-- местным грунтом.

в) при сооружении опор в грунтах с коэффициентом кансистенции более 0,4-привогным грунтом с коэффициентом консистенции менее 0,4.

После отсыпки каждого слоя грунта отсыпается слый щебня толщиной не более 10см и втрамбовывается в грунт.


Коэффициент уплотнения грунти должен быть не менее 0.38.

5. Опоры типа 3^{4} могут применяться при наличии ледожода с толщиной льда не более 50 см.

6. Рундаменты опор при различной глубине заложения приведены на листе N44

7. Объемы опор, в соответствии с условиями их применения, приведены на листах N45-50

Министер	ство транспо	CCCP OPMHOTO CMF	оительство	7
[Aq8mp	Henpoekn	n -Sehrun	POMPHEMO	cm
(00000)	soekm	22644)	Опоры ти	70 3ª
οδορημία χε. Πραπεπαικύ δο Νορμαπόκού Κ Οξεριού επρο	UE YEPME (E30SEMOHHEIA 15M NOBAKESE ONEY BIR INDUM UMENSHO-KNUMOM	C MOCMOB HYNO BAPORY EHEHUR'S DVVECKOÙ BOHE	Promerkymos Onopol Coopoynou v Ochobnole do	
Нач.отд.тип. пр	Jours	Артамонов	Шифр 1338	Лист
Гл. инэк. пр.	(My law)	Шульман	1971 KON. Rey	M.
Руков. группы	Sourapol	Комарова	Coep. upon	
Проверил	Seneck	Лемасова	1827/1	1,4
<i>Чеполнил</i>	Ol me	Кузьменко	102///	171

1. На чертеже приведены промежуточные опоры под пролетные строения $9.3 \div 16.5$ м.

2. Условная высота насыпи Н нас. для променуточных опор измеряется до повержности грунта или до провня теоретического размыва.

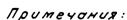
3. Глубина запожения фундамента не менее глубины промерзания +0.5м и не менее 2.5м.

4. Для обеспечения устойчивости опор против торозного выпучивания обратная засыпка котпованов производится послойно (20 см) с уплотнением:

а) при сооружении опор в связных грунтах с коэффициентом консистенции более 0.2, но менее 0.4--местным грунтом. б) при сооружении опор в грунтаж с когффициентом консистенции более 0,4-привозным грунтом с когффициентом консистенции менее 0,4.

После отеытки каждого слоя грунта отсыпается слой щебня талщиной не балее 10 см и втрамбовывается в грунт.
Козаррициент уплотнения грунта должен быть не менее 0,98.

5. Отметка верха фундаментных стаканов должна выть выше на 0.5м горизонта меженних вод.


6. Рундаменты опор при различной глубине заложения приведены на листе N44

7. Объемы опор, в соответствии с условиями их применения, приведены на листах N45-50

			CCCP HCNOPMHOTO N-NEHTUN	cmpoument	
0 % 40	(pago40	POEKM		Опоры ти	ing 4°
12	а ү.о та.тип. пр.	race	Артимонов	Wuqop 1338	NUCT
-	п.инж. пр. Руков.группы	howew pol	1 Шульман Комарова	1971 CB. 25	<u></u>
-	TpoBepus	Renacol		827/1	42
	Исполнил		Ky36MeHKO	104111	17/

490.

	A AUHBI ADUMBIKOROW.	Yeno Braz Borcoma			Сборных	i жene	зобетон	,		Объем
Схема опоры	пролетных	HOCOINU	h,	Madepepm Brok	CHHOIÚ		mena or		Итого свори.	МОНОЛИТНОЕ
Cacmo Grapsi	строений М	H ^y nac. M	М	Марка	Obsem M3	Марка	Количество шт.		Итого сворн. эссяезоветью выше функционта м з	бетона м 3
<i>★10</i>		4	3,02				3	13,2	16.7	2,0
503	9,3 +9,3	5	4,02				4	17,6	21,1	2,6
5/		8	5,02	5/13	35	51	5	22,0	25,5	3,2
200		4	3,02	<i>B</i> // <i>0</i>			3	13,2	16,7	2,0
Ancephote Moraumica va	11,5 + 11,5	5	4,02				4	17,6	21,1	2,6
плиты руждамента		б	5,02				5	22,0	25,5	3,2
513	9.3 + 9.3 11.5 + 11.5	4	3,02				3	15,9	19,4	2,0
52	13,5 +13,5	5	4,02				4	21,2	24,7	2,6
320		6	5,02	<i>5/13</i>	3,5	52	5	26,5	30,0	3,2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16,5+16,5	5	4,02	4			4	21,2	24,7	2,6
	70,0 7,0,0	6	5,02		ļ		5	26,5	30,0	3,2
	93+93	5	4,02				4	25,2	30,7	4,0
<u> , </u>	3,5 1 2,0	6	5,02				5	31,5	36,4	4,9
5.04	11,5+11,5	5	4,02				4	25,2	30,1	4,0
53	7,0 7,0	8	5,02	5714	4,9	63	5	31,5	38,4	4,9
260 340	12 5 1 12 5	5	4,02		. 4,9	00	4	25,2	30,1	4.0
	13,5+13,5	6	5,02				5	31,5	36,4	4,9
		5	4,02				4	25,2	30,1	4,0
	16,5+16,5	8	5,02				5	31,5	36.4	4,9

- 1. На чертерке приведены промежутачные опоры под пролетные строения длиной 9,3 - 16,5 м.
- 2. Условная высота насыли Мнос в для протенсуточных опор измеряется да повержности грунта или до уровня теоретического разтыва.
- 3. Глубина запожения фундатента не тенее елубины PROMEPSONUS + 0,5 m U HE MENEE 2,5 m.
- 4. Для обеспечения устойчиваети опар против торозного выпучивания обратная засылка котлованов про-

изводится послойно (20 см) с уплотнением:

а) при сооружении опор всвязных грунтах с коэффициантом консистенции более 02, но тенее 0.4-тестным эрунтом.

б) при сооружении опор в грунтая с коэффициентом консистенции балее 0,4- привозным грунтом с когффициентом консистенции менее 0,4.

После отсылки каждого слоя грунта отсылается слой щебня толщиной не более 10cm и втромбобывается в грунт.

Кадрфициент уплатнения друнта балжен быть не тенее 0.98. Т. Ипоры типа 5º тоеут притеняться при наличии лебогода с толициной ява не более 50 ст.

6. Рундатенты опор при различной глубине залагрения приведены на листе · N 44 7. Объемы опор., в coombernambuu e условияти иж применения, привевены ма nuamase. № 45-50

Министерство п	CCCP MPAKCHOPMKOEO CH	проит е льств	ъ
	OEKM - SEHEUI		
(pasovue vi		Опары ти	no 5ª
CÕODNAISC ACERESOÕE NOONEMAMU ROISMIN NOOMANAMOÜ KOREU		Промерсуто Иборочный не Основные и	vepme
How, om 8. run. no. 19-	Пртамона	8 Wugo 1338	Nucm
In unat. Appente CULL	WYAL MON	1971 KON BUR	
	KOMODOBO	13/12/08.21/1-	1
Pyrab. epynnos Kou	J		
2 2 2	aus Jemocobo	<i>∃827/1</i>	1 /. Z

мта				сборный	желез	обетон	_	Объет
тип Фундатента	Схема фундамента	ď	Я	Марка Блока	Кол.	Oбъет	ħ¢ M	моноло ного бетон м 3
1			350	AN 1-1 AN 2-1	1 2	12,0	1,5	8,6
2		180	400	ЯП 1-2 ЯП 2-2	1 2	13,5	2,0	11,5
3			450	AN1-3 AN2-3	1 2	14.7	2,5	14,4
4			400	AN 3-1	1	13,8	3.0 1.5	9,6
		200	450	A114-1	1		2,0	12,8
5				A114-2	1	15.3	2.5	16.0
8	320	-	500	AN4-3 AN5-1	2	16,8	3,0	19,2
7			400	RN6-1 RN5-2	2	11,7	1,5	10,6
8	, A 418	220	450	AN6-2	2	13,8	2,0	14,1
9			500	AN 6-3	2	15,3	2,5	17,6
10			550	AN 6-4	2	17,1	3,0	21,1
11			450	A17-1 A18-1	2	13,8	1,5	11,5
12		240	500	AN 7-2 AN 8-2	2	15,3	2,0	15,4
13			550	AN 7-3 AN 8-3	1 2	17,4	3,0	23,0
14			400	AN 1-2 AN 2-2	2 2	18,0	1.5 2,0	11.5
15		180	450	AN 1-3 AN 2-3	2 2	19,6	2,5 3,0	19.1
	460 390		450	R113-2 R114-2	2 2	20,4	1.5	12.7
16	8 20	200	500	AN 3-3	2	22,4	2.5	21,5
17	A 560			AN 4-3	2		3,0 1.5	25,5 14.0
18		220	500	R116-2 R115-3	2	18,4	2,0	18,7
19		220		A115-4	2	 	2,5	23,4
20			550	A116-4	2	22,8	3.0	28.0

y ur vo	фундотента	Схема фундамента	Ø	Я	Сварный Марка Блака	суселез Кол.	Обетон Объем м ³	ħ\$ м	Овъем монолит ного бетона м ³
11		d 460 390		500	AN 7-2	2	00/1	1,5	15,3
11	21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	240	300	AN 8-2	2	20,4	2,0	20,4
	_	200		650	AN 7-3	2	03.0	2.5	25.5
, []	22	A 560		550	AN8-3	2	23,2	3,0	30,6
11				500	A119-1	2	20.0	1.5	17,9
41	23		280	500	AN 10-1	2	20,8	2,0	23,8
П				550	A119-2	2	22,8	2,5	29.8
11	24	`		330	AN 10-2	2	22,0	3,0	35.7
41	as	`		500	AN5-3	3 2	25,5	1,5	17,3
	25	, 600	220		R116 - 3	3		2,0	23,1
ш		450		550	R115-4		28.5	2,5	28.9
41	26				R116-4	2		3,0	34,7
.11	27	4 2		500	AN7-2	3	25,5	1,5	18.9
	27		240	ļ	8/18-2	2		2,0	25,2
Ш		A 700		550	AN 7-3	3	29,0	2,5	31.5
11	28			<u> </u>	9118-3	2		3,0	37,8
Ш				500	A119-1	3	26.0	1,5	22,1
11	29		280	-	A 1110-1	2		2,0	29,4
Ш	30			550	AN 9-2 AN 10-2	3 2	28,5	2,5 3,0	36.8
-	-								
	31			500	AN5-3	4	30,6	1,5	20,9 27,9
.]	-	740	220	-	A115-4	4		2.5	34,9
┨╏	32	530		550	A116-4	2	34.2	<u> </u>	41.9
11	-	100 ho			A177-2	4		1,5	22,9
,]	33			500	A118-2	2	30.6	2,0	30,5
11	-	A 840	240		RN 7-3	4		2,5	38.2
,	34	<i>→ → → →</i>		550	A118-3	2	34,8	3,0	45,8
					R119-1	4		1,5	26,7
,	35			500	81110-1	2	31,2	2,0	35,6
			280		8119-2	4		2,5	44.5
_	36			550	AN 10-2	2	34,2	3,0	53.3
, L	00								ليبشندن

Министеротво транспартного строительства

Главтранспроект — Ленгипротранстост

Проект — Пенгипротранстост

Опоры пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов 32, 42, 5 Ф пилов пропеньной колей от тритенения в Сбороч ненть в Свороч пилов

													/1	00.	7 e	m H	61 E		C /	mpo	e H	UA		г				11.5 +	11.5				
	. ,		ţ					6 +	6				0.0	7 0 0	1 4	-	9,	3 +	00	,	R	= 00		L									
3	Sescora	١	٠ [2000					UCM	U 4 A	1001	776		BOA.	nax			5 = 6	7		T		5 = 8.9		
0000		ة ا	3 2		5 =	6,7				5 =	8.9				_ S =	6,7				5	5 = 8,5				105204	3 = 0 oxenes		Marc.			xeneso	,.	Marc.
9	· œ	Z 3	200	Tun	DåseM	xcene	20 -	MOKC.	Tun	OBSEM			Marc. Bubnen.	Tun	DESON	HO ON	0-	MOKC.	Tun		JICĒNĒ NO L		Hanc	Tun		NO O		Ballen.	Tun	derond	O NO ON	1	dalnen.
1/2	DA.		N 80 X	_		NO 0		dabnen. Ha	1	ОЕТОНСІ Сворный	NO OF		HO	фунда-			Beero	Babnen. Na	фунда		1		da Bren NO	क्रप्राग्वेल.		1		HO	фунда.	Chapares is	Moran.	Beero	COUNT.
^	Условна.	noce: mo	, 0 ,	_		Монол.	Bcero M 3			M 3	M3	M3	G M/CM3	MENTA	A/3	MB		G RE/CH		N ³	MONON.		FRYNT 6 Kr/CNF	l	23	M3	8 19	G AC/CH2	MENTO	M3	M3	N^3	GRE/CN2
	12, 3	-	2	MEHTO	M³			 		<u> </u>			3,2	1	14.7		├	+	+	 		+	 	,,,,,,,	<u> </u>	<u> </u>	_L			نسبب سيا			
		-		1	14,6	15,5	30,1	3,5	2	16,1	15, 3	31.4		2	 	12,3	27,0	4,2	2	16,2	12,1	28.3	4, 0	-									i
			2	2	16,1	15.3	31.4	3, 1	3	17,3	15.1	32,4	2,9		16,2	12.1	28,3	3,7	3	17.4	11.9	29,3	3,7										
		ì		3	17.3	15.1	32,4	2,8	14	20,6	17,1	37.7	2,5	3	17.4	11.9	29,3	3,3	14	20,7	13,9	34,6	3,1										
	1	_		14	20,6	17.1	37,7	2,6	15	22,2	16,8	39,0	2,0	14	20,7	13,9	34,6	3,2	15	22,3	13,6	35,9	2,6]									
				1	14.6	21.2	35, 8	3,6	2	16,1	21,0	37.1	3,8	2	16,2	17.8	34,0	3,9	2	16,2	17.8	34,0	4.6										
	2	1	3	2	16,1	21,0	37./	3,2	3	17.3	20,9	38,2	3,5	3	17.4	17.7	35,1	3, 6	3	17.4	17.7	35,1	4.3	[•						į
			Ĭ	3	17,3	20,9	38.2	2,9	14	20,6	24,7	45,3	3,/	14	20.7	21,5	42,2	3.3	14	20,7	21.5	42,2	3,7	1									
		L		14	20,6	24,7	45,3	2,7	15	22,2	24.5	46,7	2,6	15	22,3	21.3	43,6	3,1	15	22,3	21.3	43,6	32	1									
		- 1	1	1	14,6	27,0	41,5	3.7	2	15,1	26,9	43,0	4,4	2	16.2	23,7	39,9	4,1	_			<u> </u>		1					1				. }
		-	. [2	16.1	26,9	43,0	3,3	3	17,3	26,7	44.0	4.1	3	17.4	23,5	40,9	3,7	1=	_	_	<u> </u>	_	1									
			4	3	17,3	26,7	44,0	3,0	14	20,5	32,2	52,8	3,7	14	20.7	29,0	49.7	3,4	14	20,7	10.0	/	 										
				14	20,6	32,2	52,8	2,8	/5	22,2	32,1	54,3	3,2	15	22,3	28,9	51.2	3,2	15	22.3	29,0	49.7	4,3	i							•		
				1	14,6	20,9	35,5	3,5	2	16,1	20,7	36,8	3,7	2	16,2	17,5	33,7	3,8	2	 	28.9	<i>52.1 33,7</i>	3.8	-	1/00	107	700	4,2					
3	<u>ø</u>		,	2	16,1	20,7	36,8	3,/	3	17.3	20,5	37.8	3,4	3	17.4	17.3	34,7	3,5	3	17.4	17.5	34,7	4.5	2	16,2	16.7	32,9	3,8	3	17.4	16,5	3 3,9	4.5
			2	3	17,3	20.5	37.8	2.8	14	20,6	22,5	43,1	3,0	14	20,7	19,3	40,0	3,2	14	20,7	17.3	 	4.2	3	17.4	16,5	+	3,5	14	20.7	18,5	39, 2	3,9
				14	20,6	22,5	43,1	2,6	15	22,2	22,2	44,4	2.5	15	22,3	19.0	41.3	3.0	15	22,3	19.0	41.3	3,6	14	20,7	18,5	39,2			22,3			
				1	14,6	26,6	41,2	3,6	2	16,1	26,4	42.5	4,3	2	16,2	23,2	39,4	4,0	_	22,5	13.0	 	31	/5	22,3	17.9	40,2	3,3	15	22,3	17.9	40,2	3,4
	3	3	3	2	15.1	26.4	42.5	3.2	3	17,3	26,3	43.6	4.0	3	17.4	23,1	40.5	3,6	<u> </u>	-	=		<u> </u>	2	16.2	22,4	38,6	4,4					
				3	17,3	26,3	43,6	2,9	14	20.6	30,1	50,7	3,6	14	20,7	26,9	47,6	3,3		+	ļ	 -		3	17.4	22,3	39.7	4.0					
		ı		14	20,6	30.1	50,7	2,7	15	22,2	29.9	52,1	3,1	15		26,7	49,0	3,1	15	20,7	26,9	47.6	4,2	14	20,7	26,1	46,8	3,7	14	20,7	26.1	46,8	4,5
				1	14.6	32.4	47,0	3,8	2	16,1	32,3	48.4	4,9	2		29,1	45,3	4,2	 	22,3	26.7	49,0	3,7	15	22,3	25.9	48,2	3,5	15	22,3	25,9	48,2	4.0
		Ì		2	16,1	32,3	48,4	3,4	3	17,3	32.1	49.4	4,6	3	17.4	28,9	46,3		<u> </u>					2	16,2	28.3	44,5	4,6					
			4	3	17,3	32,1	49,4	3,1	14	20,6	37,6	58.2	4,1	14	20,7	34,4	55,1	3.8	 -	1=				3	17.4	28.1	45,5	4,2	_				
			l	14	20,6		58,4	2,9	15	22,2	37.5		3,6	15	22,3	34,3	56,6	3,5	14	20,7	34.4	55,1	4,8	14	20,7	33,6	54,3	4,0					
		+		1	14.6	26,3	40,9	3,5	2	16,1	26,1	42,2	4,2		1, -	- //	00,0	3,5	15	22,3	34,3	56,6	4,3	15	22,3	33,5	55.8	3,8	15	22,3	33,5	55,8	4.6
				2	16,1	26,1	42.2	3,2	3	17,3	25,9	43,2	3,9	1																			
			2	3	17,3	25,9		2,9	14	20,6	27,9	48,5		1																			
				14	206				15	20,0	27,3	105	3.0	1																			

			14	20,6	37,8	58,4	2,9	15	22,2	37.5	59,7	3,6
			1	14.6	26,3	40,9	3,5	2	16,1	26,1	42,2	4,2
		0	2	15,1	26,1	42,2	3.2	3	17,3	25,9	43,2	3,9
		2	3	17,3	25,9	43,2	2,9	14	20,6	27,9	48,5	3,5
			14	20,6	27.9	48,5	2,7	15	22,2	27,3	49,5	3,0
1 1 11			1	14.6	32,0	46,6	3,7	2	16.1	31.8	47.9	4,8
- - - 	4	3	2	16.1	31,8	47.9	3,3	3	17,3	31.7	49,0	4.5
-			3	17,3	31.7	49,0	3,0	14	20,6	35,5	56,1	4.0
			14	20,6	35,5	55,1	2,8	15	22,2	35,3	57.5	3,5
DETM			2	16,1	37,7	53,8	3,5	_	_			
		4	3	17,3	37,5	54,8	3,2	_				
9 3		7	14	20,6	43,0	63,6	3,0	14	20,6	43,0	63,6	4,5
			15	22,2	42,9	65,1	2,8	15	22,2	42,9	65,1	4,0
Ceroko. Tupase 30xa3.												
325												

Padotato conecino e nucranu N41,44

			CCCP		
MUHUCTER	c 780	TP	COOPTHOLD	CTPOUT	enbet 60
[na6 rpo	HEAPE	PEKT	NEHLUND	TOTPOHEM	OCT
(Au	Soque	4epres	vcu)	30, 4ª,	runo 6 52
	enesnyn Ovmenen	DOPOR		Pyndones Dånacra np	
Hav.orā.run.np.	Trace	ur	APTONONO6	Шифор. 1338	Nucr
[p.unac.npoekto	Clay	,em	WYNOMON	Mos.	0
PYK-CPYMAI	Jan	apole	KONOPOBO	1971r CB. 20	May-
Проверил	Seuce	red	Seracola	827/	1.5
Исполнил	Cum	uel -	CAUPSYEBERGA.	1 02//1	43

1 .		77																	C r	n p	ое н	7 11	g										
1 1	1	ا غ											!_	00 4		п н	<u>01 €</u>	3 +										11.5 + 1	1.5				
		ار م	_					6 +	6					a 9			<u></u>	p U	5 0 I	ù	R	≥300											
1 1	- I	וסמ	5									_						c e	i c	M U	чно	cm	ь	6 6	ann								
1 1	ă	o i	ת ב									<u> p</u>	a c	че	S= 6		ч	t e	Ĭ - ĭ -	5=	8.9					S-6.7					= 8.9		
1 1	ladon.	Z Z	Глубина омерза Нж. м		S= 6		4 O 2 D 4			S= 8 05ъeм	.9	കാര്മ			Объем		02050	Maure	_	Οδъεν) ∂ce∧	езобе-	Make.	Tun	Объем	n Heen	езоб е-	Макс.	Tun	0бъем	1 otcene	:30ර්e-	Макс.
1 1	Ď	7 2	άe δ To σ	Tun	05sev			Макс.	Tun	MOH	a Ha o			Tun	lmnua	HO OF		اء د	ויטין	mond	Ha o		12 6		1	4 40	nnonu					nopy	даблен
	اہ	현티	.₽£±	финда	2 1	14	la Ottiopg	давлен на	фунда	CODUNI	Maria	Boons	на давлен	thau w	Сборный			на грунт	финда	Сбарный	Монол.	Bceso	Ha	фундо	Сборный	Монол	Bcezo	HO	The Hoo	Сборный	MOHOV.	Bceso	Ha
1	Ē	Услобі насыт	n odn		М ₃	NOHOV	Bceso	SPHHT	мента	M ₃	M ₃	W ₃	SPYHT G KT/CM2	мента	W ₃	M ₂	W ₂	Q KL/CW3	мента	M ₃	M ₃	M2	6 K1/4	мента	Wa	M ₂	W ₃	EDYHT OKT/OM2	мента	M ₂	M ₂	M ₃	на грунт б кг/см
-	<u> </u>	DΪ	<u> </u>	мента	M.	W ₂	M ₃	6 = K/CM	Menia				G N /CM						-			705	42	фундо мента	I	L		74.1	 	L			10 /CIVI
1							_		_					9	18	14.5	32.5	4.2	9	18.0	14.5	32.5	4.3	1									
				3	17.3	15.1	32.4	4.3	3	17.3	15.1	32 <i>A</i>	4.4	10	19.8	14.3	34.1	3.9	10	19.8	14.3	34.1	4.0	l									
			2		11.3	15.1			 						01.1	171	700	 		011	17.1	38.2	3.3	1					1				
				14	20.6	17.1	31.7	3.2	14	20.6	17.1	37.7	3.3	18	21.1	17.1	38.2	3.3	18	21.1		<u> </u>	 	1									
				15	22.2	16.8	39.0	2.9	15	22.2	16.8	39.0	3.0	19	23.1	16.9	40.0	3.1	20	25.5	16.7	42.2	2.9]					l				
1						.0.0	 		_					10	19.8	21.4	41.2	4.5	18	21.1	26.5	47.6	3.9	1									
													 -		 						26.2	49.3	3.7	1					l				
ll		2	3	—		_	—						<u> </u>	18	21.1	26.5	47.6	3.9	19	23.1	20.2	45.5	ļ	ł			-						
			_	14	20.6	24.7	45.3	3.6	14	20.6	24.7	45.3	37	19	23.1	26.2	49:3	3.7	20	25.5	26.0	51.5	3.5]									
1 1								3.3	15	22.2	24.5	46.7	3.4	20	25.5	26.0	51.5	3.5				_	-	1									
				15	22.2	24.5	46.7	5.5					<u> </u>					1 0.0			75.0	56.9	4.5	1					1				
						_	-	_						$\perp =$					18	21.1	35.8	30.5	-	1									
ΙÍ	i							_					l —	18	21.1	35.8	56.9	4.4	19	23.1	35.6	58.7	4.3						1				
			4		200			10	14	20.6	32.2	52.8	4.1	19	23.1	35.6	58.7	4.2	20	25.5	35.3	60.8	4.1]					ì				
1 1				14	20.6	32.2	52.8	4.0	14	 								1				-	<u> </u>	1					l				
				15	22.2	32.1	54.3	3.7	15	22.2	32.1	54.3	3.8	20	25.5	35.3	8.00	4.0	_				ļ	<u> </u>									,
				_					_	_			_	סו	19.8	19.7	39.5	4.4	18	21.1	22.5	43.6	3.7	18	21.1	21.7	42.8	3.8	18	21.1	21.7	42.8	3.8
				 	l		├		_				_	18	21.1	22.5	43.6	3.7	19	23.1	22.3	45.4	3.5	19	23.1	21.5	44.6	3.6	19	23.1	21.5	44.6	3.6
	za		2	3	17.3	20.5	31.8	4.6					 -					 				47.6	3.3	20	25.5	21.3	46.8	3.4	20	25.5	21.3	46.8	3.4
ll		l i		14	20.6	22.5	43.1	3.5_	14	20.6	22.5	43.1	3.6	19	23.1	22.3	45.4	3.5	20	25.5	22.1	41.0	1-	 			70.0						•
				15	22.2	22.2	44.4	3.2	15	22.2	22.2	44.4	3.3	2.0	25.5	22.1	47.6	3.3	-														
		l t					 							18	21.1	31.9	57.0	4.1	18	21.1	31.9	530	4.3	19	23.1	8.08	53.9	4.3	20	25.5	30.6	56.1	4.2
))) }								 				19	23.1	31.6					31.6	54.7	4.1	20	25.5	30.6	56.1	4.1					1
		3	3	—	—							·		19			54.7	3.9	19	23.1		ļ	 						_				
			U	14	20.6	30.1	50.7	3.9	14	20.6	30.1	50.7	4.0	20	25.5	31.4	56.9	3.7	20	25.5	31.4	56.9	3.9								lI		
				15				3.6	15	22.2	29.9	52.1	3.7		_	_		_										1					
ĺĺ				13	22.2	29.9	52.1	 	 	 				<u> </u>	21.1	41.0	CRT	1	 		41.2	62.3	4.8	19	23.1	40.2	63.3	4.8	20	25.5	39.9	65.4	4.7
					-	_	_							18	21.1	41.2	62.3	4.7	18	21.1	41.2		 								- 55.5		
			1			_								19	23.1	41.0	64.1	4.5	19	23.1	41.0	64.1	4.6	20	25.5	39.9	65.4	4.6					
			4				ļ		†	20.0	77.0	58.2	4.3	20	25.5	40.7	66.0	42	200	05.5	40.7	66.2	4.4		_	_		-		_		_	
				14	20.6	37.6	58.2	4.2	14	20.6	37.6					40.1	66.2	4.3	20	25.5	40. 1		1-	_			_				-1		
				15	22.2	37.5	59.7	3.9	15	22.2	37.5	59.7	4.0																				J
				14	20.6	27.9	48.5	3.8	14	20.6	27.9	48.5	3.9	1																			
			2						15	22.2	27.6	49.8	3.6	1																			
				15	22.2	27.6	49.8	3.5					4.2	1												_							
, 1		ایرا		1	00.0	7	FC 1	1 4	14	20.6	35.5	56.1	1 4.2	ı												Πr	1100011	anie					

строения

 20.6
 35.5
 56.1
 4.2

 22.2
 35.3
 57.5
 3.9
 20.6 35.5 56.1 4.1 14 35.3 57.5 15 35.3 51.5 3.8 22.2 4.5
 20.6
 43.2
 63.6
 4.4

 22.2
 42.9
 65.1
 4.1
 43.2 63.6 20.6 4.2 22.2 42.9 65.1 15

Примечание

Работать совместно с листами N 41,44

		CCP			
Министе		инспортно <i></i> сс	cmpo	ume	мьства
Главтра	нспроект	- үенгипр	ompai	HCM	ocm
(рабоч	Проект ие черте хезобетонны	жu)	ono donum	3 ^a ,4	a, 5 a
нормальной к	vezagewanhr ga 12w wag sice kaven gva wan gantevaha - ki gante gantevaha - ki gantevaha - ki	wehehna p vezhaho gobosi		imer imor	тты. b
Hay.ot8.tun.np		Артамонов	Ա սգոթ.۱		Aucm
Гл. инж. пр-та	W 1	Шульман	1971r Kon.	Yeu Jame	M -
<u> </u>	Acuacol	<u> Комароба</u>	827	/1	46
Псиочнич	Cours -	Спильчевская			

													7							mp	<u> </u>	411	9																			_
													ро.	ne n	<u> 7 H 6</u>					mp	061	/ 4 1					13.5	+ 13	3.5							16	5 +	16.	<u>5</u>			'
1	0	80					13.5	5 + 13										+ 16	.5			-				P	93	44	·c	KP	46	00		9>30	20							_
	8	HO							90	344						<u>= \infty</u>						8		a si	ad								<u> </u>									
8	1 8 8 V	3 2									900	1en	? H			ce	UCI	nu				-			= 6.7				S=	8.9				S	<i>6.</i> 7				5=0	8.9		
%	ا گرق	W		8	<i>= 6.7</i>				_	S = 8.					6.7				<u>_S</u>	<u>= 8.9</u>				<u>~</u> _		e306e-	0 N		Объем	oces	e300e	8. 2	\neg				600	11%	Объем	ofces	1030- d	أيمية
Ò	22.2	£ .	×	063e	n ske	103086	2 2			em aken Ia Ha ond		\$ 22	ż	U53EN Samu	n aken n na oi	C30-	888	ان	UDBEM RPMON	MOUNT	200-	\$ 54	ξ	moled I	ya on	004	286	X	MOHO	Hơ ONG	py ,	8.28	į	Dőbem mong	40 DA	200	\$ 5 5	, ž	бетона	Maria	ener d	3 8 8
	12 3	27.0					808					\$ \$ X	200	CSOD-	MOHO	Breno	હેં <u>કુ</u>	100	C80p-	Моно-	Beero	8 5 S	19	C60p-	Моно-	Bcero	. 3×	100	C60p-	MOHO	ocero.	કે જેવી	38	C60p-	NoHO	Bcero	ું દેશ	ا في الله	C60p - N. HbIŪ 1	NUMH.	1	² & \(\(\) \(\)
1/2	chobe	liybur	1100	4614	Моно	ocer	2 3 2 V	Units WHOS	HOIL	0- Моно- G литн. 3 м3	M3	ر ع پوچ پوچ	63	HOIL	manul	м³	\$ 530 \$ 6.4		HOILÍ Mª	NUMH. M³	M3		8 3	Mbių M³	ЛИМН. М ^В	M ³	\$ 50	1111	Сбор- ный м ³	M3	M ³	OF 3	18	Сбор- Нь 14 М ³	M ³	M 3	<u> 8</u>	<u>, ş,</u>	M ³	M3	M ³	650
	196	10	83	Mª				1	1			,			26.7					29.1		-, 1		21.9	30.7	52.6	4.6	18	21.9	30.7	52.6	4.6	_			_	_			_		_
			9	1		T	3,9	l l	T-	8 28.1	T				26.5											54.4	ا ا	20	26.3	30.3	56.6	4.2	20	26.3	28.9	<i>55</i> .2	4.6	20	26.3	28.9	55.2	4.5
			10	+	27.9			1		6 27.9	T .	1			29.3							_			T								_	-				25	29.0	31.4	60.4	3.8
		2	18	21.9	30.7	52.6	5 3.4		_	9 30.5	T	1			29.1					T						ľ	ì		32.0					32.0	1	1	, ,		32.0			_ 1
1			19	23.9	30.5	54.4	4 3.2	20	26.	3 30.3	56.6	3.3		 	+	 			-	<u> </u>				23.0	32.0	07.0	0.0		02.0	_	_		20	32.0	07.7	00.7					_	
			9	18.0	35.1	53.	9 4.1	19	23.	.9 39.8	63.7	4.1		-	33.7										_	_	 	 	-					_					1_1			
		1	10	20.6	35.0	55.0	3.8	20	26.	3 39.6	65.9	3.9	10	20.6	33.6	54.2	4.3	20	26.3	38.2	64.5	4.3					4.6		T				_	_		_				(17. 0	-	<u>""</u>
3≅	4	3		+	40.1	_			29	0.0 44.4	73.4	3.7	18	21.9	38.7	60.6	4.1	25	29.0	43.0	72.0	4.1	25	29.0	44.4	73.4	3.8	25	29.0	44.4	73.4	3.9	25	29.0	43.0	72.0	4.2	25	29.0	43.0	72.0	4.2
				+	39.8		Τ,		_	2.0 44.1	1	1	i	23.9	38.4	62.3	3.9	26	32.0	42.7	74.7	3.9	26	32.0	44.1	76.1	3,6	26	32.0	44.1	76.1	3.7	26	32.0	42.7	74.7	4.0	26	32.0	42.7	74.7	4.0
			+	+	1.	T	+ .			1.9 49.2				18.8	40.7	59.5	4.8	20	26.3	47.5	73.8	4.8	_	_	_	_	_	_	<u>L-</u>	_		_		_		_	_	_			_	
			9	+	42.1	+	+ //		_	3 48.9				20.6	40.6	61.2	4.5	25	29.0	54.5	83.5	4.6	25	29.0	55.9	84.9	4.2	25	29.0	55.9	84.9	4.3	25	29.0	54.5	83.5	4.6	25	29.0	54.5	83.5	4.6
		4		+	42.0	_				55.9				21.9	48.0	69.9	4.3	26	32.0	54.2	86.2	4.1	26		┼		4.0	$\overline{}$	32.0	55.6	87.6	4.1	26	32.0	54.2	86.2	4.4	26	32.0	54.2	86.2	4.4
		'		+	49.4					2.0 55.6			<u> </u>	├	47.8	+		_	_	-	_	_	_	_	_	-	_	_	_	-	_	_	_		_	_	_	_	-		-	_]
1			19	23.5	49.2	73.	1 3.6	26	32	.0 33.6	07.0	1 0		120.0	1	1	L	<u> </u>	<u> </u>	<u></u>			<u> </u>	L	L				<u> </u>	<u></u>												

Примечание: Работать совместно с листами N 41,44

「IAB m	PAHCUDOE	km - Nen	runpampa	HCMOCA
. /7A	oekm		MUNOS 34,	
CÓDÁMBIX ACE TPONEMAMÚ Á TOPMAMBHOÚ K	NE30GEMOHHB O 15M NOO SCENE CONEY OND NA	IX MOCÍNOB PŠKYPO BOPOSY VMEHEKUR B MOMUYECKÚ JOKO	PyHdame Oblach Ipymene (hpodolyki	76 HUA
Hay.omd. Tun. np	Tame	Артамонов	WUPP 1338	NUCT
Гл.инус. проект	Myear	Шульман	1971 Kon. Kan	E -
	Lourapole			-
Проверил Исполнил	Sanacof Cums-	Лемасова Спильчевская	<i>+827/1</i>	141

Cветокопия ЛГТМ Tyoayc Экз. Заказ N

<u> </u>								/1 p	onem			mpoe	448									
1	9				9.3 + 9.3				1 10 V Y	1.5 + 11.5	KAUG	P = ='	8.5	<u>co</u> 1	3.5 + 13.	5		L		16.5 + 1	6.5	
3	12	85.							em h			TOMU				AAO	œ					
190'000	2 7 S	DIE			S=6.7					S = 6.	7				S = 6.7					S= 6.7		
0 0	Ycrobya 9 Hacbinu f	Глубина промерзани» Нм М	Mun	Obbem Ha Ha	onopy	Semo-	Максим. давлен.	///4/1	Объем	oyeneso	бетона	Максим. Давлен.	Mun	OBBEM HO OF	железо	бетона	Makcum.		OSBEM	onopu	<i>вобето</i>	Максим давлен
Mun	1000	10 0 T	фунда мента	Сборный	Монолит.		HA PPYHT	фунда-	Сборный	Монолит.		HA TOUHT	фунда-	Сборный	Монолит.	Beero	HA POYHT	ФУНДО-	Сборный	Монолит.		на грунт.
	₹ 8	191		M 3	M ³		GKr/cm2	MEHMA	M 3	M ³	M ³	6 kr/cm²	Mehma	M ³	M ³		BKI/CMZ	MeHma	M ³	M³	M ³	8 Kr/cm2
		j	4	24.2	10.4	34.6	3.9	11	24.2	10.3	34.5	3.9		27.2	9.6	36.8	4.0	12	26.5	11.8	38.3	4.4
			5	25.7	10.25	35,95	3.5	12	25.7	10.3	36.0	3.5	13	29.3	9.5	38.8	3.7	13	28.6	11.6	40.2	4.1
		2	6	27.2	10.1	37.3	3.2	13	27.8	10.1	7.9	3.2	21	32.3	11.6	43.9	3.3	21	31.6	14.6	46.2	3.7
			16	30.8	11.8	42.6	3.0	21	30.8	12.6	43.4	2.9	22	35.1	11.3	46.4	3.1	22	34.4	14.4	48.8	3.5
			4	24.2	16.8	41.0	4.1	11	24.2	15.4	39.6	4.1	12	27.2	17.2	44.4	4.2	12	26.5	19.6	46.1	4.6
ļ	5	3	5	25.7	16.65	42.3	3.7	12	25.7	15.2	40.9	3.7	13	29.3	17.1	46.4	3.9	13	28.6	19.4	48.0	4.3
ł			6	27.2	16.5	43.7	3.3	13	27.8	15.0	42.8	3.4	21	32.3	21.8	54.1	3.5	21	31.6	24.8	56.4	3.9
İ			16	30.8	19.4	50.2	3.2	21	30.8	20.1	50.9	3.1	22	35.1	21.6	56.7	3.3	22	34.4	24.6	59.0	3.7
			4	24.2	23.2	47.4	4.4	11	24.2	23.0	47.2	4.3	12	27.2	24.9	52.1	4.4	12	26.5	27.2	53.7	4.8
		<i>\</i> ,.	5	25.7	23.05	48.7	4.0	12	25.7	22.8	48.5	3.9	13	29.3	24.7	54.0	4.1	13	28.6	27.0	55.6	4.5
		4	6	27.2	22.9	50.1	3.6	13	27.8	22.6	50.4	3.7	21	32.3	32.0	64.3	3.7	21	31.6	35.0	66.6	4.1
		ļ	16	30.8	27.1	57.9	3.5	21	30.8	30.3	61.1	3.4	22	35.1	31.8	66.9	3.5	22	34.4	34.8	69.2	3.9
			- 11	24.7	11.9	36.6	3.6	11	24.7	10.3	35.0	4.0	12	27.9	9.6	37.5	4.1	12	27.6	11.8	39.4	4.5
49		2	12	26.2	11.2	37.4	3.2	12	26.2	10.3	36.5	3.6	13	30.0	9.5	<i>39.5</i>	3.8	13	29.7	11.6	41.3	4.2
'		_	13	28.3	11.1	39.4	2.9	13	28.3	10.1	38.4	3.3	21	33.0	11.6	44.6	3.4	21	32.7	14.6	47.3	3.8
			21	31.3	11.4	42.7	2.6	21	31.3	12.6	43.9	3.0	22	35.8	11.3	47.1	3.2	22	35.5	14.4	49.9	3.6
		}	11	24.7	19.6	44.3	3.9	11	24.7	15.4	40.1	4.3	12	27.9	17.2	45.1	4.3	12	27.6	19.6	47.2	4.7
	6	3	12	26.2	19.0	45.2	3.5	12	26.2	15.2	41.4	3.9	13	30.0	17.1	47.1	4.0	13	29.7	19.4	49.1	4.4
			13	28.3	18.9	47.2	3.2	13	28.3	15.0	43.3	3,6	21	<i>33.0</i>	21.8	54.8	3.6	21	32.7	24.8	57.5	4.0
			21	31.3	24.3	55.6	2.9	21	31.3	20.1	41.4	3.3	22	35.8	21.6	57.4	3.4	22	35.5	24.6	60.1	3.8
			- 11	24.7	27.2	51.9	4.1	11	24.7	23.0	47.7	4.5	12	27.9	24.9	52.8	4.5	12	27.6	27.2	54.8	4.9
		4	12	26.2	27.0	53.2	3.7	13	28.3	22.6	40.9	3.8	13	30.0	24.7	54.7	4.2	13	29.7	27.0	56.7	4.6
		7	13	28.3	26.8	55.1	3.4	21	31.3	30.3	66.9	3.2	21	33.0	32.0	65.O	3.8	21	32.7	35.0	67.7	4.2
			21	31.3	35.0	66.3	3.1	22	34.1	32.8	61.6	3.5	22	35.8	31.8	67.6	3.6	22	35.5	34.8	70.3	4.0
1		1	4	23.7	10.4	34.1	3.8	4	23.7	9.4	33.1	4.2										

23.7 25.2 25.2 35.4 34.5 3.8 10.25 3.4 9.3 9.1 3.4 *26.*7 10.1 36.8 3.0 26.7 35.8 42.1 2.9 3.3 30.3 30.3 10,6 40.9 23.7 16.8 40.5 4.1 15.8 39.5 23.7 25.2 41.8 3.7 25.2 15.7 40.9 4.1 16.65 43.2 18.2 48.4 3.6 3.4 30.3 26.7 19.4 49.7 3.2 32.3 52.0 3.3 30.3 19.7 4.3 23.7 23.2 46.9 4.3 25.2 47.2 22.0 23.05 48.2 3.9 26.7 21.9 3.9 25.2 48.6 3.7 3.5 25.9 56.2 26.7 22.**9** 49.6 30.3 57.4 28.2 30.3 32.3

Примечание: Работать совместно с листами N42,44

[caremo		n - SEHFUN	троительс	
(00/504)	poekm	P.2611)	17000 39	49 59
HOPMONGHOU	KONEY ONA M	E H U) IX MOC MOB ENE BHY WO BODO SY PUMENE HUR B BUMUYECKOÙ BONC	Рундаме, Област	4M61. 6
Hay. ord. Tun. np.	11111		Шуфр 1338	
Гл.инж. пр.	allyer	MYSSMOH	1071 Kon. Key	<u> </u>
PykoB. rpynnoi	tomapole	Komapoba	1971 cep. 21 fr	
Проверил	Shuced	Лемасова	827/1	۷. ی
1/ополнил	Markack	MankoBa	7021/1	48

90.

۱ ۲					ПОЛ	e M H 6/ E	CMPOEHUS	16.5 + 16.5
1 1	l	9		9,3+9			13,5 + 13,5 R = \(\sigma \)	16.5 + 16.5
Н	6	§ .	85		PODUY	CEUCMU	VHOCMO B ODINAX	
11	2	<u> ફુ</u> રફ્	6,6	S = 6.7	S = 8.9	S = 8,9	\$ = 6.7 \$ = 8.9	S = 6,7 S = 8,9
П	odouo	4 % W	ibuno epson M	Одвем железо- В фетоно на опору		В Орбем железо-	Оргем жалезо-	Объем железа Ооъем железа Сотона на опору
11	0	\$ } ₹	<i>3</i> .₹	0		1 2 A T T T T T T T T T T T T T T T T T T	0 000	Cop Mono-Breed 20 Cop Mono Bosed 20
H	700	Yenobu Nocom	ES NA NA	S & WOUD MOND DOCERD S & S	3 July 61171 23 3 3 111 11 11 11 11 11 11 11 11 11 11	O COOP MONO BOREO PESO	S WOLD MUTH SOS S WOLD MUTH SOS	S S WOOD TUTH SEE S WOOD TUTH SEE
ΙL		<i>%</i> \$	()	8 M3 M3 M3 286	No Mo Mo Mo See No Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo	PR M3 M3 M3 200	KE M3 M3 M3 K20 KE M3 M3 M3 K3	
11				7 328 120 448 41 5	9 36.4 11.5 48.0 4.4 7 32.8 13.1 45.9 4.5	10 38.2 12.5 50.7 4.4	12 40,0 9,9 49,9 4.0 13 42,1 9.7 51,8 4.7	
11			9	8 349 11.8 46,7 3,7 14	10 382 11.4 49.5 4.1 8 34.9 12.8 47.7 4.1	18 395 16.1 55.6 4.0	13 42.1 9.7 51.8 3.7 21 45.1 12.0 57.1 3.8	13 42.1 82 50.3 4.2 22 47.9 9.6 57.5 3.8
			2	9 35.4 11.5 48.0 3.4 13		19 41.5 15.9 57.4 3.5	21 45.1 12.0 57.1 3.3 22 47.9 11.7 59.6 3.5	2/ 45.1 9.9 55.0 3.8 27 50.2 12.3 62.5 3.6
H					18 39.5 14.8 54.3 3,7 10 38.2 12.5 50.7 3.5 19 41.5 14.6 56.1 3.2 19 41.5 15.9 57.4 3.2			
								
11		_		7 328 19.0 51.8 4.3 1	10 38.2 18.4 56.6 4.6 7 32.8 20.1 52.9 4.7	18 39,5 25,5 65,0 4.5	12 40,0 17,7 57.7 4.2 21 45,1 22,7 67.8 4.4	
		5	3	8 34.9 18.8 53.7 3.9 18	18 39.5 24.2 63.7 4.2 9 36.4 19.7 56.1 4.0	19 41.5 25.3 66.8 4.0	13 42,1 17.5 59.6 3.9 22 47.9 22.4 70.3 4.1	21 45,1 20,6 65,7 4,0 27 50,2 26,0 76,2 4,2
11			i	9 36.4 18.6 55.0 3.6 1.	19 41.5 24.0 65.5 3.8 18 39.5 25.5 65.0 3.6	20 43.9 25.1 69.0 3.8	21 45,1 22,7 67,8 3,6 27 50,2 27,4 77,6 3,9	22 47.9 20.3 68.2 3.8 28 53.7 24.5 78.2 3.7
				10 38,2 18,4 56,5 3.3 2	25 45.6 29.0 75.6 3.2 20 43.9 25.1 69.0 34	25 45.6 30.7 77.3 3.4	22 47.8 22.4 70.3 3.4 28 53.7 27.0 80.7 3.4	28 53.1 24.5 78.2 3.5 33 55.3 29.6 84.9 3.4
11				7 328 25.0 58.8 4.5 /	18 39.5 33.4 72.9 4.8 8 34.9 26.8 61.7 4.5		12 400 253 653 44 22 479 326 805 46	13 42,1 23,6 65,7 4,6 27 50,2 37,5 87,7 4,7
11			,		19 41,5 33,2 74,7 4,3 10 38,2 26,5 64,7 3,9		13 421 251 672 41 27 502 400 902 44	
H			4	~~~				
11			1		26 49.6 37.7 87.3 3.5 18 39.5 34.7 74.2 3.8			27 05:2 07:0
11			 		31 51.7 48.4 100.1 3.3 20 43.9 34.3 78.2 3.4	+	27 50.2 40.0 90.2 3.4 34 59.5 47.5 107.0 3.4	
11				7 37.2 12.6 49.8 4.2 1	10 42.6 12.0 54.6 4.3 7 37.2 13.7 50.9 4.6	10 42.6 13.1 55.7 4.6	12 45.3 10.5 55.8 4.1 21 50.4 12.6 63.0 4.3	
11	5₫		2	8 39.3 12.4 51.7 3.8 1	18 43.9 15.4 59.3 3.8 8 39.3 13.4 52.7 4.2	18 43,9 15,7 50,6 4,1	13 47,4 10,3 57,7 3,8 22 53,2 12,3 65,5 4,0	13 47,4 8,8 56,2 4,3 27 55,5 12,9 68,4 4,1
11			_	9 40.8 12.2 53.0 3.5	19 45.9 15.2 61.1 3.3 10 42.6 13.1 55.7 3.0	19 45,9 16,5 62,4 3,6	21 50.4 12.5 63.0 3.4 27 55.5 15.1 70.6 3.8	22 53.2 10.2 63.4 3.7 28 59.0 12.5 71.5 3.6
11			l	10 428 12.0 54.6 3.2	20 48,3 14,8 63,1 3,1 20 48,3 16,3 64,6 3.1		22 53,2 12,3 65,5 3,2 28 59,0 14,7 73,7 3,3	28 59.0 12.5 71.5 3.3 33 50.6 15.0 75.6 3.3
11					18 43.9 24.8 58.7 4.4 8 39.3 20.4 59.7 4.4	+	12 453 183 636 43 27 555 280 835 44	13 474 185 640 44 27 555 255 810 47
11		_	l _			 		1/0 1 1/1/10/01 1/1/10/10/10/10/10/10/10/10/10/10/10/10/
		6	3		70.0 2.00 70,0 0,0	+ - - - - - - - -		
\mathbf{I}		-			20 48,3 24,3 72,6 3,7 18 43,9 26,1 70.0 3,7	+	2/ 50.4 23.6 74.0 3.6 33 60.6 33.2 93.8 3.7	
Ιİ				19 45,9 33,8 79,7 3,1	25 51.0 29.6 80.6 3.3 20 48.3 25.7 74.0 3.3	25 51,0 31,3 82,3 3.6	22 53.2 23.0 76.2 3.4 34 64.8 32.8 97.6 3.5	33 606 30.2 90.8 3.2 34 64.8 29.9 94.7 3.7
i I				8 393 264 65,7 4.2	19 45.9 33.8 79.7 4.5 9 40.8 27.3 68.1 4.3	20 48,3 34,9 83,2 4,6	12 45.3 25.9 71.2 4.6 27 55.5 40.6 96.1 4.9	2! 50.4 31.4 818 4.3 28 59.0 36.5 95.6 4.6
\mathbf{I}			4	9 40.8 25.2 57.0 3.8	20 48,3 33,5 81,8 4,3 10 42,6 27,1 69,7 4.0	25 510 429 939 42	13 474 257 731 43 28 590 402 992 44	22 53,2 31,1 84,3 4.1 33 60,8 45,3 105,9 4,3
			1 '		26 540 383 923 37 19 45.9 35.1 81.0 3.7		22 53,2 33,2 86,4 3,6 33 60,6 48,5 109,1 4.1	
				- 1,2,6 = 3,6 0,6 1	31 56.1 49.0 105.1 3.5 25 51.0 42.9 93.9 3.3	12,0 00,0 110		
					5,5 15,5 15,5 15,5 15,5 15,5 15,5 15,5	00,7 07,7 107,2 0,0	28 59.0 40.2 99.2 3.3 34 64.8 48.1 1/2.9 3.9	34 64,8 45,0 109,8 3,2
					- 	+		
			2	8 30.5 11.2 41.7 3.6	10 33,8 10,8 44,6 4,3 8 30,5 12,2 42,7 4.0	1,0 0011 1,0,0 1 00,0 1 0,0		
1 1			_	9 32.0 11.0 43.0 3.3 1	18 35,1 14,2 49,3 3,3 9 32.0 12,1 44,1 3,7	19 37,1 15,3 52,4 3,2		
$\parallel \parallel \parallel$				10 33,8 10,8 44,6 3.0 1	19 37,1 14.0 51,1 2.9 10 33.8 11.9 45.7 3.4	20 39.5 15,1 54.6 3.0		
11 I		l	I					

39.5 24.5 64.0 3.6

42.2 30.1 72.3 3.2

39.5 53.7 73.2 4.1

32,0 18.0 50.0 4.7 7

37.1 23.4 50.5 3.5 19

33.8 24.8 58.6 4.9 8 305 252 55.7 40 18 35.1 32.8 67.9 4.5 9 32.0 26.1 58.1 4.1 20

30,5 18.2 48.7 3.8 10 33.8 17.8 51.6 4.4 8

33.8 24.8 58.6 3.4 19 37.1 32.6 69.7 4.0 19

10

320 18.0 50.0 3.5 18

33,8 17.8 51.6 3.2 19

28,4 25,4 53,8 4,4

28.4 19.5 47.9 4.6

30.5 19.2 49.7 4.2

30.5 26,2 56,7 4,4

37.1 33.9 71.0 3.6 39.5 33.7 73.2 3,4

37.1 24.7 51.8 3.3 2.5

35.1 23.6 58.7 4.0 10 33.8 18.9 52.7 3.6 20

Примечание: Pasamamo cosmecmno c nucmamu N 43,44

Министерс	T80 TPOH	CCCP CNOPTHORO	CTPOUTEABC	TBO
2AOBM)	OHCODOEN	m - Seneun	POMPOHEM	ocm
100004	ue POEKM	nexu)	muno83ª,4	a 2a
COODHNX MEN NDOTIETTOMU DORY HODMONS Cebephoù CTPO	HOÙ KOJIEU BAN	MOCITOO KETE3HYIO QO- TOUMEHEHUA TUYECK. 30HE	PUNCOME	H/1761. 1776
HOY.OTO.TUN. NP.	Your	Артамонов	Шифр 1338	
ER.UHIK. NPOEKTO	Melyen	WYABMOH	Kon.	, ·
Рук. группы	Transpola	KOMOPOBO	SIIC Chep. by	-
Проверия		<u> </u>	027/4	10
Исполния	Tereses	Лемосова	<i>- 1827 1</i>	145

		~	20	43.9	14.4	58.3	3.8	29	56.1	23,2	<i>79.3</i>	3.3	25	46.6	15.6	62.2	3.3	29	56.1	19.6	75.7	3.5
			25	1	17.4		3.1	35			88.6		26	49.6	15.4	65.0	3.1	30	58.6	19.3	77. 9	3.3
			18	39.5	24.2	63.7	4.5	23	50,9	31.5	82.4	4.5	20	43.9	22.3	66.2	4.4	24	52.9	28.2	81.1	4.7
	_	"	19	41.5		65.5		24	52.9	31.2	84.1	4.3	25	46.6	27.2	73.8	3.7	29	56.1	34.4	90.5	4.0
	5	3	20	1	23.7		4.1	29			94.0	3.6	26	49.6	26.9	76.5	3.5	30	58.6	34.0	92.6	3.8
			25		28.9		3.4	35			106.5	3.0	31	51.7	32.3	84.0	3.0	35	61.3	40.6	101.9	3.2
			20	43.9	33.0	76.9	4.5	29	56.1	52.6	108.7	4.1	20	43.9	31.6	75.5	4.9	29_	56.1	49.2	105.3	4.4
		,	25	46.6	40.5	87.1	3.8	30			111.0	3.9	25	46.6	38.8	85.4	4.2	30	58.6	48.6	97.2	4.2
		4	26	1.	40.2			35	61.3	63.0	124.3	3.5	26	49.6	38.5	88.1	4.0	35	61.3	58.4	119.7	3.7
			31		48.4			36			126.8	3.1	3/	51.7	46.3	98.0	3.4	36	64.3	58.0	122.3	3.5
			13	47.4	12.9	60.3	4.6	23	57.2	20.5	77.2	4.4	21	50.4	14.8	65.2	4.6	24	59.2	17.3	76.4	4.6
			21	50.4		66.7	4.2	24		20.2		4.2	22	53.2	14.6	67.8	4.4	29	62.4	20.5	82.9	<i>3</i> .7
5≅		2	22	53.2		69.3		29			86.6	3.5	27	55.5	17.6	73.1	3.5	30	64.9	20.2	85.1	3.5
			27		19.5		3.3		67.6			2.9	28	59.0	17.3	76.3	3.3	35	67.6	23.8	91.4	3.1
			22	53.2	26.4	79.6	4.4	24	59.2	32.1	91.3	4.7	22	53.2	24.7	77.9	4.8	24	59.2	29.1	88.3	4.9
	1	-,	27		32.0	87.5	3.7	29	62.4	38.9	101.3	4.0	27	55.5	30.2	<i>85</i> .7	4.0	29	62.4	35.3	<i>9</i> 7.7	4.2
	6	3	28	59.0	31.7	90.7	3.5	30	64.9	38.5	103.4	3.8	28	59.0	29.8	88.8	3.8	30	64.9	34.9	99.8	4.0
			33	60.6	38.2	98.8	3.0	35	67.6	45.9	113.5	3.3	34	64.8	35.4	100.2	3.0	35	67.6	41.5	109.1	3,4
			27	55.5	44.7	100.2	4.1	29	62.4	53.5	115.9	4.4	27	55.5	42.8	98.3	4.4	29	62.4	50.1	112.5	4.7
		,	28	59.0		103.4	3.9	30			118.2	4.2	28	59.0	42.4	101.4	4.2	30	64.9	49.5	114.4	4.5
		4	33	60.6	53.5	114.1	3.4	35	67.6	63.9	131.5	3.7	33	60.6	51.2	111.8	3.5	35	67.6	59.3	126.9	3.9
			34	64.8	5 3 .2	118.0	3.2	36	70.6	63.4	134.0	3.5	34	64.8	50.7	115.5	3.7	36	70.6	58.9	129.5	<i>3</i> .7
			18	35.1	14.2	49.3	4.0	21	39.8	15.2	55.0	3.9	19	37.1	12.6	49.7	4.1	21	39,8	13.6	53.4	4.2
			19	37.1	14.0		3.8	22	42.6	14.9	57.5	3.7	20	39.5	12.3	51.8	3.9	22	42.6	13.4	56.0	4.0
		2	20	39.5	13.8	53.3	3,6	27	44.9	18.3	63.2	2.9	25	42.2	15.0	57.2	3.2	27	44.9	16.7	61.6	3.1
			25	42.2	16.9	59.1	2.9	_	_	_	_		26	45.2	14.7	<i>59.9</i>	3.0	28	48.4	16.1	64.5	2.9
			18	35.1	23.5	58.6	4.4	21	39.8	25.4	65.2	4.4	20	39.5	21.7	61.2	4.4	22	42.6	23.5	66.1	4.5
	,	3	19	37.1	23.3	60.4	4.2	22	42.6	25.1	67.7	4.2	25	42.2	2 6 .6	68.8	3.6	27	44.9	29.0	73.9	3.6
Ì	4	٥	20	39.5	23.1	62.6	4.0	27		30.8	75.7	3.4	26	45.2	26.3	71.5	3.4	28	48.4	28.6	77.0	3.4
			25	42.2	28.3	70.5	3.3	33	50.0	37.0	87.0	2.7	31.	47.3	31.7	79.0	2.7	33	50.0	23.8	73.8	2.9
			19	37.1	32.7	69.8	4.5	22	42.6	35.4	78.0	4.5	20	39.5	31.0	70.5	4.6	22	42.6	34.1	76.7	4.3
		/,	20	39.5	32.4	71.9	4.3	27	44.0	43.5	88.4	3.8	25	42.2	38.1	80.3	3.9	27	44.9	41.6	86.5	4.1
		4	25	42.2	40.0	82.2	3.6	28	48.4	43.0	91.4	3.6	26	45.2	37.8	83.0	3,7	33	50.0	50.0	100.0	3.3
			26	45.2	39.6	84.8	3.4	33	50.0	52.1	102.1	3.1	31	47.3	45.6	92.9	3.0	34	542	49.5	103.7	3.1

9.3+9.3

Make de region of the region o

23

24

S=8.9

TOHA HA ONOPY

50.9 19.6

52.9 19.3

Dosem HERESODE S

Moho-Beero num M3 M3

70.5

72.2

4.3

19

20

5 = 6.7

39.5

19

Mun

Dosem Aceresos

Mono-Beero

14.6

56.1

CMPOCHUS

22

27

28

47.9 12.2

R > 300

4.4

13.5 + 13.5

4.4

3.6

3.4 30

3.0

4.8

3.8 35 61.3

3.3 36

3.5 3.3 36 64.3

3.8 30 64.9 17.7

3.6 35 67.6

3.1

4.2

3.4 35

3.2 36

4.6 30 64.9 47.1

3.7

109.2

29 56.1

35

29

29

30

35 61.3

29

30

35

36

36 70.6

29 62.4 32.7

67.6

70.6

64.9 32.3

70.6 38.1

56.1

8-8.9

тона на опору

NUM.

58.6 16.8 75.4

61.3 17.9 79.2

58.6 31.4 90.0

64.3 37.2 101.5

37.6 98.9

45.5 102.6

46.2 104.8

55.5 116.8

55.0 119.3

80.4

82.6

86.4

88.9 3.1

95.1

97.2

106.1 3.6

108.7

112.0 4.8

124.0

55.9 126.5

18.0

18.8

18.3

38.5

56.4

Пбъем железобе-

δαλλαχ

S=6.7

Объем железобе-

тона на опору

Моно-лит. м³

53.7 14.5 68.2

53.7 27.1 80.8

59.5 47.6 107.1

55.5 15.4 70.9

27 55.5 23.0 78.5

28 59.0 28.0 87.0

64.8 32.9 97.7

59.0 40.4 99.4 60.6 48.6

64.8 48.2 113.0

15.1 74.1

33 53.2 32.7 85.9

53.2 17.4

Beero

60.1

70.6

70.3

77.6

POSEMHOLE

Paduye

S=6.7

Объем железобе-

CEODHANI MOHO BOETO

12.9

13.2 54.7

MONG HE GROPY

Pacyemnas

41.5

43.9

11.5 + 11.5

4.4 23

4.2

24

KPUBOÚ

CEÜCMUYHOCMB

S=8.9

Объем железобе-

тона на опору

Сборных Моно-Всего

14.7 65.6 4.6

50.9

52.9

RPUMEYAHUE: Работать совместно с листами №43,44

Министер	cmbo mp	СССР анспортного	cmpoumer	160ოწძ
Magmp	HENPOE	tm -Senru	POMPAHEN	10CM
(ραδοή ςδορμών ης προπεπαμί	OO TOM HOO S	TO E YC LY) SOLUTION SOL	типов 30 денения применен применен продоляем	1761. 5 14.9
Hay. ord. run. np.		- Яртамонов	Wugop 133	
	allyes	WYASMAH	1971 Kon. R.	Ž¥
Руков. группы	Tomaso	5 Komapo Ba	OSE P.Z.H	
Проверил	Sauces	Лемасова	- 827/ 1	150
Чеполнил	annes		704111	100

15.5 + 16.5

3.8 35

4.4

3.6 35

3.4

4.6

3.9

3.7

3.5

3.3 36 70.6

4.4

3.8

3.6

4.0

3.8

S=6.7

Оббем железо-

бетона на опору

47.9

50.2

53.7 12.0

50.2 24.9

29.6 82.8

59.5 29.2 88.7

50.2 37.5 87.7

53.2 44.9

59.5 44.4

27 55.5 25.5 81.0

28 59.0 25.2 84.2

59.0 37.8

33 60.6 45.5 106.1

34 64.8 45.0 109.8

60.6 30.2 90.8

64.8 29.8 94.6

96.8

90.9

98.1

12.6 71.6

15.0 75.6

53.2

27

28

27

33

33

27

28 59.0

33 60.6

34 64.8

33

34

28

4.6 22

3.6

3.2 33 53.2

4.3

4.1 28 53.7

3.5

3.3 34

4.7 27

4.5 28 53.7

3.8

3.6 34

4.1

3.9

3.3

4.5

4.3

3.4

4.0

3.9

S=8.9

MOHO HO OTOPY

Объем железобе-

16.2

28.6 58.6

34.1

15.1

16.7

70.6 34.5 105.1

35 67.6 35.0 102.6

35 67.6 52.7

36 70.6 52.3

33.6 97.9

115.7

77.5

120.3 4.2

122.9 4.0

61.3

29 | 56.1 | 28.9

61.3

61.3 35

36 64.3 51.4

36 64.3

30 58.6

29 62.4

35 67.6

30 64.9

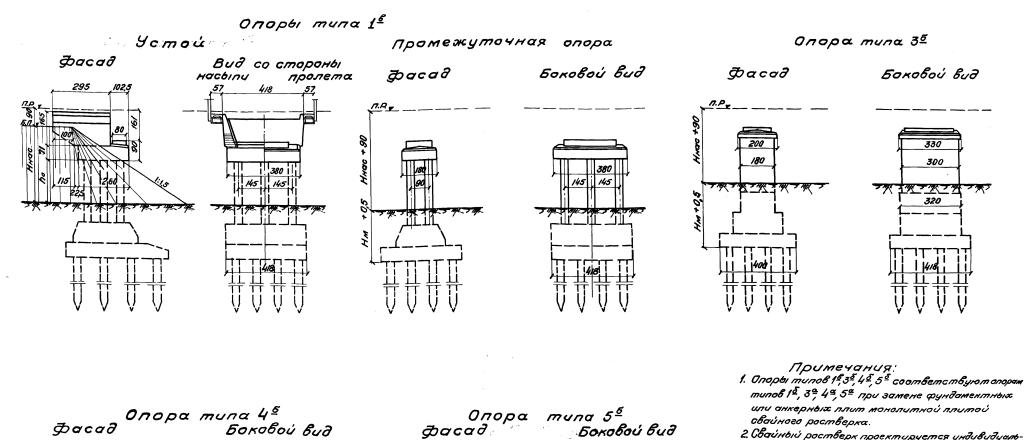
36

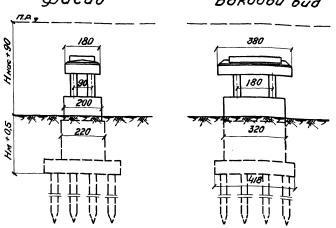
30

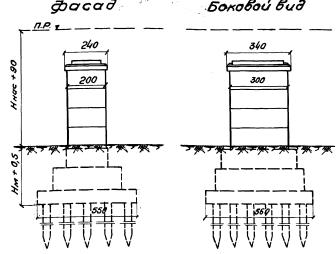
77.5

85.0

3.9


4.4


4.0


3.8

Moho-Beero num. M3 M3

490

2. Свайный растверк проектируется индивидуально с учетом местных инженерно-геологичес-

ких условий и рекомендаций приведенных на листаж м24-26 и в пояснительной записке.

	TOO IPUNCTIO	ртного стр	oumenecn	76a
matmp	анспроект	- JEHRUNDO	MOGHEMOG	m
РООО) Сборных жел Пролетами б нормальной к	1015 m nod ske.	TT E JKU) TT E JKU) bisc MOCTOB TE SHYLO BODORY DUME HEHUR B TUMOTUVECKOÙ SOME	1 /// 02/09	j
Hav.ord.run.np.	Tour	Яртамоноб		SUCTN
Гл.инж.пр-та	allyers	Шульман	19712 KOP. Be	M.5
	Louise	Комарова	CSEPUSZ	1:100
Рук. аруппы				
Рух. аруппы Проверчл		Кузьменко	827/1	151

NN	Марка	C	Геометрич.	OFBEM	Bec of	оматура	מן או	Bec		۱
n/n	δποκα	Схема	размеры М	бетоно м³	Kacco A-Ī	Knacca A- <u>II</u>	Urozo	δποκα Μ	Характеристика	
			L = 8.0	1.00	0,08	0,25	0.31	2.8		ŀ
			4 = 9,0	1.13	0,05	0.28	0,34	3,0	Свои сечением	П
1	CB1-2°		L = 10.0	1.26	0.06	0,31	0.37	3,4	35×35 cm c pasoveú	П
′	00, 2		L =11.0	1,39	0,05	0.35	0,41	3.7	dpmamypaú	Н
ĺ		4	L=12.0	1.52	0.06	0.38	0,44	4.1	- 12 \$ 20 \$ 1 <u>1</u>	П
			L =13,0	1.65	0.07	0,41	0,48	4.4	·	П
			L = 9,0	1.13	0.05	0,43	0,49	3.2		11
			L =10,0	1.25	0,05	0,48	0,54	3.6	Cou cevenuem	11
2	CB/-3	V	4=11.0	1.39	0,05	0.53	0.59	3,9	35×35cm c paboveů apmarnypoů 12 ø 25 A <u>I</u> I	
_			L =12,0	1.52	0,08	0.58	0.64	4.3		
	1 1	35	L =/3,0	1.65	0.07	0,62	0,69	4.6		
	<u> </u>	1 7	L = 14.0	1,78	0.07	0.67	0,74	5.0		
			L = 9,0	1,48	0,07	0.28	0.35	3,9	00	Н
			L = 10,0	1.64	0,07	0,31	0,38	4.3	Chan cevenuem	ı
3	CB2-1°		L=11.0	1.80	0,07	0.35	0,42	4.7	40×40см с рабо-	۱۱
		+	L =/2.0	1,96	0.07	0.38	0,45	5.2	чей арматурой 12 \$ 20 Я <u>П</u> Сваи сечением	
			L = /3.0	2./2	0.07	0,41	0,48	5.6		
	1 1		4 = 10.0	1.54	0,07	0.48	0.55	4.5		
	1 1		4=11.0	1.80	0.07	0.53	0,60	4.9		ĺ
4	C82-2°		L =/2.0	1,96	0.07	0,58	0.65	5.4	40 × 40 см с рабо-	ĺ
		111	L=/3.0	2,/2	0.07	0.63	0,70	5.8	чей арматурой	
	1 1	() +	L=14,0	2,28	0.08	0.67	0.75	6.2	12 Ø 25 A ĪĪ	ı
	1 1	V	4=15.0	2,44	0.08	0.72	0,80	6,7	-	
		िन	L =//,0	1,80	0.07	0,72	0,73	5.0		
		40	4=/2.0	1.96	0.07	0.71	0,78	5,5	CBOU CEVEHUEM	
5	CB2-3°	**	L = 13.0	2,/2	0.07	0.78	0.85	6.0	40×40 см с рабо-	
,	CDZ		L=14.0	2,28	0.08	0,83	0,91	6,4	чей арматурой	
			L = 15,0	2.44	0.08	0,90	0.98	6.8	12 \$ 28 A II	
			4=16,0	2.60	0.08	0,95	1.04	7.3	-	İ
			hom =1.5	0,18	0.03	0.05	0.09	0,5		
		11	hem=20	0.25	0.03	0.07	0.10	0.7		
	1 1	 	hom = 2,5	0,3/	0.03	0,09	0.12	0.9	1	
]	hcm = 3.0	0,37	0.04	0.10	0,14	1.0	-	ı
	1 1	1 1	hom = 3.5	0.43	0.04	0.11	0,15	1,2		
			hcm=4,0	0.49	0.04	0,13	0,17	1.4		ĺ
6	اء مدا	h cm	hcm = 4,5	0.55	0.04	0,15	0.19	1.5	Стойки сечением	
0	C1-2°		hom = 5.0	0,61	0.04	0,15	0.20	1,7	35×35 cm c posoveú	ĺ
			hom = 5,5	0,67	0.05	0,17	0,22	1.8	σρμαπιγρού	İ
	1 1		hem = 6,0	0,74	0.05	0.19	0.24	2,0	12 \$ 20 A II	ĺ
		4	hom = 6,5	0.80	0.05	0.21	0,25	2,2	-	ĺ
		ि च	hcm = 7.0	0,86	0.05	0.22	0.27	2.3	-	ĺ
		1 3	hem =7.5	0,92	0.05	0.24	0.29	2,5		
		35	hcm =8,0	0.98	0.06	0,25	0,3/	2.7	1	ı
		•	hcm = 8,5	1.04	0.06	0,26	0.32	2.8	1	l
			hem=9.0	1.10	0.06	0.28	0,34	3.0	†	1
			hem = 9,5	1.16	0,05	0,29	0.35	5.1	1	ı

Cheranaus arth Soxos N Tupom sus.

NN	Μαρκα	Схема	Геометрич.	Объем	Bec of	OMOTTYP	n m	Bec	T
<i>^\/_n</i>	δποκα	Стема	размеры М	бетоно м ³	Knacca A-I	Knacca A - Ī	UTOEO	troxe m	<i>Χαρακτερυσι</i> ττυκα
			hem = 3,0	0,37	0.04	0.16	0.20	11	
		Ш.	hcm = 3.5	0,43	0.04	0.18	0,22	1,3	
	1		hcm = 4.0	0,49	0.04	0.20	0.24	1.4	
			hem = 4.5	0.55	0.04	0.23	0.27	1.5	4
	1		hcm = 5,0	0.51	0.04	0.25	0.29	1,8	-
_	ا ا	1 cm	hem = 5,5	0.67	0.05	0.27	0.32	19	† , ,
7	C1-3°		hem =6.0	0.74	0.05	0.50	0.35	2.1	Σπούκυ сечением 35×35cm с ραδοчеύ
			hcm = 6.5	0.80	0.05	0.32	0.37	2.3	σρωστηγρού
		1 1	hcm = 7,0	0.86	0.05	0,34	039	2,4	7 '
			hcm = 7.5	0.92	0.05	0.37	0.42	2,6	12 \$ 25 A Ū
			hom =8.0	0.98	0.06	0.39	0.45	2,8	
			hom = 85	1.04	0.06	0.41	0.47	30	
	1 1	35	hom = 9,0	1.10	0.06	0.44	0.50	5.2	
		1001	hem = 9.5	1.16	0,06	0,46	0.52	3,3	
			hom = 3,0	0.48	0,04	0,16	0,20	1.3	
			hem = 3,5	0.55	0.04	0.19	0.23	1.5	4
		11	hcm = 4,0	0,64	0.04	0,2/	0.25	1.8	
		 	hom = 4.5	0.72	0.05	0.23	0.28	2.0	
	1	1 1	hem = 5.0	0,80	0.05	0,26	0.31	2,2	Стойки сечением
8	C2-19		hcm = 5,5	0,88	0.05	0.28	0.33	2,4	40х40см с рабочей
•	'		hem = 6.0	0,96	0.05	0,30	0.35	2.7	арматурой
			hcm= 6.5	1.04	0.06	0.32	0.38	29	12 \$ 25 A II
	1	8	hom = 7.0	1.12	0.05	0.35	0,41	3.1	
		4	17cm=7.5	1.20	0.06	0,37	0,43	3.3	_
	1		hom = 8,0	1.28	0,06	0.39	0.45	3.5	1
			hom = 5,0	0.48	0.04	0.20	0.24	1.4	
	1 1		hom = 3.5	0.56	0,04	0.23	0,27	1.5	1
			hcm = 4.0	0.64	0.04	0.26	0,30	1.8	
	1 1	2	hcm = 4.5	0.72	0.05	0,29	0,34	2.1	1
		1	hem = 5.0	0.80	0.05	0,52	0.37	2.3	Стойки сечением
9	C2-2°	40	hem = 5,5	0.88	0.05	0.35	0.40	2.5	40 × 40 cm c posoveů
			hem = 6.0	0,95	0.05	0.38	0,43	2.7	σρμαπυμρού
			Nom = 6,5	1.04	0,06	0.41	0.47	3.0	12 \$ 28 A TI
			hom = 7.0	1.12	0,06	0,44	0.50	3.2	1 .2 720 07 "
			hem = 7,5	1,20	0.05	0.46	0.52	3.4	1
			hem = 80	1.28	0.06	0.49	0.55	3.6	1

Главтран	спроекл	<u>инспортного</u> 7 - Ленеипри	MPOHEMOC	m
(ραδί Οδηρμώχ же Πράπεταμυ δί Νορμαπομού	TDDEKTT TYUE YEDI TESOFETOK TO ISM MOD X KONEU JAN		Маркирова ведомас	NOHVE
Vav. ord. Tun. np.	4,00cm	ПРТИМОНОВ	Wupp 1338	NOT
Се. инж. проекта	allyes	WYNOMOH	1071 Kon	M-5
Рук. группы	Louge	об, Коморово	Chep wifing	77-0
Проверил	Dougs.	KOMODOBO	100711	52
Исполния	Zothuras -	- Zpuzopoe8	827/1	152

/	Марка		Геометрич.	Объем	Вес п	омятур	bi m	Bec	
1/1	блока	Схемя	рязмеры м.	<i>бетона</i> м ³	Класса Я- I	Karcca A- II	Итого	блока т	Характеристика
10	НУ1 ^с	380	3.8 ×2.6 × 0.9	5.1	0.43	0.61	1.04	12.8	Насадка устоя польного 12 12, 12 со свями (стоиками) 35×35см под польные строения длиной 6.0 м.
#	<u>ну</u> 2¢	380	38×26× 0.9	5.2	0.45	0.69	1.14	13.0	Насядка устая тупов 12, 10 оо объяму (стойками) 30-35 см под пролетные строения длиной 93 и И.5 м.
12	H1°	380	3.8×1.8×0.89	4.5	0.32	0.46	0.78	<i>11.3</i>	Насадка пеомежу— точной опоры, типов 1 ¹² , 1 ¹³ , 1 ¹³ со сваями (стойками) 35×35 см. под поолетые строгния 60+60 м.
13	H2¢	₹ <u>380</u>	3.8×1.8×0.89	4.6	0.33	0.60	0,93	11.5	Hacadka negm, onopbi rundo 1412 : 18 Co cobanu (crouxanu) 50×35 cm nod neponer Hobe creoe Hun 33+93 : 115 + 115 : 135+135, 165 + 165 : 60+93 : 60+113 ; 60+135 : 60+165 : 93+135 ; 93+165 : 115+165
14	H4°	380	3.8×1.8×0.89	4.9	0.33	0.36	0.69	12.3	Насадка промеж, опоры тупа 42 со стоиками 55×35см, под прометные строения 9,3+3,5 11,5+11.5; 6,0+9,3;60+11.5

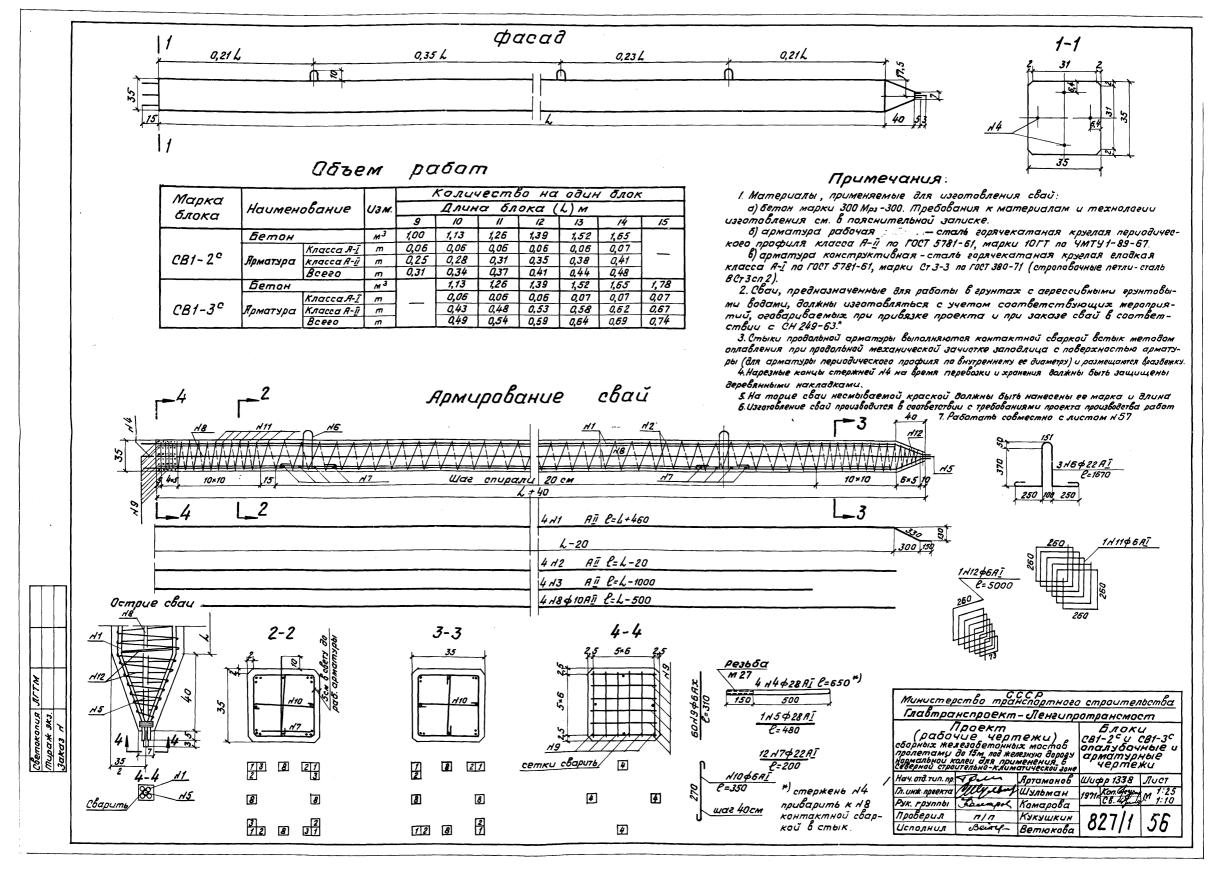
N	Марка	2	Геометр.	Объем	Bec A	OMAITIY	obi m.	Bec	
1/1.	блока	CXEMA	рязмеры м.	бетоня м.з	KARCCA A-I	KARCCA A·II	Uroro	блока т.	Хяряктеристикя
15	H5°C	£ 380	38×18×099	4.9	0.35	0.34	0,69	12.3	Inciden Incoment concept Insura 4 st co crossensus 40×40cm. nod neosier- thie cmpoenun 135+135; 165+165; 60+135; 60+165.93+135 93+165; 115+165
16	ШІС	2/0	2.1×1.07×4.18	1.9	0.05	0.25	0.30	4.8	Шкефной блок устоя поб плитное пролетное строение длиной б.Ом.
/7	W4c	295	2.95×165×4.18	4.3	0.10	0.46	0,56	10.8	Шкяфной блок устоя под ребристое пролет- ное строение длиной 9,3 м.
18	ш5°	320	3.2×1.8×4.18	5,0	0.14	0.49	0.63	12.5	Шкафной блок устоя под ребристое пролетное строен. длиной И.Бм.

	СССР Миниотерство транспортного строительства Главтранспроект-Ленгипротрансмост.									
	TPOEKITI OYUE YEPITO 10 SOBETTO HAL 11 JOJ KEJESI 11 JOS TPOM 11 JOS TPOM	Маркировочная ведомость блоков опор (продолжение)								
HAY.OTT.TUT.TIP		Артамонов	Wupp 1338	Лист.						
Гл. инж. пр.	"	WYNDMAH	1971. Kon. Nodn.	M-5 1:100						
Рук. группы	"	Комарова		7.700						
Проверил	"	KomapoBa	827/1	53						
UCHONHUN.	h	Ветно кова	02.1/1							

N	Марка		Геометрич	Объем	Bec 9	pmamy	061 M	Bec	
7/1	блока	Схема	размеры	i		класса	Umaza	блокс	Χαρακπερυςπυκα
19	5/11	350	м 33×20×05	M3	R- <u>I</u>	A- <u>I</u>	0,20	6.5	влок подфертенни- ка опоры типов 3ª, 3£
20	БП2	330	3,3 ×2,0×0,5	2,7	0,20	-	0,20	6.8	Блок подфермен ника опоры типов 32,35
21	<i>51</i> 3	340	3,4×2.4×0,55	3,5	0,23	_	0,23	8,8	ชิภอห กอฮิฮุละคุพยน หมหล อกออุษ พมหล ริยุ ริยิ รูลุ รูยิ
22	<i>5</i> /14	380	3,6 ×2,8 × 0,65	4,9	0,29	_	0,29	12,3	Блок подфермен ника опоры типов 5º,5º.
23	51	\$ 500	3.0 × 2.0 × 0.98	4.4	0.04	0.11	0,15	N.O	Enoxu mena onopo muno8 5 º 5 º
24	52	320	3,2×2,2×0,98	5,3	0,04	0,12	0.16	13,8	Блоки тела опоры типов 5 ² ,5 [£] .
25	53	340	3,4×2,6×0,98	6,3	0,04	0.14	0,18	15,8	блоки тела опары типов 5ª,5 €
26	\$10 (\$1°)	200	2,5 × 1,1 × 1,1	2,4	0,06 (0,06)	0,19	0,25 (0,24)	6,0	Фунватентные стаконы бля вертикальной бля вертикальных стаком профенентых стаком устоев типов у 14.18.
27	Ø2"	280	3,4 ×1,1 × 1,1	3,1	0.08	0,24	0,32	7.8	Pyhłamehmhble cmakahbi din bepmukanbhbiz croek ceyehuem 35 x 35 cm ycmoeb munob 1º, 1º

N n/n	Марка	Схема	Геотетрич. разтеры	Obse Geme	- 1		ртату, класса		вес Блока	Характеристика
1777	δποκα		M	M	, 3	R-I	A-II	Umozo	m]
28	\$3-1° (\$5-1°)	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,3 × 1,1 × 1,1	1.2		0,04	0,11	0,15	3,0	Фундатентные стаканы для верти- кальных стоек сечениет 35×35 ст устоев типов 1 €, 1 €,
29	\$5-2°	150	15 ×1.1×1.1	1,4	- 1	0,05 (0,05)	0,11	0, 16 ·	3,5	Фундатентные стоканы для наклон- ных ствек сечени- ет 35 × 35 cm уствев типов 1½,
30	\$4 (\$4')	270	2,7×1,25×1,1	2,6	s	0,06	0,19 (0,18)	0,25 (0,24)	6,5	Рундотентные стаканы для вер- тикальных стаек сечением 40 ×40 см протезсутачных апор и устаев ти- пав 18, 18
31	\$6-2° \$P6-2°C)	160	1,6×1,25×1,1	1,6	5	0,05	(0.12)	(0,17)	4,0	Рунватентный стокон для наклон- ной отойки свчени- ет 40×40 ст устоев типов 1 %, 1 %
32	\$7 ¹⁰	35 280 35 350 350	3,5 × 1,1 × 1,1	3,4	,	0,08	0.24	0.32	8.5	Tyndamenmhie cnakanti dna fepmukanentiz cna ek ceveru- en 10×10 cm yoma- eb munob 1½, 1½.
33	\$810	200	2,0×1,1×1,1	1,9	?	0,06	0,16	0,22	4,8	Pywiamenmusie cmakausi ins bepm cmoek cevenuem 35×35 cm onop mu- nob 42, 45
34	φ <i>9</i> π	200	2,3×1,25×1,1	2,4	,	0,06	0,17	0,23	6,0	Фундатентные стоконы для верт. стоек сечениет40х40ст впар типав 4 ² , 4 ⁵ .
35	\$10° (\$10°)	135	135x1,25x1/	1,3		0,04 0,04	0,1 0,11	0,15 0,15	3,3	Фунда тентные стоконтные стоконы для верти- кальных стоек сечени- ет 40×40 ст устоев типов 1½, 1±
1	1 t				[] []	081710 008040 146100	OHCID TPOEKI IE YED WELLES	OEKM Meoke	-Лене	ого строительства ипротранстост Маркировочная ведотость блоков апор

Министер	ocmbo n	PPOHCNOPM	HOZO CM	ooumen	ocmbo
[Jabmpl	SHCUDOR	ekm -Sleh	aunpomp	OHCMO	cm
POBOANSC .	TPOEKM IE YEPM KENEZOĞE BUTSM NOĞ KONEU BAŞ DUMENLIGI	TEOJEU) MOHHOIZ MO VICENESHYA B VOUMEHEHO VUUMAMUHECKO	BE	OKU,OOB OOMOC OKOB O OOGONSK	mb nop
Hav omê mun nj	· Fgie	- Spmam		op 1338	Juc m
In unok npoekt			10H 1071	Kan Bung	N 1:10
Руков группы			080	CBEP Wifn	1
		/	2	/.	1 61
Проверия Исполния	Bessu	POS KOMOP	000 7	27 <i>H</i>	17/


N	Mapka		Геометрич.			оматур		Bec	
	блока	Схема	размеры М	Бетона М ³	Класса Я- <u>Г</u>	Класса Я- <u>І</u> І	Umoro	блока m	Xapakmepucmuka
	AU1-1	1,80	3.5×1.38×1.09	4.0	0.06	0.53	0.59	10.0	
36	AN1-2	11.00%	4.0×1.38×1.11	4.5	0.07	0.64	0.71	11.2	
	AU1-3	3.5-4.5	4.5×1.38×1.14	4.9	0.08	0.69	0.77	12.3	Янкерные плиты опор
	RN2-1	180	3,5 × 1.38 × 1.09	4.0	0.07	0.46	0,53	10.0	muna 3ª
37	ЯП2-2		4.0×1.38×1.11	4.5	0.07	0.58	0.65	11.2	
	ЯП2-3	3.5-4.5	4.5×1.38×1.14	4.9	0.08	0.63	0.71	12.3	
	ЯПЗ-1	200	4.0 × 1.38 × 1.1	4.6	0.07	0.55	0.72	11.5	
38	ЯПЗ-2	11-81	4.5 × 1.38×1.13	5.1	0.08	0.69	0.77	12.7	aut sout s
	AN3-3	4.0-5.0	5.0×1.38×1.15	5.6	0.08	0.74	0.82	14.0	Анкерные плиты опор
	AN4-1	200	4.0×1.38 × 1.1	4.6	0.07	0.58	0.65	11.5	muno63ª,4ª
39	AП4-2	-	4.5×1.38× 1.13	5.1	0.08	0.62	0.70	12.7	
	AN4-3	4.0-5.0	5.0×1.38×1.15	5.6	0,08	0.67	0.75	14.0	
	AN5-1	N 1 220	4.0 × 1.38 × 0.89	3.9	0.06	0.81	0.87	9.7	
40	ЯП5-2		4.5 × 1.38 × 0.92		0.07	0.87	0.94	11.5	
	ЯП5-З ЯП5-4	4.0-5.5	5.0 * 1.38 * 0.94	5.1	0.08	0.92	1.00	12.7	Анкерные
	ЯП6-1		5.5×1.38×0.97 4.0×1.38×0.89	<i>5.7</i> <i>3.9</i>	0.08	0.57	0.74	9.7	กภบทษา อกอp
41	ЯП6-2	220	4.5×1.38×0.92	4.6	1 .08	0.73	0.81	11.5	
	АП6-З	4.0-5.5	5.0×1.38×0.94	5.1	0.09	0.77	0.86	12.7	
	Я П6-4		5.5×1.38×0.97	5.7	0.10	0.82	0.92	14.2	

1	Марка блока	Схема	Геометрич. размеры м			латуры Класса А-11		Вес блока т	Характеристика
	AN7-1	240	4.5 × 1.38 × 0.91	4.6	0.06	0.89	0.95	11.5	
42	<i>A</i> 117-2		5.0*1.38*0.93	5.1	0.07	0.94	1.01	12.8	
	<i>AN7-3</i>	4.5-5.5	5.5×1.38×0.96	5.8	0.08	1.00	1.08	14.4	Янкерные
	A118-1	240	4.5 × 1.38 = 0.91	4.6	0.08	0.73	0.81	11.5	MUNOG 4ª,5ª
43	ЯП8-2		5.0 × 1.38 × 0.93	5.1	0.08	0.78	0.86	12.8	
	A118-3	4.5-5.5	5.5×1.38×0.96	5.8	0.10	0.83	0.93	14.4	
44	A119-1	280	5.0×1.38×0.91	5.2	0.07	0.94	1.01	13.0	
	ЯП9-2	5.0-5.5	5.5×1.38×0.94	5.7	0.07	1.00	1.07	14.3	Янкерные плиты апор
45	A110-1	280	5.0*1.38*0.9/	5.2	0.08	0.78	0.86	13.0	munob 5 4
	ЯП10-2	9	5.5×1.38×0.94	5.7	0.08	0,83	0.9/	14.3	

Министерство транспортного строительства

Проект
(рабочуе чертежи)
соонных желеговетонных мастов
прометоный обы под желегный оброгу
портавный класи ала применения
(рабочуе профессов обы под желегный оброгу
портавный класи ала применения
(рабоной строительно-киматической оне
Проферия
Пл. инж. пр. (пр. рабон)
Примов. груты хамаров, котарова
Проверия
Состов Камаров, котарова
Проверия
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Проверия
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Проверия
Состов Камаров, котарова
Проверия
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Пополния
Состов Камаров, котарова
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Проверия
Пр

400

Anur	וטו כ	.6aù i	LM			6.0		T	٦	0.		<u> </u>		3.0		Γ	9	0,0		Γ		0.0			11	.0			12	.0			ľ	30			14	Q.P	
Марка блака	N	Augmemp cmepatcha	Bec 1n.m	Длина стерэксня М	Konunectbo cmepotcheu uum.	обилая длина М	Обиций вес кв	Длина стержена м	Konuvecmbo cmepacheu um.	Обицая длина М	Obutuù Bec Ke	Длина стерэна м	Konuvect6o cmepokeeu wr.	Общая длина М	Oốu, tước Kề	Длина стерэнсна М	ство		טפֿעַעט פֿפּכ דאכ -	Стержена	Количество стероней шт.	Общая длина М	Obuyuù bec Ke	Длина стерэненя м	Konuvectoo cmepatcheu Lat	Ostuce Shura	Oốtaui bec Ke	Длина стерженя М	Konuvecmbo crepatemen crepatemen		Uốu uù bec kè	Длина стерэсна М	Konuvect6o crepacheu um	общая длина м	Obutuú bec Ka	Длина стерэнена М	Konuvectbo amepached u.t.	Общая дли- на, м	Obwyuù Sec K2
	4	Ø28A	1 4,834	1	4	2.60	12.6	0,65	4	2.60	12.6	0.65	4	2.60	12.6	0.65	4	2.60		0,65	4	2.60	12.6	0.65	4	2.60	12.6	0.65	4	2.60	12.5	0.65	4	2.60	12.6	0.65	4	2.60	12.6
	5	<u></u>	4,834	0,48	1	0.48	2.3	0,48	1	0,48	2.3	0,48	4	0,48	2.3	0.48	1	0,48	2.3	0,48	4	0,48	2.3	0.48	1	0.48	2.3	0.48	1	0.48	23	0.48	1	0.48	2.3	0.48	1	0.48	2.3
1,	6	\$22A	2.984	1.67	3	5.01	14.9	1,67	3	5.01	14.9	1.67	3	5,01	14.9	1.67	3	5.01	14.9	1.67	3	5,01	14.9	1.67	3	5.01	14.9	1.67	3	5.01	14.9	1.67	3	5.01	14.9	1.60	3	5.01	14.9
CB1-2	7	"	2,984	0.20	12	2,40	7.2	0.20	12	2,40	٦.2	0,20	12	2.40	٦.2	0,20	12	2.40	7.2	0.20	12	2,40	7.2	0.20	12	2.40	7.2	0,20	12	2.40	7.2	0.20	12	2.40	7.2	0.20	12	2.40	7.2
CB1-39	9	Φ6AI	0.222	0,31	60	18.60	4.1	0.31	60	18.60	4.1	0.31	60	08.81	4.1	0.31	60	18.60	4.1	0.31	60	18.60	4.1	0.31	60	18.60	4.1	0.31	60	18.60	4.1	0.31	60	18.60	4.1	0.31	60	18.60	4.1
	10	"	0.222	0.35	30	10.50	2.3	0,35	36	12.60	2.8	0,35	40	14.00	3.1	0,35	46	16.10	3.6	0.35	50	17.50	3.9	0.35	56	19.60	4,4	0.35	60	21.00		0,35	66	23.10		0.35	סד	24,50	5.4
	11	,,	0,222	42.10	1	42.10	9.3	47.30	1	47.30	10.4	52.50	1	52.50	11.7	סר.רכ	1	57,70	12.7	62.90	1	62.90	13.8	68.10	1_	68.10	15.0	13.30	1_	73.30		78.50	1	78.50		83.70	1	83.70	18.4
ł	12	"	0.222		1	5.00	1,1	5.00	1	5.00	1.1	5.00	1	5.00	1.1	5.00	1	5.00	1.1	5.00	1	5.00	1.4	5.00	1	5.00	्त्रतः ।	5.00		5.00	1.1	5.00	1	5.00		5.00		5.00	1.1
<u> </u>	КЛ	acca acca	A-I	ugper			53.8	_			55,4				57.0			_	58.5	_	_		59.9				61.6				63.1	17.40	_		64.6				66.0
	1	Ø20AI	2.47	_		_	_	_				8.46	4	33.84	83.6	9,46	4	37.84		10.46	4	41.84	1	11.46		45.84		12.46	<u> </u>	49.84		13.46		53.84 51.92					
1	2	<u> "</u>	"				\vdash					7.98	4	31.92	78.8	8.98	4	35.92	88.7	9.98	4_			10.98		43.92					108.7			48.00					
-7د	3	"	,,			_	_		-			7.00		28.00		00.8	4	 	79.0		4		88.9			40.00 42.00	26.0	11.00			28.5	12.50	4	50.00				_	=
CB4-	8	IIADI¢	0.62				二	_	<u> </u>			1.50	4	30.00		8.50	4	34.00		9.50	4	20:00	23.6	_	4	42.00	346.3	11.50			378.7	_	_	_	410.8		_		=
ا ن	Umo	<u>80 ap</u>	мат	16рі к	vacco	I-A c	_					_	_	_	250.1				282.8	_	_	_	374.2				407.9		_		441.8		_	_	475,4			_	
	Bce:	ap os	T	уры	Г	Τ	<u> </u>	_					_		307.1			27.04	340.8	10.46	1	41.84	161,1	11.46	4	45 84	176.5	12.46	4	49.84	192.0	13.46	4		207.3	14.46	4	57.84	222.7
	1	≠25AI	3.85	<u> </u>	_	1	<u> </u>									9.46	4	37.84			4		153.7		<u> </u>	43.92		11.98		41.92						80.51		55.92	215.3
	2	"	"	_	_	_	<u> </u>	二	_		_	_		_		8.98	4		138.3		T		138.6		<u> </u>		154.0			44.00			4			13.00		52.00	
ا ئ	3	"	"		_	<u> -</u>	<u> </u>	<u> </u>					_	_	-	8.00 8.50	4	34.00		9.50	4	1	23.6		4	42.00		11.50					4	50.00		13.50		54.00	
18	8	IIA0I♥	0.62					<u> </u> _		_					-	0.30	-	J-1.00	428.3	-	Ť	-	477.0		<u> </u>		525.6	_	_		574.4		_	_	623.1				672.7
CB	Umo	oso ap	мап	уры і	KNOCO	a A-II	+=	-		_				-			_	1_	486.8	_	_	-	536.9		_	_	581.2	_		_	637.5	_		_	687.7	_			T.8EF
	Bce	ap os	Mam	уры						لــــــا			L	Ц							77.00	40116	LUI IO																

Схема хранения и транспортировки свай

0.21L \$ 0.58L \$ 0.21L

Схема испытания свай на трещиностойкость

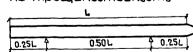
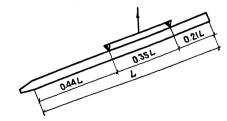
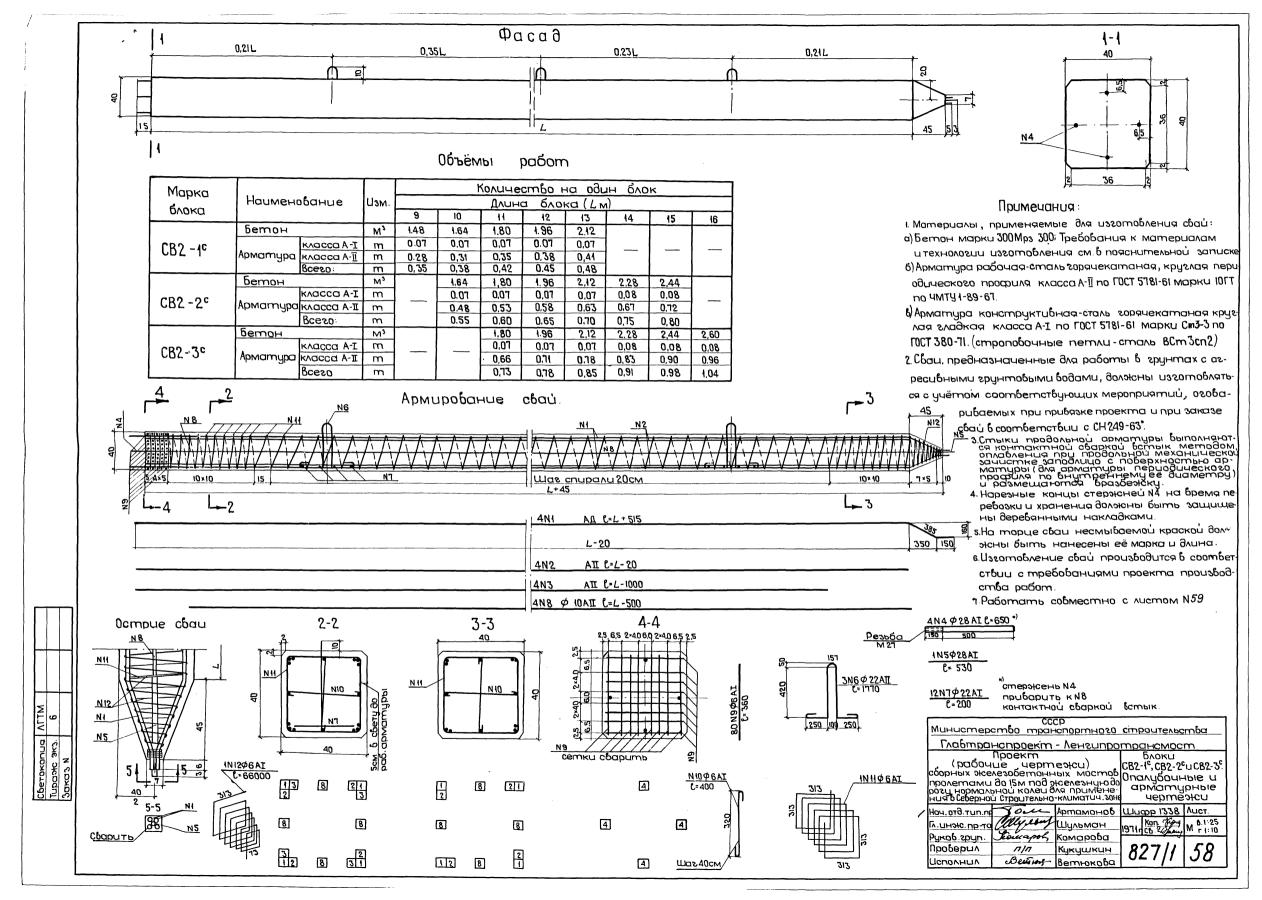



Схема подъёма сбай на копер

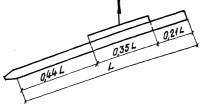


Примечания:

- и Хранение, транспортировку и подъем свай на копер следует производить в соответствии с требованиями проекта производства работ по схемам приведенным на настоящем чертеже. Другие схемы хранения, транспортировки и подъёма свай запрешаются.
- г.При приемке свай должны производиться испытания не менее 2 свай от каждой партии на трещиностойкасть по схеме, приведенной на настоящем чертеже. Методы испытания принимаются по ГОСТ 10628-63.
- з работать собместно с листом 1156. 4. Марки свай, применяемых в рпорах, иказаны
- 4. Марки сбай, применяемых в опорах, указаны на сборочных чертежах.

0 3.				
Министерст	одо трано Осс	enopmHoso	cmpoumer	ьства
		u- Vehsnub	отрансм	acm
COOPHIX NCC	NDOEKM LUE LEDR LESOBEMOHHI BOISM NOB SK SONEU BAS NDU STENDEKNUM	пежи) ых мостов женения в тической зане	БЛОКИ СВ1-2° и СВ Опалубочны турные чер (продолж	е и арма эглежси
Hay. ord. tun.np	rau	Артамонов	Шифр 1338	Λucm
Гл.иною проек Руков группы		Шульман Комарова	1971 (Co. 2000)	М
Проберил	חוח	Кукушкин	827/1	57
Исполнил	Best in-	ветнокоба	02111	07

AAU	161 C	Bai L	М		S	20			10	7,0		Γ	11	,0			12	2,0			13	30			14	0	-		1:	5.0				5.0	
Марка блока	N CMEPONCHR	Дистетр сперженя мм	Bec Inm Kr	DAUNG CMBP SKCHR	Количество стерженей ит	Общоя длино М	Obuqui Bec Kr	Длина стерженя м	у количество Сторука Стору	Общоя длина М	Obupui bec Kr	Длина Стержня М	Количество стерженей шт	Общоя длино М	Obuqui bec Kr	Длино сптержня М	Количество стерженей	Общоя длимо м	Obujui bec Kr	Длина стержня М	Количество стержней стержней	Общоя длика м	Obuyvi bec KT	Длина Стержня М	Количество стерэк не и шт.	Общоя диино м	Obuyvů bec KT	Длина Спержня М	smed Sered	Общ ая длина М	Obujui bec KT	Длина стерженя	Количество стержней шт	Общая длина М	Obuqui bec Kr
	4	<i>ф28A</i> I	4,834	0.65	4	2,60	12,6	0,65	4	2,60	2,6	0,65	4	2,60	12,6	0,65	4	2,60	12,6	0,65	4	2,60	12,6	0,65	4	2,60	12,6	0,65	4	2,60	12,6	0,65	4	2,60	12,6
	5	"	"	0,53	1	0,53	2,6	0,53	1	0,53	2,6	0,53	1	0,53	2,6	0,53	1	0,53	2,6	0,53	1	0,53	2,6	0,53	1	0,53	2,6	0,53	1	0.53	2,6	053	1	0.53	2,6
C82-1°	6	ø22AI	2,984	1,77	3	5,31	15,8	1,77	3	5,31	15,8	1,77	3	5,31	15,8	1,77	3	5,31	15,8	1,77	3	5,31	15,8	1,77	3	5,31	15,8	1,77	3	5,31	15,8	1.77	3	5,31	15,8
CB2-2C	7		•	0,20	12	2,40	7,2	0,20	12	2,40	7,2	0,20	12	2,40	7,2	0,20	12	2,40	7,2	0,20	12	2,40	7,2	0,20	12	2,40	7,2	0,20	12	2,40	7,2	0,20	12	2,40	7,2
000 70	g	ø6AI	0,222	0,36	80	28,80	6,4	0,36	80	28,80	6,4	0,36	80	28,80	6,4	0,36	80	28,80	6,4	0,36	80	28,80	6,4	0,36	80	28,80	6,4	0,36	80	28,80		0.36	80	28,80	6.4
CB2-3°	10	"	"	0,40	46	18,40	4.1	0,40	52	20,80	46	0,40	56	22,40	5,0	0,40	62	24,80	5,5	0,40	66	26,40	5,9	0,40	72	28,80	6,4	0,40	76	30,40	6,8	0,40		32,80	7.3
	11	,	,	69,50	1	69,50	15,4	75,50	1	75,50	16,8	82,20	1	82,20	18,2	88,20	1	88,20	19,6	94,60	1	94,60	20,1	100,50	1	100,50	22,3	107,20	1	107,20	23,8	113,20		113,20	25,1
	12	"	4	6,60	1	6,60	1,5	6,60	1	6,60	1,4	6,60	1	6,60	1,4	6,60	1	6,60	1,4	6,60	1	6,60	1,4	6,60	1	6,60	1,4	6,60	1	6,60	1.4	6,60	1	6,60	1,4
	Um	KAO	CCO A	туры -Т			65,6	_		_	67,5	_		_	69,2	_	_	_	71,1	_		_	72,0				74,7	_			76,6		_	-	78,4
	1	\$20A <u>I</u> Ī	2,47	9,52	4	38,08	94,1	10,52	4	42,08	103,9	11,52	4	46,08	113,8	12,52	4	50,08	123,7	13,52	4	54,08	133,6	_	_	_	_	_		<u> </u>	_	_		_	_
v	2	"	"	8,98	4	35,92	<i>88</i> ,7	9,98	4	39,92	98,6	10,98	4	43,92	108,5	11,98	4	47,92	118,4	12,98	4	51,92	128,3	-	_	_	_	_		_			_		_
1	3	"	"	8,00	4	32,00	79,00	9,00	4	36,00	88,9	10,00	4	40,00	98,8	11,00	4	44,00	108,7	12,00	4	48,00	118,6		_		_		_	_	_	_			
CB2	8	Ø10A <u>I</u> Ī	0,62	8,50	4	34,00	21,1	9,50	4	38,00	23,6	10,50	4	42,00	26,1	11,50	4	46,00	28,6	12,50	4	50,00	31,0	_	_			-		_		_	_		_
C	Umor	о арм	этурь	I KAQ	cca A	9- <u>1</u> 7	282,9	_			315,0	_			347,2	_	_	-	379,4	_		_	411,5			_		-	_	_		_			
	Bel	ero a	рмал	ואקעדו			348,5	_		_	<i>382,5</i>			_	416,4				450,5			_	483,5	_	_			_	_	_	_	_		_	_
	1	ф25A <u>I</u> Ī	<i>3,853</i>			<u> </u>		10,52	4	42,08	162,1	11,52	4	46,08	177,4	12,52	4	50,08	192,8	13,52	4	54,08	208,2	14,52	4	58,08	223,6	15,52	4	62,08	239,0			_	
	2		"	_		1=	-	9,98	4	39,92	153,7	10,98	4	43,92	169,1	11,98	4	47,92	184,5	12,98	4	51,92	200,0	13,98	4	55,92	215,3	14,98	4	59,92	231,0		_	_	
.2 c	3	"	"		_		_	9,00	4	36,00	138,6	10,00	4	40,00	154,0	11,00	4	44,00	169,4	12,00	4	48,00	184,8	13,00	4	52,00	200,2	14,00	4	56,00	215,3	_]
82	8	\$10AII	0,62					9,50	4	38,00	23,6	10,50	4	42,00	26,0	11,50	4	46,00	28,6	12,50	4	50,00	31,0	13,50	4	54,00	35,5	14,50	4	58,00	36,0	_	1		_
77	Umor	o api	וצוחים	76/ KI	10000	7 A- <u>[[</u>	_		_		478,0	_			<i>526,6</i>		_		575,2				624,0				672,1				721,3				
	Be	ero d	TPMC	пирь	/		_	_	_		545,5				595,8		_		646,3				696,0				747,3				797,9				
	1	\$28A <u>I</u> I	4,834	-	_		_			_		11,52	4	46,08	222,6	12,52	4	50,08	241,9	13,52	4	54,08	261,2	14,52	4	58,08	280,4	15,52	4	62,08	299,8	16,52	4	66,08	319,2
0	2	"	,,	- 1	_	_	_	_	_	_	_	10,98	4	43,92	212,2	11,98	4	47,92	231,0	12,98	4	51,92	250,7	13,98	4	55,92	270,1	14,98	4	59,92	288,9	15,98	4	63,92	308,8
3.	3	"	"		_			_		_	_	10,00	4	40,00	197,8	11,00	4	44,00	212,5	12,00	4	48,00	232,1	13,00	4	52,00		14,00	4	56,00		15,00	4	60,00	289,8
82.	8	ø10A <u>I</u> I	0,62	_		<u> </u>		_	_			10,50	4	42,00	26,0	11,50	4	46,00	28,5	12,50	4	50,00	31,0	13,50				14,50	4	58,00	36,0	15,50	4	62,00	38,4
77	Umol	O OPA	ו אינים <i>ו</i>	061 KJ	racc	a A - <u>I</u>	_	_	-	_		_		_	658,6		_		7/3,9		_		775,0		_	_ [<i>935,</i> 7				895,9			_ [956,2
	Bce	ro e	ормо	птур	/				_		_	_			727,8		-1	_]	785,0	_	_	_	847,0	= T	_	_ [910,4		_	_	972,9	_	_	- /	1034,6
																	~	Пр	UMEY	CHUR															

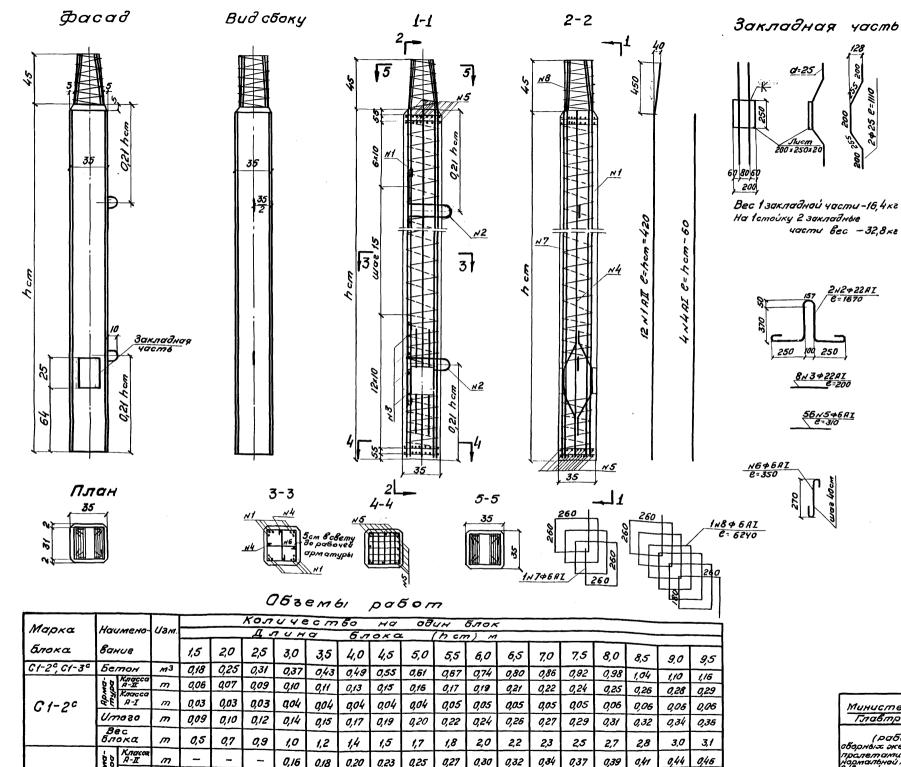

Схема хранения и транспортировки свай.

0,581

Схема испытания свай на трещиностойкость

1			
	0,254	0,50 L	10,25L
1	1		4

Сжема подъема свай на копер.


1. Хранение, транспортировку и подъем свай на копер следует производить в соответствии с требованиями проекта производства работ по схемам, приведен-ным на настоящем чертеже. Другие схемы хранения, транспортировки и подъема свай запрещаются 2. При приемке свай должены производиться испытания

не менее 2 свай от каждой партии на трещиностойкость по схеме, приведенной на настоящем чертеже. Методы испытания принимаются по FOCT 10628-63.

3. Работать совместно с листом № 58

4. Марки свай, применяемых в опораж, указаны на сборочных чертежах.

Министер	cmbo moc	ССР Инспортного	CMROUMEAN	ства
Главтра	тнопроект	n - Ленгип	ротрансм	10CM
(ραδο4 εδοριμώς »κ	Tpoekm Ive yepm enesodemon	те э42 и) ных мостов иселезную дорогу оименения в импической зоне	5.10KU C82-1°C82-2	CUC82-3C
Hay. orna. run.np		Артамонов	Шифр 1338	
л.инж. пр-та Рук. группы	Laurant	ДИУльман Комарова	1971 CB. Usting	
Проверия	7/17	KYKYWKUH	827/1	59
ICHOAHUA	Between	- Ветнокова	02///	

m

KADOCO RE R-I

OsomU

Bec

5 noka

C1-3°

0,16

0,04

0,20

0,18

0,04

0,22

0,20

004

0,24

0,23

0,04

0,27

1,6

0,25

0,04

0,29

1,8

0,27

0.05

0,32

1,9

0,30

0.05

0,35

2,1

0,32

0,05

0,37

2,3

0,34

0,05

0,39

2,4

0,37

0.05

9,42

2,6

0,39

006

0,45

2,8

0,41

0,06

0,47

3,0

0.44

0,06

0,50

3,2

0,45

0,06

0,52

3,3

PDUMEYAHUA:

1. Материалы, принимаемые для извотовления стоек:

d) Бетон марки 300 Mp3 300

6) Apmamypa paboyan-cmano горячекатаная периодического Προφυλη κλασσα A-II no ΓΟς75781-61 MADKU 10 FT NO 4MTY 1-89-67.

в) Прматура конструктивная-сталь אסאפאפאסאסאסא אסעפאסא פאסלאסא KJOGCO A-I NO FOCT 5781-61 MOPKU CT 3-3 no FOCT 380-71 (cmpono604Hble nemau-cmape BCT3cn2).

2. Пребования к материалам и тежнологии изготовления см. в пояснительной записке.

3. Επόικα προθοπόκού αρμαπυρόι βυποπηροπος κομπακπηού οδαρκού встык методом оплавления при POOGONGHOÙ MEXONU YECKOÙ BOYUMKE заподлицо сповержностью арматуры Аля арматуры периодического профиля по внутреннему ес дуаметру) и размещаются вразбежку.

4. На торце стойки нестываемой KPACKOU BOJOKHOI ODIJIO HAMECENDI ве марка и длина.

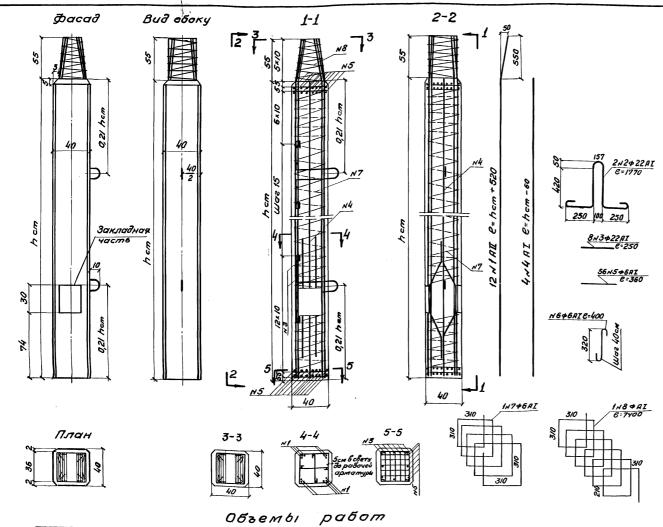
5. Изготовление стоек производится 6 coombemembuu c mpetobanuamu проекта производства работ.

6. Жранение, транспортировку стоек производить по сжемам, npubedennom na sucme N 59 Другие способы запрещаются. MONMON CMOCK ADOUGEOUME MONEKO 30 cmpanabayHbie nemnu.

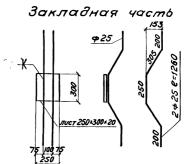
	pembo mp	СССР Р <u>анслартн</u> е			
Inasmp	анспровкл	п - Ленгипр	omp	CHCMC	C/77
РАБО) эже жындабо Прапетами	до 15 м по д эк	TT TO EOKU) VH6VX MOCMOB VENEZHYM BOPOLY DUMEHEHUM B MATUVECKOÙ BOME	Опа	sygo	pHble
Ha4.018.1Un.np	Tour	Артамонав	WUQO,	o 1338	JUCTN
Гл.инэк.пр-та	allyen	У Шульман	197/	Kon Beu	M-6 1:20
Рук. группы	Devgool	Комарова		CEEP. Cop.	1:20
Проверия	n/n	KY36MUN	182	7//	6D
Ucananua	0.10	Medhedeh	1 UZ	///	100

медведев

UCHOSHUR


n/n

Ls	UHO	y cn	noek	M		1.5	5			2	20			2.5	5			3,	0			3,	5			4.0	7			4,	5		Ì	5,	0		<u> </u>	5, 5	5			6	0	
Морка	N N N N N N N N N N N N N N N N N N N	LUCIMEND	nm mm	Bec 10.m Ke	Lrund cmeparns	KanvecmBo- cmepsexeu Lm.	Обицая джина М	Ubuyví Bec re	Длимо стерэкня	Капичество, стерожней	Ибицоя длимо м	lbuyvi Bec re	LAUNO	Konuvecmbo omepokweu wm	Общоя фина М	Obuquú ber Ke	Anund emepakus m	Kanvermbe	likyos drumo	Mayori Bec	LIUNG	KORUYECMBE	Ибщоя Эпимо М	Obuqui Bec Ke	Anuna cmepatus M	Karuvecm80. cmepostevev	Obcups Anims M	Ubuyui bec xa	LAUNO	KONEVECTORO COMEDOKHEU WITH	Ибицся дпина М	Obuçui Bec xe	Длино отераня	ADRIVACIMBO CIMEDOKARU LIM.	Ubuyos dama m	Muyvi Bec xe	Linund cmepacua	Konvecmbo cmepskeev	Общо я ди но М	lbuyui bec Ke	LAUNG	Karuvecmbo cmepacweu	(16изо я бли но М	Ubuzvi bec Ke
	2	ø	22AI	2,98	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10.0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10.0
	_	+	-		0.20		1.60		0,20		1,60	4.8	0,20	8	1,60	4.8	0,20	8	1,60	4.8	0,20	8	1,60	4,8	0,20	8	1.60	4.8	0,20	8	1,60	4.8	0.20	8	1,60	4,8	0,20	8	1.60	4.8	0,20	8	1,60	4.8
0	4	95)	ORZ	0,62	1,44	4	5,75	3.6	1.94	4	7,76	4.8	2,44	4	9,16	6,0	2,94	4	11.76	7,3	3,44	4	13,76	8,5	3,94	4	15,76	9,8	4,44	4	17,76	11.0	4,94	4	19,76	12,2	5.44	4	21,76	13,5	5,94	4	23,76	14.7
5-3	5	B	SAZ	0,22	0.31	56	17,36	3,8	0,31	58	17.36	3.8	0,31	56	17.36	3,8	0,31	58	17,36	3,8	0,31	56	17,36	38	0,31	56	17,36	3,8	0,31	56	17,38	3.8	0,31	56	17,36	3,3	0,31	56	17,36	3,8	0,31	56	17,36	38
3	6	94	SAZ	0,22	0,35	8	2,80	0,5	0.35	10	3,50	0.8	0.35	12	4,20	0.9	0,35	16	5.60	1,2	0,35	18	6.30	1.4	0,35	20	7,00	1,5	0,35	22	7,70	1.7	0,35	26	9,10	20	0.35	28	9.80	2,2	0.35	30	10,50	2.3
20	7	96	SAI	0,22	15,10	1	15,10	3,3	20,30	1	20,30	4.5	23,40	1	23,40	5,1	26,50	1	26,50	5,9	30,8	1	30.8	6,8	33,80	1	33,80	7,4	36,90	1	36,90	81	41,30	1	41,30	9,1	44,20	1	44,20	9.7	47,30	1	47,30	10,4
1	8	96	AI	0,22	6,24	1	6.24	1.4	6,24	1	6.24	1.4	6.24	1	8,24	1.4	6,24	1	6,24	1,4	6,24	1	6,24	1.4	6,24	1	6.24	1.4	6,24	1	6.24	1.4	6.24	1	6.24	1.4	6,24	1	6,24	1.4	6,24	1	6,24	1,4
'	Um	020	gom	nongpu.		_		27.5				30,1				32,0		_		34,4				36,7				38,7		_		40,8		_		42,8		_		45.4		_		47,4
0	1	Т		2,47	1,92	12	T		2.42	12	29.04	71,7	2,92	12	35,04	86,5	3,42	12	41,04	101,4	3,92	12	47,04	116,2	4,42	12	53,04	131,0	4,92	12	59,04	145,8	5,42	12	65,04	160,6	5,92	12	70,80	174,9	6,42	12	77,04	190,3
7-	Um	080	OPMO A-1	myps/		_		56,9	T			71.7				86,5				101,4				116,2				131,0		_		145,8	•	_		160,6		_		174,9		_		190,3
13		800	20 14P6					844				101.8		_		118.5				135,8		_		152,9				169,7				186,6		_		203,4				220,3		_		237,7
6	1	1		3,85	_	_	_	Ė	<u> </u>	_	_			_	_		3,42	12	41,04	158,0	3,92	12	47.04	181,1	4,42	12	53,04	204,2	4,92	12	59,04	227,3	5,42	12	85,04	250,4	5,92	12	70,80	272,6	6,42	12	77,04	295,6
3	Umo	020		туры				_				_								158,0	,			181,1		_		204,2				227,3		_		250,4		_		272,6				296,6
61		80	eeo myp			_		_				_				_		_		192,4				217,8		_		242,9		_		268,1		_		293,2				3/8,0		_		344,0


1	TUH	o cn	поек	M		6,5	5			7.	0			7.	5			8.	0			8,	5			9,0	,			9.	5 .	
Mobra	onoro N	<i>Стврэкня</i> Дистетр	стерожня мм	Bec 1 n.m re	TAUNO CHIRCHA	Kosuvecmbo omepokweu wm.	Obugas Brems M	dbuyvi bec Ke	Knumo cmepakus	Karvecmbo cmepatevev wm.	Общоя длина М	Mouvoi Bec re	LIUNG	Konuvermég Conseposemen Convermén	Obuços Brumo M	Ubuvi Gec re	Anund cmecaeus m	KONU VERMED CHEDOK MED WIM.	м Общоя блимо	lbuywi Bec xe	Длино стержия т	Konvecmbo	Ubuyor Anmo	विरूपपणं Gec Ke	LAUNO	Konvyecmbo conepogeneu	W Deutor Amus	Obuşvi Sec xe	LINNO CMEDOKHA	Kanuvecmes Composered Composered		Abuyuri Bec Ke
	1	2 0	22.FI	2,98	1,67	2	3,34	10,0	1,67	2	3.34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,67	2	3,34	10,0	1,07	2	3,34	10,0
l	3	3 Ø	22.R <u>I</u>	2.98	0,20	8	1,60	4.8	0,20	8	1,60	4.8	0,20	8	1,60	4.8	0,20	8	1,60	4.8	0,20	8	1.60	4.8	0,20	8	1,60	4,8	0,20	8	1,60	4.8
0	, [₄	4 0	IORI	0,62	6.44	4	25,76	16,0	6,04	4	27,76	17,20	7,44	4	29,76	18,5	7,94	4	31,76	19.7	8,44	4	33,76	20,9	8,94	4	35,76	22,1	9,44	4	37,76	23,3
1	. [5 Ø	6AI	0,22	0,31	56	17,36	3,8	0,31	58	17.36	3.8	0,31	56	17,36	3,8	0,31	56	17,36	3.8	0,31	56	17,36	3,8	0,31	56	17,36	3,8	0,31	56	17,36	38
15	ر ا	5 0	6AI	0,22	0,35	32	11,20	2,5	0,35	36	12,60	2,8	0,35	38	13,30	2,9	0,35	40	14,00	3.1	0,35	42	14,70	3,2	0,35	44	15,40	3,4	0,35	48	16,80	3,7
00	Ĺ	7 Ø	6AI	0,22	51,50	1	51,50	11,3	54,60	1	54,60	12,0	58,50	1	58,50	12,9	61,80	1	61,80	13.6	65,30	1	65,30	14.4	68,60	1	68,68	15,1	72,20	1	72,20	15,9
1:	ها٠	9 0	6AI	0,22	6,24	1	6,24	1,4	6,24	1	6,24	1.4	6,24	1	6,24	1,4	6,24	1	6,24	1.4	6,24	1	6,24	1.4	6,24	1	6,24	1.4	6,24	1	6,24	1,4
`			co A			_		49,8				52,0		_		54,3				56,4				58,5		_		60.6				62,9
6	٦,	\neg		2,47	6,92	12	83,04	205,1	742	12	89,04	219,9	7,92	12	95,04	234.7	8,42	12	101,04	249,6	8,92	12	107,04	264.4	9,42	12	113,04	279,2	9,92	12	119,04	294,0
100			apmo			_		205,1		_		219,9		_		234,7				249,6				264,4				279,2				294,0
5	RADCED A-II BCEED OPMOMYPH					254,9				271.9		_		289,0				306,0		_		322,9		_		339,8				356,5		
	Ť.	\neg	25A jī		6,92	12	85,04	319,7	7,42	12	89.04	342,8	7,92	12	95,04	365,9	8,42	12	101,04	389,0	8,92	12	107,04	412,1	9,42	12	113,04	435,2	9,92	12	119,04	458.3
1.3			o opn			_		319,7		_		342,8		_		<i>365,9</i>		_		389,0		_		412,1		_		435,2		_		458.3
10	: [BC	eeo amyp			_		369,5		_		394,8		_		420,2		_		445,4				470,6		_		495,8			-	521, 2

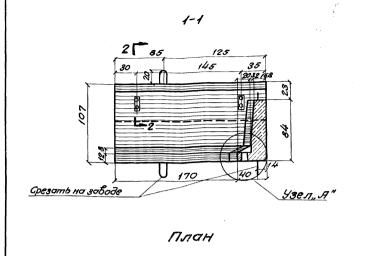
Примечание: Опалубачные и арматурные LEDMEGEU BAOKOB CM. AUCH N 60

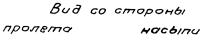
[Jobmpo	THENDOEKM	опортного - Ленгипр	отранста	CM
\sim	e yepme		Блоки С1-	
TOOMENSC ACE. ADOMENIAMU ÖÖ NOOMITALMIÜ I TEBEDHOÙ CMDOUI	1830бегтоннь 15 M POJ ACE KOREU BRS ROU	noc macmab Resulva Bapary Vinevenus B	Enequepu Opman	KOUUR
Hav. omð.mun.np		Яртатонав	Шифр 1338	Sucm
Ta. uwok. mpaena		WYADMON	19712 6000 24/	
Рук. группы	Lowapoly	Котарова	13116 6000 20%	*
Проверил	Sauce	Летосова	827/1	121
Исполния	Tesola	lepo8a	102///	101

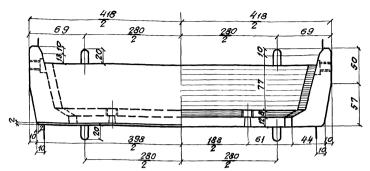
Μαρκα	l		reme			Konu	400	mbo	Ha	OBUH	6.70K			
	Наимен	ование	W .			Дл	UHA	BAOK	a (h	cm)	17			
блока			ИЗМ	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0
C2-1°; C2-2°			м³	0,48	0,56	0,64	0,72	0,80	0,88	0,96	1,04	1,12	1,20	1,28
	Ярматура	жлассα. Я-∐	m	0,16	0,19	0,21	0,23	0,26	0,28	0,30	0,32	0,35	0,37	0,39
C 2-1°	,	KNACCA R-I	m	0,04	0,04	0,04	Q05	0,05	0,05	0,05	0,06	0,06	0,06	0,06
02 /	Umo	2 <i>0</i>	m	0,20	0,23	0,25	0,28	0,31	0,33	0,35	0,38	941	0,43	0,45
	Bec on		m	1,3	1,6	1,8	2,0	2,2	2,4	2,7	2,9	3,1	3,3	3,5
	Арматура	класса A-II	m	0,20	0,23	0,26	0,29	0,32	0,35	0,38	0,41	0.44	0.45	0,49
0.0.00	7,014.3,04	A-I	m	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,06	0,06	005	0,06
C 2-2°	Umo	20	m	0,24	0,27	0,30	0,34	0,37	0,40	0,43	0,47	0,50	0,52	0,55
	Bec Est	ra	m	1,4	1,6	1,8	2,1	2,3	2,5	2,7	3,0	3,2	3,4	3,6

Примечания:

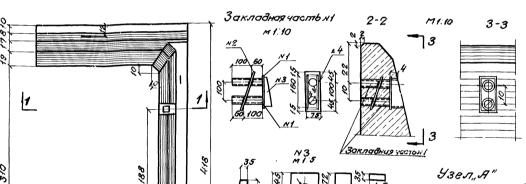
- 1. Бетан марки 300 мрз 300. Арматура стержни периодического профиля по ГОСТ 5781-61 изстали класса А-11 марки 10 ГТ по ЧМТУ 1-89-67 и гладкие круглые стержни по ГОСТ 5781-61 из стали класса А-11 марки СТ 3-3 т. 10СТ 380-71 (строповачные петли из стали марки ВСт3сп 2). 2. Требования к материалам и теханологии изготовления
- 2. Пребавания к материалам и технологии изготовления приведены в пояснительной записке.
- 3. Стыки продольной арматуры выполняются контактный сваркой встык методом оплавления при продольной межанической зачистке заподлицо с поверхностью арматуры (для арматуры периодического профиля по внутреннему ее диаметру) и размещаются вразбежку.
- 4. На таруе стойки нестываетой краской должны быть нанесены се тарка и длина.
- 5. Извотовление отоек производится в соответствии с требованиями проекта производства работ.
- 6. Хранение, транспортировку стоек производить по сжемам, приведенным на листе и 59 Другие способы – -запрещаются. Монтаж стоек производить только за строповочные петли.
- 7. Марка стоек, применяемых в опорах, указана на сборочных чертежах.


СССР Министерство транслортного строительства Главтранспровкт- Ленгипротрансмост ΠΡΟΕΚΤΠ (Ραδά ΥΙΕ ΕΡΓΠΑΘΚΟ) εδορλόια εκειρεμόδε πονικόια πος πού πρώτεπακο θόδω ποδικε πεμικό δυρουγ μορματικού κατα το δτι προυμετικό ε μορματικού κατα το δτι προυμετικό ε Блоки C2-1°, C2-2° Опалубочные и арматурные партиналог Саверной строительно-климатической эх чертежи Нач. отд. тип. пр. Томи Артамонов Wugop 1338 Swath Гл. инж. пр-та Шульман Komapol, Komapola Рук. группы Проверил Комарова Медведев


Дли	HQ C	TOEK	M		3,0				3,5	,			4,	0			4,	5			5, 0	2			5,5	5			6,	0	
Mapra	стержня	Диамето стержня тт	Bec tam Kr	Дпина стержня М	Kanuvect 80 ctermeti wt	05щая Длуна Длуна	064400 8ec Kr	Длина стержня м	Каличество • етержней ШТ.	Oswas andra	Oswuŭ Beč Kr	Длина стержня М	.Каличество. стерженей шт	Oswan Anuma Amuma	08m0u 8ec 7x	Длина стержня т	Количество стержней ШТ.	0544A Anuna M	OSWUÚ SEC Kr	Дпина Стержня М	269	054448 40044	0544UÜ 8ec 87	Длина Стержня М	Kanuvect80. crepokheu UT:	м Дийна Миная	Osupor Gec Kr	Длина Стержня М	Копичество, стержней шт	084448 4110444	0544uü 880 87
	2	¢ 22RI	2,98	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5
0	3	-,-	,-	0,25	8	2,00	6,0	0,25	8	2,00	6,0	0,25	8	2,00	6,0	0,25	8	2,00	6,0	0,25	8	2,00	6,0	0,25	8	200	6,0	0,25	8	2,00	6,0
2-	4	\$10 FI	0,62	2,94	4	11,76	7,3	3,44	4	13,76	8,5	3,94	4	15,76	9,8	4,44	4	17,76	11,0	4,94	4	19,76	12,3	5,44	_4	21,76	13,5	5,94	4	23,76	14,7
65	5	\$ 6AI	0,22	0,36	56	20,16	4,4	0,36	56	20,16	4,4	0,36	56	20,16	4,4	0,36	56	20,16	44	0,36	56	20,16	4,4	0,36	56	20,16	4,4	936	56	20,16	44
5.	6	-1-	"	0,40	16	6,40	1,4	0,40	18	7,20	1,6	0,40	22	8,80	1,9	0,40	i	9,60	2,1	0,40	26	10,40	2,3	0,40	28	11,20	2,5	0,40	32	12,80	2,8
1-5	7		<u>-,-</u>	32,90		32,00	7,2	36,60	/	36,60	<u> </u>	40,30	1	40,30	8,9	45,30	1	45,30		49,00	1	49,00	10,8	52,70	1	52,70	11,6	57,70	1	57,70	12,7
22	8		n	7,40	1	7,40	1,6	7,40	1	7,40	<u> </u>	7,40	. 1	7,40		7,40	1	7,40	1,6	7,40	1	7,40	36	7,40	1	7,40	1,6	7,40	1	7,40	1,6
	KAR	CCA S	79P61 7-I			- -	38,4			_	40,6			_	43,1				45,6				47,9				50,1				52,7
01	/	ф25 RII	<u> </u>	3,52	12	42,24	— <u> </u>	4,02	12	48,24	185,7	452	12	54,24	2088	5,02	12	60,24	231,9	5,52	12	66,24	255,0	6,02	12	72.24	278,1	6,52	12	78,24	301,2
2-1		CCA A				-	162,6			•	185,7				208,8				231,9			•	255,0		<u> </u>	<u></u>	278,1		L		301,2
2		9 CE F MATY				_	201,0			-	226,3				251,9			-	277,5			_	302,9				328,2				
0	/	\$28 FI	L	3,52	12	42,24	2040	4,02	12	48,24	233,0	4,52	12	54.24	262,0	5,02	12	60,24	291,0	5,52	12	66,24		6.02	12	72,24		6,52	12		353,9 377,9
1-2	UTON	O APMO ACCA	TTYPb/ A-II				204,0			•	233,0			-	262,0				291,0		<u> </u>	-	320,0			12,24	 	0,02	12	<u> </u>	+
77		BCEF	0			-	242,4				273,5			-	303,7	†		-	3366				<u> </u>				348,9				377,9
Ь	1						-					L			<u> </u>								367,9				399,0			_	430,6


ДЛ	UHC	CTO	ek M		6,	5			7,	0			7,	5 .	· .		8,0	0	
Mapra	СТӨРЖНЯ	Диаметр стержня мм	Bec Inm Kr	Дпина стержня т	, Количество стержней шт	Dewas Drund M	054UÚ 8ec ÚU W	THUNT CTEPHHA M	, Капичество Стенжней ТТ.	05 щая длуна м	08m20 286 NT	Длина стержня М	. Хопучество СТЕРЭКНЕЙ ШТ.	OSWAR ANUHA M	06щий 8ec Kr	Anu Ha CTEP WCHR M	:Капичество стеяжней шт	05щая Дпина М	0544UU 88C 7K
	2	\$22AI	2,98	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5	1,77	2	3,54	10,5
0	3	,,-	-#-	0,25	8	2,00	6,0	0,25	8	2,00	6,0	0,25	в	2,00	6,0	0,25	8	2,00	6,0
2-:	4	\$10AI		6,44	4	25,76	16,0	6,94	4	27,76	17,2	7,44	4	29,76	18,4	7,94	4	31,76	19,7
20	5	\$6RI	0,22	0,36	<i>56</i> <i>34</i>	20,16	4,4	0,36	56	20,16	4,4	0,36	56	20,16	4,4	0,36	56	20,16	4,4
-10	0	- "-	-9-	0,40		13,60	3,0	0,40	36	14,40	3,2	0,40	38	15,20	3,3	0,40	40	16,00	3,5
7.25	1	- 9-	-2-	61,40		61,40	13,5	65,10	1	65,10	14,3	68,80	1	68,80	15,1	73,80	1	73,80	16,2
	1100	O apmo		7,40		7,40	1,6 55,0	7,40	1	7,40	1,6	340	1	3,40	1,6	3,40	1	7,40	1,6
	KI	αίζα	A-I			·					57,2				59,3				61,9
26	1	\$25 FIII		7,02	12	84,24	324,3	7,52	12	90,24	3474	8,02	12	36,24	370,5	8,52	12	102,24	393.6
2		O APMO A CCA		-			324,3				347,4				370,5			1,02,27	393, 6
0		CETO CTYP				-	379,3				404,6				429,8				
v	1	\$28AII	4.83	7,02	12	84,24	406,9	7,52	12	90,24		0.00	-						455,5
2		O apmo	TYPH	,,,,,	لــــــــــــــــــــــــــــــــــــــ		406,9	-,,,,,,,,	<u>'</u> 2	30,24		8,02	12	96,24	464,8	8,52	12	102,24	493,8
2		CETT									435,9	-			4548	-		-	493,8
		1QTYP		<u> </u>			461,9	_		_	493,1			-	524,1	_		-	555,7

ΠΡυΜεναμυε Ραδοτατь совместно с листом н62


TIMET	PAHEITPL	<u>PAHEÄAPTHORA</u> DEKT-STEHFUR	TPOTPAHEN	10CT
COOPHOIX THE PROPETAMU AC MORMANONI MO	0 13 M NOA H DNEU ANA N	PKU) DHHHIT MOCTOB KENESHSHO JOPOIS PUMEHEHUN B MATUYECKOÙ 30HE		
Нач.отд.тип.пр.			Шифр 1338	TUCT
Гл. инэк.проект Рук. Группы		У ШУЛЬМИК В Комарова	1971 KOTUP. 500	M -
	- C	3 nomaposa		6.3

Объемы работ Наименование UBM KONUY 1.9 5 & MOH Knacca A-II m 0.25 ADMO-Knacca A.I m 0.05 mypa Umozo 177 0.30 3. 3aksiadhbie yacmu 002 BEG BAOKG 4.8

PDUMEYOHUA:

Закладная часть м2 M1:10

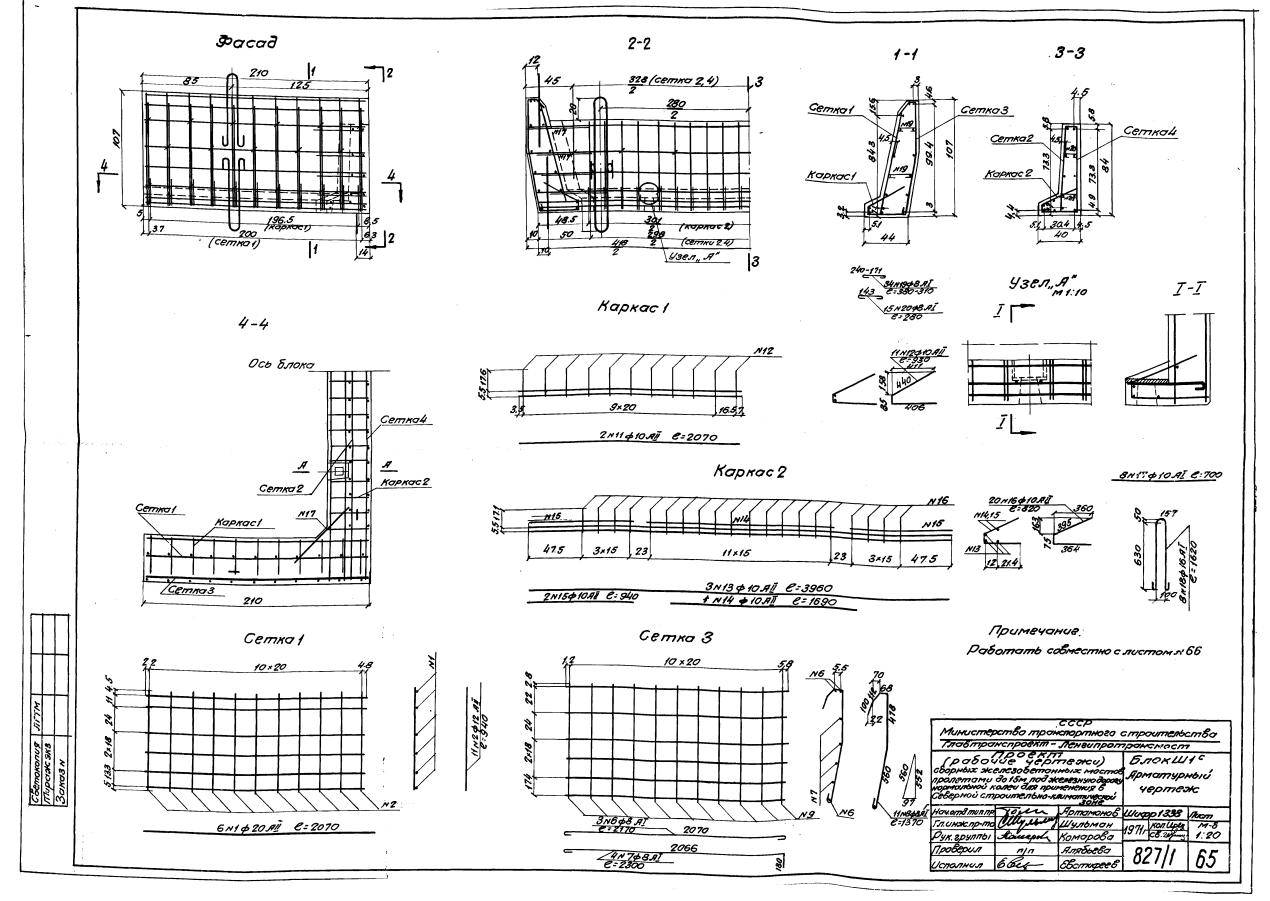
d=10 106070 60 200 Деталь приварки анкера Металл закладных частей

N 30KIL 110. 40CIL	~	M Vlaumenoba	Ceyeyue	Asiuria	K-50	880			
	/70 3 .	NUE	UNU JUOMBY			lwm	Οδυμυύ		
1	=		MM	MM	wr	K3_	SN		
	1	Πργδκα	d = 3.5	160	2	0.42	0,04		
	2	Стержень	\$12.A!	250	2	0,22	0,44		
1	3	Κοροδκα	_		1	1,15	1,15		
	um	того на закладную часть							
	Uma	ого на Бл	70× (4.	34110	34. 4	acmu)	8,72		
2 3	4	Sucm	160×10	200	1	2,51	2.51		
	5	AHKED				0,40	0,80		
	Um	3,31							
	Um	020 Ha 81	OK /2.	BUKRO	OH.	(yamu)	6,62		

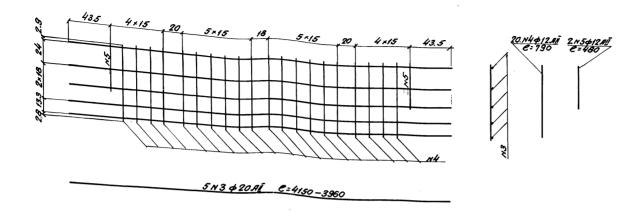
Всего металла закладн частей на блок 16,3

1. БлокШ1 сикасочой блок устоя под пролетное строение дли-

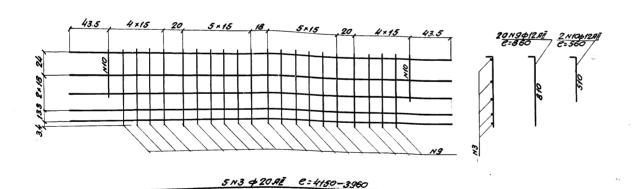
210


2. Бетон марки 300 Мрз 300 по ГОСТ 5058-65, анкеров-столь класса Я-І марки ВСтЗсл2 no FOCT 380-71

Петли внизу блока ставятся при изготовлении блока в пере-

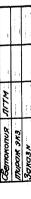

вернутом положении и должны быть срезаны на заводе. 4. Пребования к материалам и технологии изготовления приведены в пояснительной записке.

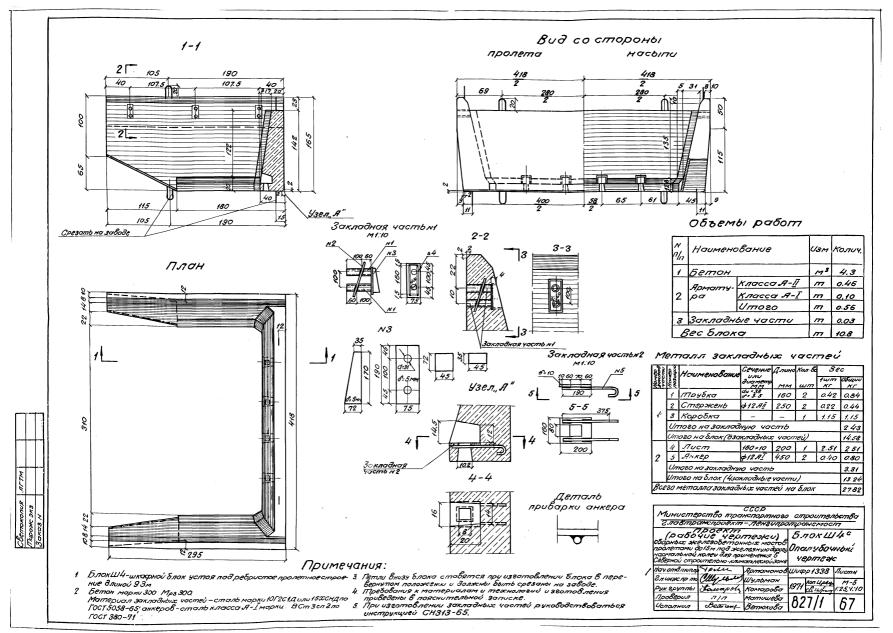
Μαπερυαλ 3οκλοθήου γαςπεύ-ςπαλο μαρκυ 10/20/μυλυ 15ΧΟΗΑ 5. Πρυ υ38οποβλεήου 3ακλαθήου ναςπεύ ργκοβοθοπίδο. βαπός νης συκαμεύ CH313-65.

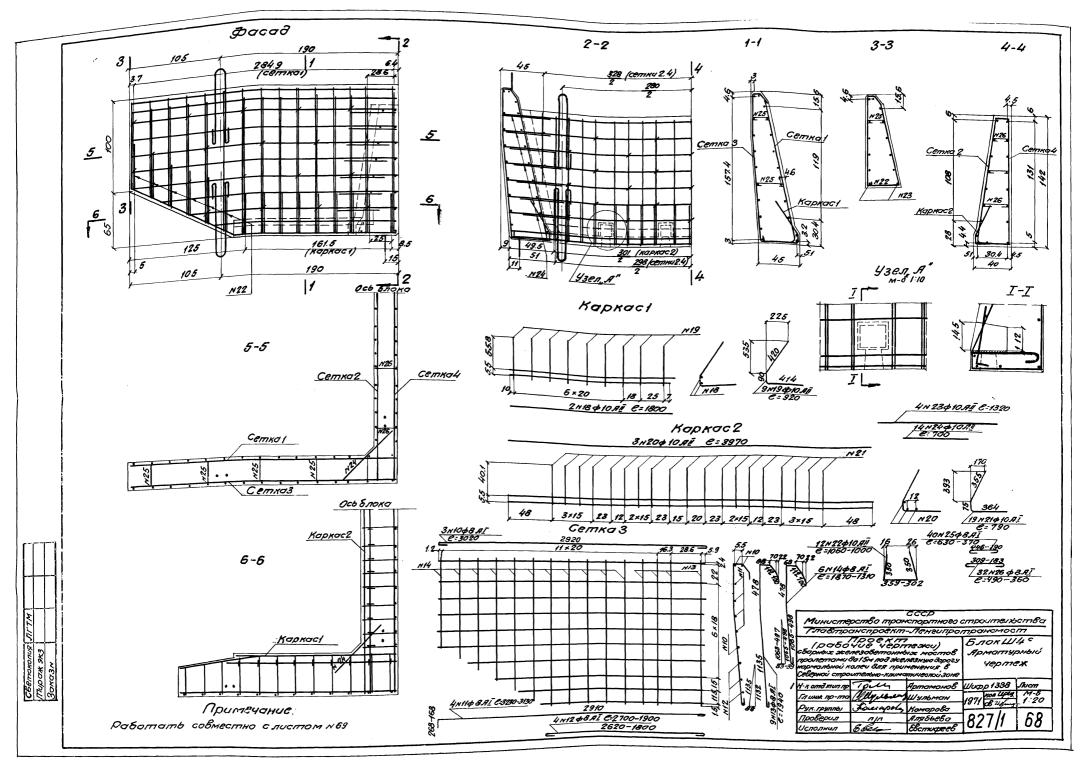

Министерство транспортного строительство Главтранспроект-Ленгипротрансмост THE CANCEL AND THE SECOND TO SECOND TO SECOND THE SECON BAOKILI1€ 480mesto Hay.ord run.np TOME PROMOMOBULUODO 1338 JUST TILUHOK. NO-70 Dyk 2pynnbi Комарово Проверил A11986860 UCHONHUN BeiGIORIJ-BETTINOBO

Cemka 2

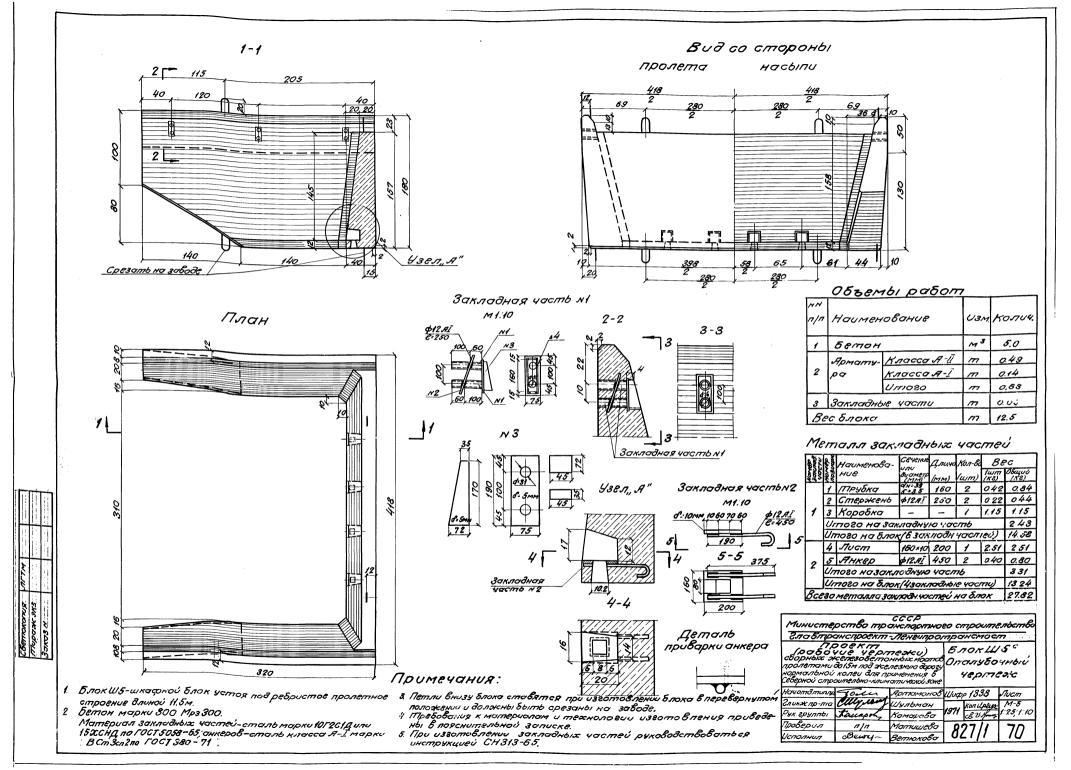
Cemka 4

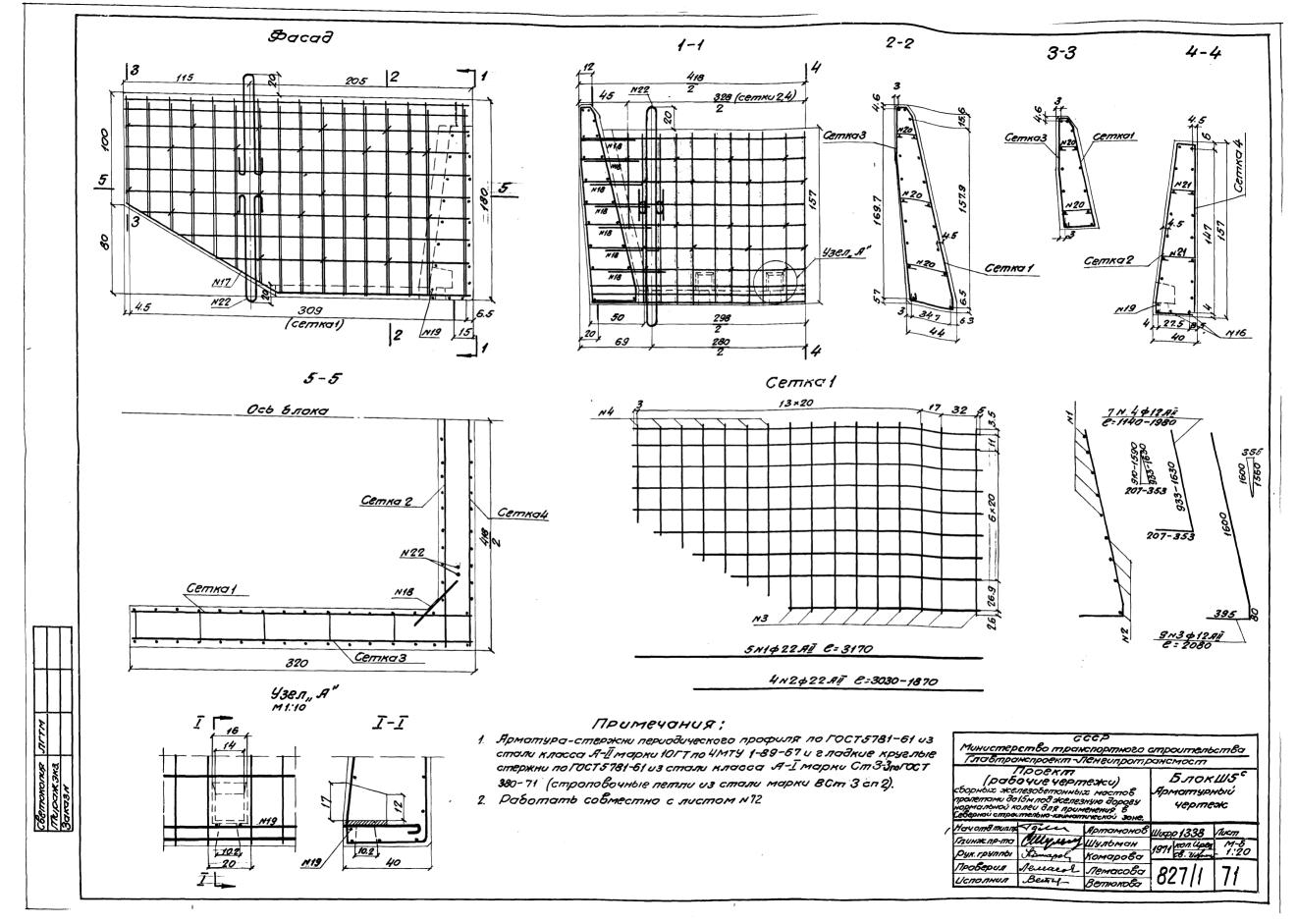

Примечания:

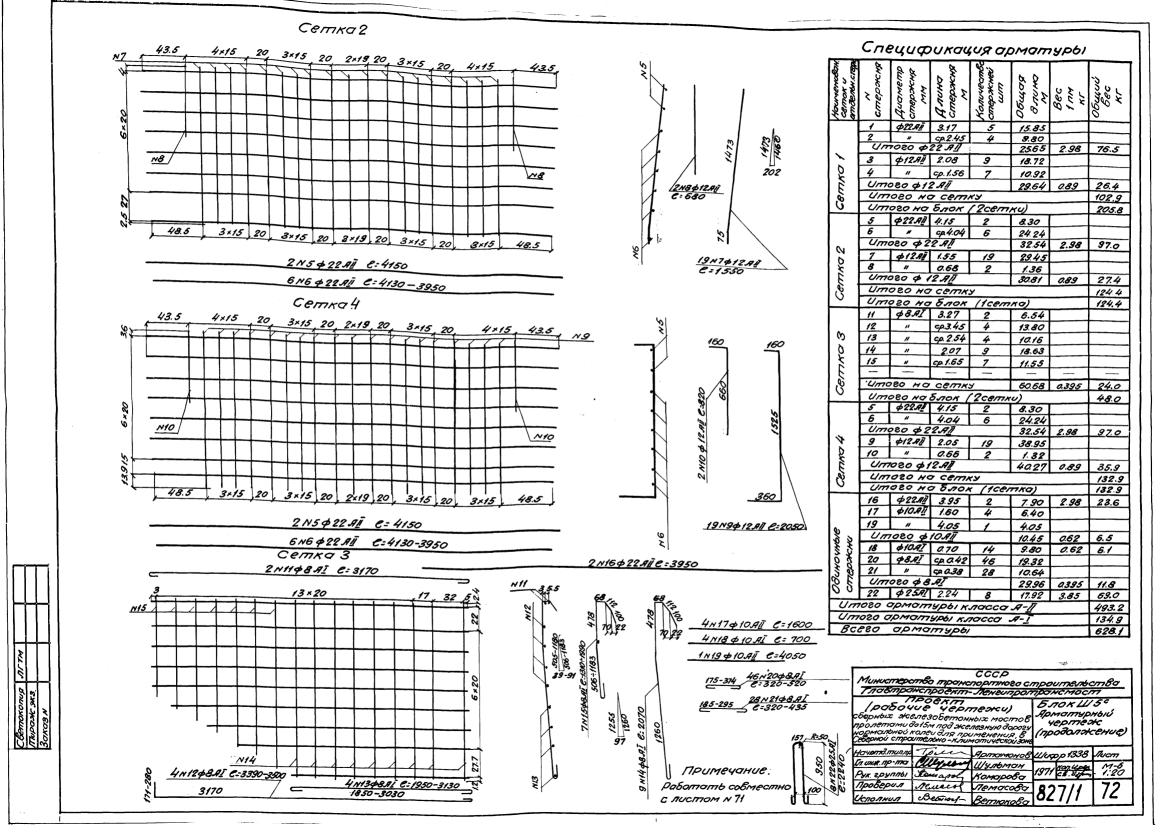

- 1. Ярматура-стержени периодического профиля по ГОСТ 5781-61из стали класса А- \overline{L} марки 10ГТ по 4МТУ 1-89-67 и гладкие круглые стержени по ГОСТ 5781-61из стали класса А- \overline{L} марки Ст.3-3m ГОСТ 380-71 (строповочные петли из стали марки \mathcal{E} /8Ст 3Сп \mathcal{E}).
- 2. Работать совтестно с листом н 65.

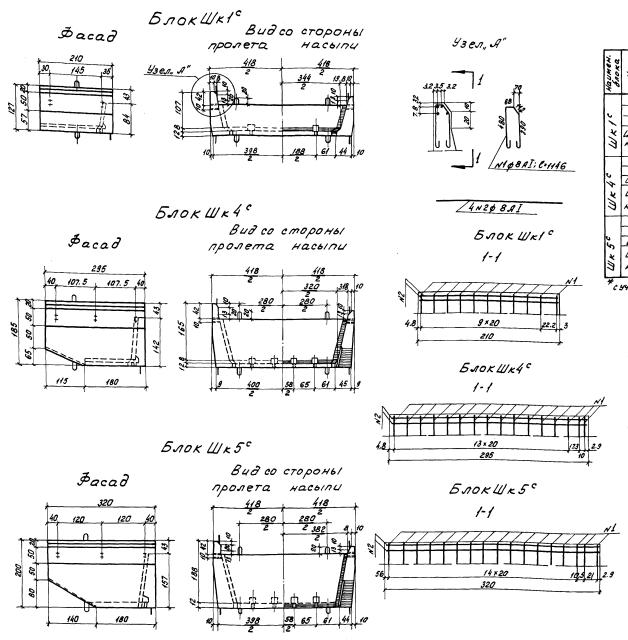

Спецификация арматуры

Ноименова- ние	кнжаэшэ к	Диометр стержия чи	Длино спержия м	Количество стержней шт	ы Билмо Ботдо	Bec Inm Ke	sec pomago
/	1	ф20A[i	2.07	6	12.42	2,47	30.7
5	2	#12AI	0.94		10.34	0.89	9.2
Cemro1	Umo	eo Haice	PITIKY				39.9
હ	Umo		MOK (2	сетки	<u> </u>		79.8
	3		lep:4.06	5	20.30	2.47	50.1
0	4	\$ 12 AU	0.79	20	15.80		
0	5		0.48	_ 2	0.96		
		080 \$1			16.76	0.89	14.9
Сетко 2			CEMKY		ــــــــــــــــــــــــــــــــــــــ		65.0
\sim		080 HQ		1cemn			65.0
m	6	ф8Я[2.17	3	6.51		
8	8	"	1.37	4	9.20		<u> </u>
*		<i>"</i>			15.07		10.0
Сеткоз			CEMIKS		30.78	0.395	12.2
<u>V</u>		280 HO		(2cem			24.4
	3		lcp=4.06	5	20.30	2.47	50.1
4	9	φ12.NI	0.86	20	17.20		
5	10	280 \$ 1			1.12	0.89	16,3
ì			GEMKS		10.02	0.03	66.4
Сетко 4					1		
		20 HO					66.4
5	11	\$10A]]	2.07 0.93	11	10.23		
5							
Каркасі			KOPKO		14.37	0.62	8.9
*			ENOK		raca)		17.8
٠. ا	13	\$ 10A[3.96 1.89	3	11.88 1.63		
3	15	"	0.94	2	1.88		
Õ	16	1	0.82	20	1640		
Коркос 2	Um	020 H	T KOPA	roc	31.85	0,62	19.8
8.	Um	OSO H	a 5101	s (1Ka	OKOC)		19.8
	17	\$10AII	0.70	8	5.60	0.52	3.5
2	18	\$16 A!	1.62	8	12.96	1.58	20.5
стерански Стерански	19	\$8A!	lcp:0.35	28	9.80		
стерансии	20	"	0.28	18	5.04		
2 0	Umo	080 \$ B	3 A T		14.84	0.395	5.9
Um	080	армаг	TTYP61 I	YNGCC	7 A - <u>1</u> Ī		248.8
Umo	780 C	рмат	YP61 K.	nacca	A- <u>Ī</u>		54.3
Bo	e20	apm	amype	51			303.1

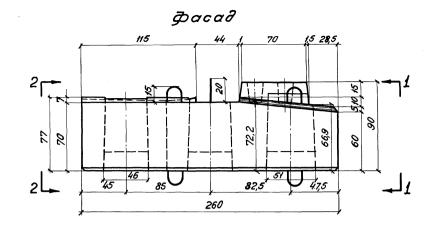

1 Adompo	THENPOCKIN	-Ленгипроп	POHCMOC	יחי
(P 0 8 0 C 6 0 PH bl. x ok N D 0 N B N B N B N B N B N B N B N B N B N	17 P O E K M 4 U E 4 E P C E M E S O S E M O S O S 80 16 M M O S O S O S KONEU BN R M	77 177 <i>63</i> 4cu) 1844bii: Mocmob 187634410 800024	Блок Ярмат Черте	UII ° ADHONÍ SOK
Нач <i>ат</i> атип.пр		Яртамонов	Шифр 1338	3 Nucm
	1/1/14	Шульман	Von Un	e M-5
л.инж.пр-та	100. // - /	7 30,07,07	1000	
<u>линж.пр-та</u> Рук. г руппы	Kouropol	Комарова	1971 CB. 4	1:20
Глинж.пр-та Рук.группы Проверил	Souropol	Номарова Алявьева		66

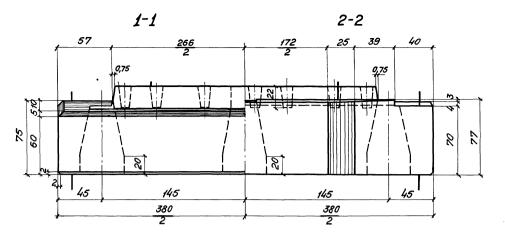




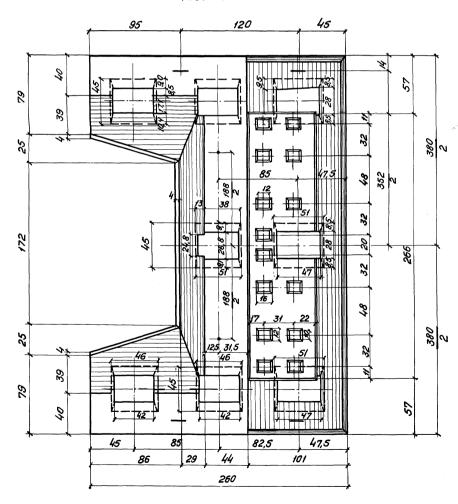


Спецификация арматуры


				,	,		
жней					Bec		
				длина	10M	Bec	Set.
C)	MM	M	ωm	M	KZ	KE	M
1	\$8A[1.15	11	12.65			
2	*	2.06	4	8.24			_
110	20 ø 8.	AÏ		20.89	0.395	8.3	
moi	20	армат	ypa A	класса	A- I	245.8	2.0
a di	NOK *	армат.	ypa 1	62.6			
		Beezo	арма	74961		311.4	ĺ
	\$8AI	1.15	16	18.40			
2	"	2.81	4	11.64			
mos	20 Ø8.	ΑĪ		30.04	0.395	11.9	١.
mai	20	армат	ypa A	LAQCEQ	A - <u>I</u>	456.0	4.4.
	.	арматура класса А-1				116.6	Ì
20	VIUX	Всего арматуры					
1.	\$8 A I	1.15	17	19.55			
2	"	3.16	4	12.64			
Imo	20 \$ 8	3 A I		32.19	0.395	12.7	5.1
			ypa	класса	A- Ī	493.2	3.7
		QPMQT5	ipa K	nacca	A-I	147.6	
	JIUK	10		aTYP61		640.8	
	1 2 1/100 a d. 1 2 1/mo	MM φ8 A 2	MM M M	MM	MM	MM	\$\frac{\psi}{MM} \text{M} \text{WM} \text{M} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM} \text{MM}

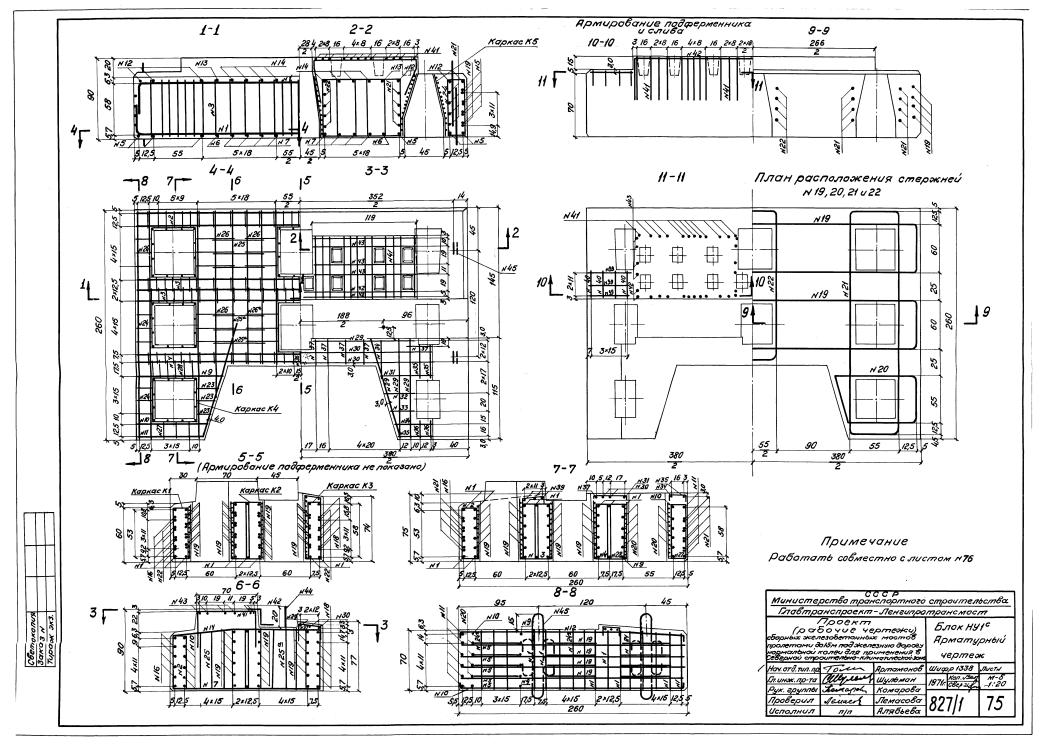

*сучетом остальной арматуры блока.

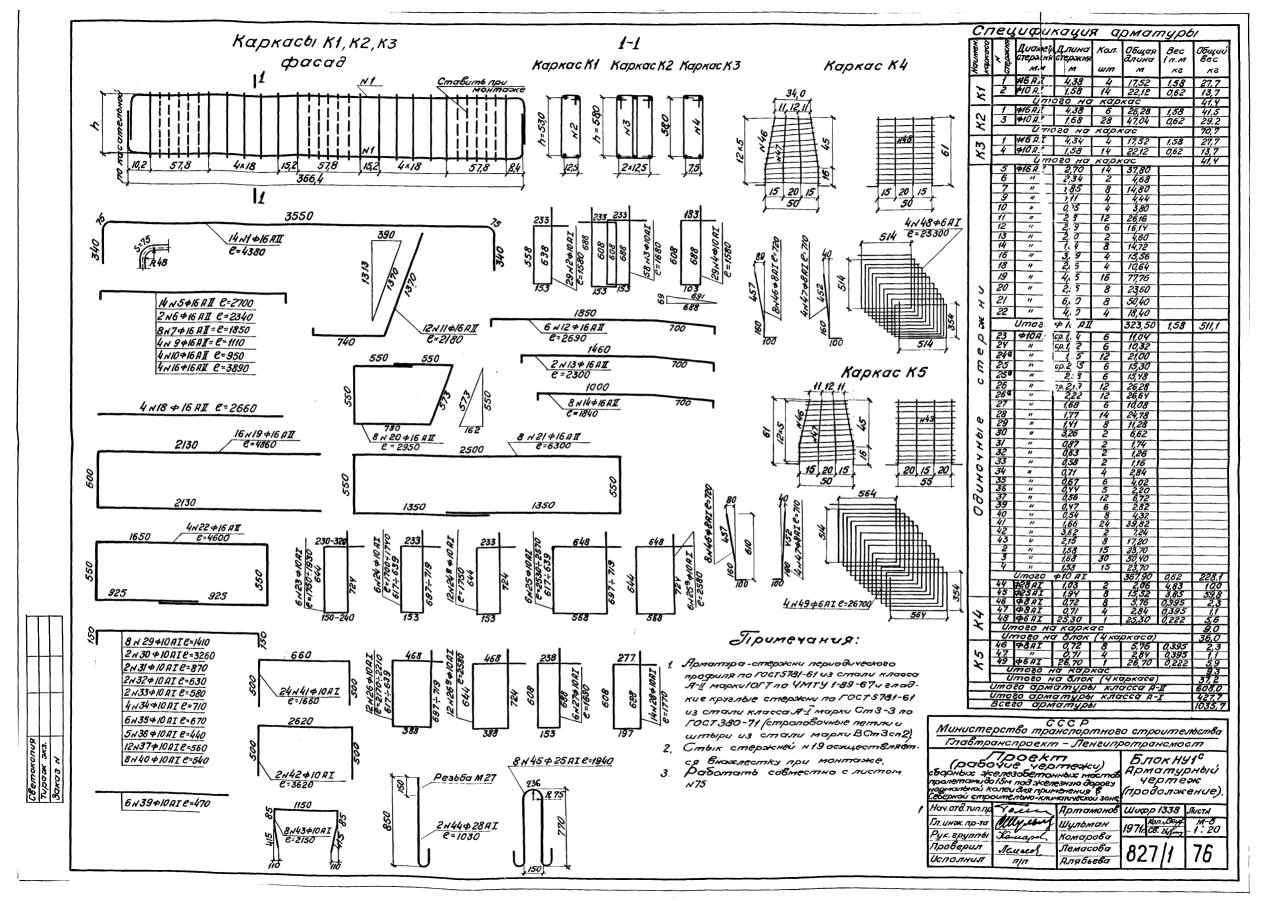
Примечания:

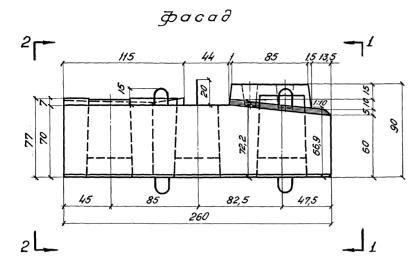

- 1. Шкарные блоки Шк l^c Шк l^c и Шк l^c применянотея при соорижений мостов на кривых
 радичсами от 300 до 3000м.
 2. На чертеже приведена армирование повышенного боргика блоков Шк l^c Шк l^c и Шк l^c остальное армирование аналогично армированию блоков Ш l^c , Ш l^c и Ш l^c 2. Повышенный бортик истраивается только
 с внешней стороны кривой.
 4. Радотать совместно с листами N64-72

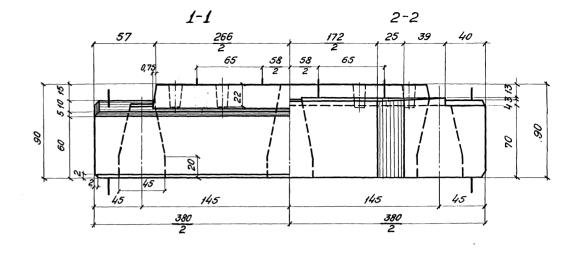
SUUHUCTEPCTBO TPAHCNOPTHOEO CTPOUTENGCTBO
ENABTPOANENPOENT-NEWEUNPOTPAHCMOCT
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YEPTHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE YETHE SKU)
(PAGOVUE Нач. отд.тип.пр Подп. Артамонов WHER 1338 SHET N 1971 Kon. Madn PA. NHOJE. NO-TA WYAGMOH Комарова Pyk zounner Проверил Авдохин Исполнил Ветнокова _,_

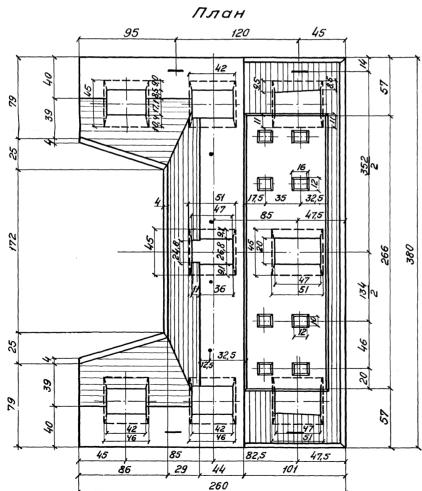
План

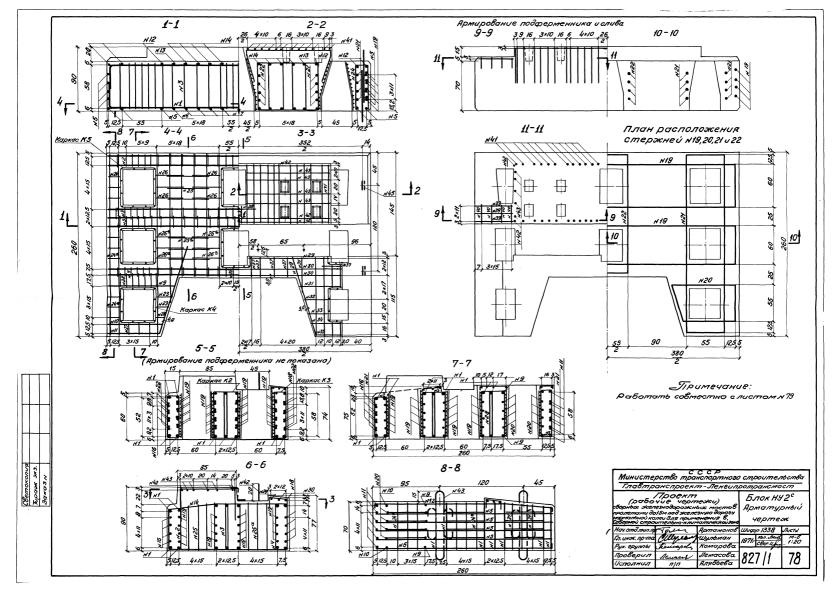


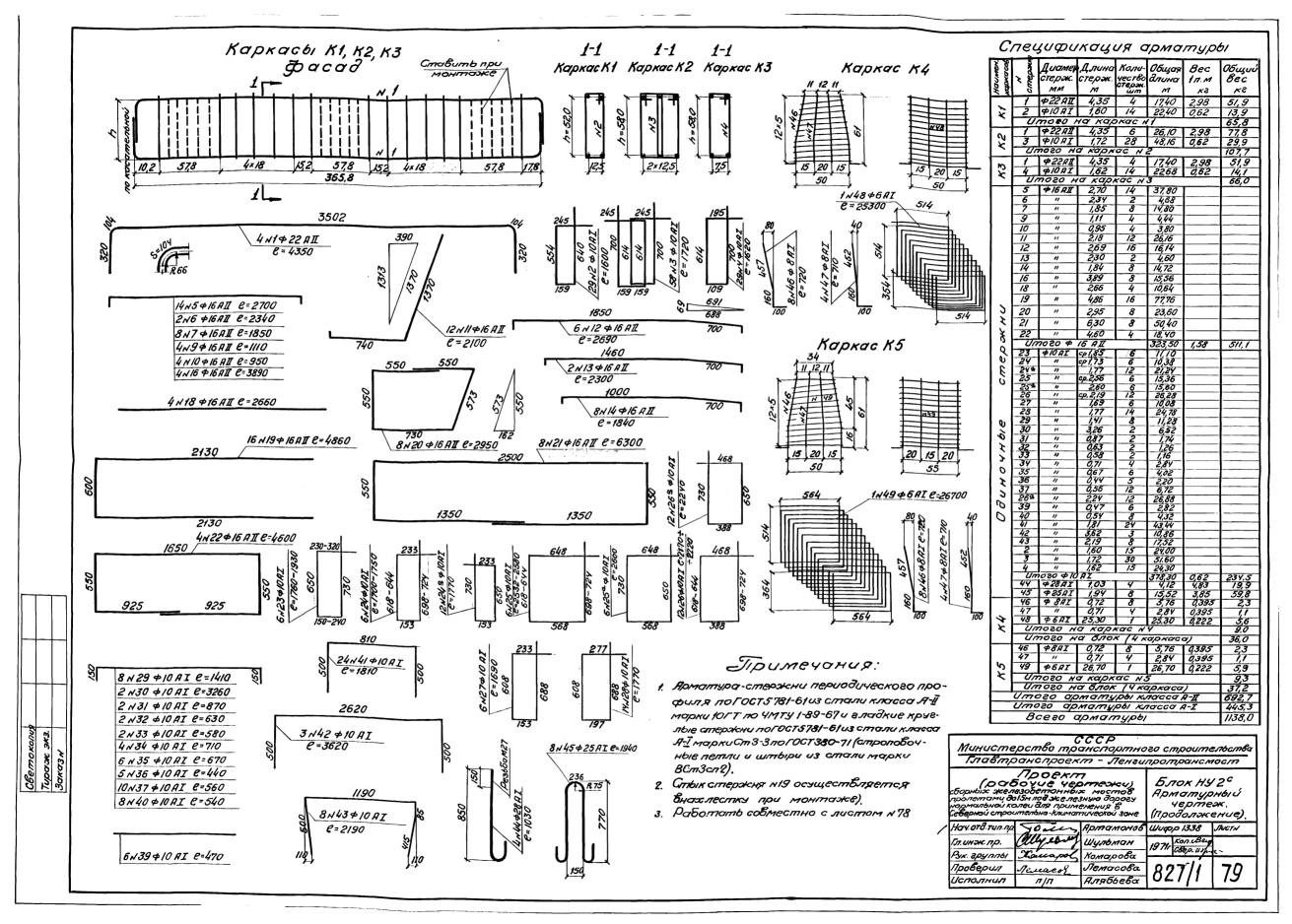

Объемы работ

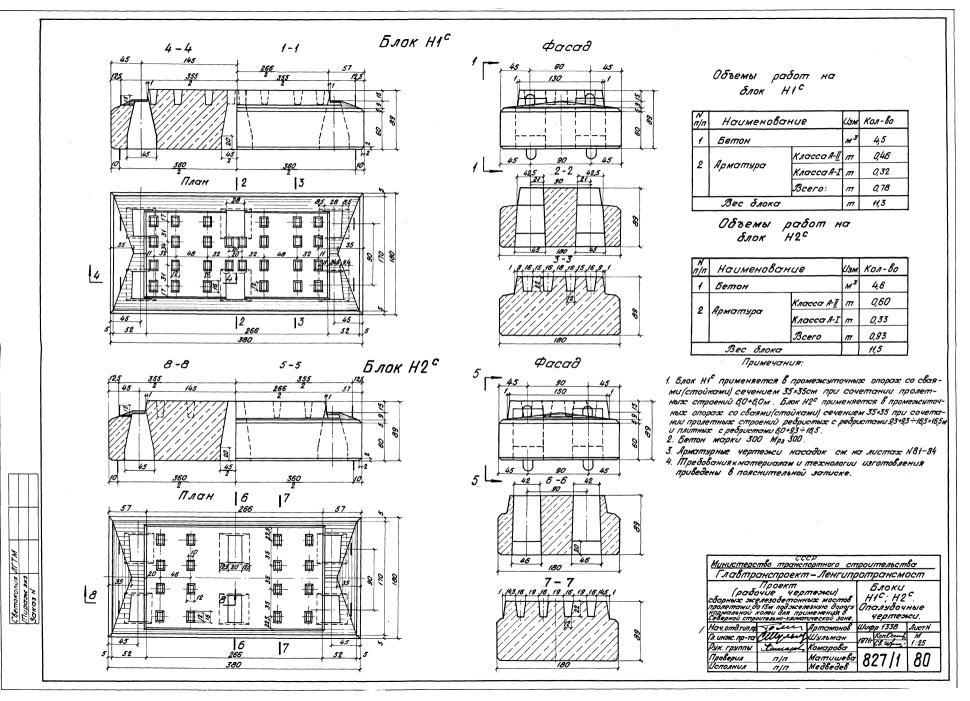

Nn/n	Наименование		Изм	Кол.
1	Бетон	пон		5,1
	_	Класса А-ІІ	m	0,61
2	Арматура	класса А-І	m	0,43
		Bcea0	m	1,04
	Вес блока		m	12,8

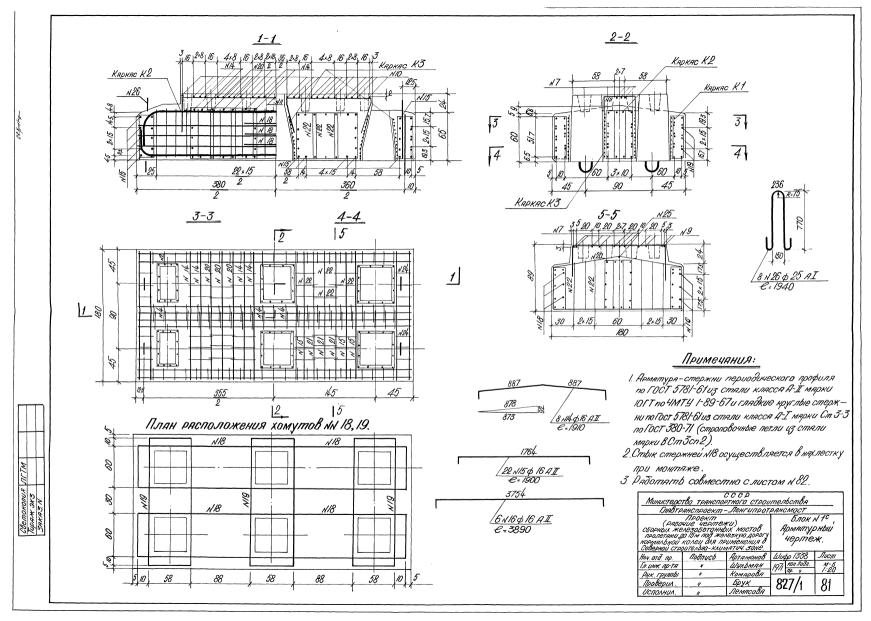

- Примечания: 1. Блок НУ1° применяется в устоях со сваями (стойками) сечением 35 × 35 см под пролетные строения длиной 6,0 м.
- 2. Бетон марки 300 Мрз 300.
- 3. Петли внизу блока ставятся при изготовлении блока в перевернутом положении.
- 4. Пребования к материалам и технологии изготовления приведены в пояснительной 3dnucke.


		ССР Испортного Ит- Ленго		
(Рабо Сборных эке пропетами до нормальной і	15м под желе Колеч для про	neoku) bix mocmob sanyo dopozy umenenua b	Блок Н8 Опалубо черте	44610
Себерной стр	OUTEJ16H0-KJU	MOTUYECKOÙ JOHE	1	
Себерной стр Нач. отд. тип.пр.			}	SUCTN
	Tour		Wugop 1338	SWETN M-C
Нач. отд. тип.пр.	duyen	<i>Артамонов</i>	Wuqop 1338 1971r. Chap. Well.	Mark
Нач. отд. тип.пр. Гл. инэк. пр-та	duyen	Яртамонов Шульман	Wugop 1338	Mark

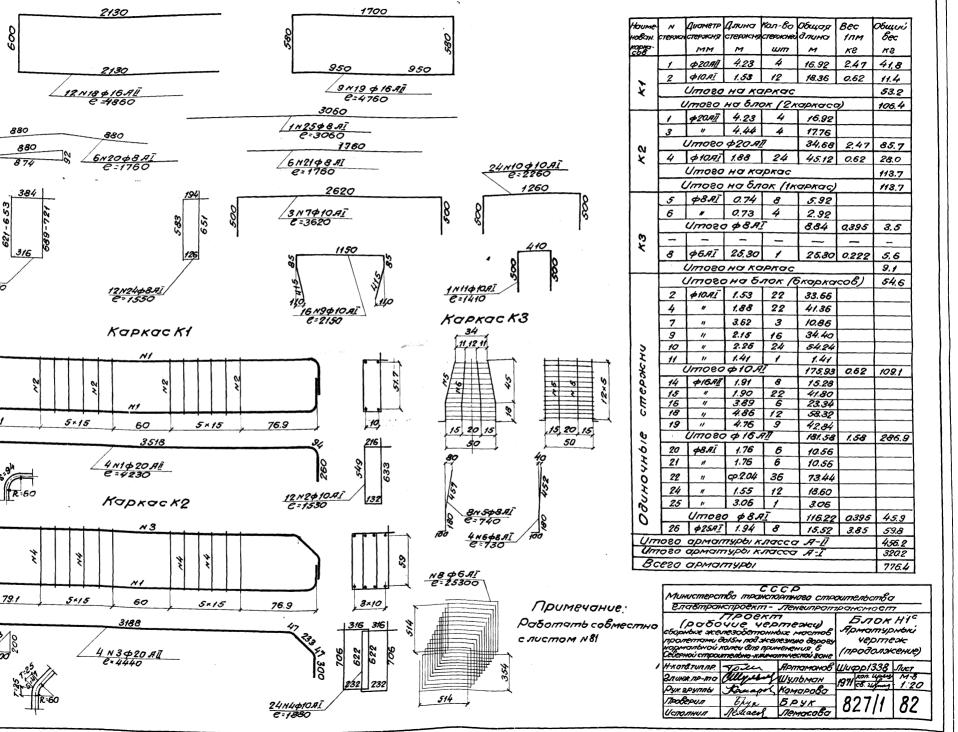

Объемы работ


N	Наименование		Изм.	Кол.	
1	Бетон	м ³	5,2		
2	7	Knacca A-II		m	0,69
~	Арматура	класса А-І	m	0,45	
		Bcezo	m	1,14	
	Вес блока		m	13,0	

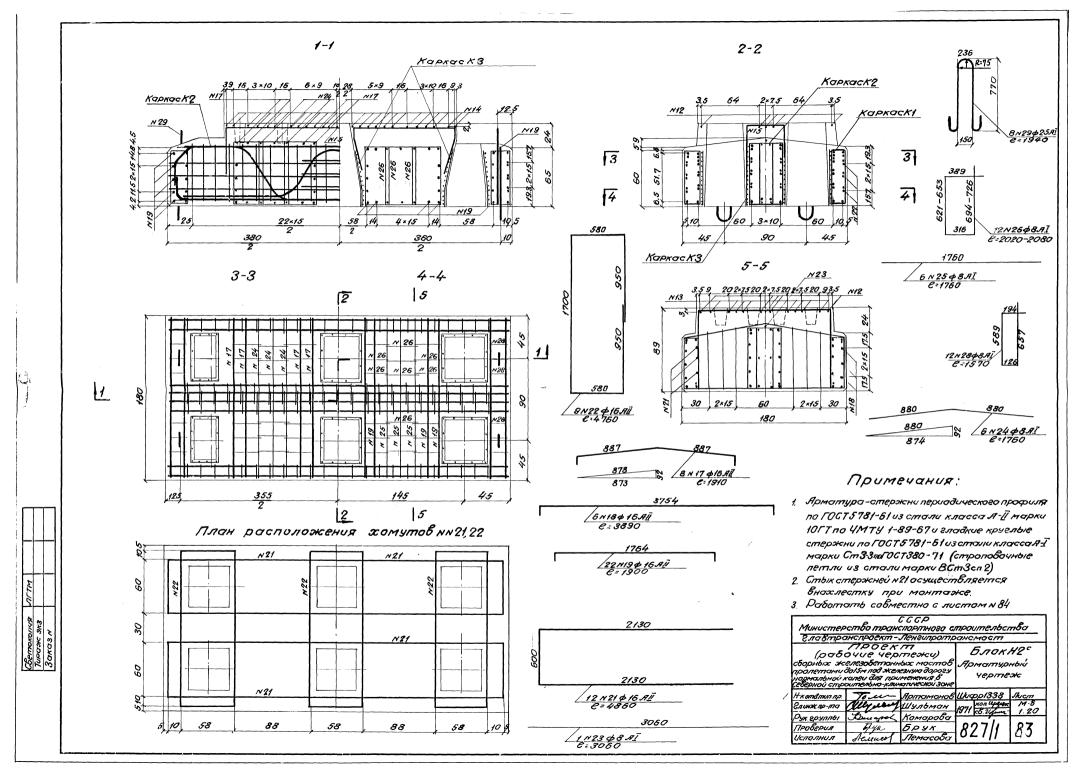

Примечания:

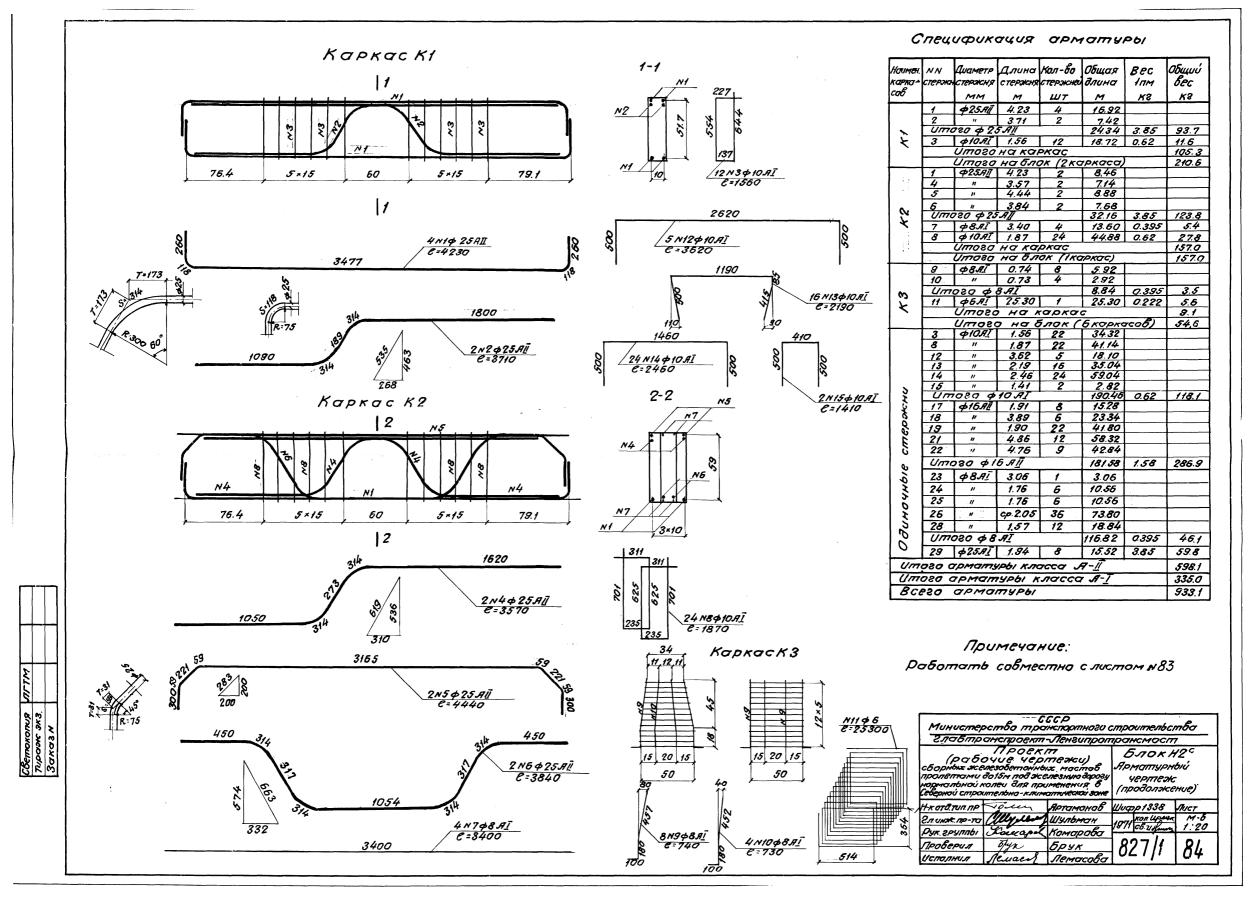

- 1. Блок $HY2^c$ применяется в устоях со сваями (стойхоми) сечением 35 × 35 см под пролетные страения длиной 9,3 и II,5м (ребристые).
- 2. Бетон марки 300 Мрз 300.
- 3. Петли внизу блока ставятся при изготовлении блокав перевернутом положении.
- 4. Пребования к материалам и технологии изготовления приведены в пояснительной записке.

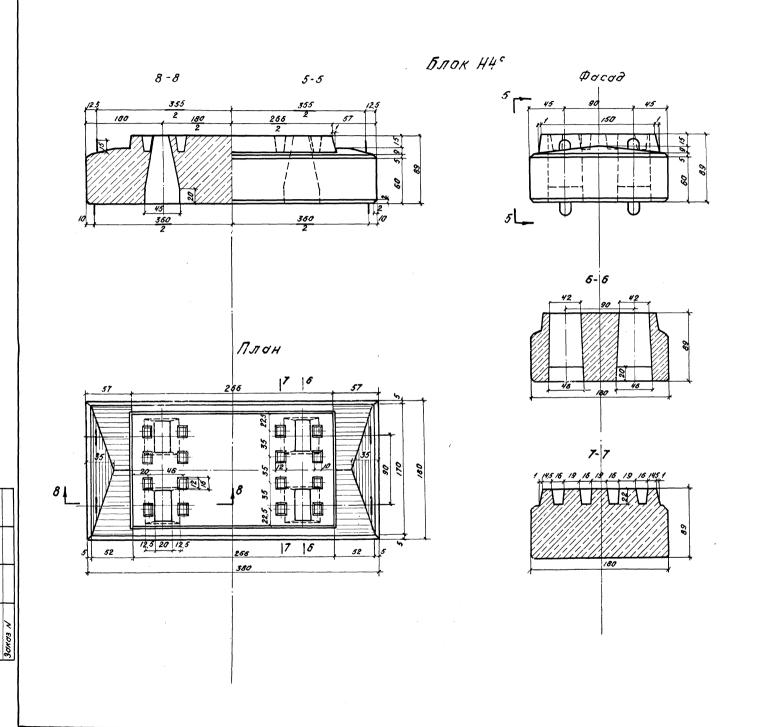
Министер	ocmbo m	00.	С Р . 10ртного	o cmpoume	nbeme
rnabmp	анспро	exir.	JEHEUN	оотрансмо	76/177
1000	TPOE	KM	s angul	5JOK!	4.420
(РОС Сборных же пролетами	BJB305en	70 M	/// conce //ö/ >C macmab :// ::33 HU/O	Опалуб	
PODOSY HODMO	INGHOU KO	view o	TV. N DDUMENEHU N YECKOÙ BOHE	yepme	? OHC
б Себерной Стро	ительно-к	MUMO	TO YECKOU BOHE		
	10LL			Wuqop 1338	JUCTN
	10.00	I		Wugop 1338	JUCTH M-8
Ηαν.στ∂.τυπ.πρ	Melye	إساء	Дитамонов	1971: Kon Bun 1971: Chep W.F.	JUCTH M-8
Нач.отд.тип.пр Гл.инэк. пр-та	Melye	رمده رمده	Дртамонов Шульман	1971. Kon Bun	JUCTH M-8



Спецификация арматуры

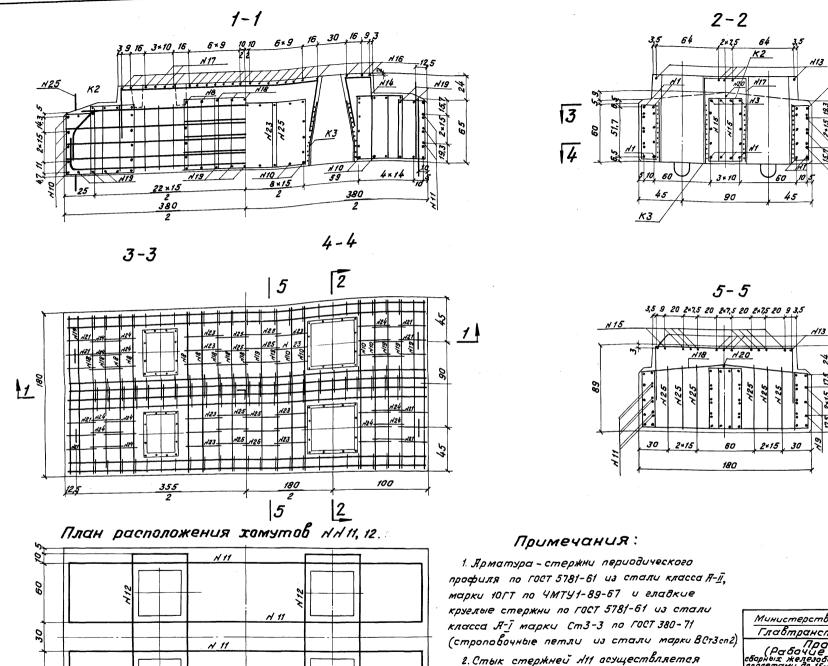

36 N2248AI


Светок Тираж Заказ 1


e=2010-2010

79.1

200


Οδ δεμοι ραδοπ HO δΛΟΚ H4°

N Vn	Houme	U3M.	Kon-80	
1	Бетон		M ⁵	4.9
		KACCCO A-II	m	0,36
2	Арматура	Knacca A-I	m	0,33
_	Breen		m	0.69
Bec STORD			m	12,2

PRUMBYCHUS:

- 1. Блок $H4^c$ применяетоя в промежуточных опорах типов 4^o , 4^o со стойками сечением 35x35cm при сочетании пролетных строений ребристых с ребристыми $93+93\div13.5+13.5$ м, плитных с ребристыми $60+93\div13.5$ м.
 - 2. Бетон марки 300 М рз 300
- з. Требавания к материалам и технологии изго-товления приведены в пояснительной записке
 - 4. Ярматурные чертежи приведены на листах н86,87

Trabmpar	COPOEKM	-Ленгипри	MOHOMOL	cm
NDONEMOMU EY KOPMONSH	où kaneu dik	ежи) ых мостов челезную дор применения пимотич, зоне	' vaam	044616
		I do more to to to	4111 1770	14
HOY OTO TUNIN	Tau	унриномонос	Wuqop 1338	NOC! N
Нач. 078. тип.п _{р.} 2л. инж. п.р.	1	Шульмон	1071 Kon.	N-61:2
<u> </u>	allyes	<u> </u>	19711 Chep. Way	N-61:2
гл. инж. пр.	allyes	Шульмон	1071 Kon.	N-61:2

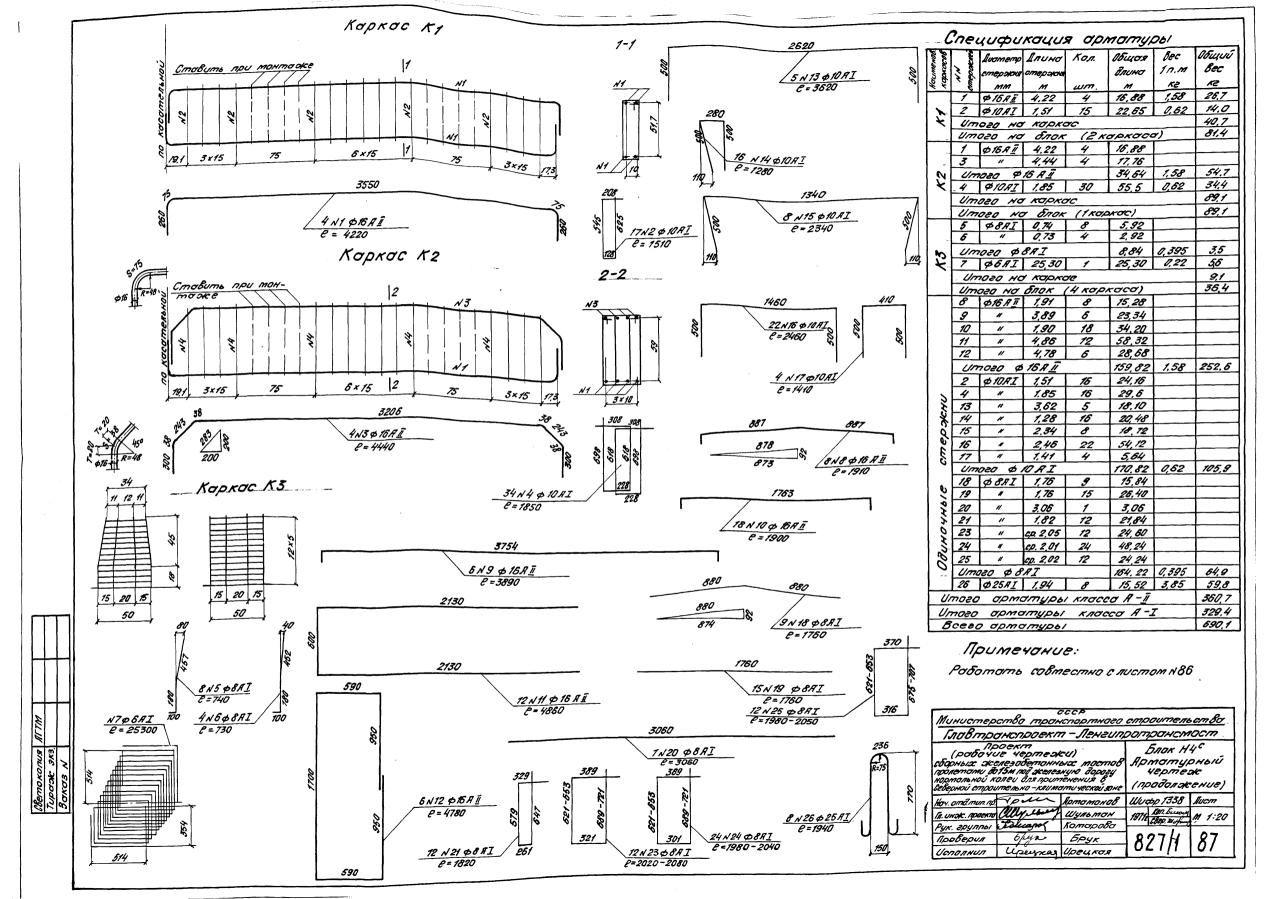
66

59

N11

120

66


59

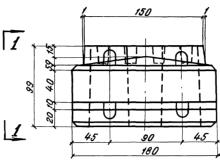
внажлестку при монтаже.

3. Работать совместно с листом 187

Министерство транспортного строительства Главтранспроект-Ленгипротрансмост ПРОЕКТ
(Рабочие черптежи)
сборных железобетонных мостов
пралетами до ібя под железную дорогу
нормальной калей для применения б
Себерной строительно-климатической зом Блак H4° Арматурный Полем Артаманов Шифр 1338 Лист Сирован Изльман 1971 Кольца м 1:20 / Hay.ara.tun.np. Pyk. rpynnbi Камарова Проверия **SPYK** UCHOSHUS REPURENT **Ирецкая**

чертеж

2-2

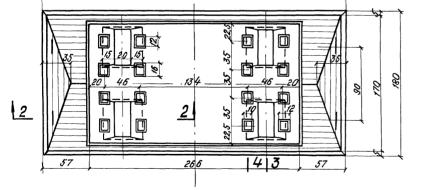

100

1-1

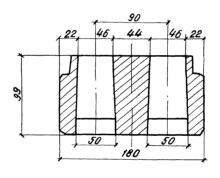
3

1

PACAA


AFRAMI DAFAT

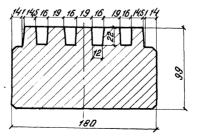
Наиме	U3 ME PUTENS	Konuvected	
Бетон		M3	4,9
	KNACCA A-II	7	0,34
2 APMCITYPA	KNACCA A-I	7	0,35
	8ce10	7	0,69
800	7	12,3	
	Бетон Ярматчра	Бетон Класса Н-II Ярматура класса Н-I	Бетон м ³ Класса Н-II т Класса Н-II т Всего т


ΠΠαΗ

380

1413

3-3


MDUMEYAHUA:

1. Блок 45^{c} применяется в промежуточных опорах типов 4^{4} , 4^{5} со стойками сечением 40*40cm под пролетные строения длиной $33\div16,5m$ 2. Бетон марки 300 Мрз 300.

3. Петли внизу блока ставятся при изготовлении ENORA 8 REPEBEPHYTOM ROMONCEHULL

4 Требования к материалам и технологии USFOTOBARHUR APUBEARHSI & MORCHUTEASHOU SQUUCKE 5. Арматурные чертежи приведены на листах 18990

4-4

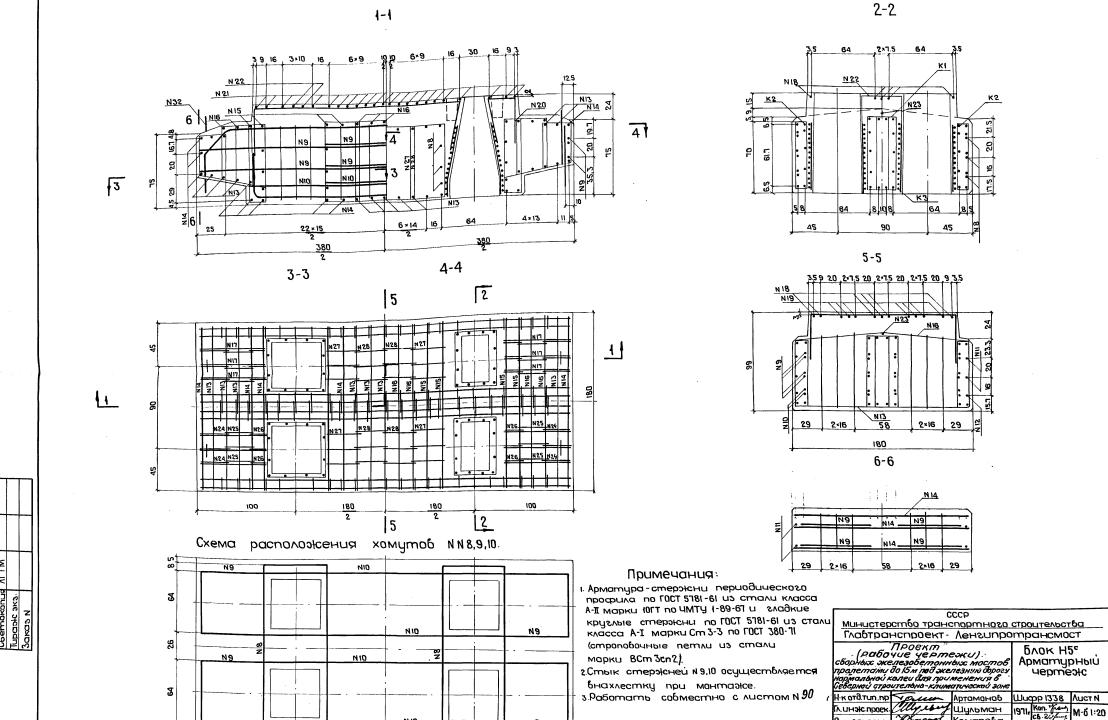
MUHUCTERCTBO TRANCHOPTHORO CTROUTENBETEC INABTPAHONPOEKT-STEHTUNPOTPAHOMOCT BAOK H5C

(PC 604UE VEPTECHCU) (PC 604UE VEPTECHCU) C60AH6IT XENESOSETAHH6IT MOCTOB RPOMETAHU AN 15M NOM THEMPERUS ROPMETAHU KINEY AND SHUMPERUS SM CEBERHOU CHOUTENS OF KINEY WATURENDS SM

ONDINSEOYHU 48PTESK Начога типпр Томи Артамонов Шифр 1338 Пист

IN. UHOH: MODERTO PELLY LENG WYNOM CH PYKOB. [PYTITAL Ranges Комарова Maprosa Проверил Исполнил upuras Upeukan

DNOK H5°


Устово Комарова

Маркова приход Ирецкая

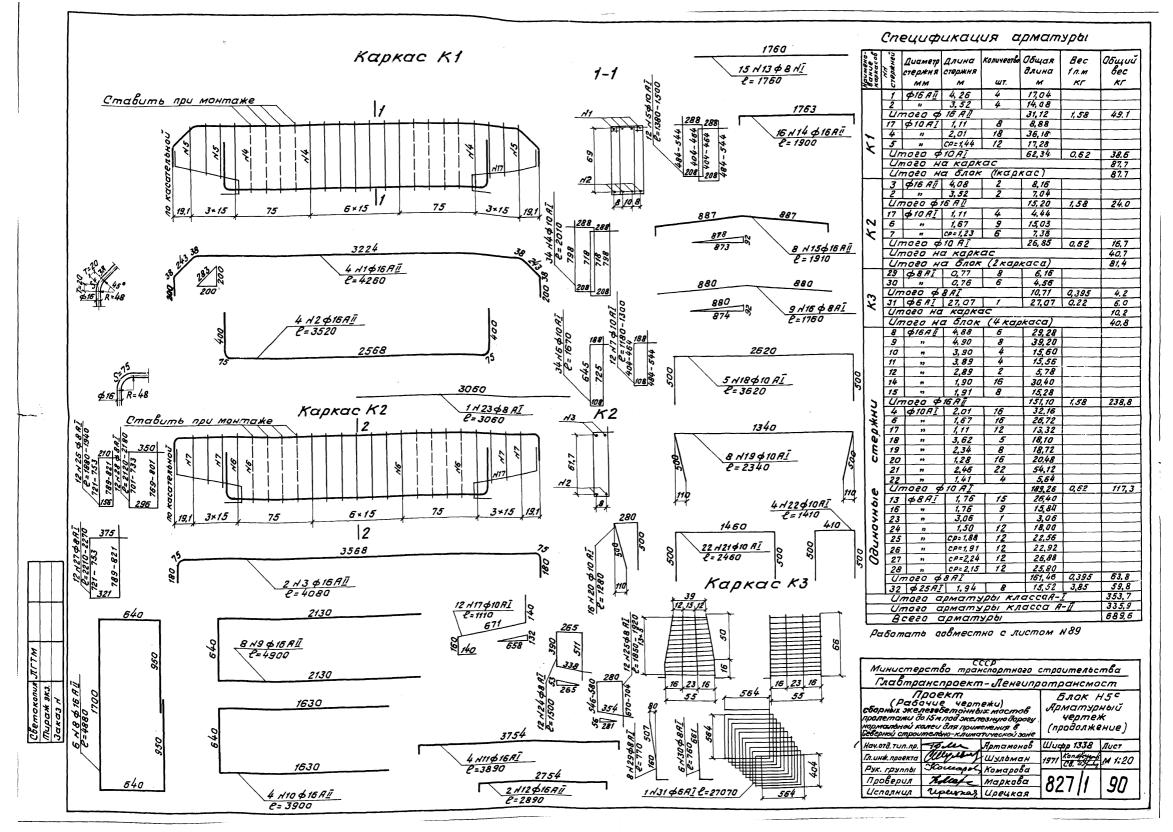
Рук. группы

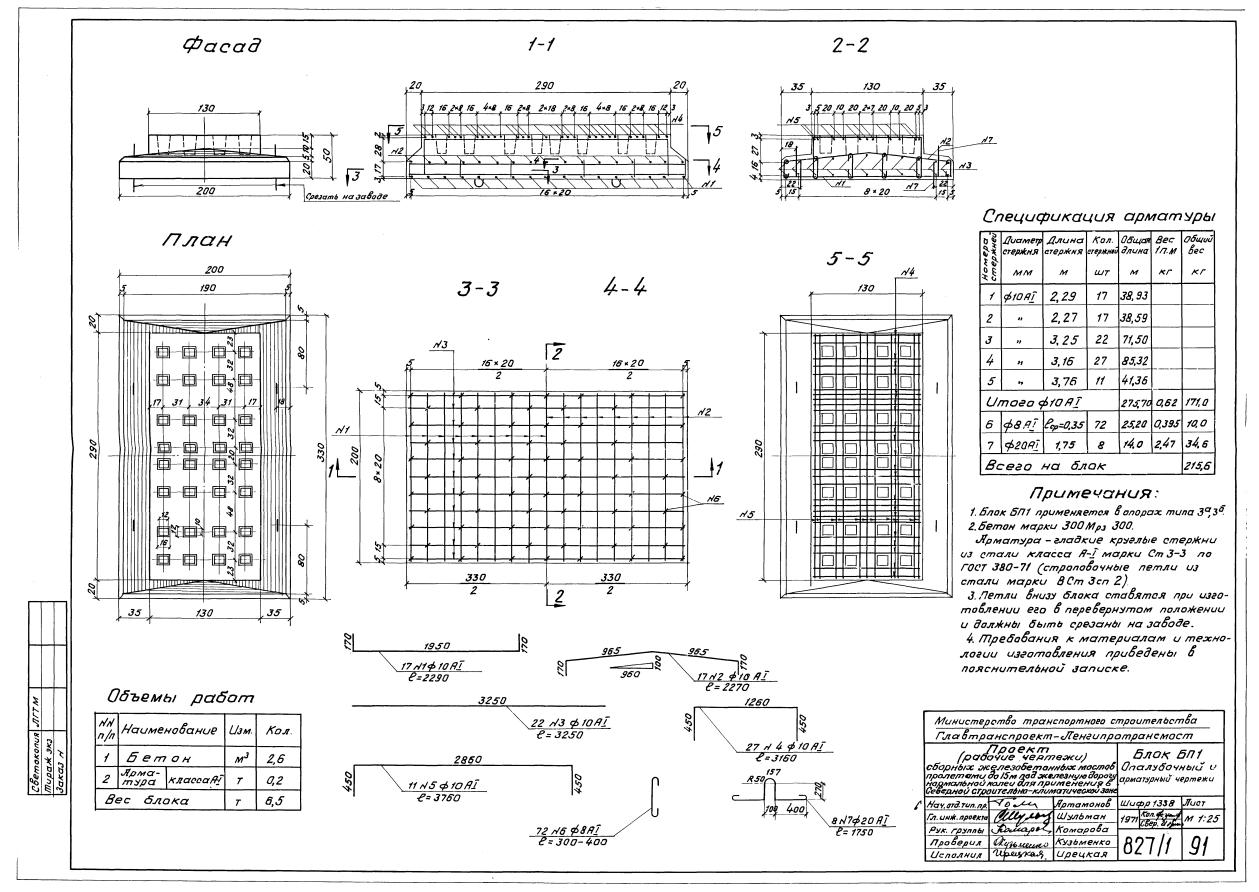
Проверил Исполнил Арматурный

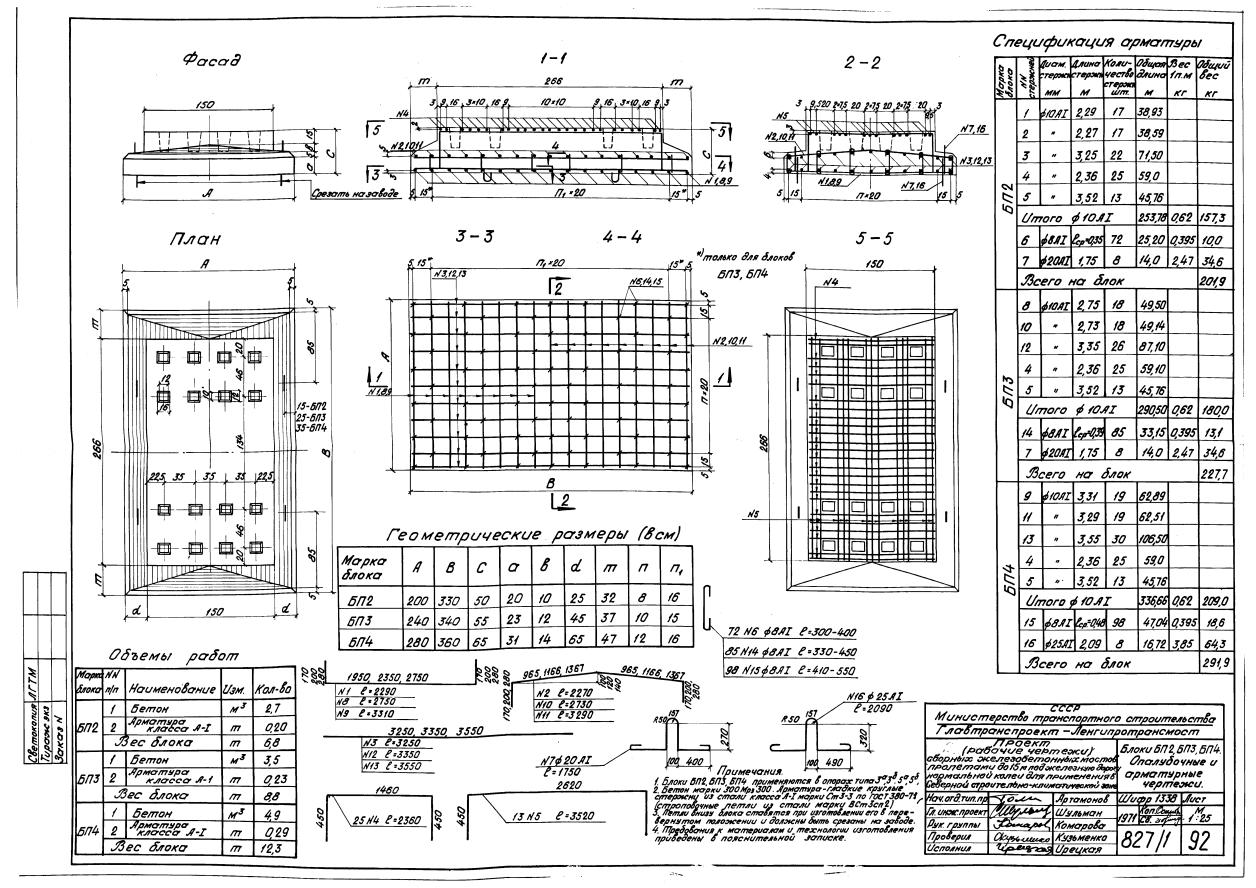
экэтаэч

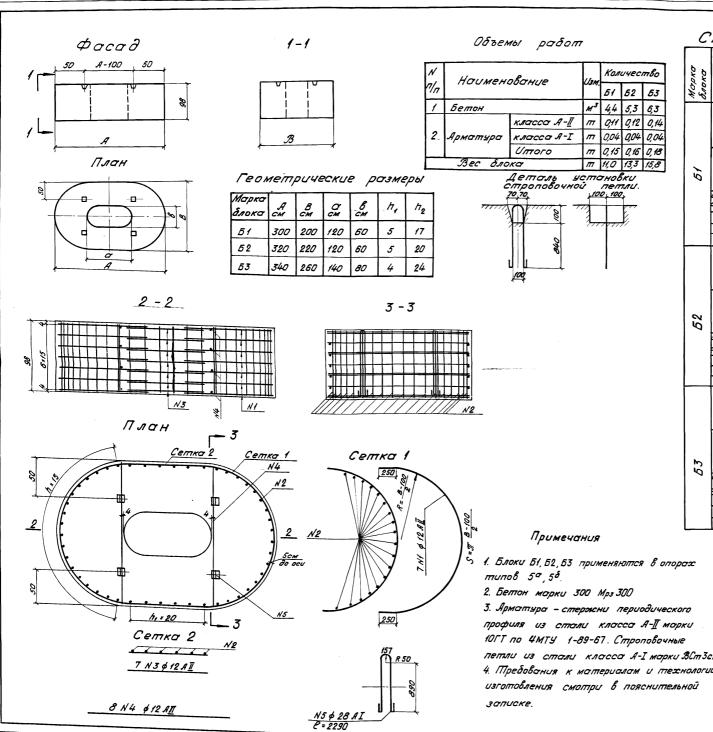
и9

63

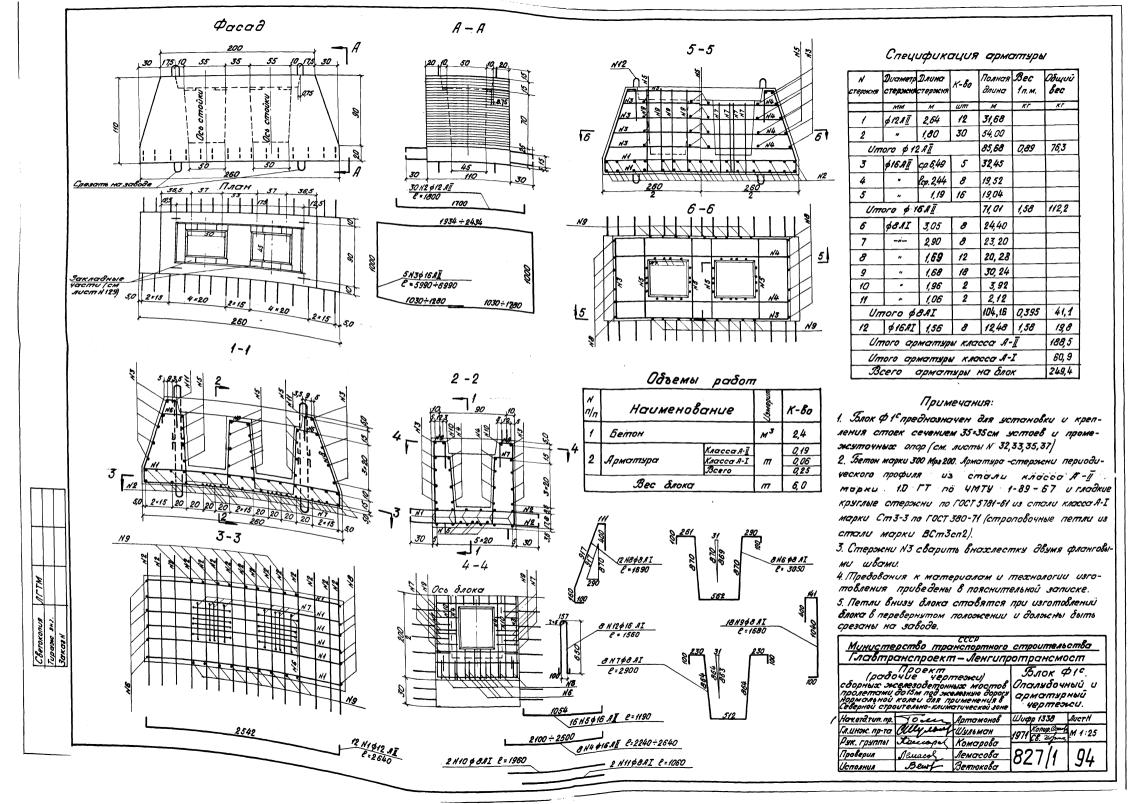

64

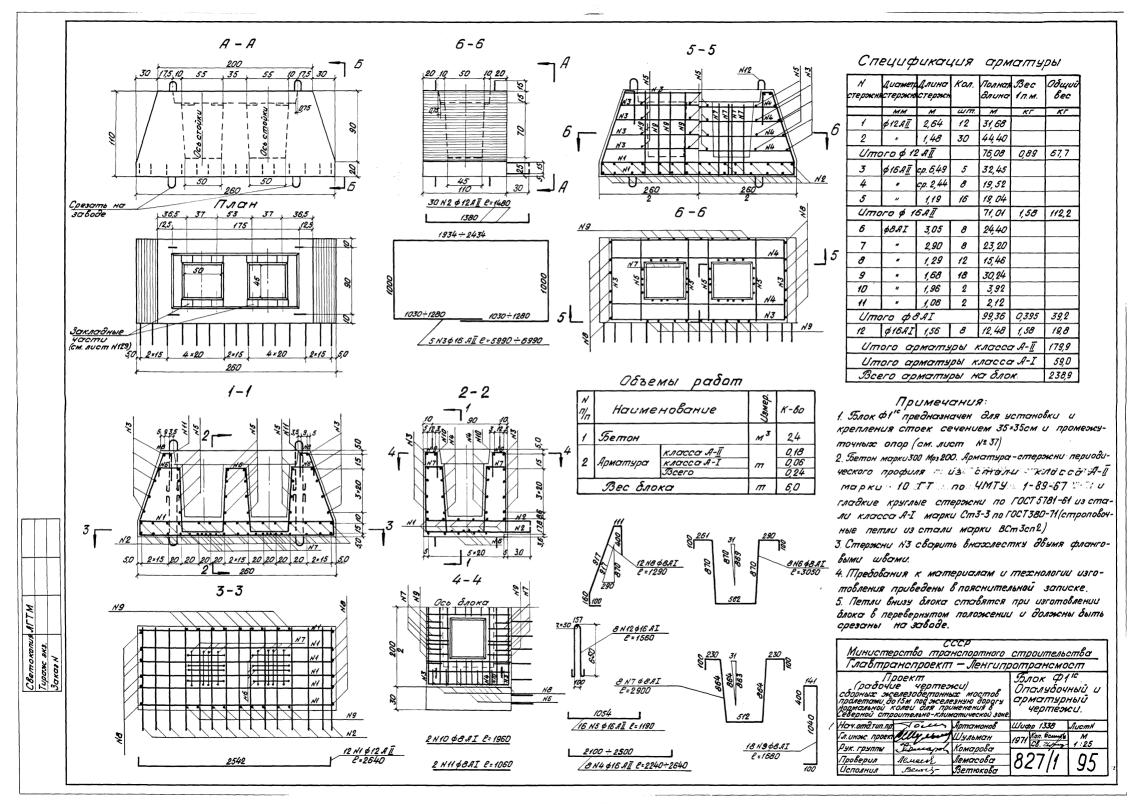

N 10

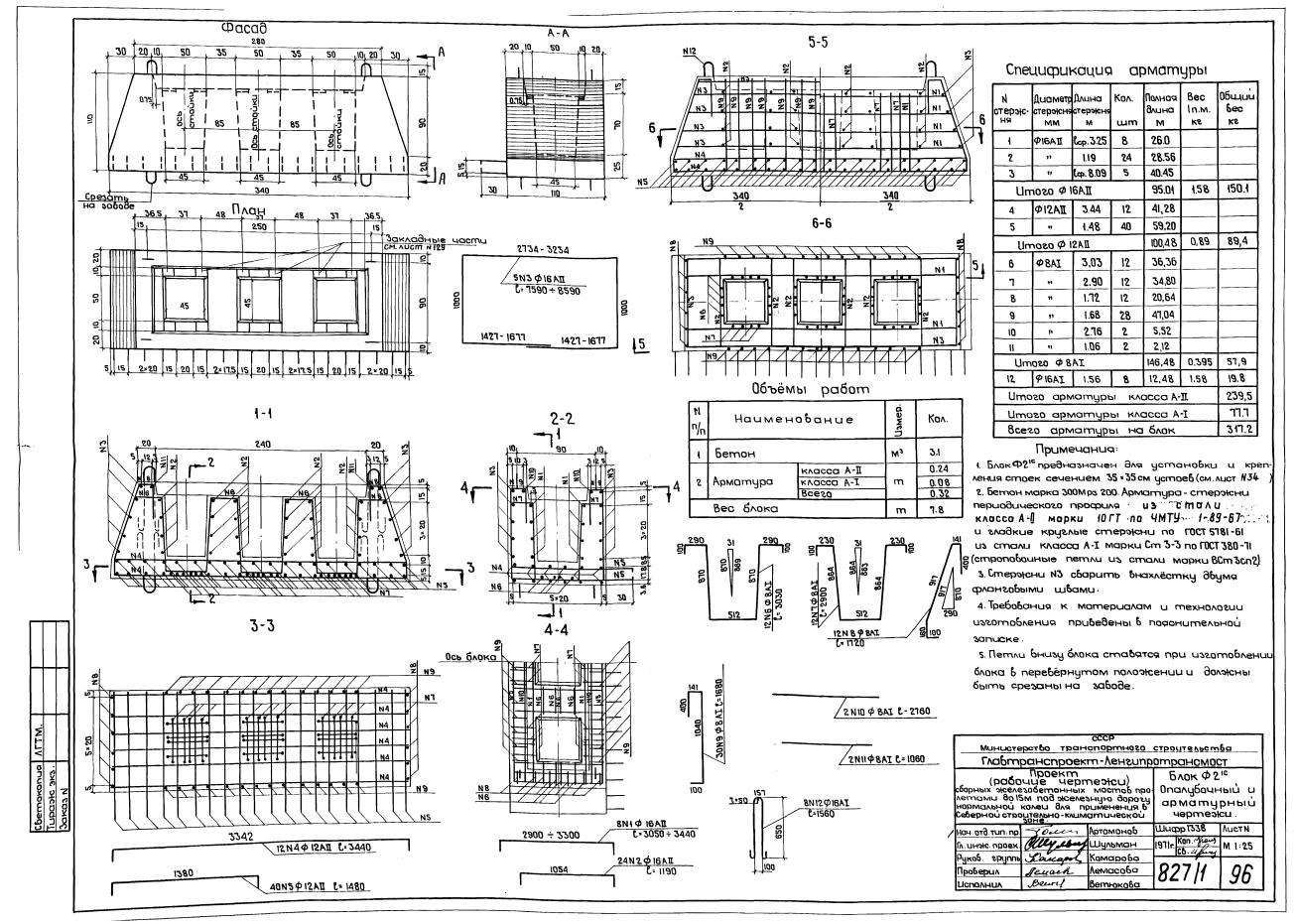

116

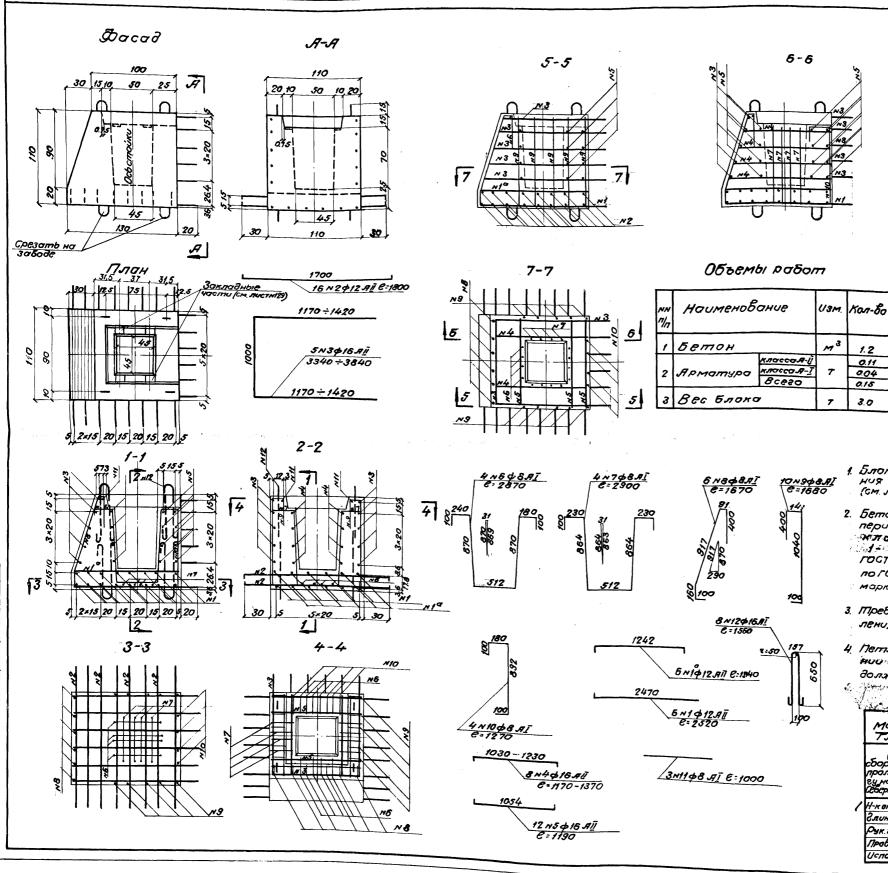

63

64


Спецификация арматуры Ø12A II 3,48 24,36 094 16,92 41.28 089 36.8 Umoro HO CEMKY **Итого на блок** (2сетки) 73,6 2 61211 094 7,70 1.10 13.34 0.89 11,9 Umoro HO CEMKY Uтого на блок (2 cemku) 23,8 15.52 13,8 4 612AI 1.94 5 628AI 2.29 44,2 KAOCCO A-İl 111,2 Итого арматиры 442 Итого арматуры класса 155.4 Всего арматиры HO BAOK 1 \$12.81 3,80 26,60 0.94 19.74 Итого на сетку 46 34 089 41.2 Umoro на блок (2 cemku) 82,4 \$12A II 0,94 1.10 13.34 0.89 Итого на сетку 11,9 Uтого на блок (2 cemku) 23,8 0,89 15,2 4 \$ 12A II 2,14 17,12 9,16 4,83 5 628AI 2.29 44,2 121.4 Umoro арматуры KAGCCG A-L Итого арматиры KACCCC A-I 44.2 165,6 Всего арматиры на блок 30,94 1 \$12.81 4,42 23,50 54.44 0.89 48.4 Umoro HO CEMKY Umoro на блок (2 cemku) 96,8 2 \$12AII 0,94 4,70 0,90 6,30 11.00 0.89 Umoro HO CEMKY 9,8 Итого на блок (2 сетки) 19.6 4 \$12 A II 2,48 17,7 8 19,84 5 \$28AI 2,29 44,2 4.83 1341 Uтого арматиры класса A-II 44,2 Umoro арматыры класса A-I


Всего арматиры на блок

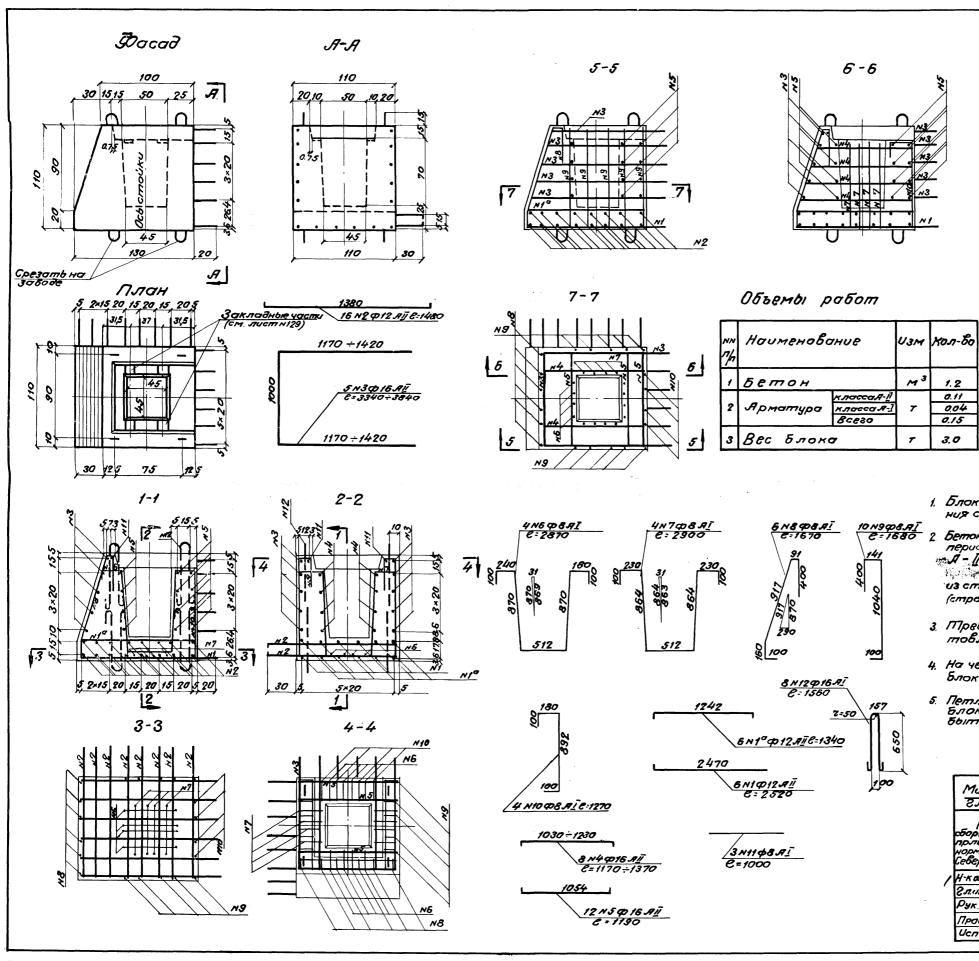

петми из стали класса А-І марки ВСт Зсп 2. 4. Пребования к материалам и технологии


	оство тра	ССР нспортного 1- Ленгип ра		
PADO4 SOONUIX XX APONEMAMU AOPM AN ONOU	KONEU ANA ME	пежси) ных мостов селезнию дорогу именения в истической зоне	арматир.	HUE U HUE
Ноч. отд. тип. пр.	Tour	Артамонов	Шифр 1338	AUCTN
Гл. инже. пр-та	allyery	ШУЛЬМОН	1971 Kon Orung	M 1:50
Рук. группы	howapol	Комарова	60. 4gmin	1:25
Проверил	Oxystrenco	Ky36MeHKO	1827/1	193
Исполния	Between	Ветюкова	1021/1	1 30

178.3

Спецификация арматуры

N	AUGMETP	Amina	ø	Полноя	Bec	Общий
				מאטינט	0,1	Bec
	СТЕРЖИНЯ				IM	
- -	MM	_ M	<u> </u>	<u>~</u>	KE	RE
	ф12.A <u>l</u> ī	2.52	5	15.12		
10	"	1.34	6,	8.04		
2		1.80	15	28 80		
	Umoza	\$12 AT		54.96	0.89	46.2
3	ф16.A <u>I</u> I	CP=3.59	5	17.95		
4	"	CP=1.27	8	10.16		
5	- "	1.19	12	14.28		
	Uтово	ф16Я <u>І</u> Ї		42.38	1.58	67.0
8	ф8 <i>я<u>ї</u></i>	2.87	4	11.48		
7	"	2.90	4	11.60		
8	,,	1.67	6	10.02		
9	"	1.68	10	16.80		
10	*	1.27	4	5.08		
11	"	1.00	3	3.00		
	Umozo	\$8AĪ		57.98	0.395	22.8
12	\$ 16AI	1.56	8	12.48	1.58	19.8
	Imozo d	ppmams	1961	KJOCC	OA-IĪ	113.2
(lmozo d	TOMOTH	yp6	KAGC	aA-Ī	42.7
- 6	30880 0	рмату	001	HO EN	OK	155.9


Примечания:

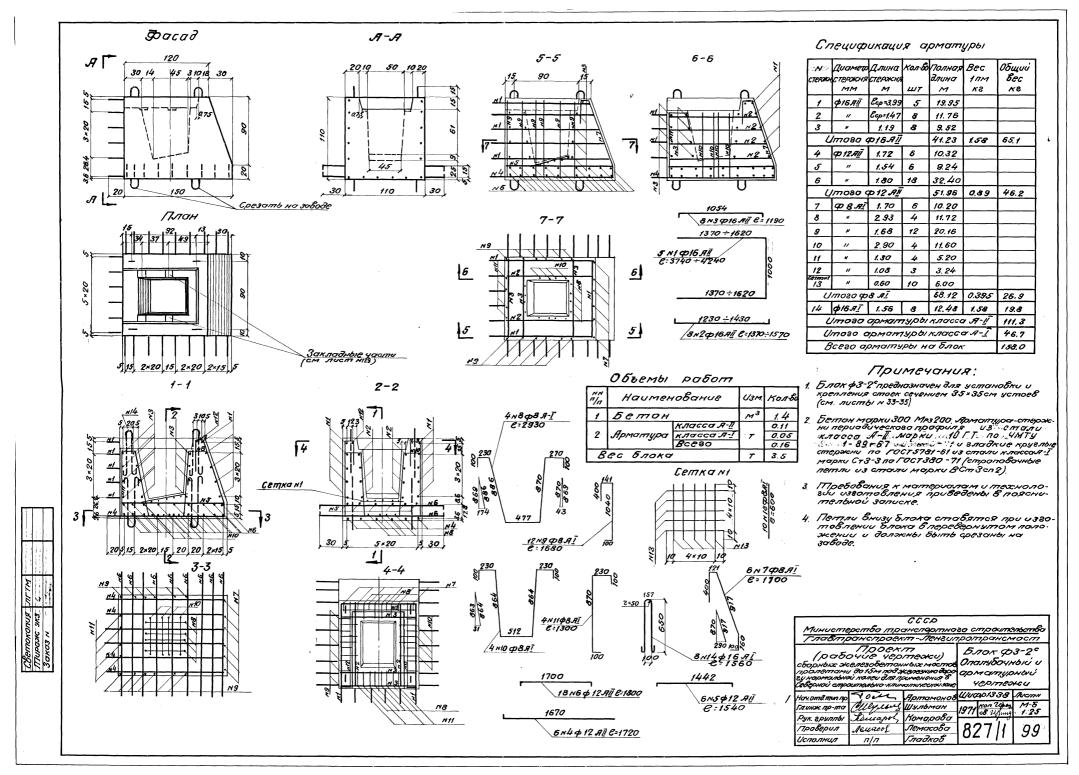
- 1. Блок ф3-1 ^спредназначен для чстановки и крепления стоек сечением 35×35см чстоев. (См. листы м **33-3**3)
- 2. Бетон марки300 Мрз 200, Ярматура-стержни периодическово профиля из стали периодическово профиля из стали по ЧМТУ.

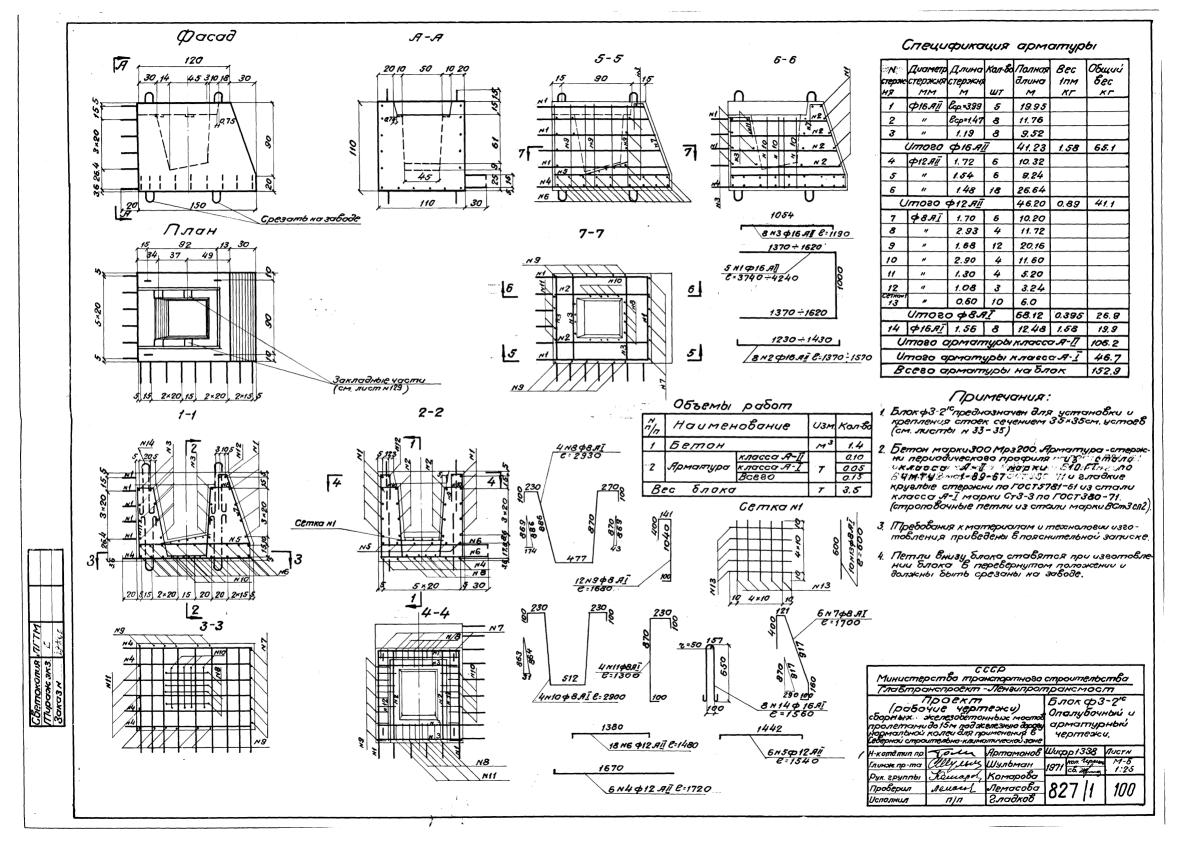
 Мята са Я-Ц парки 10 ГТ по ЧМТУ.

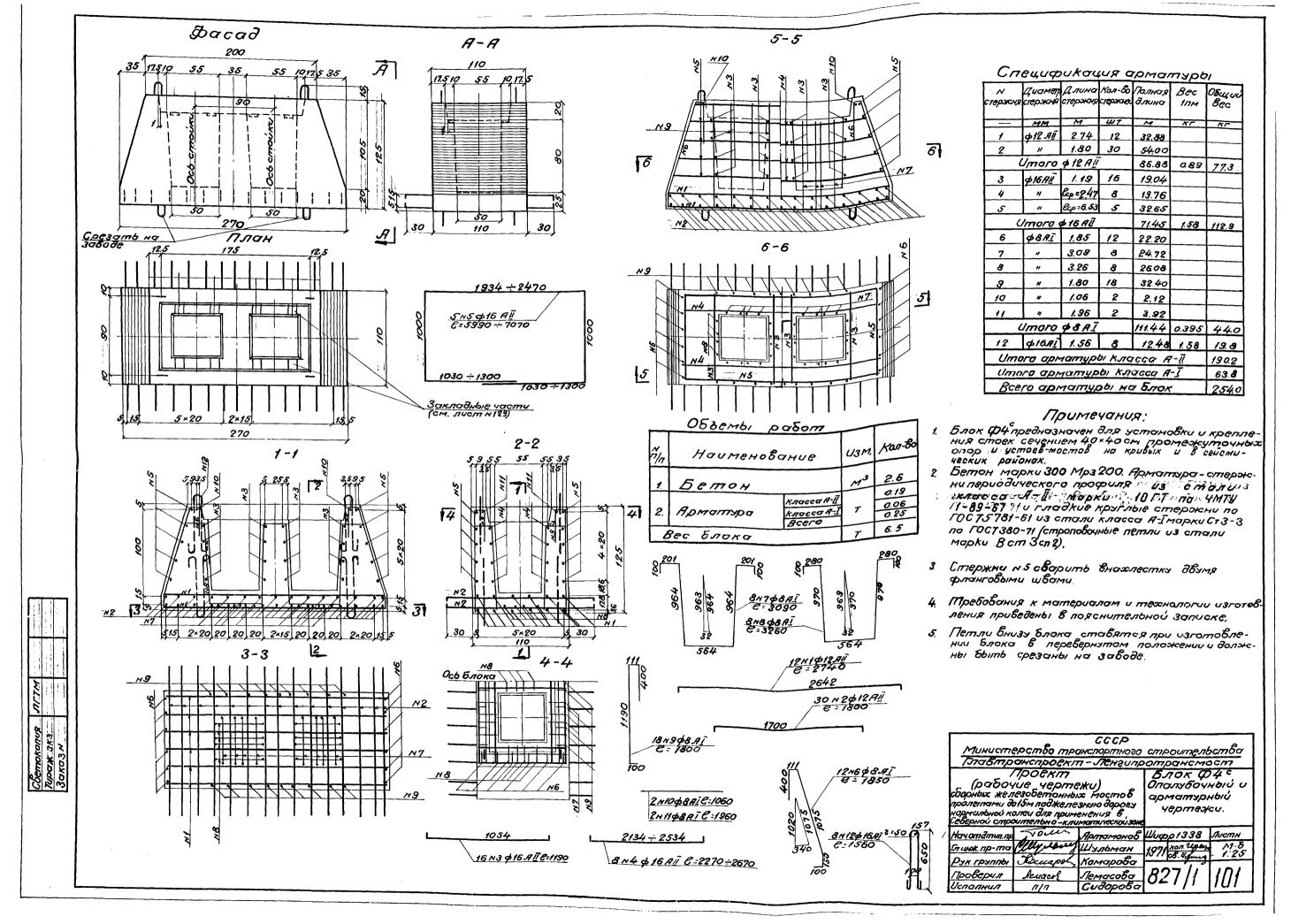
 1-89-871 и зладкие круглые стержни по ГОСТ 5781-61 из стали класса Я-Д марки Ст3-3 по ГОСТ 380-71 (строповочные петли из стали марки ВСт3сп2).
- 3. Пребования к материалам и технологии изготовления приведены в пояснительной записке
- 4 Петнивнизу блока ставятся при изготовлений влока в перевернутом положений и должны выть срезаны на заводе.

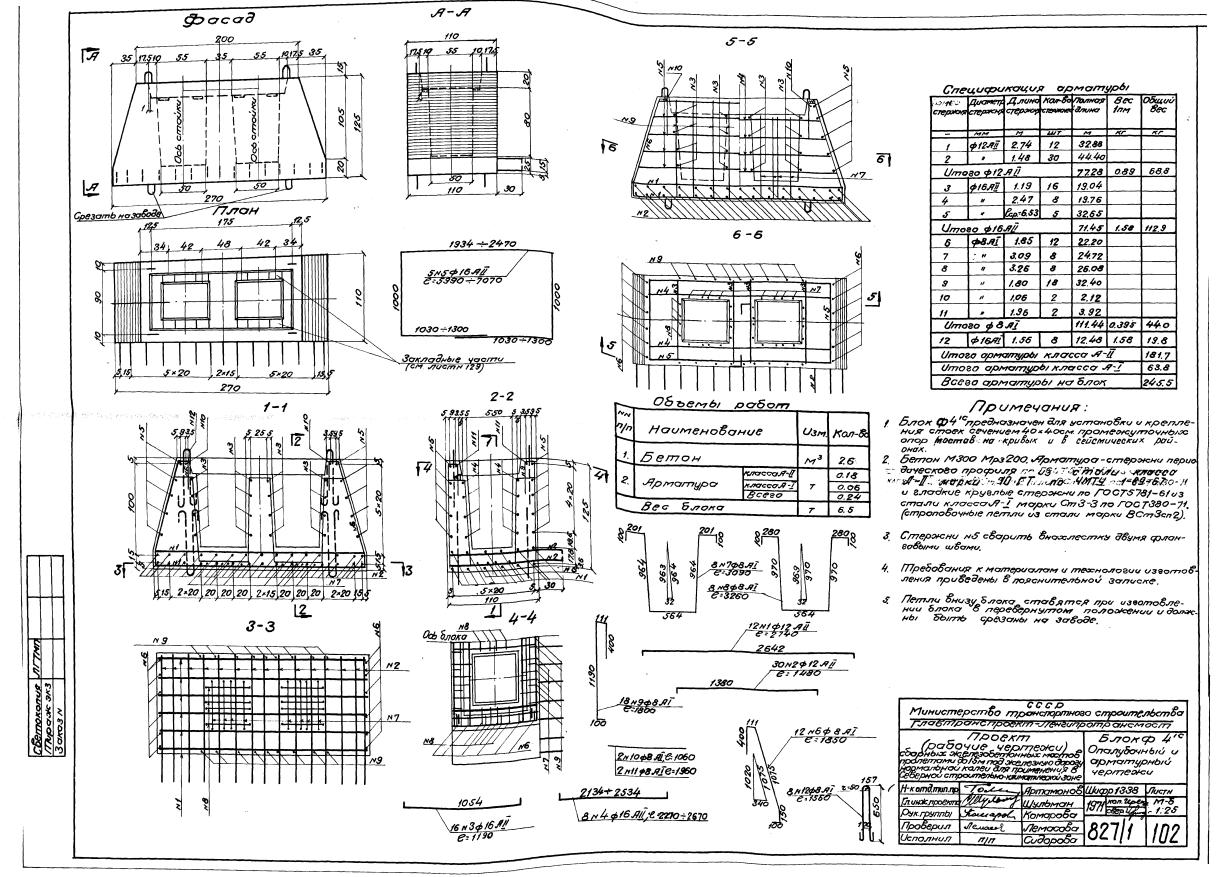
11.		· · · · · · · · · · · · · · · · · · ·	· 1997年1997年1998	rafidə idə
MUHUCITE	рство тр	CCCP CCCP	строител	bcmba
TJOEMA	OCHCIPOEKI	7-1104841190	OMDHE GITTO	G/T7
PODE Nementando Hoponesia Nemental Nemental	daļām nod əkc vou xoneu dna	, 1894c u) vnbisz mocmób enesnyio даро- применения в матической зоне	арматур	שלים ע שלים ע
4-x amã mun np	Tour	Артамонов	Wuqop 1338	JUGITIN
	allyeare		1971 Kon Wyong	M-05
	Hoursel'	Комарова		7.20
Проберил	Sauces	<i>S.nadkub</i>	1 <i>82711</i>	<i>97</i>
Uchanhun	nļn	SNAGKAR	0-11	0,

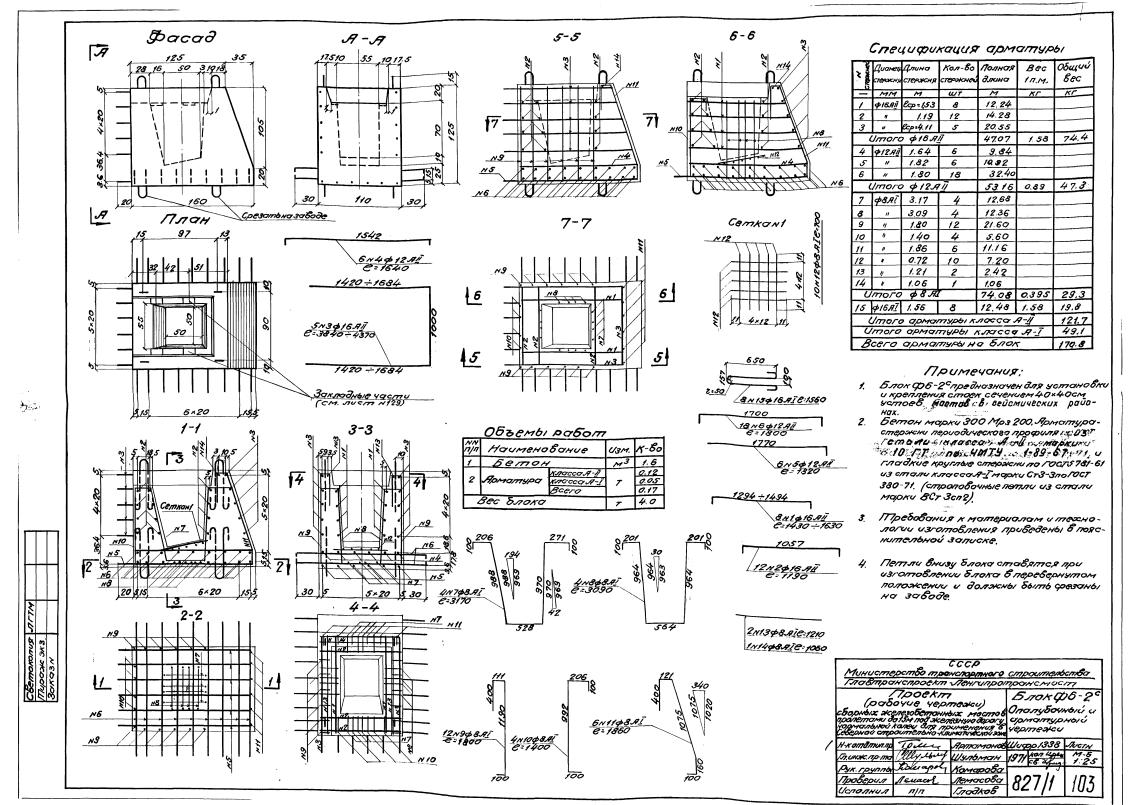
CBemoronua. Muposk ska Sokoak

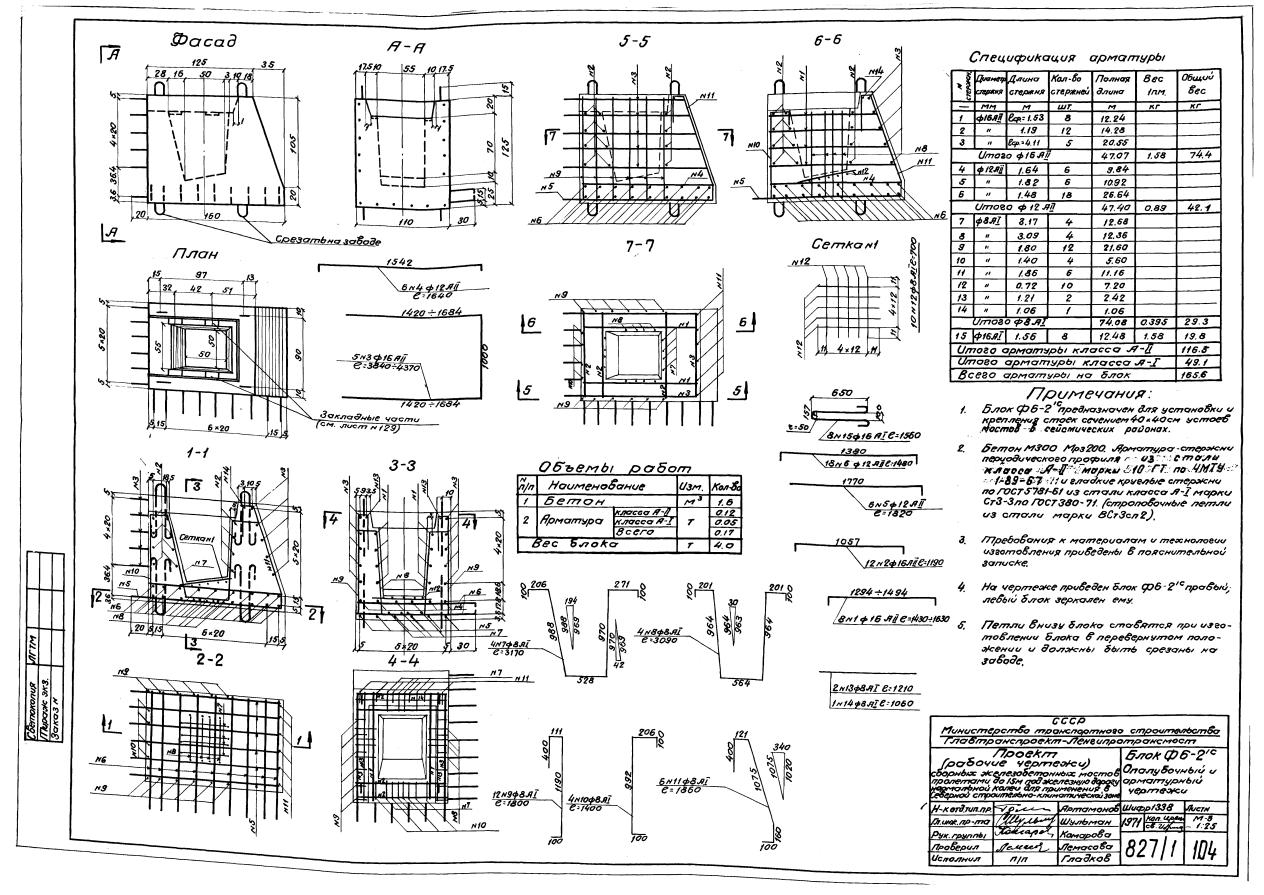

Спецификация арматуры

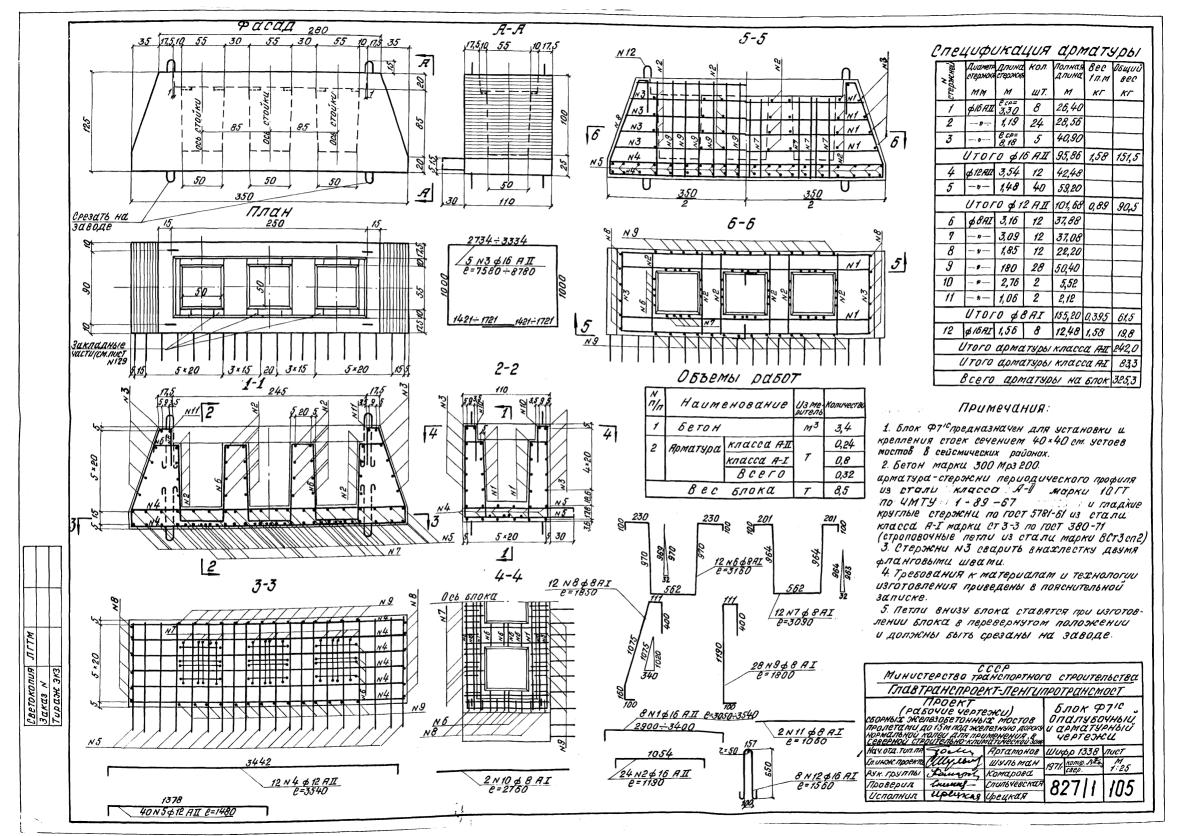

	(JUGINETP	ATUHO	18	MONHOS	Rec	064400
глержина	CTEPOICHA	_		אמנונים	IAM	Bec
	MM	MM	417	M	K E	48
1	P12.AII	2.52	6	15.12		
19	,,	1.34	6	8,04		
2	"	1.48	16	23.68		
Ur	77080 ¢	12.A <u>I</u> I		46.84	0.89	41.7
3	Ф16 Я <u>ї</u>	Ccr=3.59	6	17.95		
4	"	Ccp=1.27	8	10.16		
5	"	1.19	12	14.28		-
U	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16 <i>A</i> !!		42.39	1.58	67.0
6	\$8.A.I	2.87	4	11.48		
7	<i>b</i>	2.90	4	11.60		
8	,	1.67	6	10.02		
9	,	1.68	10	16. 80		
10	"	1.27	4	5.08		
11		1.00	3	3.00		
U	mozo d	p8.8. <u>I</u>		57.98	0.39.5	22.5
12	Ø16.RI	1.56	8	12.48	1.58	19.8
Um	1080 ap	маптур	611	<i>1.10cc</i>	a A- <u>I</u> I	108.7
Um	080 abv	1011140	51 M	nacc	7.77-1	42.7
Bcc	200 000	קארווסה	61 1	10 Enc	rK .	151.4

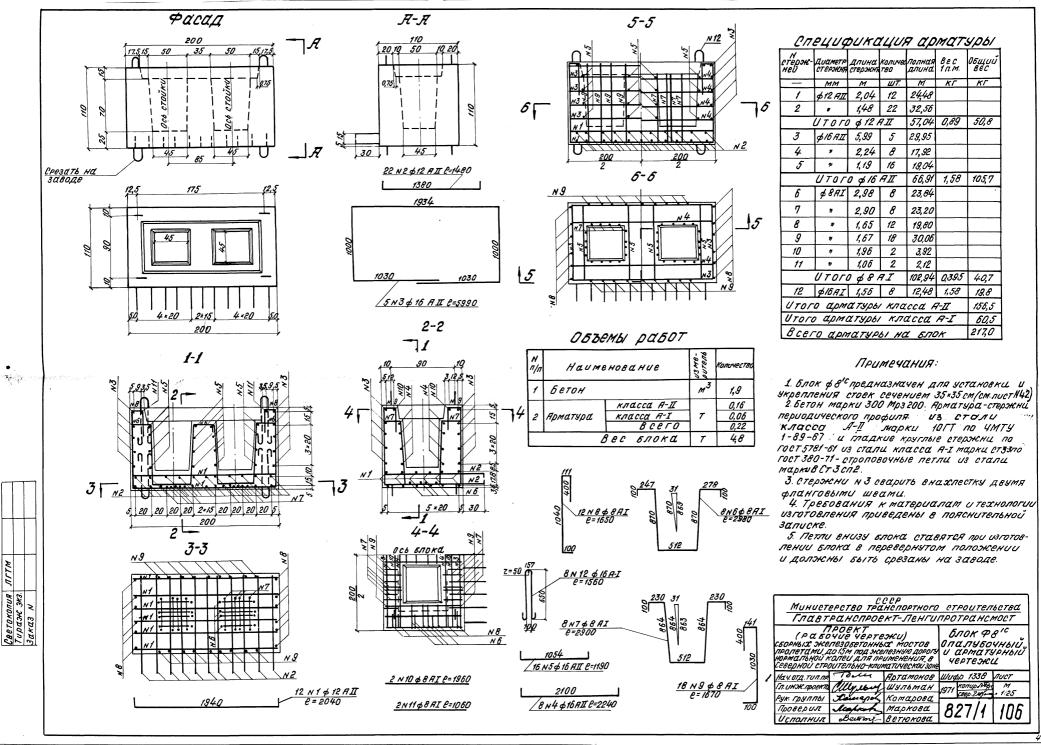

Примечания:

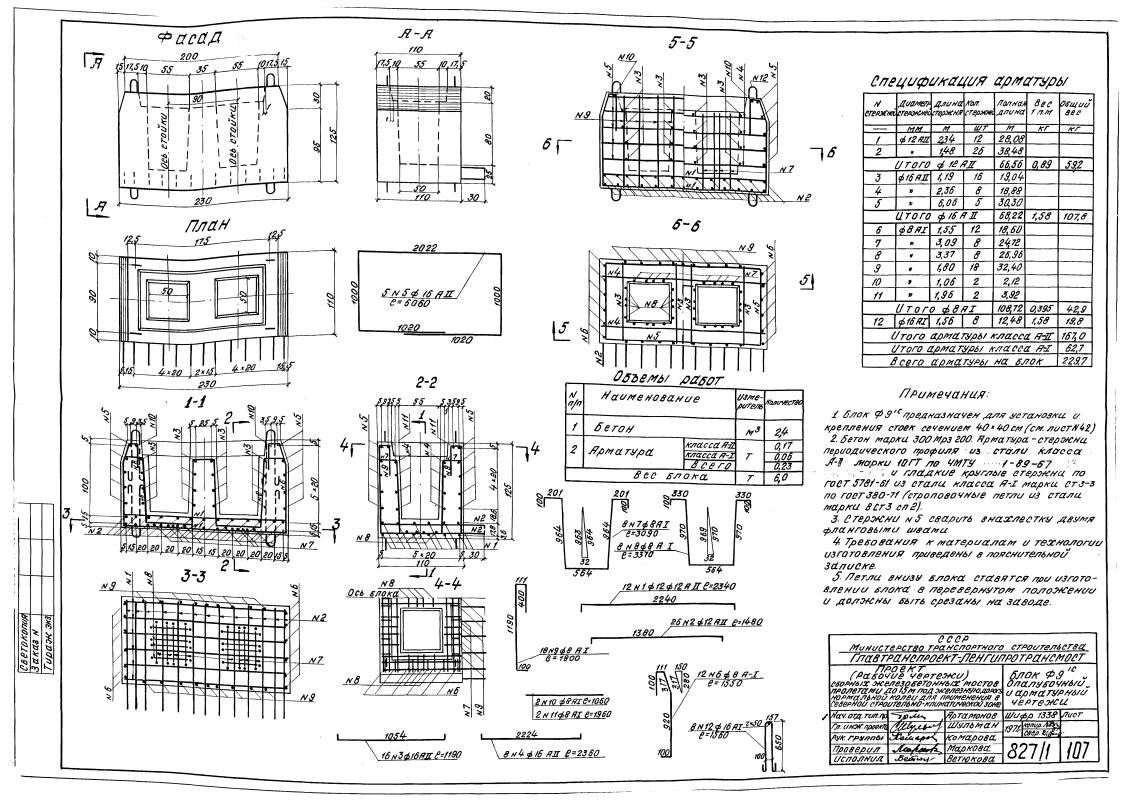

- 1, Блок ф3-1'⁶предназначен для чстановки и крепления стоек сечением 35×35см устоев (смлистын 33-3)
- 2. Бетон марки 300 Мез 200, Ярматура стержни периодическово профиля из стай и класса ВА-[] Марки 10 ГГ по 4МТУ 1-89-67 В Стай из стали класса Я-[марки Стд-Зпо ГОСТ 380-71 (страпобочные петли из стали марки 8Ст 3сп 2)
- 3. Пребования к материалам и технологии изго-товления приведены в пояснительной записке
- 4. На чертеже приведен Блок ФЗ-1'левый, правый Блок зеркален ему.
- 5. Петли внизу блока ставятся при изготивлении Блока в перевернутом положении и должены быть срезаны на заводе.

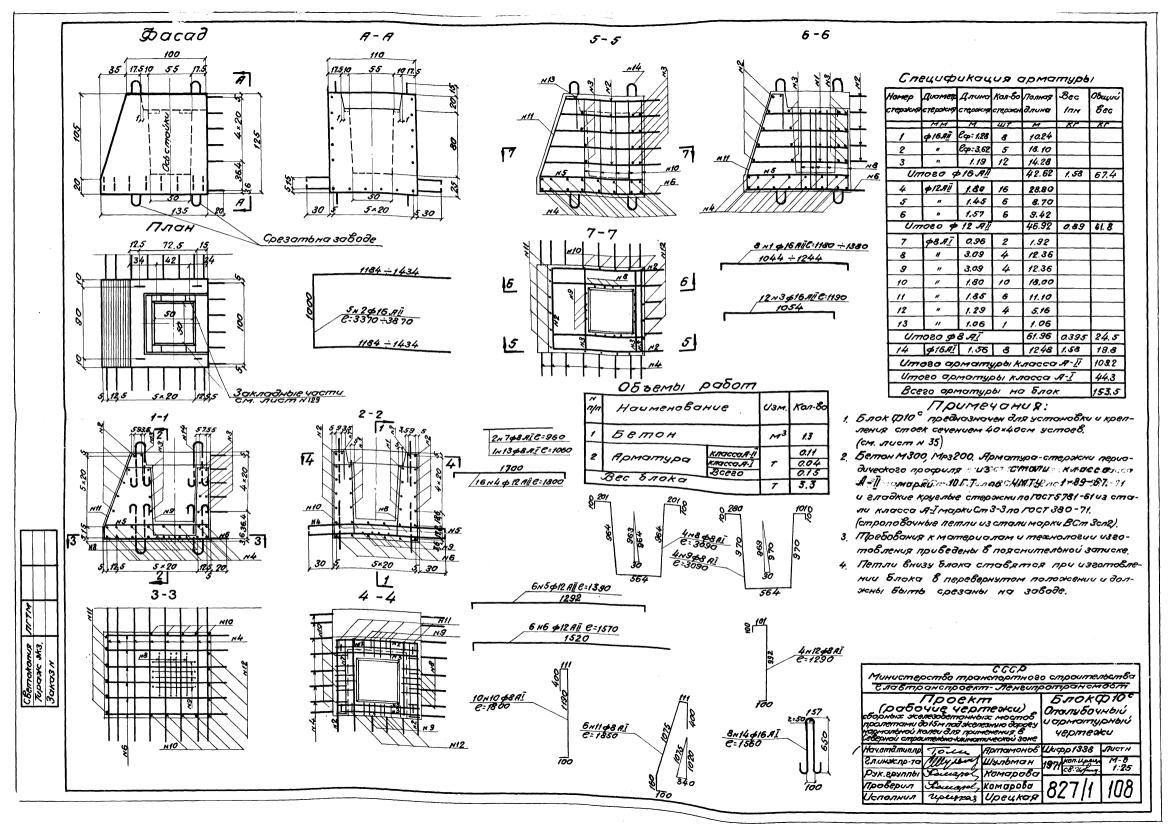

		т-Ленгипр т-Ленгипр		
оборных эксе прлетами б	10 15m под же колеч для п	ьпыененая д Бинезняю дороей Бинененая дороей		WHBIÚ DHBIÚ
Н-к отдтип пр.	Tour	Артамонов	Wupp 1338	SUGTN
CALUHAK NO-MO			JOHN NON REPERS	M-8
Pyk. 2Pynnbi	Rowarsh	Комарова	13 11 c8 Troping	1.23
	_	Лемасова	1827/1	98
110-0-1411	nin	SNABKOR	1041/1	100

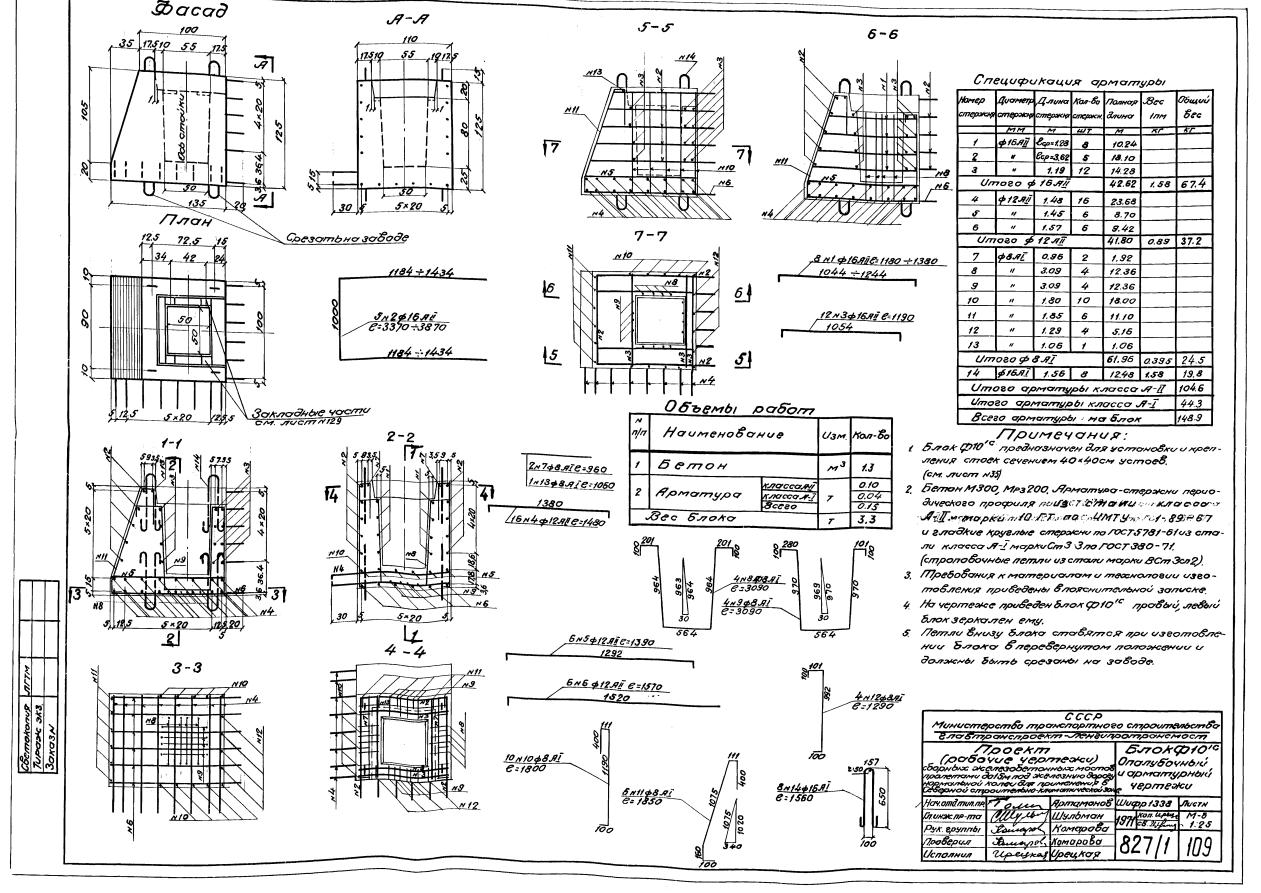


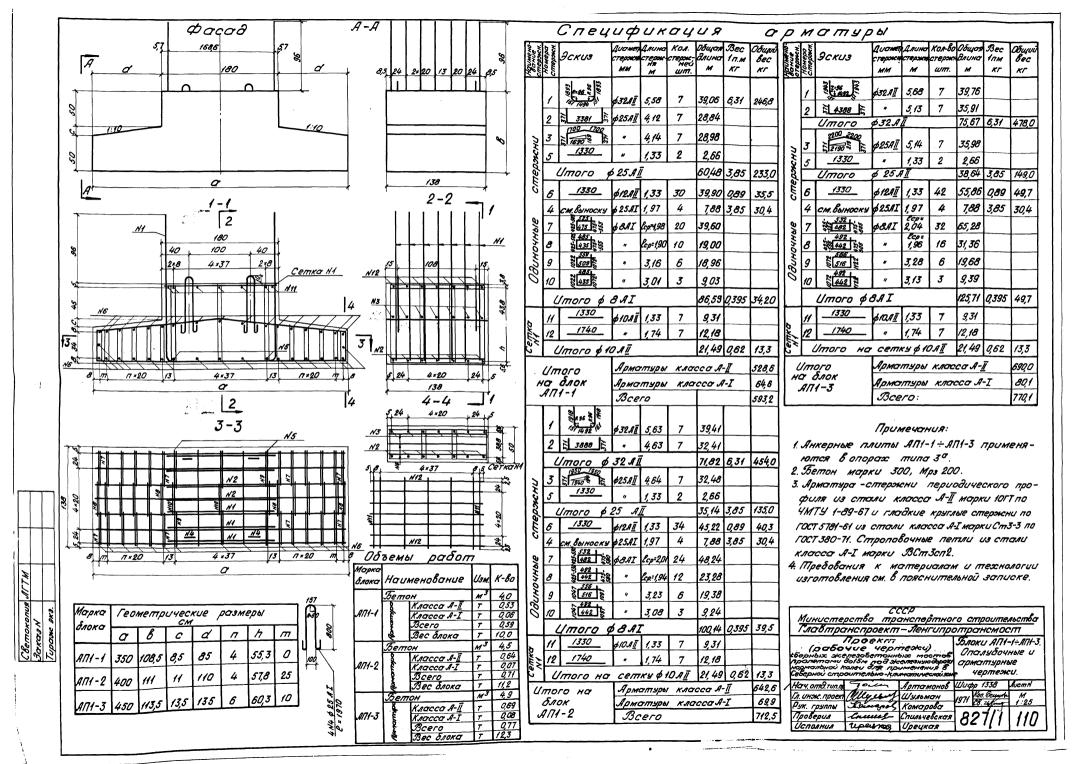


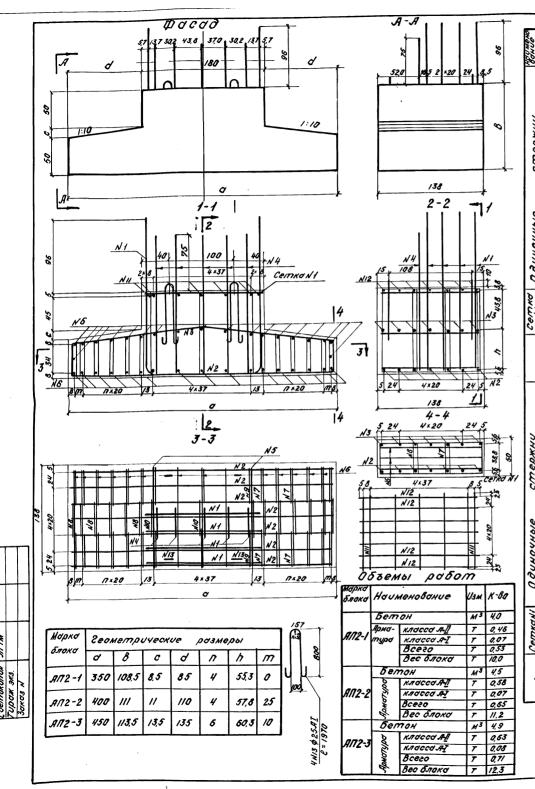


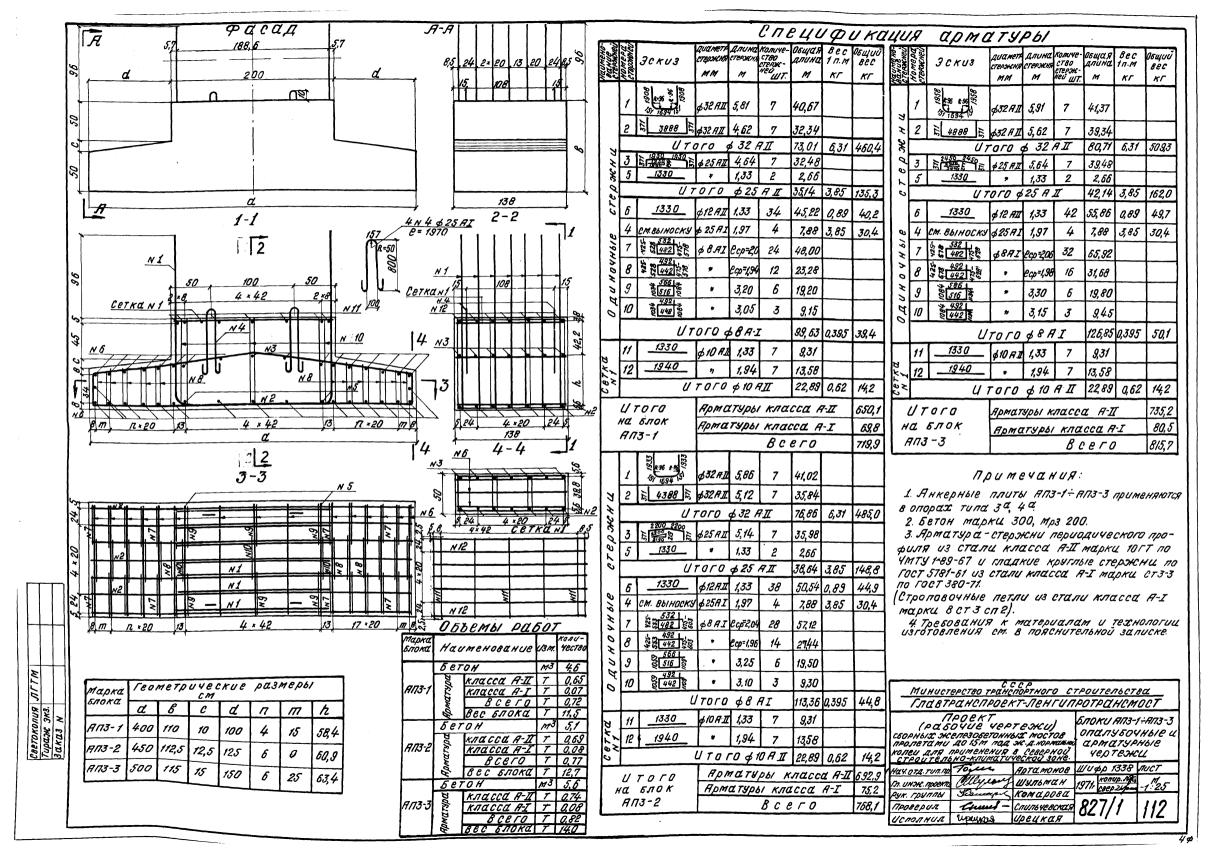


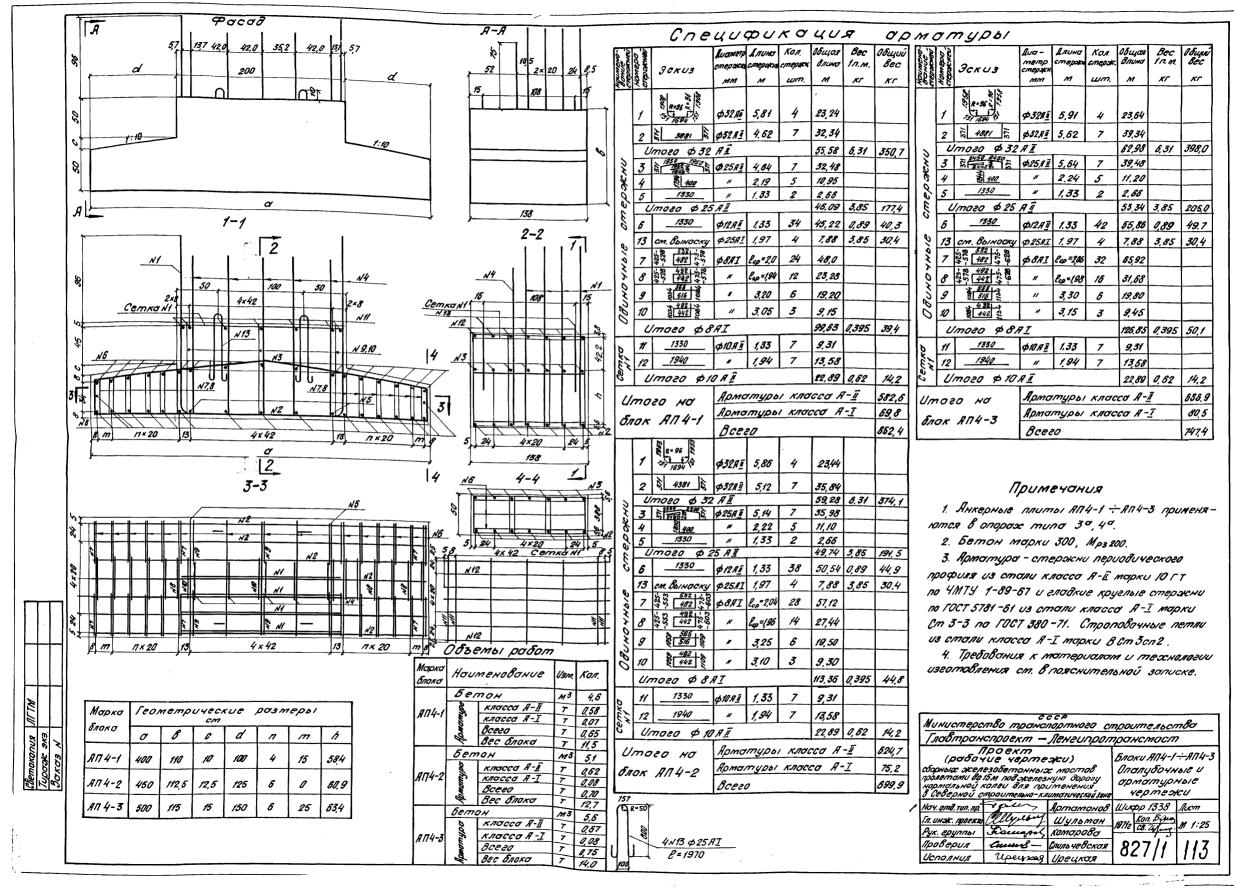


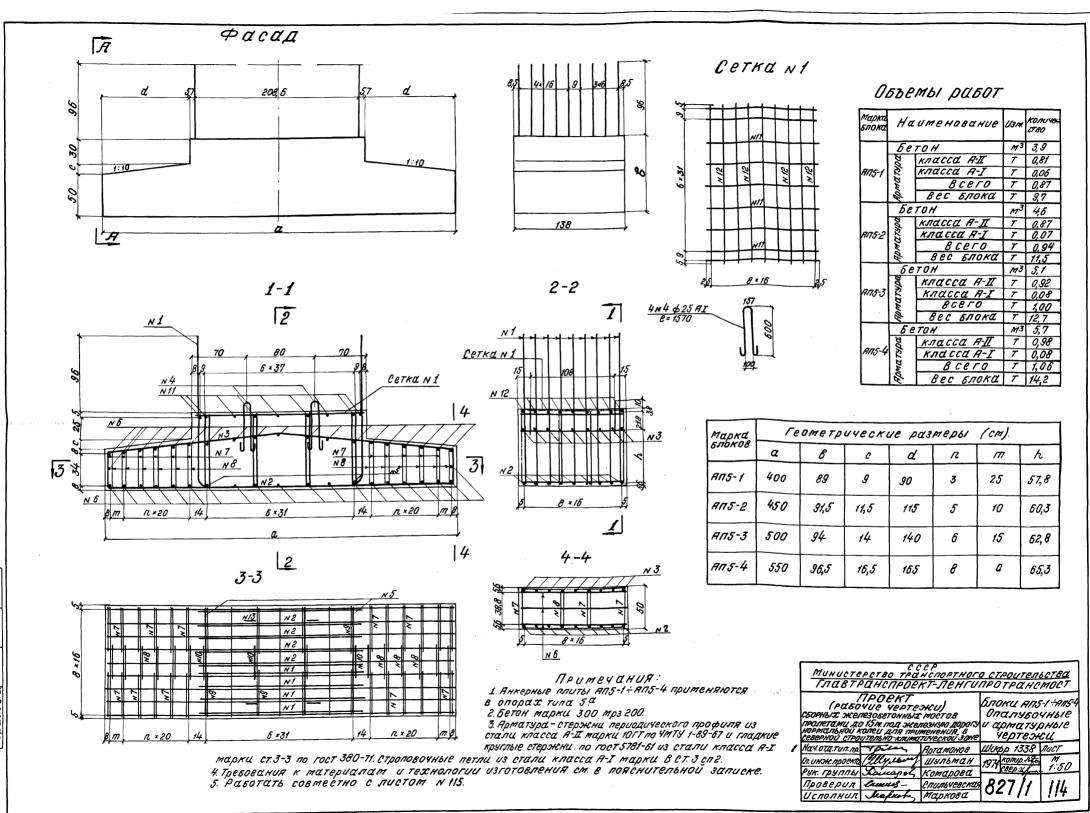





æ.


\$3 ¢1	ο¥.	_			Kon-Bo		Bec	Οδιμνύ
< 2 0	54	JCKU3				BAUHO	1n.m.	Sec
SOHUE	con		мм	М	wm.	М	KF.	Kr
	1	1494 (S)	ф 32.Яў	5.58	4	22,32	6,3/	141.0
	2	338/ B	\$ 25A.F	4,12	7	28,84		
)HC	3	100 1700 B	"	4,14	7	28,98		
стержни	4	100	"	2,18	5	10,90		
2	5	1330	"	1.33	2	2,65		
ે		umozo	Ø 25 A	17		71.38	3,85	274.2
	6	1330	Ø12A <u>I</u> I	1,33	30	39,90	0,89	35.5
	13	см.выноску	\$25AI	1.97	4	7.88	3,85	30,4
9/0	7	\$ \$ 525 \$ 473 \$ \$	Ø8.A.I	Ccp.+1.98	20	39,60		
H'A	8	\$ 485 435 \$ 435	"	Ccp=1.90	10	19.00		
OBUHOVHOI	9	\$ 509 6	,,	3,16	6	18,95		
30	10	21 485 pt	"	3,0/	3	9,03		
0		Umozo ø	3.8.7			86,59	0,395	34,2
ģ	//	1330	\$10AII	1,33	7	9.31		
Cemro	12	1740	>>	1.74	7	12,18		
6,		Umozo HO	Cemk	Ø10 A	111	21,49	0,62	13,3
	Un	nozo			adcco.		1	454.0
		блок	Ярма	myper,	Krocco	A-I		64.5
	AIT	2-1	Beee					528,6
	1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						
	7	1494	\$32Ajj	5,63	4	22,52	i	
	2	3838	ф32Ajj	5,63 4,63	7	22,52 32,4/		
27		13838 B					6.31	346.0
DWHU		3838 N UMOZO Ø.	**			32,4/	6.3/	346.0
тержни	2 3 4	Umoeo \$,, 32 A <u>[</u> [ø25A <u>[</u>]	4.63 4.64 2.20	7	32,4/ 54,93 32,48	6,3/	346,0
стержни	2	1950 S.S.D. 1950 S.S.D. 1950 S.S.D. 1950 S.S.D. 1950 S.S.D. 1950 S.S.D. 1950 S.S.D. 1950 S.S.D.D. 1950 S.S.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D	,, 32 A <u>[</u>] \$25A <u>[</u>] "	4.63	7	32,4/ 54,93 32,48 11.00 2.66		
стержни	3 4 5	1838 NO 1838 N	,, 32 A <u>[</u>] \$25A <u>[</u>] \$25A <u>[</u>] " " " " " " " " " " " " "	4,63 4,64 2.20 1,33	7 7 5 2	32,4/ 54,93 32,48 //,00 2,66 46,/4	3,85	178,0
стержни	2 3 4 5	15038 15038	,, 32 A [i \$25A ii "" "5 A [i \$12A ii	4,64 2.20 1,33	7	32,41 54,93 32,48 11,00 2,66 46,14 45,22	3,85 0,89	178,0
	3 4 5	3838	,, 32 A <u>[</u>] \$25A <u>[</u>] \$25A <u>[</u>] " " " " " " " " " " " " "	4,63 4,64 2,20 1,33 1,97	7 5 2	32,4/ 54,93 32,48 //,00 2,66 46,/4	3,85	178,0
	2 3 4 5 6 13	3838 September	,, 32 A [] \$25A] " " " 5 A [] \$12A] \$25A]	4,64 2.20 1,33	7 7 5 2	32,4/ 54,93 32,48 //,00 2,66 46,/4 45,22 7,88	3,85 0,89	178,0
	2 3 4 5 6 /3 7	3030 M UMO 20 P 100 M 100 M 1350 M UMO 20 P 1350 M 1350	" \$2 \$A \overline{I}\$ \$\psi 25 A \overline{I}\$ " 5 \$A \overline{I}\$ \$\psi 25 A \overline{I}\$ \$\psi 25 A \overline{I}\$ \$\psi 25 A \overline{I}\$ \$\psi 25 A \overline{I}\$ \$\psi 25 A \overline{I}\$ \$\psi 25 A \overline{I}\$	4,63 4,64 2,20 1,33 1,97 lop-201 lop-1,94	7 5 2 34 4 24 12	32,4/ 54,93 32,48 11,00 2,66 46,14 45,22 7,88 48,24 23,28	3,85 0,89	178,0
	2 3 4 5 6 /3 7 8	300 SQ (300 SQ	" \$2 \$A [] \$25\$A[] "" "5 \$A [] \$12\$A[] \$12	4,64 2,20 1,33 1,97 (cp=201 4,94 3,23	7 5 2 34 4 24 12 6	32,41 54,93 32,48 11,00 2,56 46,14 45,22 7,88 48,24 23,28	3,85 0,89	178,0
Одоночные стержно	2 3 4 5 6 /3 7	3630 S	" \$2 \$A [] \$25A] \$25A] " " 5 \$A [] \$12A] \$25A] \$25A] \$25A] \$25A] \$35A] \$45A] \$5A] \$5A] \$5A] \$5A]	4,63 4,64 2,20 1,33 1,97 lop-201 lop-1,94	7 5 2 34 4 24 12	32,41 54,93 32,48 11,00 2,56 46,14 45,22 7,88 48,24 23,28 19,38 9,24	3,85 0,89 3,85	178,0 40,3 30,4
Одпномные	2 3 4 5 5 6 13 7 8 9 10	3838 E	" \$2.8 [] \$25.8 [] \$25.8 [] \$25.8 [] \$12.8 [] \$25.8 [] \$25.8 [] \$25.8 [] \$3.8 []	4,63 4,64 2,20 1,33 1,97 1,97 1,97 1,991 1,94 3,23 3,08	7 5 2 34 4 24 12 6 3	32,41 54,93 32,48 11,00 2,66 46,14 45,22 7,88 48,24 23,28 19,38 9,24 100,14	3,85 0,89	178,0
Одпночною	2 3 4 5 6 13 7 8 9 10 11	3030 E 3000 P 30	" \$2 \$A [] \$25A] \$25A] " " 5 \$A [] \$12A] \$25A] \$25A] \$25A] \$25A] \$35A] \$45A] \$5A] \$5A] \$5A] \$5A]	4,63 4,64 2.20 1,33 1,97 1,97 1,97 1,97 1,994 3,23 3,08	7 7 5 2 34 4 24 12 6 3	32,41 54,93 32,48 11,00 2,66 46,14 45,22 7,88 48,24 23,26 19,38 9,24 100,14 9,31	3,85 0,89 3,85	178,0 40,3 30,4
Одпночною	2 3 4 5 6 13 7 8 9 10	3838 E	" " " " " " " " " " " " " " " " " " "	4,63 4,64 2,20 1,33 1,33 1,97 lop-201 lop-1,94 3,23 3,08	7 5 2 34 4 24 12 6 3	32,41 54,93 32,48 11,00 2,66 46,14 45,22 7,88 48,24 23,28 19,38 9,24 100,14	3,85 0,89 3,85	178,0 40,3 30,4
Cemxani Odunovnose	2 3 4 5 6 13 7 8 9 10	3838 S S S S S S S S S	"" \$2 \$A [] \$25\$A [] \$25\$A [] \$32 \$A [] \$35 \$A [] \$32 \$A [] \$32 \$A [] \$32 \$A [] \$33 \$A [] \$34 \$A [] \$35 \$A []	4,63 4,64 2,20 1,33 1,33 1,97 6,002,01 6,001,94 3,23 3,08 1,33 1,74 4,000	7 5 2 34 4 24 12 6 3	32,41 54,93 32,48 11,00 2,56 46,14 45,22 7,88 48,24 23,28 19,38 9,24 100,14 9,31 12,18 21,49	3,85 Q,89 3,85	178,0 40,3 30,4
CETTINGNI O OUNOVHOIE	2 3 4 5 6 13 7 8 9 10	300 Wmozo \$2 133	"" \$2 \$A [] \$25\$A []	4,63 4,64 2,20 1,33 1,33 1,97 6qp201 6qp21,94 3,23 3,08 1,33 1,74 qb10A	7 5 2 34 4 24 12 6 3	32,41 54,93 32,48 11,00 2,56 46,14 45,22 7,88 48,24 23,28 19,38 9,24 100,14 9,31 12,18 21,49 4,49	3,85 Q,89 3,85	178,0 40,3 30,4 39,5


6.8	<u>, 3</u>		Диометр	ANUHO	Kan-Bo	Общол	Bec	Общи
\$ 5X	0 ×	JCKU3	стержи	CTEDWA	стержн.	BAUHO	1 п.м.	8ec
HOWEN	HON CM		ММ	М	wm.	М	KF	Kr
	1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ф 32.А <u>Л</u>	5,68	4	22,72		
'	2	1586 m	"	5,13	7	35,9/		
1		Umozo ø	32 A [58.68	6,3/	370,0
	3	2200 2200 En 2190 % En	Ø 25A	5,14	7	35,98		
Į₹	4	\$ 400	"	2,23	5	11.15		
Į Š	5	/330	"	1,33	2	2,65		
стержни		Umozo ø	25 A II			49.79	3,85	1920
Ü	6	/330	Ø12.A.j	1,33	42	55,86	0,89	49.7
	13	см. выноску	Ø 25A]	1,97	4	7,88	3,85	30,4
10/6	7	\$ 532 \$ 482 \$ 8	\$8A <u>T</u>	Cop=2.04	32	65,28		
0	8	38 492 48	,,	lgo:=1,98	/5	31,36		
OGUHOVHOLO	9	2 566 516 2	"	3,28	6	19, 68		
0	10	7 492 7 442	,,	3,13	3	9,39		
		Umozo ø	8 A]			125,71	0,395	49,7
1/1	//	/330	\$10AI	1,33	7	9.3/		
DXC.	/2	1740	"	1,74	1	12.18		
Cemka N 1	U,	moso Hd	cem	KY \$10	AI	21,49	0,62	13.5
6		020	Арма	туры	KAOCCO	AJĪ		625,0
/	-	δποκ	Армо	туры	KAOCC	O AT		80,1
l	AN	2-3	Bees	20				705,1

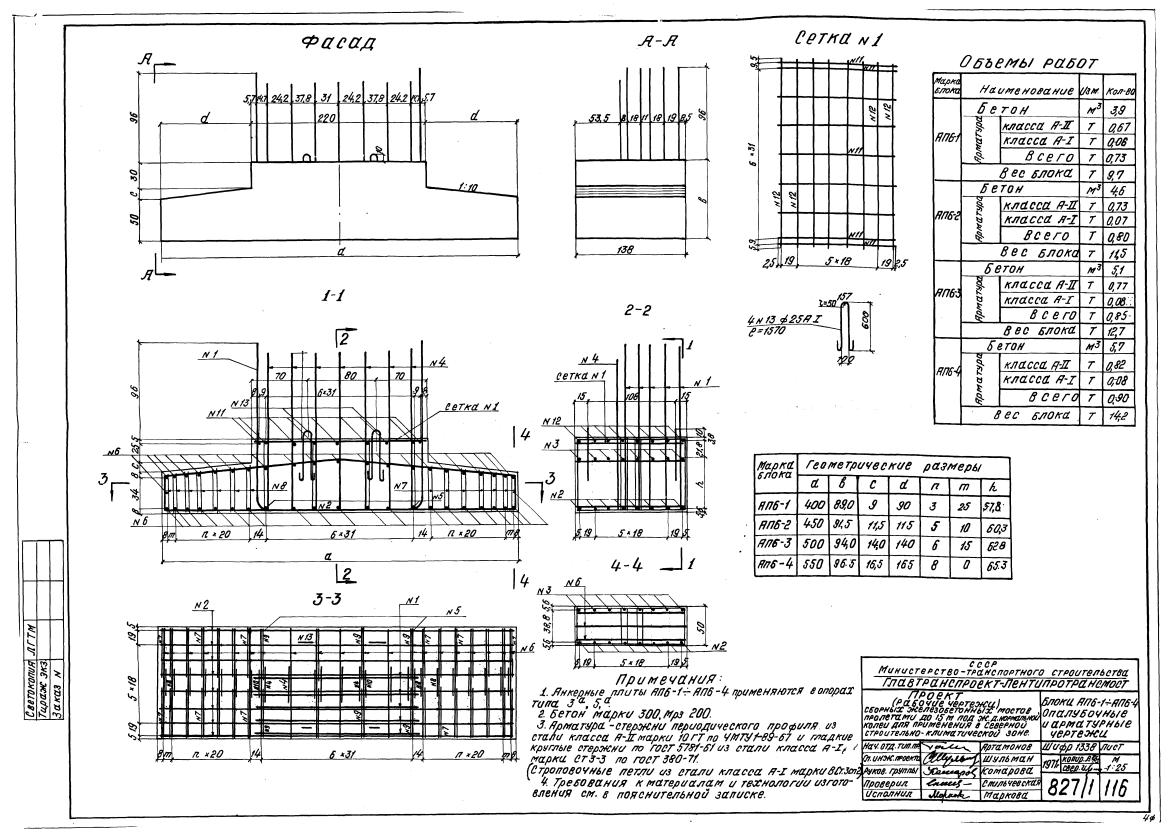

Примечания:

- I. Янкерные плиты АП2-1÷АП2-3 применяются в опорах типа 3 ^g.
 - 2. Бетон морки 300, Мрз 200
- 3 Ярматура стержни периодического профиля из стали класса А-<u>Г</u> марки IOIT по 4 МТУ 1-89-67 и гладкие круглые стержни по IOCT 5181-61 из стали класса Я-<u>Г</u> марки Ст3-3 по IOCT 380-71. Строповочные петли из стали класоа А-<u>Г</u> марки В Ст3 сп2
- 4. Требования к материалам и технологии изготовления см. в пояснительной записке.

Министерство транспортного строительство Главтранспровкт -Ленгипротрансмост ПРОВКТ
(РОВКТ)
(РОВОЧЕ ЧЕРПТЕЖИ)
СООДИНЕНИЯ
МО ОГО М ПОД ЖЕЛЕЗНУЮ ООРОВУ
НОВМЕТЬНОЙ КОЛЕНТИВНОМ ЗООДЕНИЯ
ВОВОДЕНИЯ
BAOKUANZ-1-ANZ-3 Οπαλυδονκώε ν *арматурные* vepmexu Начототип пр Тресс Датамонов W/U 40,0 1338 NUCTN 1971 COO ZIE M-61:25 ally ear WYTOMOH л. ИНЖ. ПРОВКТО Pyk. epynnol Louis NOL KOMOPOBO Проверил Gerenel Cours 488CXOR UCHONHUN Upenses Upenkon

4ø.

Спецификация арматуры


Наимен	номеро		AUGHETP OTODWIO	ARUND	KON-80	Общая		Общи
	стеражы	JCKU3	ММ	стержн. М	стержн. Шлт.	DAUHO	1 n.m.	Sec
	/	e-96	Ø 32AĪĪ			M	Kr	X/
		3888	Ø32AĪĪ		9	50,3/		
	2	Umoro ø 32 A 🛚	W OZA II	4,63	9	41.67		
		1950 950	Ø25AĪĪ	" " "		91.98	6,3/	580,
стержни	3	1330 S IS	 		9	41,75		
e o	5		"	1,33	2	2, 55		
w		Umoeo ø 25 A 🗓 /330	A (0.03	T		44,42	3,85	171.0
`	6		Ø12AII	/,33	34	45,22	0,89	40.2
9/	4	CM.BUHOCKY HOLA.NII4	Ø 25A]		4	5, 28	3,85	24.2
ОНА	7	\$ 522 £ 8	\$8.41	lsp=2,08	20	41,50		
ОН	8	\$ \$ 362 \$ \$	**	Ccp.=1,76	10	17,50		
Одиномные	9	8 556 8	,,	2.87	8	22,96		
7	10	362 6	"	2,48	4	9,92		
		Umozo ø 8A!				92,08	0,395	36,4
×0	//	/330	Ø 10 A	1,33	9	11.97		,,
Cemko NI	12	2/40	"	2,14	9	19,26		
2		Umoeo \$ 10A11				3/, 23	0.62	19,4
U	moed	0 HO 6.110K	Ярмо	туры	KAOO	co A·[l	, 	8/2,6
		AN5-1	APMO	пуры	KAOO	CO A-]	7	50,6
			Bo	e e o				873,
	/		Ø32AII	5.54				
	1 1	35-1894 15)	#U257#	V. 07	9	50,75		1
	2	1894 S	"	5,13	9	50,76 46,17		
5	2	1000 \$ 32.8 I				-	6,3/	6/4.0
жни	2	100 € 200 € 32 A I				46,17	6,3/	6/4.0
лнжо'ег	2	Umoeo \$ 32 A II	,,	5,13	9	46,17 96,93	6,3/	6/4.0
стержни	2 3 5	1700 \$ 52 A II	" \$\phi 25A\bar{I}\$	5,13	9	46,17 96,93 46,26	3,85	
ствржни	2 3 5	1388 K	" \$\phi 25A\bar{I}\$	5,13	9	46,17 96,93 46,26 2,66		
	2 3 5	Umoeo \$25.4]	» ф25л <u>і</u> і	5,13 5,14 1,33	9 2	46,17 96,93 46,26 2,66 48,92	3,85	188.5
	2 3 5	Umoeo \$25 A.I.	" \$\phi 25.A \overline{I} \over	5,13 5,14 1,33	9 2 42	46,17 96,93 46,26 2,66 48,92 55,86	3,85	188.5
	2 3 5 6 4	Umozo \$25 A.I. 1330 Umozo \$25 A.I. 1330 CM. Bahracky Han. Mill	" \$\phi 25A\overline{I}\$ " \$\phi 12A\overline{I}\$ \$\phi 25A\overline{I}\$	5,13 5,14 1,33 1,33	9 2 2 42 4	46,17 96,93 46,26 2,66 48,92 55,86 6.28	3,85	188.5
Одиночные стержни	2 3 5 6 4 7	# 4368 #	\$\text{\$\psi_25A_1^2}\$\$\$\$\$\psi_25A_1^2\$\$\$\$\$\psi_25A_1^2\$\$\$\$\$\psi_8A_1^2\$\$\$\$\$\$\$\$\$\$	5,13 5,14 1,33 1,33 1,57 Lop = 2,11 Lop = 1,19	9 2 42 4 28	46,17 96,93 46,26 2,66 48,92 55,86 6,28 59,08	3,85	188.5
	2 3 5 6 4 7 8	Umoeo \$ 25 A A SECTION OF SECTION	# # # # # # # # # # # # # # # # # # #	5,13 5,14 1,33 1,33 1,57 Cqp=2,11	9 2 42 4 28 14	46,17 96,93 46,26 2,66 48,92 55,86 6,28 59,08	3,85	188.5
	2 3 5 6 4 7 8 9	Umoeo \$25 A !! 1330 Umoeo \$25 A !! 1330 CM. Boinocky non. Nill4 1350 CM. Sollow & Sollo	# # # # # # # # # # # # # # # # # # #	5,13 5,14 1,33 1,57 Cop =2,11 Cop =1,79 2,92	9 2 42 4 28 14 8	46,17 96,93 46,26 2,66 48,92 55,86 6,28 59,08 25,06 23,36	3,85	188.5
Одиночные	2 3 5 6 4 7 8 9	Umoeo \$25 A 1 1 1330 Umoeo \$25 A 1 1 1330 Umoeo \$25 A 1 1 1330 CM. Boinocky non. Nill4 \$255 552 58	# # # # # # # # # # # # # # # # # # #	5,13 5,14 1,33 1,57 Lop =2,17 Lop =1,19 2,92 2,53	9 2 42 4 28 14 8	46,17 96,93 46,26 2,66 48,92 55,86 6,28 59,08 25,06 23,36	3,85 0,89 3,85	188.5 49,7 24.2
Одиночные	2 3 5 6 4 7 8 9	Umoeo \$25 A !! 1330 Umoeo \$25 A !! 1330 CM. Boinocky non. Nill4 1350 CM. Sollow & Sollo	" #25A] " #12A] #25A] #25A] #8A] " " " " " " " " " " " " "	5,13 5,14 1,33 1,57 Cop=2,11 Cop=1,79 2,92 2,53	9 2 2 42 4 28 14 8 4	46,17 96,93 46,26 2,66 48,92 55,86 6,28 59,08 25,06 23,36 10,12 117,62	3,85 0,89 3,85	188.5 49,7 24.2
	2 3 5 6 4 7 8 9 10	Umozo \$25 A] Umozo \$25 A] 1330 Umozo \$25 A] 1330 CM Bahrocky HON HILL 25 522 58 25 562 58 25 562 58 Umozo \$8A] 1330	# # # # # # # # # # # # # # # # # # #	5,13 5,14 1,33 1,57 Lop =2,11 Lop =1,79 2,92 2,53	9 2 2 42 4 28 14 8 4	46.17 96.93 46.26 2.66 48.92 55.86 6.28 59.08 25.06 23,36 10.12 117.62 11.97	3,85 0,89 3,85	188.5 49,7 24.2
Сетка Одиначные	2 3 5 6 4 7 8 9 10	Umozo \$2.8] Umozo \$2.8] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A] Umozo \$2.5 A]	" # 25.4] # 25.4] # 25.4] # 25.4] # 26.4] # 27.4]	5,13 5,14 1,33 1,57 lop=2,17 2,92 2,53 1,33 2,14	9 2 2 42 4 28 14 8 4	46.17 96.93 46.26 2.66 48.92 55.86 6.28 59.08 25.06 23,36 10.12 117.62 11.97 19.26 31.23	3,85 0,89 3,85	188.5 49.7 24.2 46.5
Сетка Одиначные	2 3 5 6 4 7 8 9 10	Umozo \$25 A] Umozo \$25 A] 1330 Umozo \$25 A] 1330 CM выноску нал. МП4 25 222 58 25 222 58 25 222 58 Umoeo \$8A] 1330 2140	# \$25.81 12.	5,13 5,14 1,33 1,57 Cop = 2,11 Cop = 1,19 2,92 2,53 1,33 2,14	9 2 42 4 28 14 8 4 9	46,17 96,93 46,26 2,66 48,92 55,86 6,28 59,08 23,36 10,12 117,62 11,97 19,26 31,23 8-j	3,85 0,89 3,85	24.2

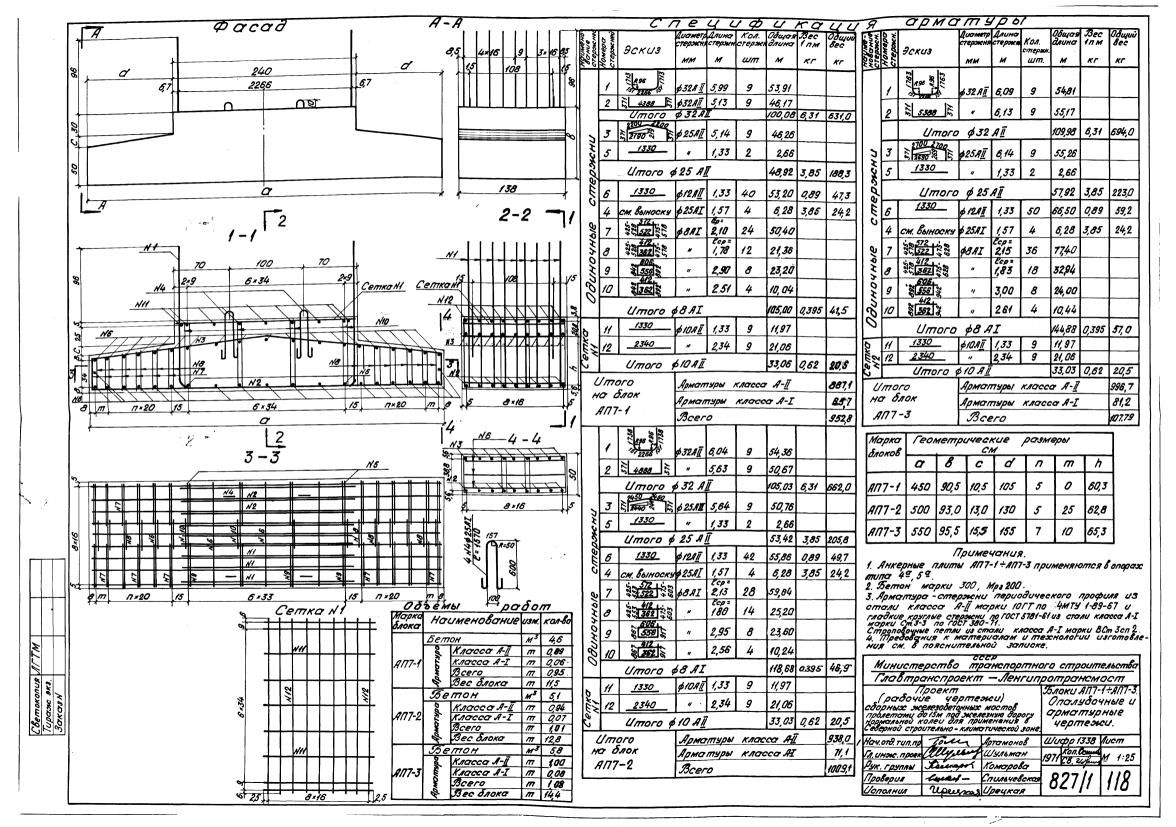
HOUMEN	Намеро		Дисметр	ANUHO	KOA-BO	Общоя		Общ
стержи.		3 CKU3	стержия	стержия	стерж н.	BRUHO	1n.m.	8ec
	0,0,0,1,1		MM	М	wm.	М	Kr	Kr
	/	R=96 1894	Ø32AII	5,69	9	51,21		ļ
	2	4888	"	5.63	9	50.67		
		Umozo \$ 32 A !!				101.88	6,3/	644.0
5	3	2430 4430	Ø 25A ji	5.64	9	50,76		
стержни	5	/330	"	1,33	2	2.66		
Ø.		Umozo ø 25 A <u>l</u> i				53,42	3,85	205.0
W _o	6	<u> 1350</u>	\$12A <u>I</u> I	1.33	46	61.18	0.89	54,5
ف	4.	см. Выноску на л. н 114	Ø25A <u>T</u>	1.57	4	6, 28	3,85	24.2
/H/0/	7	\$ \$ 572 \\ \$ \$ 522 \\ \$ \$ \$	\$8AI	lgp=2,13	32	68,15		
NO.	8	\$ \$ 362 \$ 6	**	Cop=1.81	16	28,95		
Одиночные	9	606 K	>>	2,98	8	23,84		
~	10	\$ 362 \$	"	2,58	4	10,32		
		Umozo \$8AT				131,28	0,395	5/,8
>	//	/330	\$10AI	1.33	9	11.97		
Сетка И I	12	2/40	"	2,14	9	19, 26		
Cen		Umoeo ø 10 A j	7			31, 23	0,52	19,4
	mas	го на блок	APM	amyps.	I KAOC	CO AI		923,9
·		5-3	Ярмо	туры	KAOCC	O A-T		75,0
	•,,,,		Bees	0				999,5
	/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ø32AJ	5,74	9	51,66		
	2	5588	"	6,/3	9	55,17		
		Umozo \$32 Aji				106.83	6,3/	674,0
5	3	2100 2700 E 2050 E	\$ 25AI	6,14	9	55,25		
¥	5	7330	**	1,33	2	2,66		
e,		Umozo \$ 25 A 1				57,92	3,85	222,5
стержни	6		Ø12A <u>l</u>	1,33	50	66.50	0.89	59,2
	4	см. выноски на.л. х 114	Ø25A_T	1.57	4	6.28	3,85	24.2
<i>8</i> %	7	25 255 25 25 25 25 25 25 25 25 25 25 25	Ø8AI	Ccp.=2,15	36	77,40		
Одинокные	8	\$\$\\\ 502\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	,,	Сер:=1,84	18	33,12		
9	9	8 222 8 2 202 5	"	3,02	8	24,16		
	10	20 362 S	>>	2,63	4	10.52		
		Umozo ø 8AI		,		145,20	0,395	57,4
}	"	_/330	Ø10-Aj	1,33	9	11,97		
XQ'	/2	2/40		2,14	9	19. 26		
Сетка Л		Umozo \$10 Ali				31, 23	0.62	19,4
	maa	о на блок	Apmo	mypsi i	KAOCCO	A-II		975,1
0		75-4	Армо	туры	KAOCCO	A-1		81.6
			Boez	0				1056,7

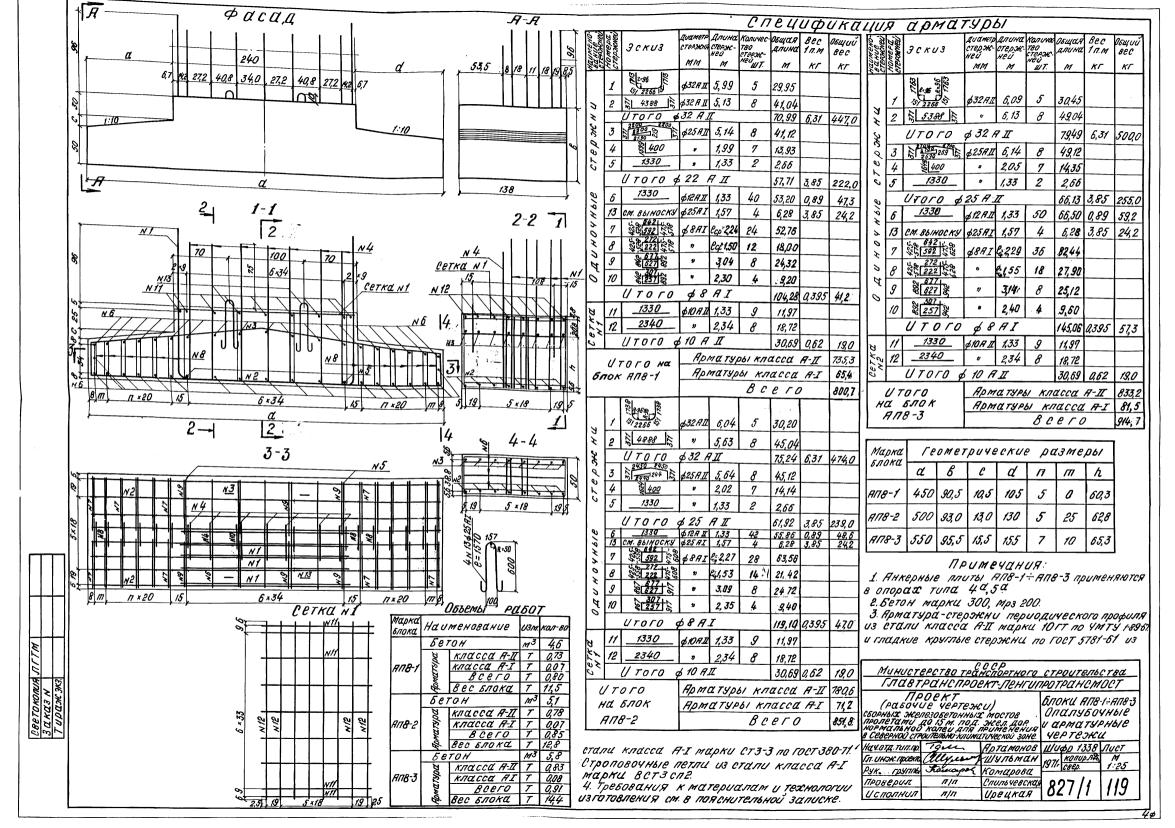
Примечание:

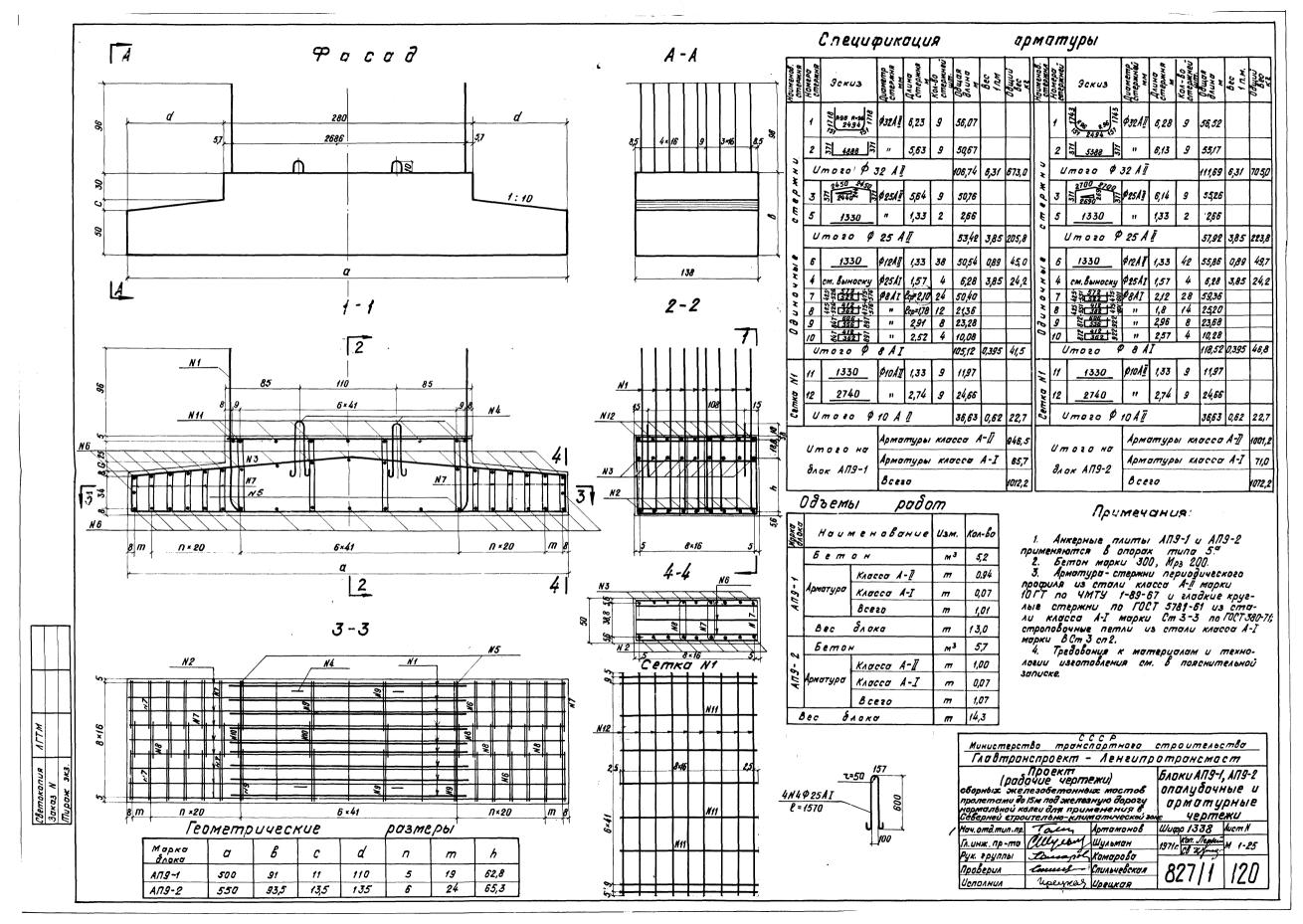
Работать совместно с листом N 114

2108mpa	HCAPOEKM	- Seneunp	OMPOHEM	100/11
(pað) เชื่องหม่า желі เกิดหน่า ชื่อ 15 พ หองหลายหล่า	колеи для		7.55	TOVHOJE MYDHOJE NEKU
Hoy.ord.тип. пр.				
гл. инж. пр-та	Myear	WYJOMOH	19712 KON Ja	W-5 -
Рук. группы	Kourage	4, Komaposa	3116 68 76	my W
Tpobepun	Cours-		827/	1 115
VONONHUN	Makrel	MODKOBO	7 UZ / /	$I \cup I \cup J$

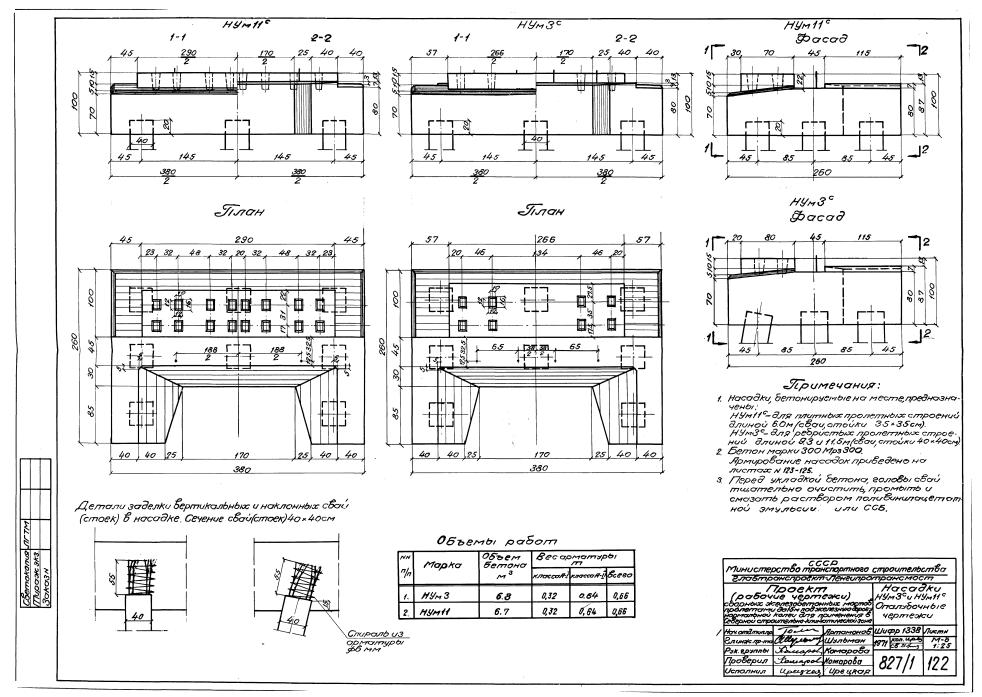
Спецификация арматуры блоков АПБ-1, АПБ-2, АПБ-3, АПБ-4

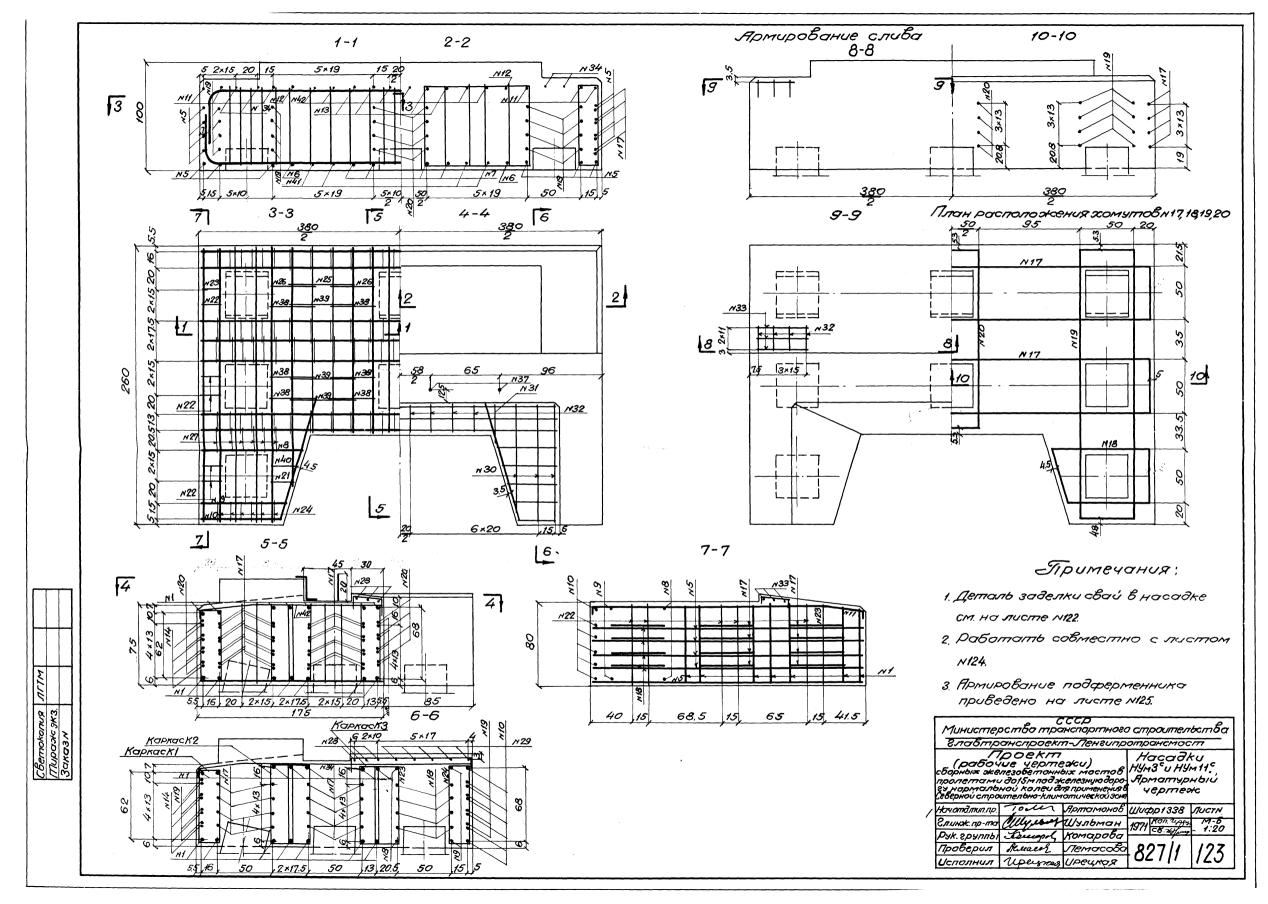

стержи	Номер Стержи.	Эcku3		стеројсня	Кол. стерэусн	06प्पु त्रश्न वेगपमव	Bec	lbujur Bec Kr
6 6	6 6		MM	M	шт	М	kr	*/
	1	85 R-96/894 R-96	ф32 Я <u>П</u>	5.59	5	27.95		
	2	₹ 3888 €	<i>ф32Я</i> <u>П</u>	4.63	8	<i>37.04</i>		
	 	Umoro \$3	2 A II			64.99	6.31	409.0
	3	1950 1950 1940 E M	φ25 <u>ΑΪΙ</u>	4.64	8	37.12		٠
Ĭ	4	\$ 400	\$25 A II	1.98	7	13.86	}	
ž	5	/330	\$25AII	1.33	2	2.66		
<i>ънж</i> d a ш o	-	Umoro	\$25 A	711		53.64	3.85	206.3
Ö	 -	/330	\$ 12 A I	1.33	34	45.22	0.89	40.2
	6	CM. BUHOCKY	\$25RI	1.57	4	6.28	3.85	24.2
O	13	CM. BLIHOCKY HA JUCINE N 116	\$8AI	lep=2,22	20	.44.40		2 /. 2
6	7	\$ 592 ES						
ò	8	\$ 222 E S	#8AI	Ccp=1.48	10	14,80		
Одиночные	9	\$ 627 E	#8AI	3,01	8	24.08		
30,1	10	£ 257 €	\$8A <u>T</u>	2.27	4	9.08		
•		Umor	o \$8.	9I		92.36	0.395	38.5
	11	1930	ф10 A <u>I</u>	1.33	9	11.97		
27		2/40	\$10A II	2.14	8	17.12		
Cemka N 1	-	1/200	0 \$10	RĪĪ		29.09	0.62	18.1
9				1		·		C72.C
		, .	,	J/DMa'm	UABI KA	acca 1	7 -//	10/5.0
	4	MOTO HE EN	rok		ypsi kn			673.6 60.7
	4	(того на 6). ЯП6-1	iok		пуры к	acca y		60.7
	74	ЯП6-1	rok	Apman	пуры к			
	1		#32A <u>T</u>	Apman Boero	пуры к. Э	28.20		60.7
	T.	A116-1		Apman Boero	nypsi ki	1900a H		60.7
	1 2	A 116-1 2 18-96 1	<i>\$32A¶</i>	Apman Boero	пуры к. Э	28.20		60.7 734.3
	1 2	#116-1	\$32A] " 2.A][\$25A][Apman Boero	пуры к. Э	28.20 41.04 69.24 41.12	7-1	60.7 734.3
3	1 2	### ##################################	#32AI " ?AI	Ярман Всета 5.64 5.13	5 8	28.20 41.04 69.24	7-1	60.7 734.3
KHU	1 2 3	#116-1	\$32A] " 2.A][\$25A][5.64 5.13	5 8	28.20 41.04 69.24 41.12	7-1	60.7 734.3
nusko	1 2 3 4	### 176-1	\$32A <u>T</u> " " 2.A <u>I</u> \$\phi 25A <u>II</u> "	5.64 5.13 5.14 2.01	5 8 8 7	28.20 41.04 69.24 41.12 14.07	7-1	60.7 734.3 436.0
mepskuu	1 2 3 4 5	A116-1 EL R-96 R-96 137 1894 S EL 4388 EL Umoro & 32 1200 2200 EL 2100 8 EL 2400	\$32A \bar{1} \\ \" \\ \$25A \bar{1} \\ \" \\ \$\ \$25 A \bar{1} \\ \" \\ \$\ \$\ \$25 A \bar{2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5.64 5.13 5.14 2.01	5 8 8 7	28.20 41.04 69.24 41.12 14.07 2.66	6,31	60.7 734.3 436.0
cmepsenu	1 2 3 4 5	### ##################################	\$32AI " 2AI \$\frac{1}{2}\$ \$\$\phi 25A\text{1}\$ \$\$" \$\$\phi 25 A\$ \$\$\phi 12AI \$\text{1}\$	5.64 5.13 5.14 2.01 1.33 7.11 1.33	5 8 8 7 2	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86	6.31 3.85 0.89	60.7 734.3 436.0 223.0 49.6
	1 2 3 4 5	### ##################################	\$32A \bar{\bar{\bar{\bar{\bar{\bar{\bar{	5.64 5.13 5.14 2.01 1.33 1.57	5 8 8 7 2	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28	6.31	60.7 734.3 436.0
	1 2 3 4 5 6 13 7	### ### ##############################	#32AII " 2AII #25AII " #25 A #12AII #25 A #25AI #425AI #8AI	5.64 5.13 5.14 2.0/ 1.33 1.57 Lg=224	8 8 7 2 42 4 28	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72	6.31 3.85 0.89	60.7 734.3 436.0 223.0 49.6
	1 2 3 4 5 6 13 7 8	### ### ### ### ######################	#32AII " 2AII #25AII " #25 A #12AII #25AI #25AI #25AI #25AI #8AI #88I	5.64 5.64 5.13 5.14 2.01 1.33 1.57 1.9° 224 1.9° 1.50	5 8 8 7 2 42 4 28 14	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00	6.31 3.85 0.89	60.7 734.3 436.0 223.0 49.6
	1 2 3 4 5 6 13 7 8 9	### ##################################	\$32AI	5.64 5.13 5.14 2.01 1.33 1.57 Lg=2,24 Lg=1,50 3.08	5 8 8 7 2 42 4 28 14 8	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48	6.31 3.85 0.89	60.7 734.3 436.0 223.0 49.6
UHOYHEIE	1 2 3 4 5 6 13 7 8	### ### ### ### ### ### ### ### ### ##	\$32AI	5.64 5.13 5.14 2.01 1.33 1.57 Lg=2,24 Lg=1,50 3.08 2.32	5 8 8 7 2 42 4 28 14	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 9.28	6.31 3.85 0.89 3.85	60.7 734.3 436.0 223.0 49.6 24.2
UHOYHEIE	1 2 3 4 5 6 13 7 8 9	### ### ### ### ### ### ### ### ### ##	\$32AI	5.64 5.13 5.14 2.01 1.33 1.57 1.69=1.50 3.06 2.32	5 8 8 7 2 42 4 28 14 8 4	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 .9.28 117.48	6.31 3.85 0.89	60.7 734.3 436.0 223.0 49.6
Одинонные	1 2 3 4 5 6 13 7 8 9	#116-1	\$32AI " 2AI \$ \$\$425AI \$ \$\$425AI \$ \$\$428AI \$ \$\$428AI \$ \$\$4	5.64 5.13 5.14 2.01 1.33 7.17 1.33 1.57 1.69=2.24 1.69=1.50 3.06 2.32 47 1.33	8 8 7 2 42 4 28 14 8 4	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 11.97	6.31 3.85 0.89 3.85	60.7 734.3 436.0 223.0 49.6 24.2
Одинонные	1 2 3 4 5 6 13 7 8 9 10	### ### ### ### ### ### ### ### ### ##	#32AI " 2AII #25AII #25 A #12AII #25 A #12AII #8AI #8AI #8AI #8AI #8AI #8AI #8AI #8AI #8AI #8AI	5.64 5.13 5.14 2.01 1.33 7.17 1.33 1.57 1.69=224 1.69=1.50 3.06 2.32 9.17 1.33 2.14	5 8 8 7 2 42 4 28 14 8 4	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 117.48 11.97 17.12	6.31 3.85 0.89 3.85	60.7 734.3 436.0 223.0 49.6 24.2
Одинонные	1 2 3 4 5 6 13 7 8 9 10	### ##################################	#32AII " 2AII #25AII #25AII #425AI #425AI #8AII	5.64 5.13 5.14 2.01 1.33 7.17 1.33 1.57 1.69=2.24 1.69=1.50 3.06 2.32 47 1.33	8 8 7 2 42 4 28 14 8 4	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 11.97	6.31 3.85 0.89 3.85	60.7 734.3 436.0 223.0 49.6 24.2
Одинонные	1 2 3 4 5 6 13 7 8 9 10	### ##################################	#32AII " #25AII #425AII " #25 A #12AII #25 A #12AII #8AI #	5.64 5.13 5.14 2.01 1.33 7.17 1.33 1.57 1.69=224 1.69=1.50 3.06 2.32 9.17 1.33 2.14	8 8 7 2 42 4 28 14 8 4	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 117.48 11.97 17.12	6.31 3.85 0.89 3.85	60.7 734.3 436.0 223.0 49.6 24.2
а Одиночные	1 2 3 4 5 6 13 7 8 9 10	### ##################################	#32AII " #25AII #425AII " #25 A #12AII #25 A #12AII #8AI #	5.64 5.13 5.14 2.01 1.33 1.57 1.57 1.59 1.224 1.33 2.14 1.33 2.14 1.0 A I	8 8 7 2 42 4 28 14 8 4	28.20 41.04 69.24 41.12 14.07 2.66 57.85 55.86 6.28 62.72 21.00 24.48 117.48 11.97 17.12 29.09	6.31 3.85 0.89 3.85	436.0 436.0 223.0 49.6 24.2

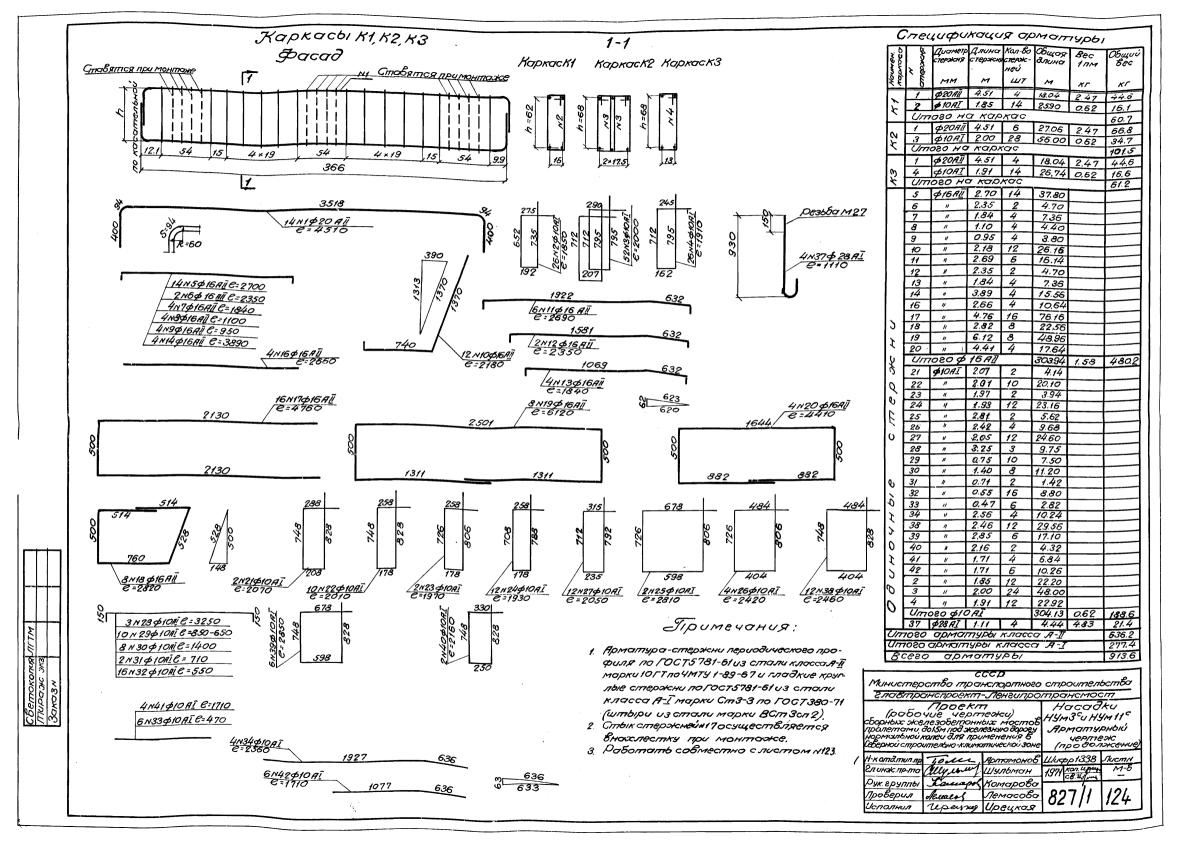

					·			
ž ž	2 %	204	Диаметр	AAUHA	KOA.	Oowas	Bec In.M.	asiqui Bec
raumen CTEPJEH	номер стерэкн	∂ck43	стерэјсня ММ	стерэкня М	стерэкн шт.	M	kr	kr
		811.						
	1	181 1894 151	ф32 <u>Я [</u> [5.69	5	28.45		
	2	₩ 4888 W	ф32 <u>Я [[</u>	5.63	8	45.04		
		Umore	\$ 32.	A <u>II</u>		73.49	6.31	462.0
٤	3	2450 2450 E 2450 2 E	ф25Я <u>П</u>	5.64	8	45.12		
cmepskuu	4	2 400	ф25A <u>П</u>	2.03	7	14.21		
Š	5	/330	ф25 Я <u>І</u> І	1.33	2	2.66		
S		Umoro q	625 A	7		61.99	3.85	237.7
	6	1330	\$12.RI	1.33	46	61.18	0.89	54.5
Q.	13	CM. BUHOOKY NO SUCME N 118	\$25AI	1.57	4	6.28	3.85	24.2
Odunoynele	7	\$ \$ 592 E \$	\$8 81	Pcp=227	32	72,64		
\$	8	\$ 272 \$ 222 \$ 8	\$8AI	Cg0=1,53	16	24.48		
, ¥	9	E 627 N	♦8Я І	3,11	8	24.88		
80	10	\$ 257 S	<i>\$881</i>	2.37	4	9.48		
0			68 A I		:	131,48	0.395	51.9
	11		\$10A1	1.33	9	11.97		
, ¥0	12	2/40	\$10AII	2.14	8	17.12		
Cemko N	- <u>-</u> -	Umoro	\$ 10 A			29.09	0.62	18.1
"		more Had	<u> </u>		туры К	Adeca	A- <u>I</u>	772.3
	ч		MON		mypsi i			76.1
		A116-3		Beero	3/20.			848,4
	т	71	Г					
	1	R-96 R36	\$32A <u>I</u>	5.74	5	28.70		
	2	£ 5338 E	#32A II	6.13	8	49.04		
	-		32 A <u>II</u>			77.74	6.31	490.0
3	3	2400 2400 E 2690 E	\$25A <u>II</u>	6.14	8	49.12		
n H Hedaws	4	2690 E	φ25A[[2.06	7	14.42		
0		/330	\$25A II	1.33	2	2.66		
<i>w</i>	5		1.00		4		3.85	255.0
0	_	Umore				66,20	0.89	59.2
	6		ф12Я <u>П</u>	1.33	50	66.50	3.85	24.2
9/	13	CM. BUHOCKY	\$25AI	1.57	4	6.28	3.00	24.2
Одиночные	7	\$ 5 SP2 5 5	\$8A <u>T</u>	Ccp=230	36	82.80		
40,	8	¥ <u>222</u>	ф8ЯI	lcp=1.56	18	28.08	·	
34,	9	\$(\$ \$\$\frac{\$\$\frac{\$\$}{2}\frac{7}{2}}\$	#8AI	3.16	8	25.28		
0	10	<u> </u>	ф8ЯI	242	4	968		
		Umoro	\$8A <u>I</u>			145.84	0.395	57.6
	#	/330	ф10Я <u>П</u>	1.33	9	11.97		
) KO	12	2140	ф10A <u>П</u>	2.14	8	17.12		
Cemko N		Umoro	¢10A1			29.09	0.62	18.1
	11	noro Ha 6AG			zypsi kn	deed 1	7- <u>1</u> 7	822.3
			<i>-</i> ^-	Армал	14,061 KJ	racca A	'- <u>T</u>	81.8
	Я	776-4		Bcero				904.0

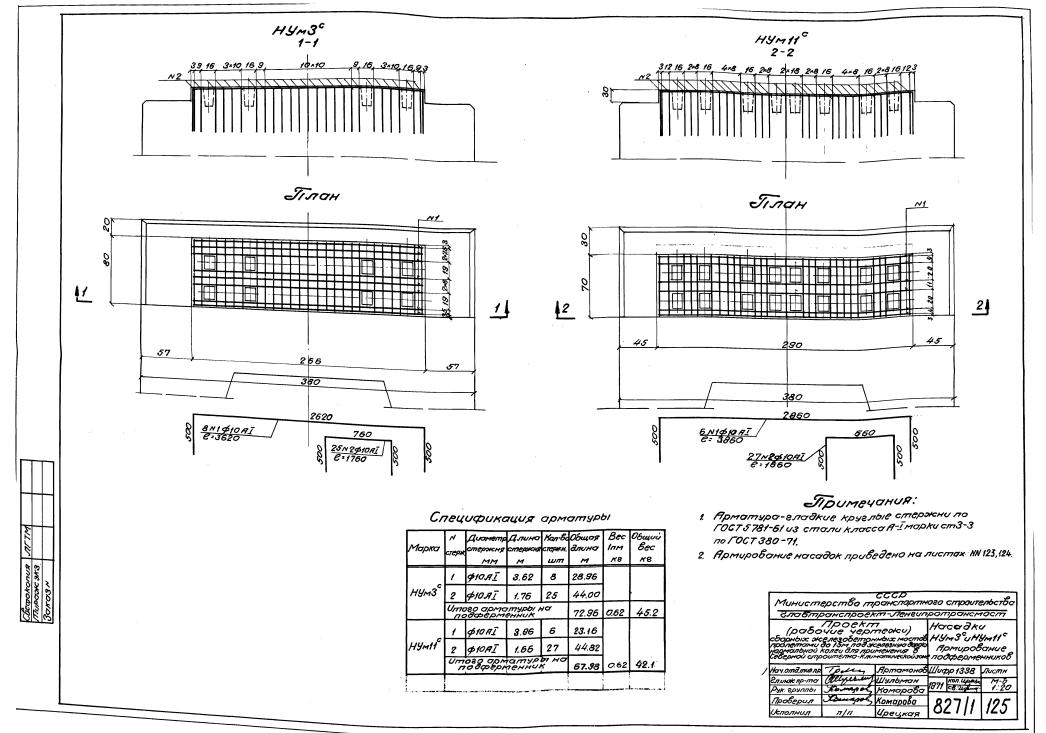

Примечание:

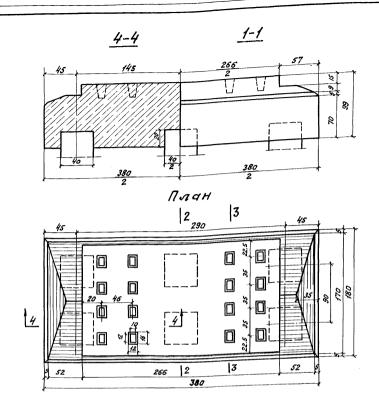

Работать совместно с листом NII6.

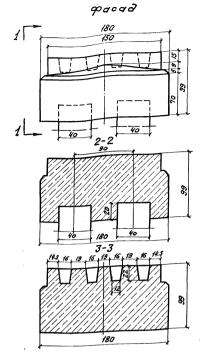

Министер	cmbo mpa	CCCP HCNOPMHOTO	строител	scmba
		km-Sehru		
(PAQO 4	POEKM WE VEPM KELEBOSEMO BO 15M NOB A WHEY WAS NOW OUMEN BHO KA	n e > /c \(\) HH6/IC MOCMOB KH63HYH DOPORY KM6HEHUR B UMGTU4ECKOJ 30K	II Joky Allo Onanyōoy apmamyp Yepm (npodona	HUE TO TH
Нач. отд. тип. пр	Tour	- Лотамонов	11/11ann 1331	Sucm N
Гл.инж. пр.	allysis	У Шульман	1971 Kan. 121	M.
Руков. группы Проверил	Cum	Komapoba Cauntyebckan		1 117

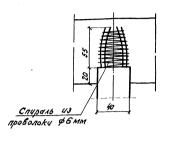








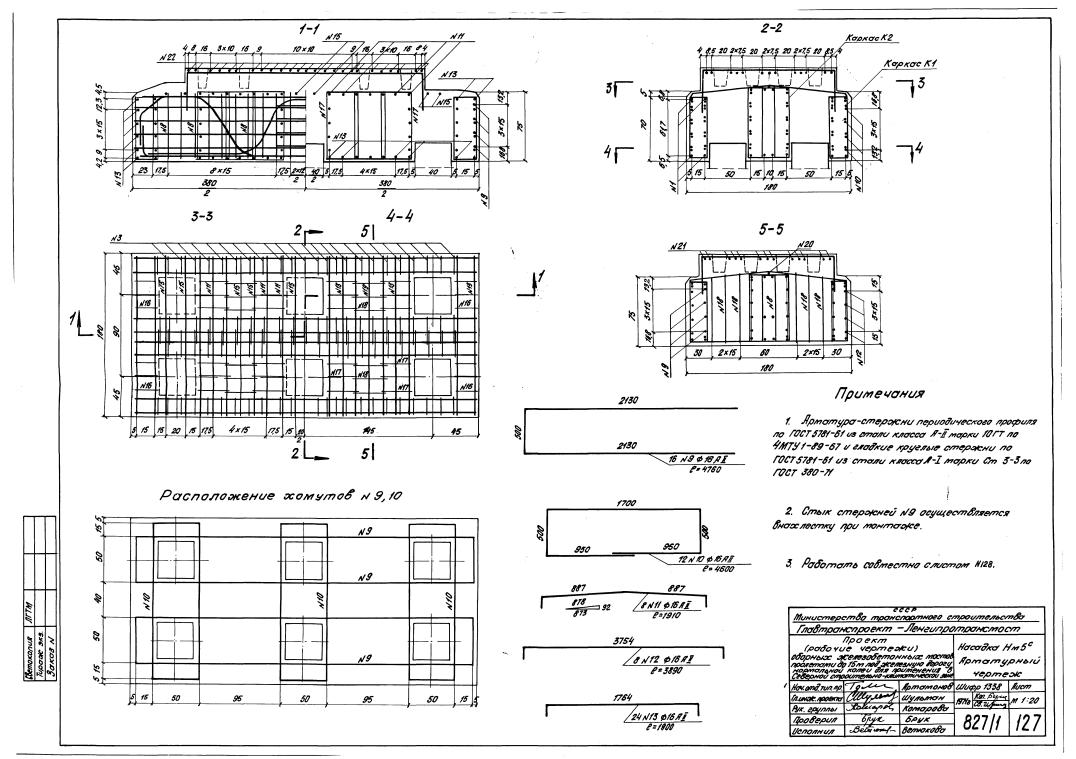


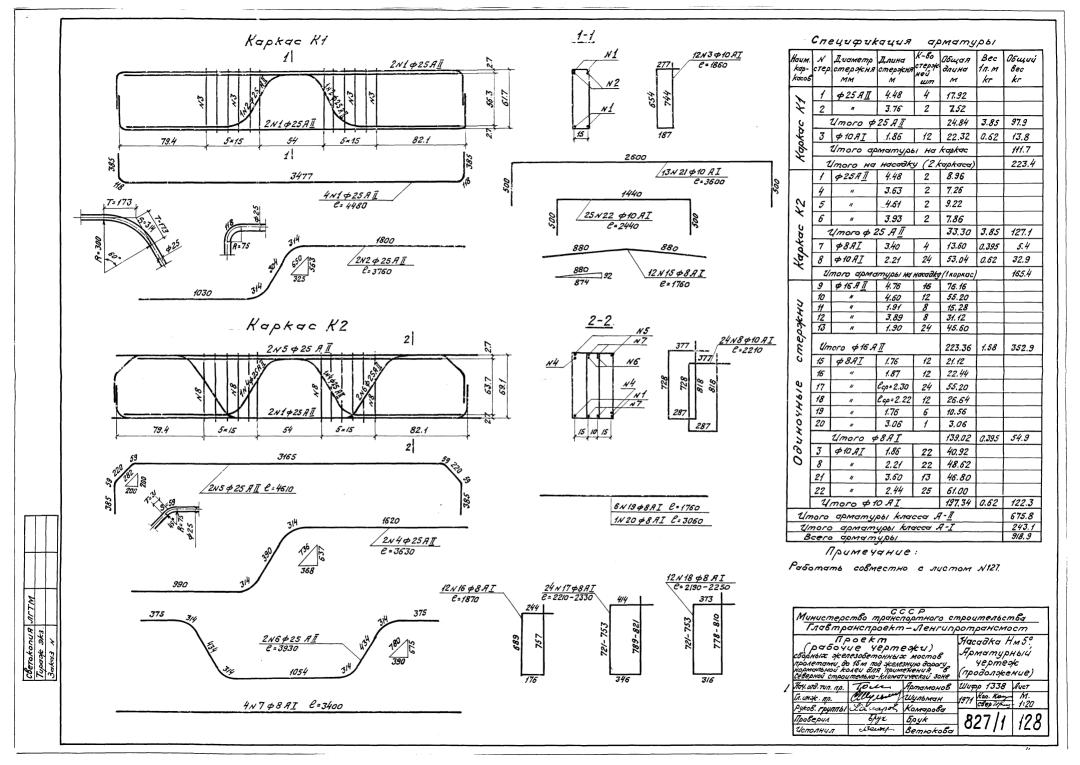


Οδδεμοι ραδοπ

	0000,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
N 11/11	Начте		Kon.	
1	Бетон		M ³	5.9
		Knacca A-II	m	0.68
2	Арматура	Knacca A-I	m	0.24
		Beero	m	0.92

Деталь заделки свач в насадке


Примечания:


- 1. Насадки $H_{M}5^{c}$, бетонируемые на месте, предназначены для опор типов $1^{\frac{a}{2}}$, $1^{\frac{a}{2}}$ и лод ребристые пролетные строения длиной $9.3\div16.5$ м (свач, стойки 40×40 см)
- 2. Бетон марки 300 Мрз 300.
- 3. Армирование насадок приведено на листая N 127,128.
- 4. Перед укладкой бетона, головы свай тщательно очистить, промыть и смазать раствором поливинилацетатной эмульсии или ССБ.

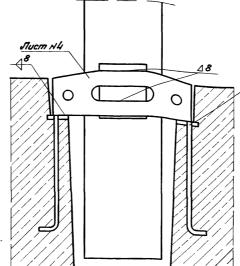
Министерство транспортного строительства
Ппавтранспроект — Ленгипротранстост

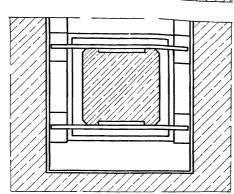
(рабочие чертежи)
Соорных железоветонных мостов
прометонно обла под женезную дорогу
кортальной колеи для притемения в
Северной строительно-климатической заме
Начой пр. р. Систер Пртамоно
Па индеред пр. Комарова
Проверил Комарова
Проверил Комарова
Исполнил

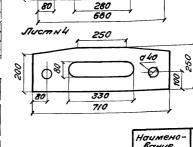
/go.

Крепление стойки сечением 35*35см

Jucm ×3


Закладная часть


Закладная 40cm6


Крепление стойкизечет

3axладная

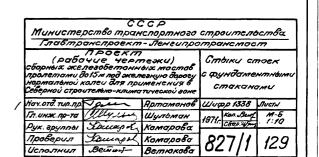
JUCM N 3

Спецификация закладных частей

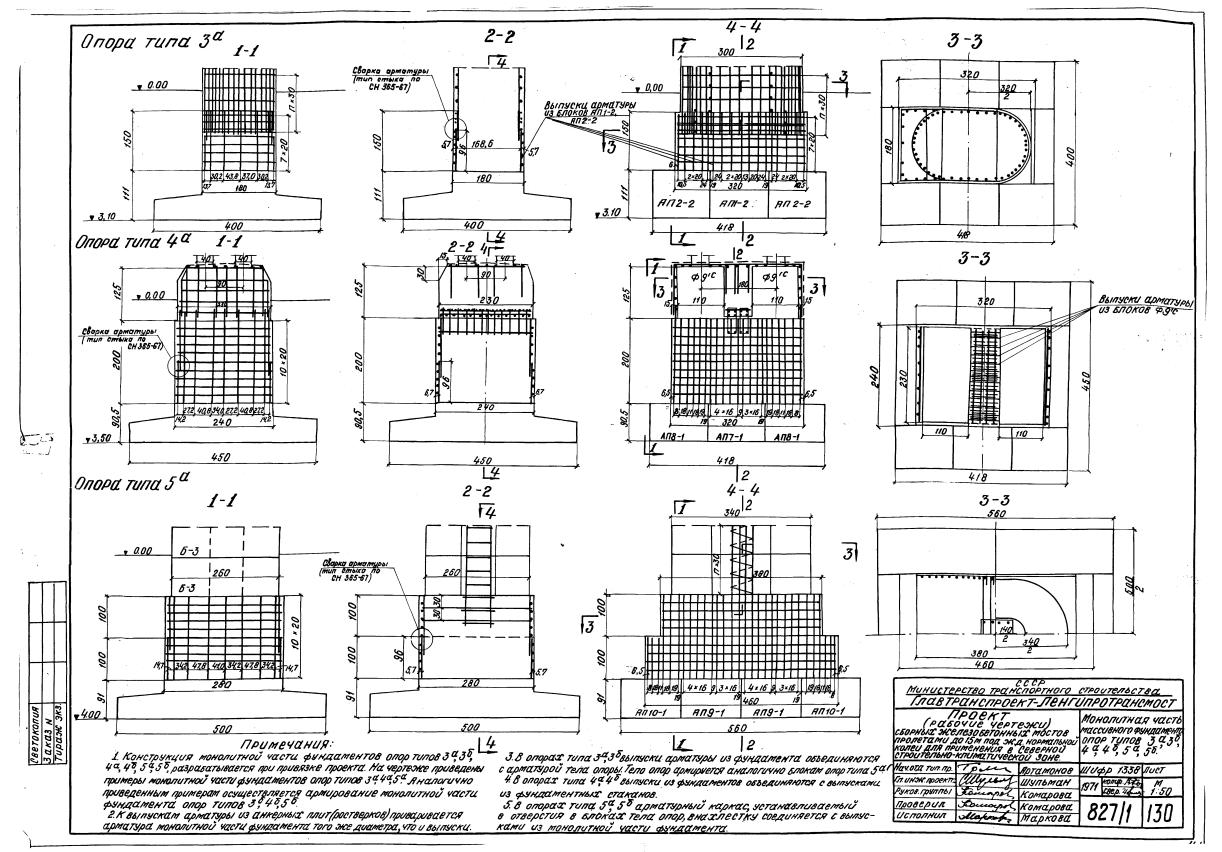
Наимено- бание блока	Вес 1 эакладный части кг	Кол. закл. част. ма блок шт	Общой вес закл. часто на блок кг
\$1°,\$4°	7,1	8	56,8
\$2°,\$7°	7,1	12	85,2
Φ3-1,°Φ3-2 Φ6-2°,Φ10°	7,1	4	28,4

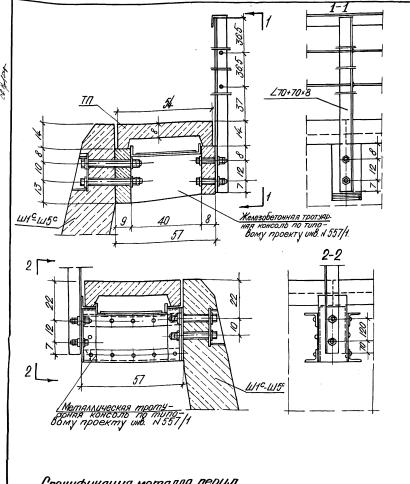
Металл стыка стойки с фундаментным стаканом

wa-	Gevenue MM	Длина мм	Bec ∞²
3	200 × 20	660	15,2
4	250 × 20	710	21,7

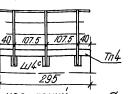

Mamepuan sucmos N 3,4 -- cmant ISX CHA unu 10 [26]A

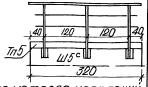
Наимено- блока	N NUCMA	Bec I sucma K2	Kon. nucmob wm	05щи й ве с на блок кг
Ø1°	3	15,2	4	60,8
\$2°	3	15,2	6	91,2
\$3-1°,\$3-2°	3	15,2	2	30, Y
Ø4°	4	21,7	4	86,8
<i>Ф7</i> ^c	4	21,7	6	130,2
Φ6-2°,Φ10°	4	21,7	2	43,4


- Примечания: 1. Привязку закладных частей фундаментных стаканов см. на листаж № 94-105, 108, 109.
- 2. Армирование стыка стоек с фундаментными стаканами принимается по типовому проекту UHB.N 708/1 C YMOYHENUEM NO MECMY.


Металл			
фундам	ентных	cma	канов

5 80 35	9	уноамент	HU/3C	makak	100		
	"	., e	Сечение	Длина	Кол.	<i>Bec</i>	Материал
	позици	Наименование	duameto mm	мм	um	574	
	1	Stucm	HO * 20	150	1	2,6	Стал6 I5 X СНД или 10 Г 2 С I Д
 	2	Янкер	<i>\$ 20</i>	710	2	4,5	Сталь класса Я-II марки ЮГ
	Un	1020 HQ 3QKJ1	адную ч	vacmb		7.1	





Разбивка перил на устоях

Длина К-во Весв кг.

Спецификация металла креплений железобетонных консолей.

₩	Наименование	Длина	K-bo	Вес	В КГ.	
1/1	HAUMEHOOAHUE	MM.	ШТ.	1шт.	Общ	
/	Болтм27 Гост 7798 – 57	330	2	1.64	3.28	
2	FRUKU U KOKMPFRUKU. M27 FOCT 5915-51	_	4	0.15	0.60	
3	Шайба M27 ГОСТ 6957-64	1	4	0.05	0.20	
Итого металла на одно крепление 4.0						
Итого ня устой СО шкяфным БЛОКОМ Ш1° (6.4						
UMOTO HA YCMOU CO WKA DHIM BAOKOM LU4º 2						
итого на устой со шкабным блоком 1430 (б. креплений) 24.6						
_						

Спецификация ме/палла креплении перил при железоветонных консолах

Длина	K-80	Вес	В кг.			
MM	WT.	1шт.	Оъщ.			
140	2	0.41	0.82			
	4	0.07	0.28			
_	4	0.02	0.08			
Итого металля на одно крепление 1.18						
UMOTO HA YEMOÙ CO WKADHDIM BAOKOM LU 1º 4.7						
BAOKOM	' Щ4	(C	7./			
1 <i>510KO</i>	M ILI	5°	7.1			
	мм 40 	мм шт. 140 2 — 4 — 4 пление блоком шт	140 2 041 — 4 007 — 4 002			

Спецификация металла креплений металлических консолей.

NN.	,, P	ANUHA					
1/1	Наименование	MM	ШТ	Ішт.	0544.		
7	Болт м 27 Гост 7798-67	260	2	1.3	26		
2	Гайка м27 ГОСТ 5915-51	_	4	0.15	0.6		
9	Шаибам27 ГОСТ 6957-54	_	4	0.05	0.2		
10	Лист 153×20	302	/	7.3	7.3		
U	Umoro металла на одно крепление — К						
U	пого на устой со шкафным (4 крепления)	5AOKO	OM L	///c	42.8		
Un	TOTO NA YCMOÙ CO WKADHЫM ((6 KPENACHUÙ	SAOKOM)	41	4c	64.2		
Un	ого на устой со шкафни (6 креплении	IM BAG	OKOM	1Ш5°	64.2		

Спецификация металла креплений перил при металпических консолях

	1/1	Наименование	MM	ШТ	1um.	Оъщ.
	//	Болт м20 гост 7798-57	60	2	0.22	0.44
	12	Гайка м 20 Гост 5915-62	_	4	0.07	0.28
	13	Шаи́ба м20 Гост 6957-54	_	4	0.023	0.09
i	117	ого металла на одно кре	плени	ve		0.81
1	Uni	ого на устой со шкафным (4 крепления)	1 5.10K	OM L	110	3.2
1	Un	ого на устой со шкафны	M BAOK	OM L	114°	49

Umoro на устой со шка ф нъју блоком Ш 4° 49
Umoro на устой со шка ф нъју блоком Ш 3° 49
(6 креплений)
49

Спецификация металла перил.

,, ,	Длиня		Вес	в кг.
Наименование	MM.	00	1 шт.	Обиц.
12 CMOUKULTO+TO×8 23 FOOT 8509-57	1494	4	12.5	50.0
7007 8509-57	2100	2	17.6	35.2
З Залолнение ф20 AI	1600	4	4.0	16.0
\$ Итого металля перил на 5	стой			101.2
\$ CMOUKU 270+70×8 FOCT 8509-57	1494	6	12.5	75.0
10044HU 270+70×8	2950	2	24.7	49.4
₹ Заполнение ф20 АТ	2450	4	6.1	24.4
Итого металла перил н	A YCH	עטק		148.8
1001 8509-57 +70 × 8	1494	6	12.5	75.0
100 8509 - 57	3200	2	26.8	53.6
Заполнение ф 20 AI	2700	4	6.7	26.8
UTOFO METANNA MEDUN HA	yere	Üί.		155.4

Примечания

- I. Конструкция крепления тротунов и конструкция перил приняты яналогично типовому проекту инв. N 557/I
- 2. С целью защиты металла от коррозии все элементы окрашиваются в два
- Слоя по слою грунтовки в соответствии со СНИП № 4,2-62.
 3. Мятериялы: перильные стойки и поручни-сталь марки 10Г2С1Дили 15 ХСКД по ГОСТ 5058-65; перильное заполнение, болты крепления и гайки-сталь марки вст. Зсп. 2 или вст. 3кс2; шайбы-сталь марки ст. 2-2 по ГОСТ 380-71.
- или встэпск; шниоої-сталь марки ст2-2 потист эви-т. 4. На чертеже приведена конструкция крепления тротуарных консолей длиной 57cm на устоях мостов на прямых участках пути.
 - ост на устоях мостой на прямых участках путь. Крепление тротуарных коноолей длиной 68 и 82cm на кривых аналогично приведенному на настоящем чертеже. (Гротуарные плиты—по типовому провкту n 708/1, с заменой арматуры класса А-II марки Ст. 5 на стак югт)

Министерство транспортного строительства									
ТЛАВ ТРОЕКТ-ЛЕНГИПРОТРАНСМОСТ. ТРОЕКТ (рябочие чертежи) сворных женезаветонных мостов пролетами до 15м под желевную дорогу нор- мяльной колей отя применения в Соворной строительно-климатич, зане									
HAY OTO TUN. NO.	Подпись	Артамонов	Шифр 1338	Лист					
Гл. инж. пр-та	1	WYNDMAH	1971 <u>Kan. Nadin.</u>	M-5 1:10;1:					
Рук. группы.	,	KOMAPOBA							
Проверил.	"	, ,	827/1	(131)					
ИСПОЛНИЛ.	//	Ирецкая	<i></i>						