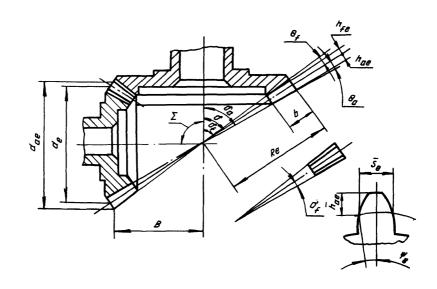
удк 621.833.2.001.24 Группа ГО2 ОТРАСЛЕВОЙ СТАНДАРТ OCT 1 00267-78 ПЕРЕДАЧИ ЗУБЧАТЫЕ КОНИЧЕСКИЕ ПРЯМОЗУБЫЕ На 22 страницах Расчет геометрических параметров Взамен 78МТ-41 11596 ОКСТУ 7503 Распоряжением Министерства от 12 мая 1978 г. Nr 087-16 срок введения установлен с 1 января 1979 г. 3630 1. Настоящий стандарт устанавливает расчет геометрических параметров конической прямозубой зубчатой передачи с межосевым углом от 10 до 170° внешним окружным модулем более 1 мм, а также номинальные размеры сопряженных зубчатых колес с переходной кривой зуба без поднутрения. ГР 8077966 от 15.06.78 Перепечатка воспрещена Издание официальное

- 2. Термины и обозначения, применяемые в стандарте, соответствуют ГОСТ 16530-83 и ГОСТ 19325-73.
 - 3. Схема расчета геометрии приведена на черт. 1.

Исходные данные для расчета					
Расчет основных параметров зубчатой передачи и колес					
Расчет измерительных размеров зуба					
Проверка качества зацепления по геометрическим показателим					


Черт. 1

- 4. Расчет по формулам должен производиться с погрешностью измерения:
- линейных размеров не менее 0,0001 мм;
- угловых размеров не менее 0.01^{0} ;
- тригонометрических величин не менее 0,00001;
- коеффициентов смещения и коеффициентов изменения толщины зуба не менее 0.01.
 - 5. Исходные данные для расчета приведены в табл. 1.

Таблица 1

Наименование параметра	Обозначение
Число зубьев: шестерни	z ₁
колеса	z ₂
Внешний окружной модуль	™ _e
Межосевой угол	Σ
Внешний торцовый искодный контур:	×
коэффициент высоты головки	ha*
коэффициент радиального зазора	c*
коэффициент радиуса кривизны	
переходной кривой в граничной точке	P ₄ *
Коеффициент смещения:	Χ,
шестерни	
колеса	X ₂

6. Формулы расчета основных геометрических параметров зубчатых колес и передач, указанных на черт. 2, приведены в табл. 2.

Черт. 2

Таблица 2	T	абл	иц	a	2
-----------	---	-----	----	---	---

2 2	Наименование параметра	Обоз- начение	Расчетная формула
00	Число зубьев плоского колеса	z _c	$Z_{c} = \frac{1}{\sin \Xi} \sqrt{Z_{1}^{2} + Z_{2}^{2} + 2Z_{1} Z_{2} \cos \Xi};$ $Z_{c} = \sqrt{Z_{1}^{2} + Z_{2}^{2}} npu \Xi = 90^{\circ}$
3630	Внешнее конусное расстояние	Re	Re = 0,5 m _e Z _C
	Ширина зубчатого венца	Ь	$b \le 0.3$ Re u $b \le 10$ m_e Ширину зубчатого венца b округимот до целого числа

11596

Инв. № дублината Инв. № подлиника

															_
П	n	O	ń	a	л	ж	6	н	и	е	т	A	б	л.	2

Угол делительного конуса Внутренний окружной модуль Передаточное число Передаточное число эквивалентной конической передачи Число зубъев эквивалентной	δ m _i u u _{vb}	1 - Z1
Передаточное число эквивалентной конической передачи	и	Углы делительного конуса δ_1 и δ_2 определя ются с погрешностью не более 2" $m_{\tilde{l}} = m_{\tilde{e}} \frac{Re - b}{Re}$ $u = \frac{Z_2}{Z_1}$
Передаточное число эквивалентной конической передачи	и	$u = \frac{Z_2}{Z_1}$
Передаточное число эквивалентной конической передачи	ļ	$\mathcal{U} = \frac{Z_2}{Z_1}$
конической передачи	u_{vh}	†
Число зубьев эквивалентной		для Z ≠ 90°°°°
конической шестерни	Z _{Vb1}	$Z_{Vb_1} = \frac{Z_1}{\cos \delta_1} \frac{u_{Vb}}{\sqrt{1 + u_{Vb}^2}}$ $\partial JS \ Z \neq 90^\circ$
Внешняя высоте головки зуба	hae	$h_{ae_1} = (h_a^* + X_1) m_e; h_{ae_2} = 2h_a^* m_e - h_{ae_1}$
Внешняя высота ножки зуба	h _{fe}	h _{fe1} = h _{ae2} + c*m _e h _{fe2} = h _{ae1} + c*m _e
Внешняя высота зуба	he	he = hae + hfe
Угол ножки зуба	θ_{f}	$tg\theta_{4}=\frac{h_{4e}}{Re}$
Угол головки зуба	θα	$\theta_{\alpha 1} = \theta_{42}$; $\theta_{\alpha 2} = \theta_{41}$
Угол конуса вершин	δ_{α}	$\delta_{\alpha} = \delta + \Theta_{\alpha}$
Угол конуса впадин	δ_{+}	$\delta_{+} = \delta - \theta_{+}$
Угол сходимости линий основания зуба	б ₊	$tg 6_{f} = \frac{0.5 S_{e} + h_{fe} tg d}{R_{e}} \cos \theta_{f}$
Внешний делительный диаметр	de	$d_e = m_e Z$
Внешний диаметр вершин зубьев	d_{ae}	$d_{ae} = d_e + 2h_{ae} \cos \delta$
Расстояние от вершины до плос- кости внешней окружности вершин зубъев	В	$B = R_e \cos \delta - h_{ae} \sin \delta$ $n\rho u \Sigma = 90^{\circ} B_1 = 0.5 d_{e2} - h_{ae1} \sin \delta_1 ;$ $B_2 = 0.5 d_{e1} - h_{ae2} \sin \delta_2$
	Угол ножки зуба Угол головки зуба Угол конуса вершин Угол конуса впадин Угол сходимости линий основания зуба Внешний делительный диаметр Внешний диаметр вершин зубьев Расстояние от вершины до плос- кости внешней окружности	Внешняя высота зуба Угол ножки зуба Угол головки зуба Угол конуса вершин Угол конуса впадин Угол конуса впадин Угол сходимости линий основания зуба Внешний делительный диаметр Внешний диаметр вершин зубьев Расстояние от вершины до плос- кости внешней окружности

Продолжение табл. 2

Наименование параметра	Обоз- начение	Расчетная формула
Внешняя граничная высота зуба	h _{Le}	$h_{le} = \frac{d_{av}t_e}{2} - \frac{d_p}{2}$
Диаметр окружности нижней точки	d_{p}	1 /[//
активного профиля зуба эквивалент-		$d\rho = \sqrt{(d_v t_{e1} + d_v t_{e2})} \sin d - \sqrt{d_{av} t_{e2}^2}$
ного цилиндрического колеса		$-(d t_{e2} \cos \alpha)^2]^2 + (d_v t_{e1} \cos \alpha)^2$

7. Формулы расчета измерительных размеров зуба, указанных на черт. 2, приведены в табл. 3

Таблица З

Наименование параметра	Обоз- начение	Расчетная формула
Внешняя делительная толщина зуба по корде	S _€	$\bar{S}_e = \frac{m_e Z}{\cos \delta}$ sin ψ_e
Высота до внешней делительной хорды зуба	h _{ae}	$\bar{h}_{ae} = h_{ae} + 0.25 S_e \psi_e$
Половина внешней угловой толщины зуба	ψ_e	$\psi_e = \frac{s_e \cos \delta}{m_e Z}$
Внешняя окружная толщина зуба	S _e	$S_{e1} = (0.5\pi + 2X_1 tgd + X_{T_1})me$ $S_{e2} = \pi me - S_{e1}$
Внешняя постоянная хорда зуба	Ī _{ce}	$\bar{s}_{ce} = s_e \cos^2 d$
Высота до внешней постоянной хорды зуба	\bar{h}_{ce}	$h_{ce} = h_{ae} - 0.25 S_e Sin 2 d$

8. Формулы расчета отсутствия подрезания зубьев приведены в табл. 4.

Таблица 4

Наименование параметра	Обоз- начение	Расчетная формула
Минимальное число зубьев шестерни, свободное от подрезания	Z _{1 micn}	$Z_{1min} \ge 2\left[h_a^* + c^* - \frac{\mathcal{P}_{KO}}{m_e} (1-\sin \alpha) - X_1\right] \frac{\cos \delta}{\sin^2 \alpha}$
Радиус закругления вершины резца	SKO	Pro = p*me
Ко еффици ент наименьшего смещения у шестерни	X _{1 min}	Х ₁ тіп ⁼ При Х ≥ Х _{1тіл} подрезание зу ба отсутствуе т

Инв. № дублината Инв. № подлинина 9. Формулы расчета внешней окружной толщины зуба на повержности вершин приведены в табл. 5.

Таблица 5

	H	Наименование параметра	Обоз- начение	Расчетная формула
		Внешняя окружная толшина зуба на поверхности вершин, выраженная в долях модуля	S*ae	$S_{ae}^* \cong S_{av}t_e = \frac{d_{av}t_e}{m_e} \left(\frac{S_e}{d_{vte}} + \frac{1}{1} + \frac$
		Делительный циаметр внешнего эквивалентного цилиндрического зубчатого колеса	d _{vte}	$d_{vte} = \frac{m_e Z}{\cos \delta}$
		Диаметр вершин зубьев внешнего эквивалентного цилиндрического зубчатого колеса	davte	d _{avte} = d _{vte} + 2h _{ae}
N3M. 1	38. 11596	Угол профиля зуба в точке на окружности вершин зубьев внешнего эквивалентного цилиндрического зуб- чатого колеса	d _{avte}	$cosd_{avte} = \frac{d_{vte}}{d_{avte}} cosd$

10. Формулы расчета коеффициента торцового перекрытия приведены в табл. 6.

Таблица 6

	Наименование параметра	Обоз- начение	Расчетная формула
3630	Коеффициент торцового перекрытия	$\mathcal{E}_{\mathcal{A}}$	$\varepsilon_{d} = \varepsilon_{\alpha} + \varepsilon_{b} - \varepsilon_{c}$ $\varepsilon_{a} = \frac{1}{\pi \cos d} \sqrt{\left(\frac{z_{vt_{1}}}{2} + \frac{h_{ae_{1}}}{m_{e}}\right)^{2} - \left(\frac{z_{vt_{1}}}{2} \cos d\right)^{2}}$
			$\mathcal{E}_b = \frac{1}{\pi \cos d} \sqrt{\left(\frac{z_{vt2}}{2} + \frac{h_{ae2}}{m_e}\right)^2 - \left(\frac{z_{vt2}}{2} \cos d\right)^2}$
инв. № дублината Инв. № подлинина			$\varepsilon_c = \frac{Z_{vt1} + Z_{vt2}}{2\pi} tgd$ $\varepsilon_d \ge 1.3$

Продолжение табл. 6

Наименование параметра	Обоз-	Расчетная формула
Число зубьев эквивалентного цилиндрического зубчатого колеса	z _{vt}	$Z_{vt} = \frac{Z}{\cos \delta}$

- 11. Выбор исходных данных для расчета геометрических параметров приведен в рекомендуемом приложении 1.
- 12. Расчет радиуса кривизны переходной кривой суба приведен в рекомендуемом приложении 2.
- 13. График и номограммы для определения $X_{min}, Z_{min}, S_{ae}, \mathcal{E}_{d}, Z_{vt}$ приведены в рекомендуемом приложении 3.
- 14. Пример расчета геометрических параметров зубчатого колеса приведен в справочном приложении 4.

3M.	18.	
¥	Ne #3	
- X	3630 Ne H3	

ВЫБОР ИСХОДНЫХ ДАННЫХ ДЛЯ РАСЧЕТА

- 1. Прямозубые конические передачи выполняются с осевой формой зуба 1 и постоянным радиальным зазором по ширине зубчатого венца.
- 2. Понижающие передачи рекомендуется выполнять с передаточными числами от 1 до 10. Предпочтительными являются передаточные числа от 1,0 до 6,3 по ряду R_2 10 ГОСТ 8032-84.
- 3. Повышающие передачи не рекомендуется выполнять с передаточными числами более 3.15.
- 4. Числа зубъев для ортогональной конической зубчатой передачи рекомендуется определять по номограмме, приведенной на чертеже.
- 5. Модуль зубчатой передачи устанавливается исходя из расчета на прочность и ближайшее значение выбирается по ГОСТ 9563-60.
- 6. Конические зубчатые передачи должны выполняться в соответствии с исходным контуром по ГОСТ 13754-81 со следующими параметрами: $\mathcal{L}=20^{\circ}$; $\mathcal{L}_{\alpha}^{*}=1.0$; $\mathcal{L}_{\alpha}^{*}=0.2$; $\mathcal{L}_{\alpha}^{*}=0.3$.
- 7. В технически обоснованных случаях для повышения контактной выносливости или сопротивляемости зубьев излому допускается увеличение угла зацепления в передаче $\alpha_{\mu\nu}$ путем специальной настройки станка.
- 8. В передачах с передаточным числом $\mathcal{U} \neq 1$ шестерню и колесо рекомендуется выполнять со смещением.

Коэффициент смещения определяется в зависимости от геометрических размеров зубчатых колес и условий их работы.

Коэффициенты смещений для ортогональных конических передач рекомендуется выбирать по таблице.

Число зубьев шестерни	,			иегени	те ко с ередат	• •		ле <i>П</i>	PHHS	X ₁		
Z ₁	1,00	1,12	1,25	1,40	1,60	1,80	2,00	2,50	3,15	4,00	5,00	6,30 и выше
12	-	_	-	-	_	-	-	0,50	0,53	0,56	0,57	0,58
13	-	-	-	-	-	-	0,44	0,48	0,52	0,54	0,55	0,56
14	-	-	-	0,27	0,34	0,38	0,42	0,47	0,50	0,52	0,53	0,54
15	-	-	0,18	0,25	0,31	0,36	0,40	0,45	0,48	0,50	0,51	0,52
16	-	0,10	0,17	0,24	0,30	0,35	0,38	0,43	0,46	0,48	0,49	0,50
18	0,00	0,09	0,15	0,22	0,28	0,33	0,36	0,40	0,43	0,45	0,46	0,47
20	0,00	0,08	0,14	0,20	0,26	0,30	0,34	0,37	0,40	0,42	0,43	0,44

ив. № дублината Инв. № водлиния

Продолжение

Число зубьев шестерни			3		ие кос переди	• -			е ния И	X 1		
Z ₁	1,00	1,12	1,25	1,40	1,60	1,80	2,00	2,50	3,15	4,00	5,00	6,30 и выше
25	0,00	0,07	0,13	0,18	0,23	0,26	0,29	0,33	0,36	0,38	0,39	0,40
30	0,00	0,06	0,11	0,15	0,19	0,22	0,25	0,28	0,31	0,33	0,34	0,35
40	0,00	0,05	0,09	0,12	0,15	0,18	0,20	0,22	0,24	0,26	0,27	0,28

Примечания: 1. Таблица может быть использована для повышающих передач при $U \le 3,15$. Для неортогональных передач вместо U и Z_4

принимать соответственно \mathcal{U}_{Vb} в \mathcal{Z}_{Vb} . 2. Шестерню рекомендуется выполнять с положительным

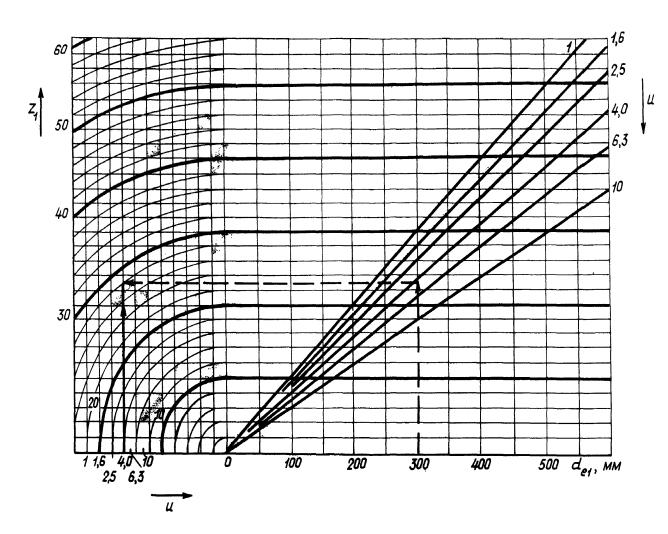
смещением X₁, а колесо с равным ему по величиее отрицательным смещением X₂ = X₁.

3. Для передач, у которых U и Z₁ отличаются от указанных в таблице, которых и смещения принимается с округиени ем в большую сторону.

- 9. С целью повышения изгибной прочности зубчатые колеса при $\,\mathcal{U} \geq 2.5\,$ рекомендуется выполнять не только со смещениями X_4 и X_2 , но и с различной толщиной зуба исходного контура X_{τ} .
- 10. Коэффициент изменения расчетной толщины зуба исходного контура $\mathsf{X}_{\mathcal{T}_{I}},$ положительный для шестерни и равный ему по величине и обратный по знаку X_{τ_2} , для колеса рекомендуется вычислять по формуле

$$X_{\tau_1} = 0.03 + 0.008 / U - 2.5 / .$$

Формулой можно пользоваться для повышающих передач при $U \le 3,15$ и для неортогональных передач, при этом вместо $\,\mathcal{U}\,$ принимается $\,\mathcal{U}_{\mathcal{N}L}\,.$


- 11. Выбор коеффициентов смещения также рекомендуется производить с помощью блокирующих контуров по ГОСТ 16532-70.
- 12. Блокирующий контур конических передач выбирается не по фактическому, а по эквивалентному числу зубьев цилиндрических колес.
- 13. Выбранные значения X_1 и X_2 не должны выходить за пределы X_{min} и X_{max} . При $X_1 > X_{max}$ имеет место заострение зубьев.

3630

Инв. № дубликата

Инг. № дубликата			€ 13M.						
Кив. Ж воданивика	3630	N	le 1138.						

Номограмма для определения рекомендуемого числа зубъев шестерни ($\alpha = 20^\circ$; $\Sigma = 90^\circ$) $Z_1 = \sqrt{(22 - 9 \log u)^2 + (6,25 - 4 \log u)} \frac{d_{eq}^2}{645}$

ПРИЛОЖЕНИЕ 2 Рекомендуемое

РАСЧЕТ РАДИУСА КРИВИЗНЫ ПЕРЕХОДНОЙ КРИВОЙ ЗУБА

1. Радиус кривизны переходной кривой зуба ρ_{f} определяется по формуле

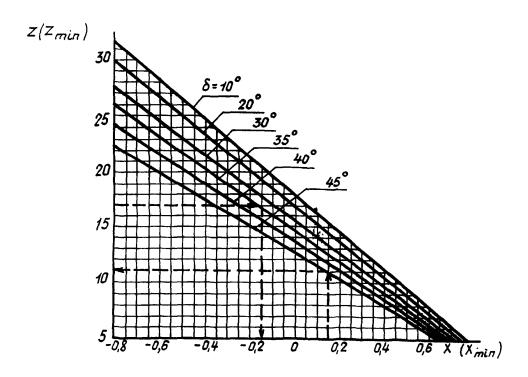
$$\rho_{f} = m_{e} \left(o_{i} s \rho_{f}^{*} + \frac{1}{2.71 + 0.017 Z_{vt}} - x K \right),$$

где K = 0,2 для положительных значений X_j

K =0,25=0,0025 $Z_{\sqrt{t}}$ для отрицательных значений X.

· · · · · · · · · · · · · · · · · · ·		,				азмеры									
								Модул	me						
Коеффициент смещения		1,00	1,50	1,75	2,00	2,25	2,50	3,00	3,25	3,50	4,00	4,50	5,00	5,50	6,00
4.00	Z _{vt}							P+							
	От 10 до 20 вкл.	0,34	0,51	0,59	0,68	0,76	0,85	1,02	1,10	1,19	1,36	1 ,53	1,70	1,87	2,04
	Св. 20 7 30 7	0,33	0,49	0,58	0,66	0,74	0,82	0,99	1,07	1,15	1,30	1,48	1,65	1,81	1,98
X = 0	30 40	0,31	0,46	0,54	0,62	0,70	0,77	0,93	1,01	1,08	1,24	1,39	1,55	1,70	1,86
	40 50 °	0,30	0,45	0,52	0,60	0,67	0,75	0,90	0,97	1,05	1,20	1,35	1,50	1,65	1,80
	50 60	0,29	0,43	0,51	0,58	0,65	0,72	0,87	0,94	1,01	1,16	1,30	1,45	1,59	1,74
	От 10 до 20 вкл.	0,32	0,48	0,56	0,64	0,7%	0,80	0,96	1,04	1,12	1,28	1,44	1,60	1,76	1,92
	Св. 20 " 30 "	0,31	0,46	0,54	0,62	0,70	0,77	0,93	1,01	1,08	1,24	1,39	1,55	1,70	1,86
X. =0,1	30 40	0,29	0,43	0,51	0,58	0,65	0,72	0,87	0,94	1,01	1,16	1,30	1,45	1,59	1,74
	40 50	0,28	0,42	0,49	0,56	0,63	0,70	0,84	0,91	0,98	1,12	1,26	1,40	1,54	1,68
	7 50 7 60 7	0,27	0,40	0,47	0,54	0,61	0,67	0,81	0,88	0,94	1,08	1,21	1,35	1,48	1,62
	От 10 до 20 вкл.	0,30	0,45	0,52	0,60	0,67	0,75	0,90	0,97	1,05	1,20	1,35	1,50	1,65	1,80
	Св. 20 7 30 7	0,29	0,43	0,51	0,58	0,65	0,72	0,87	0,94	1,01	1,16	1,30	1,45	1,59	1,74
X =0,2	30 40	0,27	0,40	0,47	0,54	0,61	0,67	0,81	0,88	0,94	1,08	1,21	1,35	1,48	1,62
	* 40 * 50 *	0,26	0,39	0,45	0,52	0,58	0,65	0,78	0,84	0,91	1,04	1,17	1,30	1,43	1,56
	50 60 °	0,25	0,37	0,44	0,50	0,56	0,62	0,75	0,81	0,87	1,00	1,12	1,25	1,37	1,50
	От 10 до 20 вкл.	0,27	0,40	0,47	0,54	0,61	0,67	0,81	0,88	0,94	1,08	1,21	1,35	1,48	1,62
	CB. 20 * 30 *	0,25	0,37	0,44	0,50	0,56	0,62	0,75	0,81	0,87	1,00	1,12	1,25	1,37	1,50
X -0,4	* 30 * 40 *	0,23	0,34	0,40	0,46	0,52	0,57	0,69	0,75	0,80	0,92	1,03	1,15	1,26	1,38
	* 40 * 50 *	0,22	0,33	0,38	0,44	0,49	0,55	0,86	0,71	0,77	0,88	0,99	1,10	1,21	1,32
	7 50 7 60 7	0,21	0,31	0,37	0,42	0,47	0,52	0,63	0,68	0,73	0,84	0,94	1,05	1,15	1,26
	От 10 до 20 вил.	0,36	0,54	0,63	0,72	0,81	0,90	1,08	1,17	1,26	1,44	1,62	1,80	1,98	2,16
	Св. 20 ″ 30 ″	0,35	0.52	0,61	0,70	0,79	0,87	1,05	1,14	1,22	1,38	1,57	1,75	1,92	2,10
X =-0,1	30 40 7	0,33	0,49	0,58	0,66	0,74	0,82	0,99	1,07	1,15	1,32	1,48	1,65	1,81	1,98
	7 40 7 50 7	0,32	0,48	0,56	0,64	0,72	0,80	0,96	1,04	1,12	1,26	1,44	1,60	1,76	1,92
	* 50 * 60 *	0,30	0,45	0,52	0,60	0,67	0,75	0,90	0,97	1,05	1,20	1,35	1,50	1,65	1,80
	От 10 до 20 вкл.	0,38	0,57	0,66	0,76	0,85	0,95	1,14	1,23	1,33	1,52	1,71	1,90	2,09	2,28
	Ca. 20 * 30 *	0,36	0,54	0,63	0,72	0,81	0,90	1,08	1,17	1,26	1,44	1,62	1,80	1,98	2,16
X =-0,2	' 30 ' 40 '	0,34	0,51	0,59	0,68	0,76	0,85	1,02	1,10	1,19	1,36	1,53	1,70	1,87	2,04
<u> </u>	40 * 50 *	0,33	0,49	0,58	0,66	0,74	0,82	0,99	1,07	1,15	1,30	1,48	1,65	1,81	1,98
	* 50 * 60 *	0,31	0,46	0,54	0,62	0,70	0,77	0,93	1,01	1,08	1,24	1,39	1,55	1,70	1,86
	От 10 до 20 вкл.	0,42	0,63	0,73	0,84	0,94	1,05	1,26	1,36	1,47	1,68	1,89	2,10	2,31	2,52
	Св. 20 7 30 7	0,39	0,58	0,68	0,78	0,88	0,97	1,17	1,27	1,36	1,56	1,75	1,95	2,14	2,34
X0,4	* 30 * 40 *	0,36	0,54	0,63	0,72	ρ,81	0,90	1,08	1,17	1,26	1,44	1,62	1,80	1,98	2,16
	40 50 7	0,34	0,51	0,59	0,68	0,76	0,85	1,02	1,10	1,19	1,34	1,53	1,70	1,87	2,04
	50 60	0,32	0,48	0,56	0,64	0,72	0,80	0,96	1,04	1,12	1,28	1,44	1,60	1,76	1,92

Примечание. Для пареметров зубчатого колоса m_{θ} , Z_{vf} и X, ве указальных в таблила, ρ_{ϕ} определяются путем интернолиция.

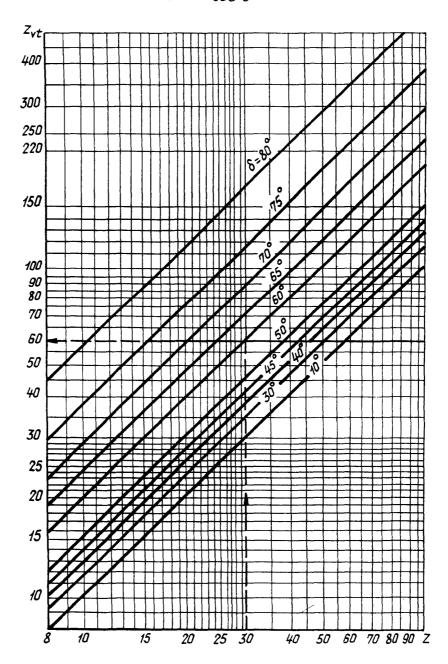

приложение з

Рекомендуемое

ГРАФИК И НОМОГРАММЫ ДЛЯ ОПРЕДЕЛЕНИЯ

1. График для определения величины X_{min} в зависимости от Z и δ или Z_{min} в зависимости от X и δ приведен на черт. 1.

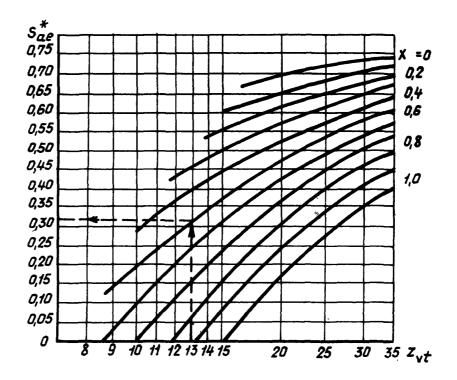
$$X_{min} = 1,068 - \frac{0,058Z}{\cos \delta}$$



Черт. 1

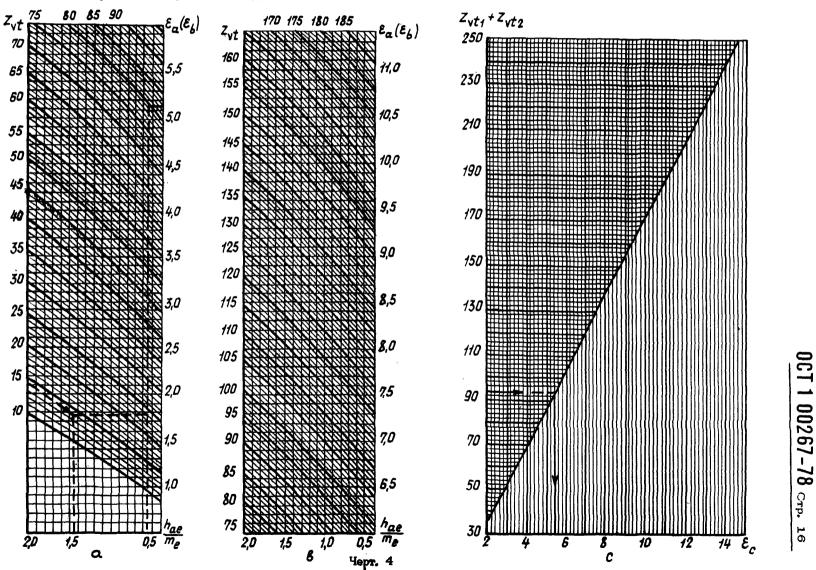
2. Номограмма для определения чисел зубьев эквивалентного цилиндрического зубчатого колеса приведена на черт. 2.

Инв. № дублината Инв. № подлинина


$$Z_{vt} = \frac{Z}{\cos \delta}$$

Черт. 2

3. Номограмма для определения окружной толщины зуба на поверхности вершин зубьев шестерен в долях окружного модуля ($\alpha = 20^\circ$; $\beta_{\alpha}^* = 1$) приведена на черт. 3.


$$s_{ae}^* = \frac{d_{avte}}{m_e} \left(\frac{s_e}{d_{vte}} + 0,014904 - invd_{avte} \right)$$

Черт. 3

Инв. № дублината		№ изм.		 	 	L	 		
Инв. № подлиника	3630	Nº 1138.		 	<u> </u>		 		

4. Номограммы для определения коеффициента торцового перекрытия приведены на черт, 4

ПРИЛОЖЕНИЕ 4 Справочное

ПРИМЕР РАСЧЕТА ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗУБЧАТОГО КОЛЕСА

Наименование параметра	Обоз- начение	Числе иное значение
Число зубьев:		
шестерни	z_{1}	18
колеса	z_2	2 2
Внешний окружной модуль, мм	me	6
Межосевой угол	Σ	90°
Внешний торцовый исходный контур:		
угол профиля	d	20°
коеффициент высоты головки	h _a *	1,0
коэффициент радиуса кривизны пере-		
ходной кривой в граничной точке		
профиля	P ₊ *	0,3
коэффициент радиального зазора	ρ ₄ * c*	0,2
Коэффициент смещения:		
шестерни	X ₁	+0,15
колеса	X ₂	-0,15

2. Номинальные размеры основных геометрических параметров, подсчитанные по формулам, приведены в табл. 2.

Таблица 2

Наименование параметра	Обозначение и расчетная формула	Численное значение
Число зубьев плоского колеса	$Z_C = \sqrt{Z_1^2 + Z_2^2}$	28,4253
Внешнее конусное расстояние, мм	$R_e = 0.5 m_e Z_c$	85,2759
Ширина зубчатого венца, мм	b ≤ 0,3R _e	25,5827 принимаем 20,0000

3630

инв. № дублината Инв. № подлинина

П	0	до	лж	е	H	K	е	T	a	б	л.	2

Обозначение и расчетная формула $tg \delta_1 = \frac{Z_1}{Z_2}; \delta_2 = 90^\circ - \delta_1$ $m_i = m_e \frac{R_e - b}{R_e}$ $u = \frac{Z_2}{Z_1}$ $h_{ae1} = (h_a^* + \chi_1) m_e$ $h_{ae2} = 2h_a^* m_e - h_{ae1}$ $h_{fe1} = h_{ae2} + C^* m_e$ $h_{fe2} = h_{ae1} + C^* m_e$ $h_e = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{R_e}; \theta_{f1}$ $tg \theta_{f2} = \frac{h_{fe2}}{R_e}; \theta_{f2}$	l .
$m_{i} = m_{e} \frac{R_{e} - b}{R_{e}}$ $U = \frac{Z_{2}}{Z_{1}}$ $h_{ae1} = (h_{a}^{*} + X_{1}) m_{e}$ $h_{ae2} = 2h_{a}^{*} m_{e} - h_{ae1}$ $h_{fe1} = h_{ae2} + C^{*}m_{e}$ $h_{fe2} = h_{ae1} + C^{*}m_{e}$ $h_{e} = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{R_{e}}; \theta_{f1}$	1,2222 6,9000 5,1000 6,3000 8,1000 13,2000 4°13'31"
$m_{i} = m_{e} \frac{R_{e} - b}{R_{e}}$ $U = \frac{Z_{2}}{Z_{1}}$ $h_{ae1} = (h_{a}^{*} + X_{1}) m_{e}$ $h_{ae2} = 2h_{a}^{*} m_{e} - h_{ae1}$ $h_{fe1} = h_{ae2} + C^{*}m_{e}$ $h_{fe2} = h_{ae1} + C^{*}m_{e}$ $h_{e} = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{R_{e}}; \theta_{f1}$	4,5928 1,2222 6,9000 5,1000 6,3000 8,1000 13,2000 4°13'31"
$U = \frac{Z_2}{Z_1}$ $h_{ae1} = (h_a^* + X_1) m_e$ $h_{ae2} = 2h_a^* m_e - h_{ae1}$ $h_{fe1} = h_{ae2} + c^* m_e$ $h_{fe2} = h_{ae1} + c^* m_e$ $h_e = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{R_e}; \theta_{f1}$	1,2222 6,9000 5,1000 6,3000 8,1000 13,2000 4°13'31"
$h_{ae1} = (h_a^* + \chi_1) m_e$ $h_{ae2} = 2h_a^* m_e - h_{ae1}$ $h_{fe1} = h_{ae2} + C^* m_e$ $h_{fe2} = h_{ae1} + C^* m_e$ $h_e = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{R_e}; \theta_{f1}$	6,9000 5,1000 6,3000 8,1000 13,2000 4°13'31"
$h_{ae2} = 2h_a^* m_e - h_{ae1}$ $h_{fe1} = h_{ae2} + C^* m_e$ $h_{fe2} = h_{ae1} + C^* m_e$ $h_e = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{Re}; \theta_{f1}$	5,1000 6,3000 8,1000 13,2000 4°13'31"
$h_{fe1} = h_{ae2} + c^* m_e$ $h_{fe2} = h_{ae1} + c^* m_e$ $h_e = h_{ae} + h_{fe}$ $tg \theta_{f1} = \frac{h_{fe1}}{Re}; \theta_{f1}$	6,3000 8,1000 13,2000 4°13′31″
$h_{fe2} = h_{ae1} + C^* m_e$ $h_e = h_{ae} + h_{fe}$ $tg \theta_{fi} = \frac{h_{fe1}}{Re}; \theta_{fi}$	8,1000 13,2000 4 ⁰ 13 ['] 31 ^{''}
$h_e = h_{ae} + h_{fe}$ $tg \theta_{fi} = \frac{h_{fe1}}{Re}; \theta_{fi}$	13,2000 4°13′31″
$tg \Theta_{f_1} = \frac{h_{f \Theta_1}}{R_e}; \qquad \Theta_{f_1}$	4°13′31″
•••	
•••	5°25′34″
•	
$ \theta_{\alpha_1} = \theta_{f_2} $ $ \theta_{\alpha_2} = \theta_{f_1} $	5°25′34″ 4°13′31″
$\delta_{\alpha 1} = \delta_1 + \theta_{\alpha 1}$	44°42′56″
$\delta_{\alpha 2} = \delta_2 + \theta_{\alpha 2}$	54°56′09″
$\delta_{t_1} = \delta_1 - \theta_{t_1}$	35°03′51√
$t_{96_{41}} = \frac{0.55e_{1} + h_{4e_{1}}t_{9d}}{Re} \cos \theta_{41}$	45°17′04″ 4°54′06″
$tgG_{f_2} = \frac{0.5S_{e2} + h_{fe2}tgd}{Re}\cos\theta_{f_2}$	4 ⁰ 53 ¹ 35
	$\delta_{a2} = \delta_2 + \theta_{a2}$ $\delta_{f_1} = \delta_1 - \theta_{f_1}$ $\delta_{f_2} = \delta_2 - \theta_{f_2}$ $tg \delta_{f_1} = \frac{0.55 e_1 + h_{fe_1} tg d}{Re} \cos \theta_{f_1}$ $tg \delta_{f_2} = \frac{0.55 e_2 + h_{fe_2} tg d}{Re} \cos \theta_{f_2}$

Продолжение табл. 2

+	-	Наименование параметра	Обозначение и расчетная формула	Численные значение
4	4	Внешний делительный диаметр, мм	$d_{e1} = m_e z_1$	108,0000
	1		$d_{e2} = m_e z_2$	132,0000
+	\dashv	Внешний диаметр вершин зубьев, мм	$d_{aei} = d_{ei} + 2h_{aei} \cos \delta_i$	118,6806
	1		$d_{ae2} = d_{e2} + 2h_{ae2} \cos \delta_2$	138,4590
\forall	1	Расстояние от вершины до плоскости	$B_1 = 0.5 d_{e2} - h_{ae1} \sin \delta_1$	61,6306
\downarrow	\downarrow	внешней окружности вершин зубьев, мм	B ₂ =0,5d _{e1} -h _{ae2} Sinδ ₂	50,0528
	l	Внешняя граничная высота суба, мм	$h_{lei} = \frac{d_{avte1}}{2} - \frac{d_{p1}}{2}$	10,2025
十	┪		, ₂ ₂	9,4116
\downarrow	4		$h_{Le2} = \frac{d_{avte2}}{2} - \frac{d_{P2}}{2}$	·
		Диаметр окружности нижней точки	$d_{p_1} = \sqrt{\left[\left(d_V t_{e_1} + d_V t_{e_2}\right) \sin \alpha - \right]}$	132,9376
		активного профиля зуба эквивалент- ного шилиндрического зубчатого колеса, мм	$\frac{\sqrt{\left(\frac{2}{\alpha_{v}}t_{e_{2}}^{2}-\left(\alpha_{\alpha_{v}}t_{e_{2}}\cos\alpha\right)^{2}\right)^{2}}}{-\sqrt{\alpha_{v}t_{e_{2}}^{2}-\left(\alpha_{v}t_{e_{2}}\cos\alpha\right)^{2}}}$	199,8295
-	11596		$+(a_v t_{e_i} \cos a)^2$.	
№ #3#.	Nº #38.		$d_{p_2} = \sqrt{\left[(d_v t_{e_2} + d_v t_{e_1}) sin\alpha - \right]}$	
Т	$\frac{1}{2}$		$\frac{-\sqrt{d_{\alpha_{V}}t_{e_{i}}^{2}-(d_{\alpha_{V}}t_{e_{i}}\cos\alpha)^{2}}}{+(d_{V}t_{e_{i}}\cos\alpha)^{2}}\right]^{2}+$	
	۱		* ("V " E 2 COS O) =	

3. Численные значения измерительных размеров зуба приведены в табл. 3.

Таблица З

Наименование параметра	Обозначение и расчетная формула	Численное эначение
Внешняя делительная толщина зуба по хорде, мм	$\bar{S}_{e_1} = \frac{d_{e_1}}{\cos S_i} \sin \psi_{e_1}$	10,0710
	$\vec{S}_{e2} = \frac{d_{e2}}{\cos \delta_2} \sin \psi_{e2}$	8,7673

ине. Ме дублината Инв. Ме подлинина

Наименование параметра	Обозначение и расчетная формула	численное еинеренс	
Высота до внешней делительной хорды зуба, мм	$\bar{h}_{ae1} = h_{ae1} + 0.25S_{e1} \psi_{e1}$ $\bar{h}_{ae2} = h_{ae2} + 0.25S_{e2} \psi_{e2}$	7,0820 5,1922	
Половина внешней угловой толщины зуба	$\psi_{e1} = \frac{S_{e1} \cos \delta_1}{d_{e1}}$ $\psi_{e2} = \frac{S_{e2} \cos \delta_2}{d_{e2}}$	4°08′20″ 2°24′37″	
Внешняя окружная толшина зуба,	$S_{e1} = (0.5\pi + 2X_{e1} t_9 d + X_{t1}) m_e$ $S_{e2} = \pi m_e - S_{e1}$	10,0799 8,7696	
Внешняя постоянная хорда зуба, мм	$\bar{S}_{ce1} = S_{e1} \cos^2 d$ $\bar{S}_{ce2} = S_{e2} \cos^2 d$	8,9007 7,7437	
Высота до внешней постоянной хорды зуба, мм	$\bar{h}_{ce1} = h_{ae1} - 0.25 s_{e1} sin 2 d$ $\bar{h}_{ce2} = h_{ae2} - 0.25 s_{e2} sin 2 d$	5,2802 3,6907	

4. Расчет отсутствия подрезания зубьев приведен в табл. 4.

Таблица 4

Наименование параметра	Обозначение и расчетная формула	Чиспенное значение
Минимальное число зубьев шестерни свободное от подрезания	$Z_{1min} \ge 2 \left[h_{\alpha}^{*} + c^{*} - \frac{\rho_{KO}}{m_{e}} \right] \times (1 - \sin \alpha) - X_{1} $ $\times (1 - \sin \alpha) - X_{1} $	12,62

5. Расчет внешней окружной толшины зуба на поверхности вершин приведен в табл. 5.

Таблица 5

Наименование параметра	Обозначение и расчетная формула	емнервис • окнервис
Внешняя окружная толшина зуба на поверхности вершин, выражен-	$S_{ae1}^* = \frac{d_{avte1}}{m_e} \left(\frac{S_{e1}}{d_{vte1}} + invd - invd_{avte1} \right)$	0,6617
ная в долях модуля	$S_{ae2}^* = \frac{d_{avte2}}{m_e} \left(\frac{S_{e2}}{d_{vte2}} + invd - invd_{avte2} \right)$	0,7804

OCT 1 00267-78crp. 21

Продолжение табл. 5

Наименование параметра	Обозначение и расчетная формула	Численное значение
Делительный диаметр внешнего эквивалентного цилиндрического	$d_{vte_1} = \frac{m_e Z_1}{\cos \delta_1}$	139,5426
зубчатого колеса, мм	$d_{\text{vte2}} = \frac{m_e Z_2}{\cos \delta_2}$	208,4527
Диаметр вершин зубьев внешвего эквивалентного цилиндрического зубчатого колеса, мм	$d_{avte_1} = d_{vte_1} + 2h_{ae_1}$ $d_{avte_2} = d_{vte_2} + 2h_{ae_2}$	153,3426 218,6527
Угол профиля зуба в точке на окруж- ности вершин зубьев внешнего экви-	cosdavte1 = dvte1 cosd	31 ⁰ 13 ¹ 35
валентного зубчатого колеса	$cosd_{avte2} = \frac{d_{vte2}}{d_{avte2}} cosd$	26 ⁰ 22 ¹ 53

6. Расчет коэффициента торцового перекрытия приведен в табл. 6.

Таблица 6

11	1аолица о		
	Наименование параметра	Обозначение и расчетная формула	Численное значение
Ne 11314. Ne 1138.	Коеффициент торцового перекрытия	$\varepsilon_{d} = \varepsilon_{a} + \varepsilon_{b} - \varepsilon_{c}$	1,6266
<u>및 및</u>		$\varepsilon_{\alpha} = \frac{1}{\pi \cos \alpha} \sqrt{\frac{z_{vt1}}{2} + \frac{h_{\alpha e1}}{m_e}^2 \frac{ z_{vt1} }{2} \cos \alpha}$	2 , 2440
T		$\varepsilon_{b} = \frac{1}{\pi \cos \lambda} \sqrt{\left(\frac{Z_{vt2}}{2} + \frac{h_{ae2}}{m_{e}}\right)^{2} \left(\frac{Z_{vt2}}{2} \cos \lambda\right)^{2}}$	2,7424
3630		$\varepsilon_c = \frac{z_{vt1} + z_{vt2}}{2\pi} t_g d$	3 , 3598
-	Число зубьев эквивалентного цилин- дрического зубчатого колеса	$Z_{vt_1} = \frac{Z_1}{\cos \delta_1}$	23,2571
ата Ника		$Z_{vt2} = \frac{Z_2}{\cos \delta_2}$	34,7421
дублик ата подлиника			