МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

"УТВЕРЖДАЮ" Заместитель Министра 7 В.Ф.Костин 2007 2007 1996г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ НИКЕЛЯ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

THA **4** 14.1:2:4.73-96

Методика допущена для целей государственного экологического контроля.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ

Главный метролог Минприроды РФ С Шис-ль. гг. 96 Начальник ГУАК — 22.03.81 Г.М.Цветков.

СОДЕРЖАНИЕ

1.НАЗНАЧЕНИЕ	4
2. НОРМЫ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ	4
3. ЗНАЧЕНИЯ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ	4
4. СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ	4
5. РЕАКТИВЫ И МАТЕРИАЛЫ.	5
6. МЕТОД ИЗМЕРЕНИЙ.	6
7. УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ	6
8. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ	6
9. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ	7
10. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ	7
11. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ	9
12. ВЫЧИСЛЕНИЕ И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА	11
13.КОНТРОЛЬ ПОГРЕШНОСТИ МЕТОДИКИ КХА	12

1.НАЗНАЧЕНИЕ.

Настоящий документ устанавливает методику количественного химического анализа проб природных, питьевых и сточных вод для определения в них ионов никеля при массовой концентрации никеля от 1 до 2500 мкг/дм³. При определении содержания ионов никеля (II) в пробах вод концентрация органического углерода в электролизере электрохимической ячейки не должна превышать 10 мг/дм³. Мешающее влияние органической составляющей вод при содержании органического углерода выше 10 мг/дм³ устраняется обработкой пробы ультрафиолетовым облучением. Мешающее влияние 100-кратного избытка ионов меди (II), 50-кратного избытка ионов кадмия (II) и 10-кратного избытка ионов Со (II) устраняют добавлением пиридина.

2. НОРМЫ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ.

Нормы погрешности измерений массовой концентрации ионов никеля регламентированы ГОСТ 27384-87 "Вода. Нормы погрешности измерений показателей состава и свойств".

3. ЗНАЧЕНИЯ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ.

Методика количественного химического анализа обеспечивает с вероятностью P=0,95 получение результатов анализа массовых концентраций ионов никеля с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблица I Значения характеристики погрешности измерений и ее составляющих.

Диапазон анализируемых	Наименование метрологической характеристики			
концентраций, мкг/дм ³	Характеристика погрешности, δ, % (Р=0,95)	Характеристика случайной составляющей погрешности, σ (δ), % (Р=0,95)	Характеристика систематической составляющей погрешности, δ C, % (Р=0,95)	
от 1,0 до 50,0 включ.	46	18	30	
св. 50 до 500 включ.	25	10	15	
св. 500 до 2500 включ.	9	2	8	

4. СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ.

4.1. Анализатор инверсионный вольтамперометрический по ТУ 4215-001-05828695-95 (НПВП "ИВА") в комплекте с компьютером типа IBM PC с процессором 80486 или выше (операционная система Windows 95/98, свободный последовательный порт RS 232).

- 4.2. Ячейка электролитическая, в состав которой входят:
- стакан стеклянный вместимостью 50 см³ типа B-1-50TC по ГОСТ 25336, который выполняет функции электролизера;
- вспомогательный электрод (стержень из стеклоуглерода диаметром 0,2 0,5 см или графита спектрально чистого диаметром 0,5 - 0,6 см);
- электрод индикаторный (рабочий) графитсодержащий: типа I (импрегнированный, ИГЭ) или типа IV (толстопленочный, ТГЭ) (НПВП "ИВА").
- электрод сравнения хлорсеребряный лабораторный насыщенный типа ЭВЛ-1M3 по ГОСТ 17792.
- 4.3. Мещалка магнитная.
- 4.4. Весы лабораторные аналитические общего недначения с наибольшим пределом взвешивания 200 г, 2-го класса точности по ГОСТ 24104.
- 4.5. Колбы мерные наливные стеклянные 2-го класса точности по ГОСТ 1770-74 исполнения 1 или 2 вместимостью 1000 см 3 , 100 см 3 , 50 см 3 и 25 см 3 с притертыми пробками; цилиндры вместимостью 50 см 3 и 25 см 3 .
- 4.6. Пипетки мерные лабораторные стеклянные 2-го класса точности по ГОСТ 20292-74, вместимостью $10~{\rm cm}^3$ исполнения 2 или 3, вместимостью $5~{\rm cm}^3$ исполнения 1, вместимостью $1~{\rm cm}^3$ исполнения 4 или 5.
- 4.7. Дозаторы типа ПЛ-01-20, ПЛ-01-200, ПЛ-01-100 или другие с дискретностью установки доз 1,0 или 2,0 мкл.
- 4.8. Аппарат для приготовления бидистиллированной воды (стеклянный) типа АСД-4 по ГОСТ 15150-69, ТУ 25-1173, 103-84
- 4.9. Установка для обработки проб ультрафиолетовым облучением типа 705 UV-Digester ("Metrohm", Швейцария).
- 4.10. рН-метр-милливольтметр типа рН-150.
- 4.11. Установка для фильтрования под вакуумом с приспособлением для создания вакуума.
- 4.12. Резец керамический.

5. РЕАКТИВЫ И МАТЕРИАЛЫ.

- 5.1. Государственный стандартный образец (ГСО) состава водных растворов ионов никеля(II) с погрешностью не более 1% отн. при $P=0.95\ c$ концентрацией 1 мг/см³.
- 5.2. Никель хлористый (NiCl₂*6H₂O) по ТУ 6-09-02-331-80, ос.ч.
- 5.3. Калий (натрий) хлористый по ГОСТ 4234 (4233)-77, х.ч., или ТУ 6-09-3678 (3658) -74, ос.ч. и растворы c(KCl, NaCl) = 2 моль/дм³ и 0,2 моль/дм³, приготовленные на тридистиллированной воде.
- 5.4. Кислота серная по ГОСТ 14262-78, ос.ч.
- 5.5. Кислота хлористоводородная по ГОСТ 14261-77, ос.ч. плотностью 1,19 г/см 3 .
- 5.6. Кислота азотная по ГОСТ 11125-84, ос.ч и раствор $c(HNO_3) = 1$ моль/дм³.
- 5.7. Этанол по ТУ 6-09-4512-77, ос.ч.
- 5.8. Диметилглиоксим по ГОСТ 5828-77, ч.д.а.
- 5.9. Пиридин по ГОСТ 13647-78, ч.д.а.

- 5.10. Аммиак водный 25% раствор по ГОСТ 24147-80, ос.ч.
- 5.11. Хлорид аммония по ГОСТ 3773-72, х.ч. или ТУ 6-09-587-75, oc.ч.
- 5.12. Калий марганцевокислый по ГОСТ 20490-75, х.ч.
- 5.13. Вода бидистиллированная по ТУ 6-09-2502-77.
- 5.14. Вода тридистиллированная.

Воду тридистиллированную готовят перегонкой бидистиллированной воды в стеклянном или кварцевом аппарате без резиновых соединений в присутствии серной кислоты и раствора калия марганцевокислого (2-3 см 3 5% раствора калия марганцевокислого и 0,5 см 3 концентрированной серной кислоты на 1 дм 3 бидистиллированной воды).

- 5.15. Фильтры обеззоленные (синяя лента).
- 5.16. Фильтры мембранные со средним диаметром пор 0,5 мкм. Диаметр диска 35 55 мм.
- 5.17. Универсальная индикаторная бумага.

Реактив по п.5.2 применяется при отсутствии ГСО.

6. МЕТОД ИЗМЕРЕНИЙ.

Измерения массовой концентрации никеля выполняют методом, основанном на адсорбционном концентрировании на поверхности графитсодержащего электрода комплексного соединения никеля (II) с диметилглиоксимом. Максимальный катодный ток восстановления комплексного соединения, локализованного на поверхности рабочего электрода, прямо пропорционально зависит от содержания ионов Ni (II) в растворе в интервале 1,0 - 200 мкг/дм³ Ni(II) и является аналитическим сигналом (AC). Массовую концентрацию никеля в растворе определяют методом добавки аттестованного раствора ионов никеля (II).

7. УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ.

- 7.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.4.019.
- 7.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.
- 7.3. Организация обучения работающих безопасности труда по ГОСТ 12.04.004.
- 7.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

8. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ.

Выполнение измерений может производить химик-аналитик, владеющий техникой вольтамперометрического анализа и изучивший инструкцию по эксплуатации анализатора инверсионного вольтамперометрического.

9. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ.

Измерения проводятся в нормальных лабораторных условиях. Температура окружающего воздуха 20 ± 10 °C. Атмосферное давление (97 \pm 10) кПа. Относительная влажность (65 \pm 15) %. Частота переменного тока (50 \pm 5) Гц. Напряжение в сети (220 \pm 10) В.

10. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ.

- 10.1. Отбор и хранение проб воды.
- 10.1.1. Химическую посуду, применяемую в процессе анализа и для отбора проб, обезжиривают 10% водным раствором едкого натрия в течение 10-12 часов, промывают бидистиллированной водой, затем промывают раствором 1 моль/дм³ азотной кислоты и ополаскивают бидистиллированной водой. Затем посуду обрабатывают концентрированной серной кислотой, промывают тридистиллированной водой, заливают хлористоводородной кислотой квалификации ос.ч. разбавленной тридистиллированной водой в соотношении 1:100, выдерживают в течение 2-3-х часов, после чего вновь промывают тридистиллированной водой.
- 10.1.2. Пробы воды отбирают в полиэтиленовые бутыли, предварительно промытые отбираемой водой. Объем отбираемой пробы воды должен быть не менее 100 см³.
- 10.1.3. Отобранные природные воды фильтруют через плотный фильтр (синяя лента) и подкисляют хлористоводородной кислотой квалификации ос.ч. до р $\mathsf{H} pprox$ 2-3, добавляя 1 см³ концентрированной кислоты на объем пробы 1 дм³. Фильтрование природных вод. содержащих небольшое мелкодисперсных взвешенных веществ, возможно проводить с использованием мембранных фильтров со средним диаметром пор ≈ 0,5 мкм под небольшим вакуумом. Сточные воды фильтруют через плотный фильтр (синяя лента) и измеряют значение рН пробы. Затем с помощью хлористоводородной кислоты или гидроксида натрия устанавливают рН пробы ≈ 2-3. Пробы выдерживают не менее 3-4-х часов перед выполнением измерений. Пробы, законсервированные таким образом, хранят в холодильнике при 4 – 6 °C не более 2-х недель. Незаконсервированные пробы анализируют в день отбора.
- 10.1.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:
- цель анализа, предполагаемые загрязнители;
- место, время отбора;
- номер пробы;
- должность, фамилия, отбирающего пробу, дата

10.2. Подготовка электрохимической ячейки к выполнению измерений.

Стеклянный стакан (электролизер) после проведения анализа обрабатывают концентрированной серной кислотой и промывают бидистиллированной водой. Электроды (индикаторный, вспомогательный, сравнения) промывают бидистиллированной водой. Затем электролизер и электроды (вспомогательный и сравнения) выдерживают в растворе хлористоводородной кислоты концентрации 0,1 моль/дм³ в течение 1 — 2-х минут и вновь промывают бидистиллированной водой.

- 10.3. Приготовление растворов, необходимых для выполнения измерений.
- 10.3.1. Приготовление основных растворов (OP) никеля (II) с массовой концентрацией ионов никеля (II) 0,1 мг/см³.
- 10.3.1.1. Приготовление основного раствора никеля (II) из государственного стандартного образца состава ионов никеля (II) с аттестованной концентрацией элемента 1 мг/см³.
- В мерную колбу вместимостью 50 см³ вводят 5 см³ стандартного образца состава никеля (II) и доводят объем раствора до метки бидистиллированной водой.
- 10.3.1.2. Приготовление основного раствора никеля (II) в отсутствии ГСО:

На аналитических весах взвешивают в химическом стакане 0,4049 г хлористого никеля и растворяют в бидистиллированной воде, содержащей 20 см³ концентрированной хлористоводородной кислоты. Раствор количественно переносят в мерную колбу вместимостью 1 дм³. Объем раствора доводят до метки на колбе бидистиллированной водой.

Основные растворы устойчивы в течение 6 месяцев.

10.3.2. Приготовление аттестованных растворов никеля (II).

Аттестованные растворы (АР) с содержанием элемента по 10000, 1000 и 100 мкг/дм³ готовят последовательным разбавлением в 10, 100 и 1000 раз основного раствора в мерных колбах вместимостью 25 см³ в соответствии с табл.2. Разбавление основных растворов никеля (II) проводят тридистиллированной водой.

Таблица 2.

Концентрация	Объем исходного	Концентрация	Код	Погрешность,
исходного раствора	раствора,	приготовленного	раствора	обусловленная
для приготовления	отбираемый для	AP, мкг/дм ³		процедурой
АР, мкг/дм3	приготовления АР,			приготовления,
	CM3			%
100000	2,5	10000	AP-1	2,0
10000	2,5	1000	AP-2	2,5
1000	2,5	100	AP-3	3,0

AP-1 и AP-2 хранят 1 неделю.

АР-3 готовят ежедневно.

10.3.3. Приготовление этанольного раствора диметилглиоксима концентрации 0.025 моль/дм^3 .

На аналитических весах взвешивают 0,0725 г диметилглиоксима и переносят навеску в мерную колбу вместимостью 25 см³. Добавляют этанол и доводят раствор до метки. Спиртовый раствор диметилглиоксима хранят 1 неделю.

- 10.3.4. Приготовление раствора пиридина концентрации 0,3 моль/дм³. В мерную колбу вместимостью 100 см³ пипеткой вместимостью 5 см³ вводят 2,4 см³ пиридина. Объем раствора доводят до метки тридистиллированной водой. Раствор пиридина хранят 1 месяц.
- 10.3.5. Приготовление аммиачно-хлоридного буферного раствора концентрации 2 моль/дм³ по гидроксиду аммония и 1 моль/дм³ по хлористому аммонию. На аналитических весах взвешивают 26,8 г хлористого аммония и переносят навеску в мерную колбу вместимостью 500 см³. Приливают 75 см³ 25% раствора гидроксида аммония. Объем раствора доводят до метки на колбе тридистиллированной водой. Измеряют рН полученного раствора и доводят его кислотность до рН \approx 9.8 \pm 0.2.
- 10.4. Подготовка к работе и регенерация поверхности индикаторного электрода.
- 10.4.1. Подготовка поверхности индикаторного электрода.

Перед каждым погружением в раствор электрод:

- промывают тридистиллированной водой;
- осущают фильтровальной бумагой;
- тонкий слой рабочей поверхности электрода срезают резцом керамическим.
- 10.4.2. Регенерация поверхности индикаторного электрода.

После регистрации каждой вольтамперограммы для регенерации поверхности электрод поляризуют катодными развертками потенциала (5 разверток) в интервале от (-0,75)В до 1,0 В.

10.5. Подготовка приборов к работе.

Подготовку к работе проводят в соответствии с инструкцией по эксплуатации и техническому описанию соответствующего прибора.

11. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ.

11.1. Пробы с низким (менее 50 мг/дм 3) содержанием $^{\circ}$ рганического углерода. 11.1.1. Анализ проб с содержанием ионов никеля (II) менее 100 мкг/дм 3 .

В стеклянный стакан (электролизер) помещают 8 см 3 пробы, 1 см 3 раствора пиридина концентрации 0,3 моль/дм 3 , 1 см 3 раствора KCl (NaCl) концентрации 4 моль/дм 3 , 0,1 см 3 этанольного раствора диметилглиоксима концентрации 0,025 моль/дм 3 и 0.05–0.2 см 3 аммиачно-хлоридного буферного раствора,

^{*} При анализе высоко минерализированных проб (морские, океанические воды) раствор NaCl (КСl) не добавляют.

приготовленного по n.10.3.5. pH раствора в электролизере должно быть в пределах 9.2 ± 0.2 .

Опускают в электролизер графитсодержащий электрод, электрод сравнения и вспомогательный электрод и проводят анализ при следующих условиях:

1 Предварительное концентрирование 5-60 сек с перемешиванием при потенциале (-0,75) В

2 Успокоение 10 сек при потенциале (-0,75) В

3 Регистрация катодной вольтамперограммы при скорости линейной развертки потенциала 50 - 350 мВ/с в интервале

(-0,75) - (-1,35) B

Потенциал максимума анодного тока $(-1,1) \pm (0,1)$ В

4 Регенерация по п.10.4.2

Проводят процесс предварительного концентрирования и регистрируют аналитический сигнал (АС) никеля для пробы (операцию повторяют 2 - 3 раза). Затем в электролизер с помощью дозатора или пипетки вносят добавку аттестованного раствора (АР) ионов никеля (II) в таком количестве, чтобы величина АС никеля увеличилась в 1,5 - 2 раза по сравнению с первоначальной. Объем добавки не должен превышать 0,25 см³. Регистрируют АС пробы с добавкой в тех же условиях, что и АС пробы (операцию повторяют 2 - 3 раза). Содержание Ni (II) в холостой (контрольной) пробе определяют для каждой новой партии используемых реактивов.

11.1.2. Пробы с содержанием Ni (II) 100 - 2500 мкг/дм³.

В электролизер электрохимической ячейки помещают 8 см³ раствора KCl (NaCl) концентрации 0,4 моль/дм³, 1 см³ пиридина кочцентрации 0,3 моль/дм³, 0,1 см³ этанольного раствора диметилглиоксима концентрации 0,025 моль/дм³ и 0,05-0,2 см³ аммиачно-хлоридного буферного раствора, приготовленного по п.10.3.5. pH раствора в электролизере должно быть в пределах 9,2 \pm 0,2.

Опускают в электролизер графитсодержащий электрод, электрод сравнения и вспомогательный электрод и проводят предварительное концентрирование в соответствии с условиями, указанными в п.11.1.1. Регистрируют аналитический сигнал фонового электролита. Затем в электролизер последовательно вводят аликвотную часть пробы (1 или 0.5 см³) в соответствии с таблицей 3, добавку аттестованного раствора Ni (II) и проводят измерения соответствующих аналитических сигналов при условиях, указанных в п.11.1.1.

- 11.2. Пробы с содержанием органического углерода выше 50 мг/дм³.
- 11.2.1. Обработка пробы ультрафиолетовым облучением. К 10 см³ пробы, подкисленной до рН 2 – 3 приливают 0,1 см³ 30% раствора перекиси водорода и подвергают пробу ультрафиолетовому облучению для

перекиси водорода и подвергают пробу ультрафиолетовому облучению для разрушения органических веществ при температуре 90 °C в течение 1-2 часов в

соответствии с руководством по эксплуатации установки для обработки проб ультрафиолетовым облучением.

11.2.2.Анализ.

Анализ подготовленной по п.11.2.1 пробы проводят по п.11.1.1 или 11.1.2 в зависимости от содержания Ni(II) в пробе.

Содержание Ni (II) в холостой (контрольной) пробе определяют для каждой новой партии используемых реактивов.

Таблица 3 ВЫБОР АЛИКВОТНОЙ ЧАСТИ ПРОБЫ ДЛЯ АНАЛИЗА.

No	Поддиапазон измеряемых концентраций ионов никеля(II), мкг/дм ³	Степень разбавления пробы	Объем пробы, добавляемой в ячейку, см ³
1	1-100	1:1.25	8,0
2	100-1000	1:10	1,0
3	1000-2500	1:20	0,5

12. ВЫЧИСЛЕНИЕ И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА.

12.1. При работе на анализаторе ИВА-5 процедуры обработки вольтамперограмм и вычисления результатов анализа предусмотрены программным обеспечением и проводятся автоматически по формуле (1), если анализ проводят по п.11.1.1, или по формуле (2), если анализ проводят по п.11.1.2:

$$X(MK2/\partial M^{3}) = \frac{H_{1} \times C_{o} \times V_{o}}{(H_{2} - H_{1}) \times V_{at}} - C_{saa}$$
 (1)

$$X(MK2/\partial M^3) = \frac{(H_1 - H_2) \times C_0 \times V_0}{(H_2 - H_2) \times V_0}$$
(2)

где

H₁ - среднее значение величины аналитического сигн ла Ni для пробы;

H₂ – среднее значение величины аналитического сигнала Ni для пробы с добавленным аттестованным раствором Ni (II);

H₃ – среднее значение величины аналитического сигнала Ni для фонового электролита;

Сд - концентрация аттестованного раствора никеля (II), из которого делают добавку в пробу, мкг/дм 3 ;

Vд - объем аттестованного раствора никеля, добавленный в электролизер, см³;

Vал – объём аликвотной части пробы, помещенный в электролизер, см³;

Схол - концентрация ионов никеля (II) в контрольной (холостой) пробе, мкг/дм³.

12.2. Результаты анализа пробы (мкг/л) выдаются на мониторе ПК в виде протокола. В протокол рекомендуется вводить следующие данные:

- номер протокола;
- исполнитель (Ф.И.О. исполнителя):
- объект анализа (наименование анализируемой пробы);
- условия анализа по усмотрению исполнителя (способ пробоподготовки, фоновый электролит, время и потенциал предварительного электролиза, объем аликвотной части пробы взятый для анализа).

13.КОНТРОЛЬ ПОГРЕШНОСТИ МЕТОДИКИ КХА.

13.1. Оперативный контроль воспроизводимости.

Образцами для контроля являются пробы питьевых, природных и сточных вод, взятые в традиционных точках контроля состава вод. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. Отобранный объем делят на две равные части и анализируют в точном соответствии с прописью методики, максимально варьируя условия проведения анализа, т.е. получают два результата анализа, используя разные наборы мерной посуды, разные партии реактивов. В работе должны участвовать два аналитика. Два результата анализа не должны отличаться друг от друга на величину допускаемых расхождений между результатами анализа:

$$|X_1 - X_2| \le D$$
, где

X1 - результат анализа рабочей пробы;

 X2 - результат анализа этой же пробы, полученикий другим аналитиком с использованием другого набора мерной посуды и других партий реактивов;

D - допускаемые расхождения между результатами анализа одной и той же пробы.

Периодичность проведения оперативного контроля воспроизводимости - не реже одного раза в неделю. Допускаемые расхождения между результатами 2-х анализов приведены в таблице 4. При превышении норматива оперативного контроля воспроизводимости, эксперимент повторяют. При повторном превышении указанного норматива D выясняют причины, приводящие к неудовлетворительным результатам контроля и устраняют их.

ПРИМЕЧАНИЕ. Перевод значений D из абсолютных единиц (мкг/дм 3) в относительные (%) осуществляют по формуле:

$$D(\%) = \frac{D(MK2 / \partial_M^3) \times 100\%}{\widetilde{X}}, \qquad \text{rge} \quad \overline{X} = \frac{X_1 + X_2}{2}$$

Таблица 4.

Значения норматива оперативного контроля воспроизводимости.

Диапазон анализируемых содержаний, мкг/дм ³	Норматив оперативного контроля воспроизводимости, D, % (P=0,95, m=2)
от 1,0 до 50,0 включ.	50
св. 50 до 500 включ.	28
св. 500 до 2500 включ.	6

13.2. Оперативный контроль погрешности.

Образцами для контроля являются реальные пробы питьевых, природных и сточных вод, взятые в традиционных точках контроля состава вод. Объем отобранной пробы для контроля должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. Отобранный объем делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной пробы - Х, вторую разбавляют дистиллированной водой в два раза и снова делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза -Х', а во вторую часть делают добавку определяемого компонента (С) и анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза, с добавкой - Х''. (Результаты анализа исходной рабочей пробы - Х, рабочей пробы, разбавленной в два раза -Х', и рабочей пробы, разбавленной в два раза с добавкой - Х'' следует получать в одинаковых условиях, т.е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т.д.).

Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|X^*+X^*-X^*-C| \le K$$
, где

Х - результат анализа рабочей пробы;

Х' - результат анализа рабочей пробы, разбавленной в два раза;

Х" - результат анализа рабочей пробы, разбавленной в два раза, с добавкой определяемого компонента;

С - величина добавки определяемого компонента;

К - норматив оперативного контроля погрешности.

Норматив оперативного контроля погрешности (допускаемое значение разности между результатом контрольного измерения реальной пробы, пробы, разбавленой в два раза, пробы, разбавленной в два раза с введенной добавкой и величиной добавки) для доверительной вероятности P= 0,90 рассчитывают по формуле:

$$K = 0.84 \Delta_{cr} + 1.64 \sqrt{(\sigma_{X,r}(\Delta))^{2} + (\sigma_{X,r}(\Delta))^{2} + (\sigma_{X,r}(\Delta))^{2}} \text{ мкг/дм}^{3}, где$$

Δcc - характеристика систематической составляющей погрешности, соответствующая содержанию компонента, равному величине добавки,

$$\Delta_{cc} = \frac{S_c \times C}{100}$$
, мкг/дм³ (С - содержание компонента в добавке);

 $\sigma_{x''}(\Delta)$ ($\sigma_{x'}(\Delta)$, $\sigma_{x}(\Delta)$) - характеристика случайной составляющей погрешности, соответствующая содержанию компонента в разбавленной пробе с добавкой (разбавленной пробе, реальной пробе соответственно),

 $\sigma_{X^{-}}(\Delta) = \frac{\sigma_{X^{-}}(\delta) \times X^{-}}{100}$, мкг/дм³ (X'' - содержание компонента в разбавленной пробе с добавкой);

$$\sigma_X^{(\Delta)} = \frac{\sigma_X^{(\delta) \times} X}{100}$$
, мкг/дм³ (X' - содержание компонента в разбавленной пробе);

$$\sigma_x(\Delta) = \frac{\sigma_x(\delta) \times X}{100}$$
, мкг/дм³ (X - содержание компонента в реальной пробе).

Оперативный контроль погрешности обязательно проводят при смене партий реактивов и не реже одного раза в неделю.

При превышении норматива оперативного контроля погрешности эксперимент повторяют. При повторном превышении указанного норматива К выясняют причины, приводящие к неудовлетворительным результатам контроля и устраняют их.

13.3. Форма представления результатов анализа.

Результат количественного анализа в документах, предусматривающих его использование, представляют в виде: результат анализа (X, мкг/дм³), характеристика погрешности ($\delta = /\delta H / = /\delta B / .\%$), P=0,95

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИ**Р**ОВАНИЮ И МЕТРОЛОГИИ

Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

№ 224.01.10.067/2005

Методика выполнения измерений массовой концентрации ионов никеля	
наименование измеряемой величины; объекта	
в пробах питьевых, природных и сточных вод методом инверсионной вольтамперометрі	ии,
и методя измерений	
разработанная _УГЭУ и НПВП «ИВА» (г. Екатеринбург),	
наименование организации (предприятия), разработавшей МВИ	
и регламентированная встандарте организации,	
обозначение и наименование документа	
аттестована в соответствии с ГОСТ Р 8.563.	
Аттестация осуществлена по результатам метрологической экспертизы материалов	
по разработке МВИ	
вид работ; метрологическая экспертиза материалов по разработке МВИ, теоретическое или экспериментальное исследование МВИ, другие виды работ	
В результате аттестации установлено, что МВИ соответствует предъявляемым к в	ней
метрологическим требованиям и обладает следующими основными метрологически	
характеристиками, приведенными в приложении.	•••••
характеристиками, приведенными в приложении.	
днапазон измерений, характеристики погрешности измерений (неопределенность измерений) и (или) \арактеристики составляющи\ погрешности (при необходимости – нормативы контроля)	
Приложение: метрологические характеристики МВИ на 1 листе	
Зам. директора по научной работе С.В. Медведевских	
Зав.лабораторией В.И Пансва	
Дата выдачи: 30.06.2005г	
Срок действия: 30.06.2010г. МП:	
Y J	

Россия, 620000, г. Екатеринбург, ул Красноормейския, 4 тел. (343) 350-26-18, факс. (343) 350-20-39. E-mail: uniom@uniom.ru

Приложение к свидетельству № 224.01.10.067 / 2005 об аттестации методики выполнения измерений

массовой концентрации нонов никеля в пробах питьевых, природных и сточных вод методом инверсионной вольтамперометрии

1 Диапазон измерений, значения показателей точности, правильности, повторяемости и воспроизводимости

Диапазон измерений, мг/дм ³	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σ_r , %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости). ОR, %	Показатель правильности (границы относительной систематической погрешности при вероятности $P=0.95$). $\pm \delta_c$, %	Показатель точности (границы относительной погрешности при вероятности Р=0 95). ±δ, %
от 0.0001 до 0.002вкл	14	20	22	45
св.0 002 до 0 01 вкл	10	15	20	36
св 0.01 до 0.1 вкл	7	10	15	25
св.0 <u>1 до 2.5 вкл.</u>	4	6	9	15

2 Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности P=0.95

Диапазон измерений, мг/дм ³	Предел повторясмости (относительное значелие допускаемого расмождения между двумя результатами параллельных определений), г, %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R. %
от 0.0001 до 0 002вкл.	39	56
св.0.002 до 0.01 вкл.	28	42
св.0.01 до 0 1 вкл.	20	28
св.0.1 до 2.5 вкл.	11	17

- 3 При реализации методики в лаборатории обеспечивают.
- контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности)

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют во внутренних документах лаборатории.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

№ 223.1.01.10.81 / 2010

Методика измерений

массовой концентрации ионов никеля в питьевых,

наименование измеряемой величины; объекта

природных и сточных водах методом инверсионной вольтамперометрии,

и метода измерений

разработанная ООО НПВП «ИВА» (г. Екатеринбург)

наименование организации (предприятия), разработавшей методику измерений

и регламентированная

в стандарте организации,

обозначение и наименование документа

аттестована в соответствии с ГОСТ Р 8.563.

Аттестация осуществлена по результатам

метрологической экспертизы материалов

по разработке методики выполнения измерений

вид работ: мстрологическая экспертиза материалов по разработке методики измерений, теоретическое или экспериментальное исследование методики измерений другие виды работ

установлено, что методика результате аттестации измерений предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками, приведенными в приложении.

Приложение: метрологические характеристики методики измерений на листе

Зам. директора по научной работе

Зав. лабораторией

Дата выдачи:

Срок действия:

С.В. Медведевских

Г.И. Терентьев

MARKTON OOO HUBU *NBY*

копна верну

Россия, 620000. г. Екитеринбург, ул. Красноирмейская.4 тел.: (343) 350-26-18, факс: (343) 350-20-39. E-mail: uniim@uniim.ru

Приложение к свидетельству № 223.1.01.10.81 / 2010 об аттестации методики измерений массовой концентрации ионов никеля в питьевых, природных и сточных водах методом инверсионной вольтамперометрии

1 Диапазон измерений, значения показателей точности, правильности, повторяемости и воспроизводимости

Диапазон измерений, мг/дм ³	Показатель повторяемости (относительное значение среднеквадрати- ческого отклонения повторяемости), σ_r ,%	Показатель воспроизводи-мости (относительное значение среднеквадратического отклонения воспроизводимости), σ_R ,%	Показатель правильности (границы относительной систематической погрешности при вероятности $P=0.95$), $\pm \delta_c$, %	Показатель точности (границы отности погрешности при вероятности $P=0.95$), \pm $\delta,\%$
от 0,0001 до 0,002 включ.	14	20	22	45
св. 0,002 до 0,01 включ.	10	15	20	36
св. 0,01 до 0,1 включ.	7	10	15	25
св. 0,1 до 2,5 включ.	4	6	9	15

2 Диапазон измерений, значения пределов повторяемости и воспроизводимости при вероятности Р=0.95

Диапазон измерений, мг/дм ³	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), г, %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %
от 0,0001 до 0,002 включ.	39	56
св. 0,002 до 0,01 включ.	28	42
св. 0,01 до 0,1 включ.	20	28
св. 0,1 до 2,5 включ.	11	17

3 Контроль стабильности результатов измерений, получаемых в условиях повторяемости и промежуточной (внутрилабораторной) прецизионности, организуют и проводят в соответствии с ГОСТ Р ИСО 5725-6-2002 и РМГ 76-2004. Периодичность получения результатов контрольных процедур и формы их регистрации приводят в документах лаборатории, устанавливающих порядок и содержание работ по организации методов контроля стабильности результатов измерений в пределах лаборатории.

Старший научный сотрудник лаборатории 223 ФГУП «УНИИМ» Погергина О.В.Кочергина

¹ Соответствует расширенной относительной неопределенности с коэффициентом охвата k=2