

СТАНДАРТ АПРОК

УЗЛЫ ПРИМЫКАНИЯ ОКОННЫХ И БАЛКОННЫХ ДВЕРНЫХ БЛОКОВ К СТЕНОВЫМ ПРОЕМАМ

НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ АССОЦИАЦИЯ ПРОИЗВОДИТЕЛЕЙ ЭНЕРГОЭФФЕКТИВНЫХ ОКОН

СТАНДАРТ

CTO ОРГАНИЗАЦИИ 5772-001-47544180-2007

УЗЛЫ ПРИМЫКАНИЯ ОКОННЫХ И БАЛКОННЫХ ДВЕРНЫХ БЛОКОВ К СТЕНОВЫМ ПРОЕМАМ

Технические условия

Предисловие

Настоящий стандарт разработан в соответствии с требованиями ст.12 и ст.17 Федерального закона «О техническом регулировании» для добровольного применения в целях, указанных в ст.11, в том числе для:

- энергосбережения, рационального использования материальных и денежных ресурсов при строительстве и эксплуатации зданий;
 - обеспечения научно-технического прогресса при проектировании и строительстве зданий;
 - повышения уровня здоровья граждан путём поддержания в зданиях установленных параметров микроклимата, исходя из санитарно-гигиенических требований;
 - выполнения требований по недопущению превышения предельно-допустимой концентрации (ПДК) вредных веществ в помещениях.
- 1 РАЗРАБОТАН Ассоциацией Производителей Энергоэффективных Окон (АПРОК), ООО «АПРОК-ТЕСТ», ЗАО «САЗИ», ООО «Самарские Оконные Конструкции» «С.О.К.»)
 - 2 ПРИНЯТ НТС АПРОК 18 декабря 2006г.
- 3 ВНЕСЁН в реестр Федерального агентства по техническому регулированию и метрологии ФГУП «СТАНДАРТИНФОРМ» с государственным регистрационным № 102777.
 - 4 ВВЕДЁН ВПЕРВЫЕ
- 5 ВВЕДЁН В ДЕЙСТВИЕ с 12 февраля 2007г. в качестве стандарта НКО

Ассоциации Производителей Энергоэффективных Окон (АПРОК)

Содержание

1	Обла	сть пр		
2	Норм	ативн	ные ссылки	
3	Терм	ины и	и определения	
4	Требо	овани	я к узлам примыкания	
	4.1	Оби	цие положения5	
	4.2	Tpe	бования к конструкции	
	4.3	Tpe	бования к материалам	
	4.4	Tpe	бования к монтажу	
5	Конт	роль і	качества узлов примыкания и их элементов	2
5.1	Мето	ды ис	спытаний12	2
5.2	Прав	ила пј	риёмки	3
6			плозащитных качеств узлов примыкания их проектирования	5
	6.1	Mea	тодика оценки1	5
	6.2	Ten	плотехнический расчёт узлов примыкания	5
	ć	5.2.1	Исходные данные 1	5
	6	5.2 .2	Результаты расчёта	. (
7			одонепроницаемости узлов примыкания мак условиях методом дождевания1	8
	7.1	Me	тодика оценки1	8
	7.2	Pac	ечёт интенсивности дождевания1	8
8	Треб	овани	ия безопасности1	9
При	пожени меры ко тепло:	онстру	уктивных решений узлов примыкания гные качества	.(
Text	пожени ически яционн	е хар	актеристики некоторых атериалов узлов примыкания	2
	пожени анизмь		струменты для устройства узлов примыкания	5
При	ложени	іе Г С	ведения о разработчиках стандарта	36

СТАНДАРТ ОРГАНИЗАЦИИ

УЗЛЫ ПРИМЫКАНИЯ ОКОННЫХ И БАЛКОННЫХ ЛВЕРНЫХ БЛОКОВ К СТЕНОВЫМ ПРОЁМАМ

Технические условия

Дата введения 2007 – 12 -02

1 Область применения

Настоящий стандарт распространяется на узлы примыкания оконных и балконных дверных блоков (далее О.Б.) к стеновым проёмам.

- 1.1 Стандарт устанавливает правила устройства, содержания и эксплуатации узлов примыкания О.Б. к стеновым проемам с применением однокомпонентных вулканизующихся герметиков, вспененных полиуретановых утеплителей, эластичных пенополиэтиленовых утеплителей и других теплоизоляционных материалов.
 - 1.2 Стандарт применяют при проектировании, разработке конструкторской и технологи-

ческой документации, а также производстве работ, при строительстве, реконструкции и ремонте жилых, общественных, промышленных зданий различного назначения с учётом требований действующих строительных норм и правил.

- 1.3 Требования стандарта применяют также при замене О.Б. в эксплуатируемых помешениях.
- 1.4 Требования настоящего стандарта могут быть использованы также при проектировании и устройстве узлов примыкания витражных конструкций к стеновым проёмам, а также узлов сопряжений конструкций между собой.
 - 1.5 Стандарт не распространяется на узлы примыкания О.Б. специального назначения

(например, противопожарных, взрывозащитных, пулестойких и др.).

1.6 Стандарт может быть использован для целей сертификаций.

2 Нормативные ссылки

Настоящий Стандарт содержит ссылки на следующие нормативные документы:

- 1 ГОСТ 166-80 Штангенциркули. Технические условия.
- 2 ГОСТ 427-75 Линейки измерительные металлические. Технические условия.
- 3 ГОСТ 2678-94 Материалы рулонные кровельные и гидроизоляционные. Методы испытаний.
- 4 ГОСТ 7076-99 Материалы и изделия строительные. Методы определения теплопроводности и термического сопротивления при стационарном тепловом режиме.
 - 5 ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия.
 - 6 ГОСТ 7912-74 Резина. Методы определения температуры предела хрупкости.
- 7 ГОСТ 10174-90 Прокладки уплотнительные пенополиуретановые для окон и дверей. Технические условия.

- **8** ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний.
 - 9 ГОСТ 23166-99 Блоки оконные. Общие технические условия.
 - 10 ГОСТ 24700-99 Блоки оконные деревянные со стеклопакетами. Технические условия.
- 11 ГОСТ 30674-99 Блоки оконные из поливинилхлоридных профилей. Технические условия.
- 12 ГОСТ 25898-83 Материалы и изделия строительные. Методы определения сопротивления паропроницанию.
- 13 ГОСТ 26433.0-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Общие положения
- 14 ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления
- 15 ГОСТ 26433.2-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений параметров зданий и сооружений
- 16 ГОСТ 26433-2-94 Система обеспечения точности геометрических параметров в строительстве. Правила измерений.
- 17 ГОСТ 26589-94 Материалы кровельные и гидроизоляционные. Методы испытаний.
- 18 ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче.
- 19 ГОСТ 26602.2-99 Блоки оконные и дверные. Методы определения воздухо- и водопроницаемости.
- 20 ГОСТ 26602.3-99 Блоки оконные и дверные. Методы определения звукоизоляции.
- 21 ГОСТ 30673-99 Профили поливинилхлоридные для оконных и дверных блоков. Технические условия.
- 22 ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях.
- 23 СНиП12-03-2001 Безопасность труда в строительстве. Часть 1. Общие требования
- 24 СНиП12-04-2001 Безопасность труда в строительстве. Часть 2. Строительное производство.

3 Термины и определения

В Настоящем Стандарте использованы следующие термины и определения:

Узел примыкания оконного блока к проему в стене – конструктивная система, обеспечивающая сопряжение стенового проема с коробкой оконного блока, включающая в себя часть стены, примыкающая к проёму, монтажный шов с откосами, рамный профиль, подоконную доску, слив и другие облицовочные и крепежные детали.

Монтажный зазор – пространство между поверхностью стенового проема и коробкой оконного блока.

Монтажный шов – элемент узла примыкания, представляющий собой комбинацию различных изоляционных материалов, используемых для заполнения монтажного зазора и обладающих заданными характеристиками.

Силовое эксплуатационное воздействие на узел примыкания – воздействие, возникающее от взаимных перемещений оконной коробки и стенового проема при изменении линейных размеров от температурно-влажностных воздействий, ветровых нагрузок, при усадке здания в процессе эксплуатации и других воздействий.

Деформационная устойчивость монтажного шва — способность монтажного шва сохранять заданные характеристики при изменении линейных размеров монтажного зазора в результате различных эксплуатационных воздействий.

Ожно - элемент стеновой или кровельной конструкции, предназначенный для естественного освещения помещений, их вентиляции, защиты от атмосферных, шумовых воздействий и состоящий из оконного блока и узла примыкания оконного блока к проему в стене.

Оконный блок - светопрозрачная конструкция заводского изготовления, состоящая из сборочных единиц: коробки и створчатых элементов, и может включать в себя ряд дополнительных элементов: встроенную систему проветривания, жалюзи, ставни и др.

Оконный проем - проем в стене (кровле) для монтажа одного или нескольких оконных блоков, конструкция которого предусматривает также установку монтажного уплотнения, откосов, сливов, подоконной доски.

Коробка - сборочная единица оконного или дверного блока рамочной конструкции, предназначенная для навески створок или полотен, неподвижно закрепляемая к стеновому проему.

Створка, створчатый элемент - сборочная единица оконного блока рамочной конструкции со светопрозрачным заполнением и соединенная с коробкой, как правило, посредством шарнирной или скользящей связи. Неоткрывающаяся створка закрепляется в коробке неподвижно.

4 Требования к узлам примыкания

4.1 Общие положения

- 4.1.1 В состав узла примыкания О.Б. входит участок стены, примыкающий к стеновому проёму, монтажный шов, закрытый наружным и внутренним откосами и часть коробки О.Б., примыкающая к монтажному шву. Узел примыкания может включать также подоконную доску, слив и другие облицовочные и крепежные детали (см. Рис.1).
- 4.1.2 При проектировании узла примыкания следует проводить теплотехнический расчёт и оценку теплозащитных качеств.
- 4.1.3 Конструкцию узлов примыкания устанавливают в рабочей документации на узлы примыкания О.Б. к проёмам отличающимся конфигурацией (с четвертью и без четверти), составом стен (однослойные, многослойные, кирпичные, бетонные, деревянные и др.). Примеры конструктивных решений узлов примыкания приведены в Приложении А.

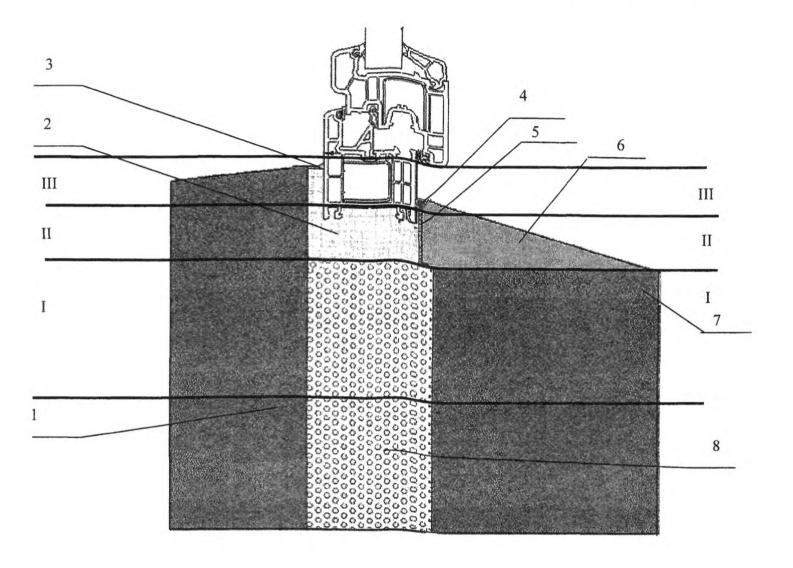


Рис.1 Схема узла примыкания О.Б. к проему многослойной стены.

I, II, III- участки, входящие в состав узла примыкания.

І- участок стены, примыкающий к проёму.

II- монтажный шов с откосами.

III- коробка О.Б.

1— наружный защитный слой из железобетона; 2— теплоизоляционный слой монтажного шва (из пенополиуретана, пенополиэтилена и др.); 3— гидроизолирующий слой из вулканизующегося герметика; 4— герметик; 5— пароизоляционный слой из вулканизующегося герметика; 6— внутренний откос из «теплого» штукатурного слоя; 7— внутренний несущий слой из железобетона; 8— теплоизоляционная вставка в многослойной стене (из волокнистого материала, ПСБС, засыпки и др.).

- 4.1.4 Устройство узла примыкания производится в соответствии с настоящим стандартом, проектной документацией, проектом производства работ (ППР) и технологической картой.
- 4.1.5 Контроль качества работ по заполнению проёмов проводится в соответствии с настоящим стандартом и другими действующими НД.

4.2 Требования к конструкции

- 4.2.1 В состав конструкции узла примыкания вне зависимости от конфигурации проёмов, типа стен и О.Б. входит со стороны помещения пароизоляционный слой из вулканизующегося герметика, теплоизоляционный слой в монтажном шве (из пенополиуретана, пенополиэтилена или других теплоизоляционных материалов), наружный гидроизолирующий слой из вулканизующегося герметика, откос (внутренний, наружный) из штукатурного слоя или облицовки.
- 4.2.2 Конструкция узлов примыкания должна быть устойчива к различным эксплуатационным воздействиям: температурно-влажностным как с наружной, так и со стороны помещения, ветровым нагрузкам, температурным, усадочным и другим деформациям.
- 4.2.3 Узлы примыкания должны быть водонепроницаемыми при воздействии косых дождей. Сопротивление паропроницанию наружного гидроизолирующего слоя из вулканизующегося герметика должно быть не более 0,25 (м ² чч + Па)/мг.
- 4.2.4 Сопротивление паропроницанию внутреннего пароизоляционного слоя из вулканизирующего герметика в помещениях с регулируемым температурно-влажностным режимом должно быть не менее 2,0 (м ²•ч •Па)/мг. Не допускается накопление влаги в теплоизоляционном слое монтажного шва.
- 4.2.5 В помещениях с регулируемым температурно-влажностным режимом температура на внутренней поверхности откосов узлов примыкания должна быть не ниже точки росы при температуре и относительной влажности воздуха в помещении, соответствующим нормативным требованиям температурно-влажностного режима для этих помещений.
- 4.2.6 Значения показателей воздухо-, водопроницаемости, звукоизоляции монтажных швов следует принимать не ниже значений этих показателей для применяемых О.Б.

4.3 Требования к материалам

- 4.3.1 Материалы и изделия, применяемые для заполнения проемов, должны соответствовать требованиям действующих стандартов, условиям договоров на поставку и технической документации, утвержденной в установленном порядке. Технические характеристики некоторых материалов для заполнения проемов приведены в приложении Б.
- 4.3.2 Блоки, предназначенные для заполнения проемов в наружных стенах зданий, должны удовлетворять требованиям ГОСТ 23166-99, ГОСТ 30674-99, ГОСТ 24700-99.
- 4.3.3 Материалы, применяемые при изоляции монтажных швов, подразделяют по диапазону рабочих температур, при которых допускается производство монтажных работ, на материалы:

летнего исполнения (от +5 °C до +35 °C);

зимнего исполнения (с рабочими температурами ниже+5 °C).

- 4.3.4 Материалы, применяемые для устройства узлов примыкания, должны быть совместимы между собой, а также с материалами проема, коробки О.Б. и крепежных деталей.
 - 4.3.5 Материалы гидроизолирующего наружного слоя должны быть устойчивы к

воздействию эксплуатационных температур в диапазоне от температуры наиболее холодной пятидневки района эксплуатации с обеспеченностью 0.92 и до +70 ° C.

4.3.6 Вулканизующиеся герметики, используемые при устройстве гидроизоляции наружных откосов узлов примыкания должны соответствовать требованиям, указанным в таблипе1.

Таблица 1 — Требования к вулканизующимся герметикам, используемым при устройстве гидроизоляции наружных откосов узлов примыкания.

Наименование показателя	Норма
Модуль упругости при 50% деформации,	
кгс/см ² , не более	0,5
Относительное удлинение в момент разрыва,	
% не менее	200
Условная прочность в момент разрыва, МПа,	
не менее	0,15
Коэффициент теплопроводности, Bт/(м ⁰ C), не более	0,29
Прочность сцепления к ПВХ и бетону,	
кгс/см ² , не менее	1,0
Долговечность, условных лет, не менее	20,0

4.3.7 Пенополиуретановые утеплители, используемые в узлах примыкания, должны соответствовать требованиям, указанным в таблице 2.

Таблица 2 – Требования к пенополиуретановым утеплителям, используемым в узлах примыкания.

Наименование показателя	Норма
Температуроустойчивость, ⁰ С	от минус 40 до плюс90
Время полного затвердевания, ч, максимум	24
Время образования поверхностной корочки,	
мин, не более	20
Плотность, кг/м3, не более	30
Прочность на сжатие при 10% деформации,	
кгс/см ² , не менее	0,5
Прочность при растяжении, кгс/см ² , не менее	1,2
Относительное удлинение при разрыве, %,	
не менее	15
Теплостойкость, °С, не менее	70
Водопоглощение за 24 часа, %, не более	1,0
Коэффициент теплопроводности в сухом	
состоянии, Вт/(м ⁰ C)	0,035

4.3.8 Пенополиэтиленовые утеплители, используемые в узлах примыкания, должны соответствовать требованиям, указанным в таблице 3.

Таблица 3 — Требования к пенополиэтиленовым утеплителям, используемым в узлах примыкания.

Наименование показателя	Норма
Плотность, кг/м ³ , не более	от 20 до 60
Температура установки, ⁰ С	от минус 30 до плюс 40
Температуроустойчивость, ⁰ С	от минус 60 до плюс 80
Коэффициент теплопроводности в не сжатом сухом состоянии, Bт/(м ⁰ C)	0,035
Водопоглощение за 24 часа,%, не более	2
Прочность на сжатие при 50% деформации,	
Krc/cm ² , не менее	1,2

4.3.9 Вулканизующиеся герметики, используемые при устройстве со стороны помещения, пароизоляции монтажных швов, входящих в состав узлов примыкания, должны соответствовать требованиям, указанным в таблице 4.

Таблица 4 — Требования к вулканизующимся герметикам, используемым при устройстве со стороны помещения пароизоляции монтажных швов, входящих в состав узлов примыкания

Наименование показателя	Норма
Модуль упругости при 50% деформации, кгс/см ² , не более	0,5
Относительное удлинение в момент разрыва, %, не менее	200
Условная прочность в момент разрыва, кгс/см ² , не менее	1,2
Коэффициент теплопроводности, Вт/(м ⁰ C), не более	0,29
Прочность сцепления к ПВХ и бетону кгс/см ² , не менее	1,0
Долговечность, условных лет, не менее	20,0

4.4 Требования к монтажу

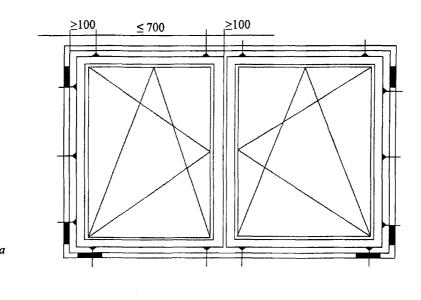
- 4.4.1 Перед установкой О.Б. необходимо:
- проверить качество и целостность поступающих на объект изделий и конструкций;
- проверить соответствие размеров проемов и блоков требованиям проектной документации и НД;
 - проверить готовность откосов и штраб под сливы и подоконные доски;
 - очистить проем от наплывов раствора и бетона, строительного мусора, пыли, грязи;
- 4.4.2 При ремонте зданий и замене О.Б. в эксплуатируемых помещениях, разрушенные при извлечении старых О.Б. поверхности внутренних и наружных откосов следует очистить от остатков демонтируемой коробки О.Б. и конопатки и восстановить цементно-песчаным раствором или штукатурными составами без образования мостиков холода. Мероприятия по восстановлению поврежденных, при извлечении О.Б., участков проемов устанавливаются в НД.

- 4.4.3 Место установки О.Б., состав работы по устройству узлов примыкания определяется в соответствии с проектной документацией. Инструменты для устройства узлов примыкания приведены в приложении В.
 - 4.4.4 О.Б. устанавливается в проем на опорные колодки, распорные колодки (клинья).

Примеры расположения опорных (несущих) колодок и крепежных деталей при установке О.Б. приведены на рисунке 4.2.

4.4.5 Крепление О.Б. в проемах стен производится с помощью дюбелей, шурупов или

монтажных анкеров. Крепежные элементы должны располагаться от углов изделий не менее, чем на 100 мм. Расстояние между элементами крепления должно составлять не более 700 мм.


- 4.4.6 Монтажный шов выполняется одновременно с монтажом О.Б.
- 4.4.7 Перед устройством монтажных швов примыкающие поверхности О.Б. и проема должны быть очищены от пыли, грязи, масляных пятен, наледи и изморози.
- 4.4.8 Заполнение монтажного зазора производится послойно с учетом температурных и влажностных условий окружающей среды, а также рекомендаций изготовителей изоляционных материалов.
 - 4.4.9 Наружный гидроизолирующий вулканизующийся герметик наносится равномерно

без разрывов по всему периметру монтажного шва без наплывов и пустот.

- 4.4.10 Запрещается производить наружную герметизацию монтажного шва во время дождя и снега.
- 4.4.11 Допускается наносить вулканизующийся герметик как на сухие, так и на увлажненные (при отсутствии на поверхности капельной влаги) участки.
- 4.4.12 Нанесение на паропроницаемый наружный слой монтажного шва паронепроницаемой облицовки, слоя, пленки не допускается.
- 4.4.13 Для устройства центрального тепло- и звукоизоляционного слоя монтажного шва применяется полиуретановый, вспененный полиэтиленовый утеплитель или их комбинация и другие, в соответствии с требованиями настоящего стандарта.
- 4.4.14 При устройстве центрального слоя монтажного шва полиуретановым пенным утеплителем следует придерживаться следующих правил:
- перед началом работы пенным утеплителем следует очистить поверхности монтажного зазора от пыли, грязи, масляных пятен;
- заполнение монтажного шва следует производить при полностью собранном и закрепленном блоке;
 - при работе следует контролировать полноту заполнения монтажного шва;
 - не допускается выход излишков пены за внутреннюю плоскость профиля коробки О.Б.;
 - в необходимых случаях срезка пенного утеплителя допускается;
- монтажные зазоры шириной более 60 мм следует з аполнять пенным утеплителем в несколько проходов, с увлажнением зоны монтажного шва перед каждым последующим проходом.
- 4.4.15 П ри устройстве центрального слоя монтажного шва допускается наряду с пенным утеплителем применять пенополиэтиленовые жгуты.

Работы по данной технологии следует проводить с соблюдением следующих правил:

- пенополиэтиленовые жгуты устанавливаются со стороны помещения ближе к внутреннему слою монтажного шва;
 - пенополиэтиленовые жгуты должны быть обжаты в монтажном шве на 20-30%;
 - пенополиэтиленовые жгуты укладываются без разрывов;
- пенополиэтиленовые жгуты не должны выступать за плоскость внутренней поверхности коробки блока.

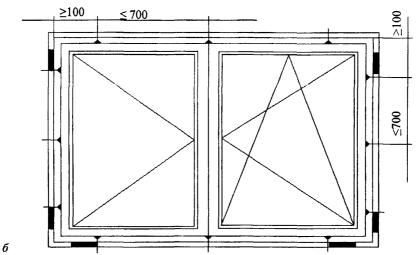


Рисунок 4.2 Примеры расположения опорных (несущих) колодок и крепежных деталей при установке О.Б.

- опорные (несущие) колодки;
 - → крепежные детали (системы)
- а О.Б. с вертикальным импостом; б О.Б. с безимпостным (штульповым) притвором;

- 4.4.16 Внутренний пароизоляционный слой устраивается непрерывно по всему контуру монтажного шва.
- 4.4.17 Установка слива осуществляется как в процессе монтажа О.Б,. так и после выполнения монтажных работ.
- 4.4.18 При установке оконного слива в узле примыкания следует выполнять мероприятия, исключающие попадание влаги в монтажный шов. На внутренней поверхности слива или в местах контакта со стеновым проемом необходимо установить прокладки (гасители), снижающие шумовое воздействие дождевых капель.
- 4.4.19 На поверхность откоса под сливом наносится цементно-песчаная стяжка или пенный утеплитель.
 - 4.4.20 Установка подоконной доски выполняется после монтажа О.Б.
- 4.4.21 В проектное положение подоконная доска устанавливается при помощи опорных клиньев по уровню с уклоном во внутрь помещения 1-2 градуса.
- 4.4.22 Зазор под подоконной доской более чем 60 мм не рекомендуется. Превышающий указанный размер зазора следует ликвидировать «тёплым» цементно- песчанным раствором.
- 4.4.23 Зазор под подоконной доской заполняется теплоизоляционным материалом в соответствии с проектной документацией.
- 4.4.24 Стык в месте контакта коробки О.Б. из ПВХ профилей или алюминиевых профилей с подоконной доской заполняется герметиком.
- 4.4.25 Отделка поверхности откосов и перемычек (оштукатуривание цементно-песчаным раствором, облицовка листовыми отделочными материалами или панелями) производится после заполнения монтажных зазоров, установки подоконных досок и оконных сливов, в соответствии с проектной документацией.
- 4.4.26 Оштукатуривание поверхности откосов (внешних и внутренних) в целях повышения теплозащитных качеств узлов примыкания производится «теплым» раствором с расчётным коэффициентом теплопроводности не выше 0.25 Вт/м °С.
- 4.4.27 Рекомендуется места примыкания откосов (независимо от их конструкции) к коробке О.Б. и монтажному шву изолировать вулканизующимися герметиками.

5 Контроль качества узлов примыкания и их элементов

5.1 Методы испытаний

- 5.1.1 Методы испытаний материалов при входном контроле устанавливаются в технологической документации с учетом требований НД на эти материалы.
- 5.1.2 Подготовка поверхностей оконных проемов оценивается визуально. Геометрические размеры монтажных зазоров и размеры дефектов измеряют с помощью рулетки по ГОСТ 7502-98, линейки по ГОСТ 427-75, штангенциркуля по ГОСТ 166-80 с использованием методов по ГОСТ 26433.0 и ГОСТ 26433.1
- 5.1.3 Внешний вид и качество устройства утеплителя и укладки герметиков оценивается визуально с расстояния 400 –600 мм при освещении не менее 300 лк.
- 5.1.4 Оценка температурного режима узлов примыкания О.Б. к стеновому проему в зимний период осуществляется путем проведения натурных испытаний или расчетным методом. Целью натурных испытаний является определение наименьшей температуры на внутренней поверхности узла примыкания. В расчетном методе используется компьютерное моделирование теплопередачи через расчетную область, включающую коробку, часть стены и монтажный шов с откосами. При использовании расчетного метода коэффициент теплопроводности применяемых материалов принимается по результатам испытаний по ГОСТ 7076-99 или другой нормативной документации. Методика оценки температурного режима узла примыкания с использованием расчетного метода приведена ниже в разделе 6 настоящего стандарта.

- 5.1.5 Испытания водопроницаемости узлов примыканий проводится в натурных условиях по методике приведенной в разделе 7 настоящего стандарта.
 - 5.1.6 Звукоизоляция определяется по ГОСТ 26602.3.
- 5.1.7 Сопротивление паропроницанию и коэффициент паропроницаемости материалов узла примыкания определяется по ГОСТ 25898-83.
 - 5.1.8 Водопоглощение утеплителей определяют по ГОСТ 17177-94.
 - 5.1.9 Морозостойкость материалов узла примыкания определяется по ГОСТ 7912-74.
 - 5.1.10 Теплостойкость материалов узла примыкания определяется по ГОСТ 2678-94.
- 5.1.11 Долговечность материалов узла примыкания (срок службы) и их совместимость материалов подтверждается соответствующими испытаниями.

5.2 Правила приёмки

- 5.2.1 Готовые монтажные швы узлов примыкания принимаются на строительных объектах партиями. За партию принимают количество установленных О.Б. с готовыми монтажными швами, выполненных по одной технологии и оформленными одним актом сдачи-приемки.
 - 5.2.2 Приемка монтажного шва производится путем проведения:
 - входного контроля качества применяемых материалов;
 - контроля качества подготовки оконных проемов и О.Б.;
 - контроля соблюдения требований к установке О.Б.;
 - производственного операционного контроля;
 - приемо-сдаточных испытаний при производстве работ.
- 5.2.3 При проведении контроля качества подготовки стеновых проемов и установки О.Б. проверяют:
 - подготовку поверхностей стеновых проемов и О.Б.;
 - соответствие размеров стеновых проемов размерам О.Б.;
 - отклонения фактических размеров от проектных;
 - другие требования, установленные в технологической документации.

Качество подготовки оконных проемов оформляют актом сдачи-приемки стеновых проемов.

- 5.2.4 Производственный операционный контроль осуществляется проверкой качества подготовки поверхности кромок в проемах, качества нанесения монтажной пены, качества нанесения герметиков. Приемка выполненных работ должна сопровождаться осмотром всех уплотненных и загерметизированных монтажных швов с выборочными контрольными замерами.
- 5.2.5 Качество выполненной герметизации оценивается посредством вскрытия узла примыкания на глубину не более 5 мм и шириной не более 30 мм. При проверке определяется соответствие толщины герметизирующего слоя и полосы контакта герметика с О.Б. и стеновым проемом с проектными величинами. Измерения производятся с помощью приборов с точностью измерения ± 0,1 мм. После измерения этих параметров место вскрытия необходимо закрыть, обеспечив целостность герметизирующего слоя.
- 5.2.6 Приемосдаточные испытания при производстве работ по устройству монтажных швов производятся не реже 1 раза в смену строительной организацией, выполняющая монтаж светопрозрачных конструкций.

- 5.2.7 Оценка теплозащитных качеств конструкций узлов примыкания на стадии их проектирования проводится по сертифицированному программному комплексу по методике, приведенной ниже в разделе 6 настоящего стандарта.
- 5.2.8 Сертификационные испытания на водонепроницаемость проводятся выборочно, но не менее, чем на 3 (трёх) узлах примыкания.
- 5.2.9 Приемка работ по устройству узлов примыкания и их элементов оформляют актом сдачи-приемки, подписанным исполнителем и заказчиком. К акту прилагаются копии протоколов сертификационных испытаний конструкций и санитарно-эпидемиологическое заключение на используемые материалы.

6 Оценка теплозащитных качеств узлов примыкания на стадии их проектирования

6.1 Метолика оценки

Теплозащитные качества узлов примыкания и их элементов оцениваются на стадии проектирования по результатам теплотехнического расчёта на базе сертифицированного программного комплекса (ПК) Window-Тест или других сертифицированных программных продуктов, допущенных для использования на территории Российской Федерации.

Исходными данными для расчёта являются:

чертежи с конструктивными решениями узлов примыкания в формате dxf;

- теплотехнические характеристики материалов узлов примыкания;
- граничные условия.

В соответствии с ГОСТ 26602.1—99 теплотехнический расчет основан на математическом моделировании стационарного процесса теплопередачи через узлы примыкания О.Б. к стеновому проёму. В состав расчётной модели входит участок стены, монтажный шов с откосами и коробка. Сопоставительный анализ вариантов конструкций узлов примыкания проводится по результатам расчёта при одних и тех же граничных условиях теплопередачи, а именно:

- расчётная температура наиболее холодной пятидневки $t_{\rm H}$, ${}^{\rm o}$ C, принимаемая в соответствии СНиП 23-01-99* «Строительная климатология»;
- коэффициент теплоотдачи наружной поверхности α_{H} = 23 Bt/м² °C, принимаемый согласно ГОСТ 26602.1-99;
- расчётная температура воздуха в помещении с регулируемым температурновлажностным режимом $t_{\rm B}$, $^{\rm o}$ C, принимаемая согласно ГОСТ 30494-96 для жилых и общественных зданий и соответствующей нормативной документации для зданий иного назначения;
- коэффициент теплоотдачи внутренней поверхности узла примыкания $\alpha_{\rm s}=8.7~{\rm Br/(m^2~^{\circ}C)}$, принимаемый согласно СНиП 23-02-2003 «Тепловая защита зданий».

Ниже, в качестве примера, приведен теплотехнический расчёт узла примыкания О.Б. из ПВХ профиля к стеновому проёму с четвертью многослойной стены жилых зданий для климатических условий г. Москвы.

6.2 Теплотехнический расчёт узлов примыкания

6.2.1 Исходные данные

Исходными данными для составления расчётной модели является конструкция узла примыкания О.Б. к стеновому проёму.

На рисунке 6.3 в качестве примера представлено конструктивное решение узла примыкания О.Б. из ПВХ профиля к проёму с четвертью в многослойной стене с внутренним несущим и наружным защитным слоем из железобетона, средним теплоизоляционным слоем из ПСБС плотностью не выше 50 кг/м³.

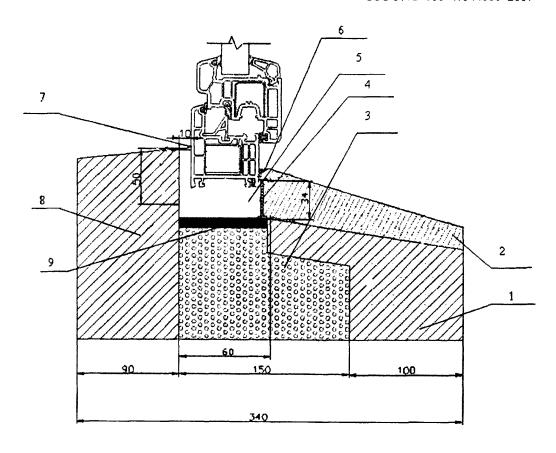


Рисунок 6.3 – Узел примыкания О.Б. из ПВХ профиля к боковому участку проёма многослойной стены с четвертью.

- 1 внутренний несущий слой из железобетона; 2 «теплый» штукатурный слой;
- 3 теплоизоляционный слой стены; 4 пароизоляция из вулканизующегося герметика;
- 5 утеплитель монтажного шва (пенный или пенополиэтиленовый); 6 герметик;
- 7 гидроизоляция из паропроницаемого герметика; 8 наружный защитный слой из железобетона; 9 деревянный антисептированный вкладыш.

6.2.2 Результаты расчёта

На рисунке 6.4 представлены результаты теплотехнического расчёта в графической форме в виде изотерм по сечению.

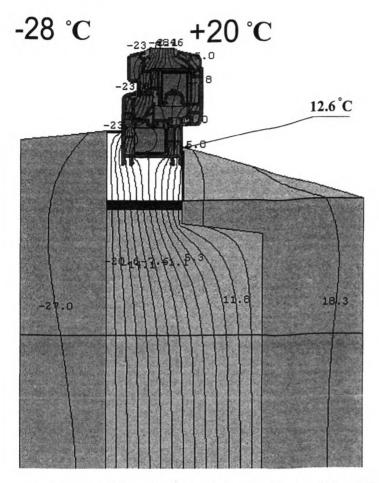


Рисунок 6.4 – Температурное поле узла примыкания О.Б. из ПВХ профиля к боковому участку проёма многослойной стены с четвертью.

По результатам теплотехнического расчёта температура на внутренней поверхности на всем участке откоса узла примыкания выше точки росы. По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке 6.3 может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы.

7 Оценка водонепроницаемости узлов примыкания в натурных условиях методом дождевания

7.1 Методика оценки

- 7.1.1 Испытание водонепроницаемости осуществляется поэтапно температуре воздуха. положительной наружного Ha первом этапе испытания последовательному дождеванию подвергаются подоконные участки монтажного шва узлов примыкания, начиная с нижних этажей. На втором этапе испытания, дождеванию подвергаются боковые участки монтажного шва узлов примыкания, начиная с нижних этажей. На третьем этапе испытания дождеванию подвергаются верхние участки монтажного шва узлов примыкания, начиная с нижних этажей. В процессе дождевания проводится наблюдение за влажностным состоянием испытываемого участка с внутренней стороны помещения. Дождевание проводится непрерывно в течение 30 мин или до момента появления следов протечек.
- 7.1.2 Регистрация результатов дождевания осуществляется постоянно в течение всего периода испытания и заносится в журнал наблюдений. Показания водомерного счётчика регистрируются до начала испытания и после окончания дождевания каждого участка.
- 7.1.3 В процессе дождевания проводится наблюдение за влажностным состоянием испытываемого участка с внутренней стороны помещения.
- 7.1.4 Конструкция считается выдержавшей испытание, если в процессе испытания и в течение двух часов после проведения испытания не выявлены протечки в испытываемых участках.
- 7.1.5 Расход воды за период дождевания соответствует количеству осадков, выпавших на вертикальную поверхность испытываемого участка в течение 12 часов и определяется по формуле

$$Q = H_B x F x 0,36, (7.1)$$

где Q-расход воды за период дождевания, м³/час;

Н_в- расчётная интенсивность дождя на вертикальную поверхность мм/мин.;

F- площадь испытываемого участка, м²;

0,36- переводной коэффициент.

7.2 Расчёт интенсивности дождевания

Расчётное количество осадков, выпадающих на вертикальную поверхность здания Н в определяется по формуле:

$$H_B = H_\Gamma \times tg\alpha \quad , \tag{7.2}$$

где H_{Γ} – интенсивность дождя на горизонтальную поверхность, мм/мин;

 α — угол между направлением падения осадков и вертикалью фасада.

$$tg\alpha = \frac{\overline{v}}{v_0},\tag{7.3}$$

где $\overline{\upsilon}$ – средняя скорость ветра при дожде, м/сек.

 U_0 — средняя скорость падения осадков, м/сек.

В таблице 5 приведены результаты расчёта интенсивности осадков на вертикальную поверхность (на примере г. Москвы), составленные по результатам многолетних наблюдений, выполненных НИИ Мосстроем и НИИ Строительной физики, МНИИТЭП, ЦНИИЭП жилища и др.

Наименование показателя	Норма
Средняя интенсивность дождя на горизонтальную поверхность, H_{Γ} , мм/мин	0,50
Скорость падения осадков, \overline{D}_0 ,м/с	5,66
Скорость ветра при дожде, σ , м/ с	5,0
Тангенс угла наклона косых дождей, tgα	0,88
Угол наклона косого дождя, α, град	41
Средняя интенсивность осадков на вертикальную поверхность, H_B , мм/мин	0,44

Таблица 5- Расчётная интенсивность осадков на вертикальную поверхность

По результатам расчёта интенсивности косого дождя на вертикальный фасад определяется расход воды необходимый при дождевании монтажного шва узлов примыкания О.Б. к стеновому проёму в зависимости от площади испытываемого участка.

8 Требования безопасности

- 8.1 При производстве работ по устройству узлов примыкания необходимо соблюдать требования безопасности, предусмотренные СНиП III-4-80 «Техника безопасности в строительстве», СНиП 12-03-2001* «Безопасность труда в строительстве. Часть 1. Общие требования», СП 12-136-2002 «Решения по охране труда и промышленной безопасности в проектах организации строительства и проектах производства работ».
- 8.2 При работе с механизмами и оборудованием, предназначенными для приготовления и нанесения штукатурных смесей, вулканизующихся герметиков, необходимо соблюдать требования безопасности, предусмотренные в инструкциях по эксплуатации данного оборудования.
- 8.3 До начала работ корпуса всех электрических механизмов должны быть надёжно заземлены.
- 8.4 Изоляционные и отделочные работы следует проводить с использованием инвентарных подмостей, лестницы стремянки. Не допускается производить работы на высоте на не ограждённых рабочих местах и без предохранительных поясов и страховочного каната.
- 8.5 Работники, занятые производством изоляционных работ, должны быть обеспечены средствами защиты в соответствии с «Типовыми отраслевыми нормами бесплатной выдачи спецодежды, спецобуви и других средств индивидуальной защиты»
- 8.6 Отходы от изоляционных материалов должны быть собраны в специальные ёмкости и направлены на переработку в соответствии с СанПиН 2.1.7.1322-03 «Гигиенические требования к размещению и обезвреживанию отходов производства и потребления»
- 8.7 Изоляционные материалы на органических растворителях должны храниться в проветриваемых, взрыво-и пожаробезопасных помещениях и соответствовать требованиям ГОСТ 9980.5-86 «Материалы лакокрасочные. Транспортирование и хранение».

ПРИЛОЖЕНИЕ А (справочное)

Примеры конструктивных решений узлов примыкания и их теплозащитные свойства 1 Конструкция бокового узла примыкания О.Б. из ПВХ профиля к проему без четверти слоистой кирпичной стены представлена на рисунке А.1.

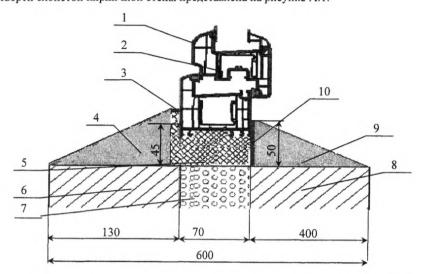


Рисунок А.1 – Узел примыкания О.Б. из ПВХ профиля к проему слоистой кирпичной стены без четверти с отделкой наружных и внутренних откосов штукатурным раствором.

1 — ПВХ профиль (ширина 70 мм); 2 — стальной армирующий профиль; 3 — гидроизоляция из вулканизующегося герметика; 4 — наружный откос из «теплого» штукатурного раствора; 5 — теплоизоляционный слой монтажного шва; 6 — наружная кирпичная кладка; 7 — теплоизоляционная вставка; 8 — внутренняя кирпичная кладка; 9 — внутренний откос из «теплого» штукатурного раствора; 10 — пароизоляция из вулканизующегося герметика.

Таблица A.1 – Теплотехнические характеристики материалов узла примыкания к проему без четверти слоистой кирпичной стены, представленного на рисунке A.1

Название материала	Расчетный коэффициент теплопроводности, Вт/(м ⁰ C)
ПВХ	0,17
Сталь	50
Вулканизующийся герметик	0,29
«Теплая» штукатурка	0,25
Теплоизоляционный слой	0,05
Кирпичная кладка	0,76
Теплоизоляционная вставка	0,05
Кирпичная кладка	0,76
«Теплая» штукатурка	0,25
Вулканизующийся герметик	0,29

Результаты теплотехнического расчета бокового узла примыкания О.Б. из ПВХ профиля к проему без четверти слоистой кирпичной стены приведены на рисунке А.2.

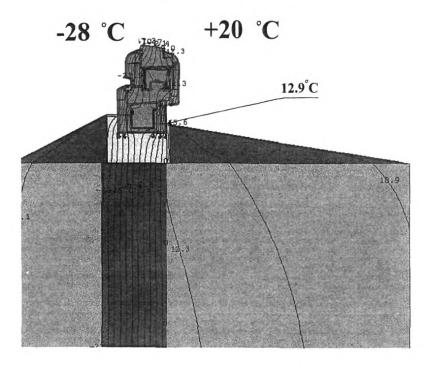


Рисунок А.2 – Температурное поле узла примыкания О.Б. из ПВХ профиля шириной 70 мм к проему без четверти слоистой стены (кирпичная кладка) с отделкой наружных и внутренних откосов штукатурным раствором (рисунок А.1).

По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке А.1, может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы.

2 Конструкция бокового узла примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены представлена на рисунке А.3.

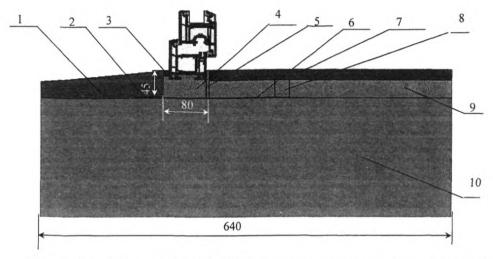


Рисунок А.3 – Узел примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены (кирпичная кладка).

1— наружный штукатурный слой из «теплого» раствора; 2— фальшчетверть из уголка; 3— гидроизоляция из вулканизующегося герметика; 4— теплоизоляционный слой монтажного шва; 5— пароизоляция из вулканизующегося герметика; 6— грунтовка; 7— облицовочная ПВХ панель; 8— рейка; 9— утеплитель (пенополиэтиленовый); 10— однослойная стена (кирпичная кладка).

Таблица A.2 – Исходные данные для теплотехнического расчета узла примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены, представленного на рисунке A.3.

Название материала	Расчетный коэффициент теплопроводности, Вт/(м °C)
«Теплый» штукатурный слой	0,25
Сталь	50
Вулканизующийся герметик	0,29
Теплоизоляционный слой	0,05
Вулканизующийся герметик	0,29
Грунтовка	0,29
ПВХ	0,17
Деревянная рейка	0,14
Теплоизоляционная вставка	0,05
Кирпичная кладка	0,76

Результаты теплотехнического расчета бокового узла примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены приведены на рисунке A.4

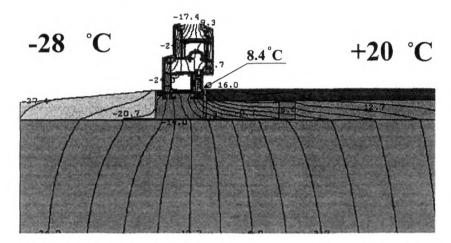


Рисунок А.4 — Температурное поле узла примыкания О.Б.из ПВХ профиля шириной 70 мм к проему без четверти однослойной стены (рисунок А.3).

По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке А.З, не может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы

3 Конструкция бокового узла примыкания О.Б. из ПВХ профиля к проему с четвертью слоистой стены с эффективным утеплителем и отделкой внутреннего откоса «теплым» штукатурным раствором представлена на рисунке А.5.

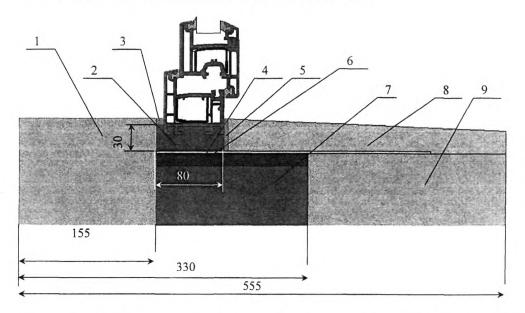


Рисунок А.5 – Узел примыкания О.Б. из ПВХ профиля к проему с четвертью слоистой стены с эффективным утеплителем и отделкой внутреннего откоса «теплым» штукатурным раствором.

- 1 наружный защитный слой из железобетона; 2 теплоизоляционный слой монтажного шва;
- 3 гидроизоляция из вулканизующегося герметика; 4 вкладыш из антисептированного пиломатериала; 5 пароизоляция из вулканизующегося герметика; 6 грунтовка;
- 7 утепляющий слой стены; 8 «теплый» штукатурный раствор; 9 несущий слой из железобетона.

Таблица А.3 – Исходные данные для теплотехнического расчета узла бокового примыкания О.Б. из ПВХ профиля к проему с четвертью слоистой стены с эффективным утеплителем и отделкой внутреннего откоса «теплым» штукатурным раствором, представленного на рисунке А.5.

Название материала	Расчетный коэффициент теплопроводности, $Bt/(M^{0}C)$
Железобетон	2,0
Теплоизоляционный слой	0,05
Вулканизующийся герметик	0,29
Пиломатериал	0,14
Вулканизующийся герметик	0,29
Грунтовка	0,29
Теплоизоляционная вставка	0,05
«Теплый» штукатурный слой	0,25
Железобетон	2,0

Результаты теплотехнического расчета бокового узла примыкания О.Б. из ПВХ профиля к проему с четвертью слоистой стены с эффективным утеплителем и отделкой внутреннего откоса «теплым» штукатурным раствором приведены на рисунке А.6

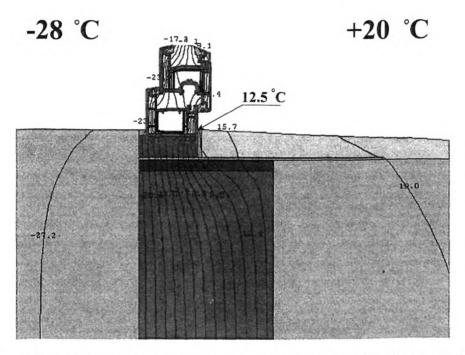


Рисунок А.6 — Температурное поле узла примыкания О.Б. из ПВХ профиля шириной 70 мм к проему с четвертью слоистой стены с эффективным утеплителем и отделкой внутреннего откоса «теплым» штукатурным раствором (рисунок А.5).

По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке А.5, может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы.

4 Конструкция бокового узла примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены из пенно-газобетонных блоков с отделкой наружных и внутренних откосов «теплым» штукатурным раствором представлена на рисунке А.7.

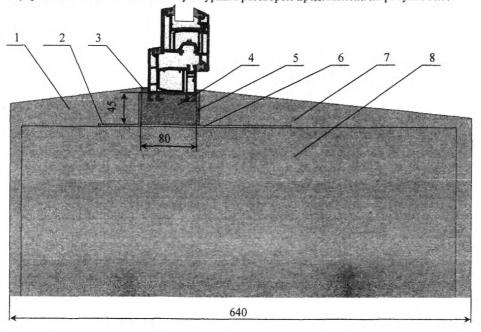


Рисунок А.7 – Узел примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены из пеногазобетонных блоков с отделкой наружных и внутренних откосов «теплым» штукатурным раствором.

- 1 наружный откос из «теплого» штукатурного раствора; 2 фальшчетверть из уголка;
- 3 гидроизоляция из вулканизующегося герметика; 4 теплоизоляционный слой монтажного шва;
- 5 пароизоляция из вулканизующегося герметика; 6 грунтовка; 7 внутренний откос из «теплого» штукатурного раствора; 8 стена из пено-газобетонных блоков.

Таблица А.4 – Исходные данные для теплотехнического расчета узла примыкания О.Б.к проему без четверти однослойной стены из пено-газобетонных блоков с отделкой наружных и внутренних откосов «теплым» штукатурным раствором, представленного на рисунке А.7

Название материала	Расчетный коэффициент теплопроводности, Вт/(м °C)
«теплый» штукатурный слой	0,25
сталь	50
Вулканизующийся герметик	0,29
теплоизоляционный слой	0,05
Вулканизующийся герметик	0,29
грунтовка	0,29
«теплый» штукатурный слой	0,25
ячеистый бетон	0,2

Результаты теплотехнического расчета бокового узла примыкания О.Б. из ПВХ профиля к проему без четверти однослойной стены из пено-газобетонных блоков с отделкой наружных и внутренних откосов «теплым» штукатурным раствором приведены на рисунке А.8

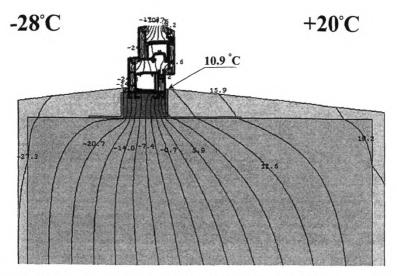


Рисунок А.8 – Температурное поле узла примыкания О.Б. из ПВХ профиля шириной 70мм к проему без четверти в однослойной стене из пено-газобетонных блоков с отделкой наружных и внутренних откосов «теплым» штукатурным раствором (рисунок А.7).

По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке А.7, может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы.

5 Конструкция бокового узла примыкания О.Б. из ПВХ профиля к стеновому проему с четвертью однослойной стены (кирпичная кладка) представлена на рисунке А.9.

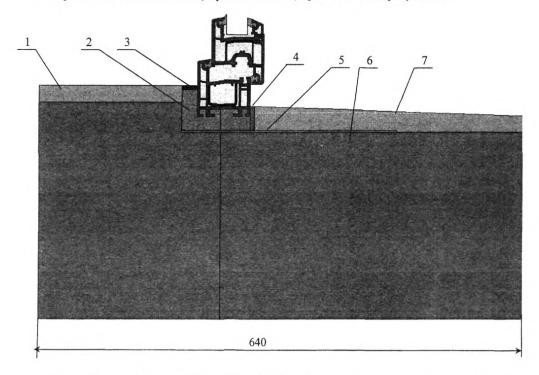


Рисунок A.9 — Узел примыкания O.Б. из ПВХ профиля к стеновому проему с четвертью однослойной стены (кирпичная кладка).

1 — наружный откос из «теплого» штукатурного раствора; 2 — теплоизоляционный слой монтажного шва; 3 — гидроизоляция из вулканизующегося герметика; 4 — пароизоляция из вулканизующегося герметика; 5 — грунтовка; 6 — однослойная стена (кирпичная кладка); 7 — внутренний откос из «теплого» штукатурного раствора;

Таблица A.5 – Исходные данные для теплотехнического расчета узла примыкания к стеновому проему с четвертью однослойной стены (кирпичная кладка), представленного на рисунке A.9.

Название материала	Расчетный коэффициент теплопроводности, Вт/(м ⁰ C)
«Теплый» штукатурный слой	0,25
Вулканизующийся герметик	0,29
Теплоизоляционный слой	0,05
Вулканизующийся герметик	0,29
Грунтовка	0,29
Кирпичная кладка	0,76
«Теплый» штукатурный слой	0,25

Результаты теплотехнического расчета бокового узла примыкания О.Б. из ПВХ профиля к стеновому проему с четвертью однослойной стены (кирпичная кладка) приведены на рисунке A.10

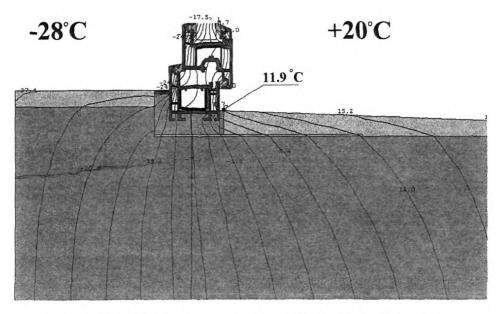


Рисунок A.10 — Температурное поле узла примыкания О.Б. из ПВХ профиля шириной 70 мм к стеновому проему с четвертью в однослойной стене (кирпичная кладка) (рисунок A.9).

По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке А.9 может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы

6 Конструкция бокового узла примыкания О.Б. из деревянного бруса к стеновому проему с четвертью в однослойной стене (кирпичная кладка) представлена на рисунке A.11.

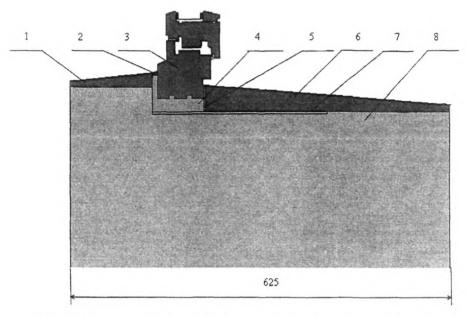


Рисунок А.11 – Узел примыкания О.Б. из деревянного бруса к стеновому проему с четвертью однослойной стены (кирпичная кладка).

1 — наружный откос из «теплого» штукатурного раствора; 2 — гидроизоляция из вулканизующийся герметика; 3 — деревянный профиль (70 мм); 4 — теплоизоляционный слой монтажного шва; 5 — пароизоляция из вулканизующегося герметика; 6 — внутренний откос из «теплого» штукатурного раствора; 7 — грунтовка; 8 — однослойная стена (кирпичная кладка).

Таблица 6 – Исходные данные для теплотехнического расчета узла примыкания О.Б из деревянного бруса к стеновому проему с четвертью однослойной стены (кирпичная кладка), представленного на рисунке A.11

Название материала	Расчетный коэффициент теплопроводности, Вт/м ° С
«Теплый» штукатурный слой	0,25
Вулканизующийся герметик	0,29
Дерево	0,14
Теплоизоляционный слой	0,05
Вулканизующийся герметик	0,29
«Теплый» штукатурный слой	0,25
Грунтовка	0,29
Кирпичная кладка	0,76

CTO 5772-001-47544180-2007

Результаты теплотехнического расчета бокового узла примыкания О.Б из деревянного бруса к боковому стеновому проему с четвертью однослойной стены (кирпичная кладка) приведены на рисунке A.12



Рисунок А.12 – Температурное поле О.Б. из деревянного бруса к стеновому проему с четвертью в однослойной стене (кирпичная кладка) (рисунок А.11).

По своим теплозащитным качествам конструкция узла примыкания, представленная на рисунке A.11, может быть рекомендована к применению в жилых зданиях для климатических условий, соответствующих климатическим условиям г. Москвы

ПРИЛОЖЕНИЕ Б (справочное)

Технические характеристики некоторых изоляционных материалов узлов примыкания

1 Материалы водонепроницаемого слоя узлов примыкания.

При устройстве наружного водонепроницаемого слоя могут быть использованы герметики, удовлетворяющие требованиям, приведенным в разделе 4.3.6 настоящего стандарта, например, однокомпонентный вулканизующийся герметик Стиз-А ТУ2513-034-32478306-00, характеристики которого приведены в таблице Б.1.

Преимущества герметика Стиз-А: полная готовность к применению, возможность выбора цвета, устойчивость к УФ-облучению, атмосферным воздействиям, устойчивость к циклическим температурным, механическим и другим деформационным нагрузкам, высокая адгезия к ПВХ, бетону, дереву и окрашенным металлическим поверхностям.

Таблица Б.1

Наименование показателя	Норма
Температура нанесения, ⁰ C	от минус 15 до плюс 35
Интервал температур эксплуатации, ⁰ С	от минус 60 до плюс 80
Плотность, г/см ³	1,45
Образование поверхностной пленки, ч,не более	2
Относительное удлинение, % не менее	300
Условная прочность в момент разрыва, МПа, не менее	0,15
Коэффициент теплопроводности, Вт/м °с, не более	0,29
Сопротивление паропроницаемости, при толщине 2 мм, м ² ч Па/мг, не более	0,16
Модуль упругости при 50% деформации, кгс/см ² ,	
не более	0,5
Прочность сцепления к бетону, кгс/см ² , не менее,	1,5
Прочность сцепления к ПВХ, кгс/см ² ,не менее	1,5
Долговечность, условных лет, не менее	20,0

2 Материалы теплоизоляционного слоя в монтажном шве

Для теплоизоляции монтажного шва могут быть использованы утеплители, удовлетворяющие требованиям, приведенным в разделе 4.3.8 настоящего стандарта. К таким материалам относятся, например, пенополиуретановые утеплители типа Polyurethane 502 и полиэтиленовые утеплители типа «ИЗОКОМ». В таблице Б.2 приведены основные данные утеплителя типа Polyurethane 502, а в таблице Б.3- утеплителя типа «ИЗОКОМ».

Таблица Б.2

Наименование показателя	Норма
Температуроустойчивость, ⁰ С	от минус 40 до плюс90
Температура нанесения, ⁰ С	от минус10 до плюс30
Время полного затвердевания, ч, не более	24
Время образования поверхностной корочки, мин, не более	20
Кажущаяся плотность, кг/м ³	25± 5
Прочность на сжатие при 10% деформации, кгс/см ² , не	
менее	0,5
Прочность при растяжении, кгс/см ² , не менее	1,2
Относительное удлинение при разрыве, %, не менее	15
Теплостойкость, °С, не менее	70
Водопоглощение за 24 часа, %, не более	1,0
Коэффициент теплопроводности в сухом состоянии, Вт/(м °C)	0.035

Таблица Б.3

Наименование показателя	Норма
Кажущаяся плотность, кг/м ³	от 20 до 60
Температура установки, ⁰ С	от минус 30 до плюс 40
Температуроустойчивость, ⁰ С	от минус 60 до плюс 80
Коэффициент теплопроводности в	
не сжатом состоянии, Вт/(м ° С)	0,035
Водопоглощение за 24 ч,%, не более	2
Прочность на сжатие при 50% деформации, кгс/см ² ,	
не менее	1,2
Микробиологическая стойкость, по ГОСТ 9.053-75, баллы	2

3 Материалы пароизоляционного слоя узлов примыкания

При устройстве пароизоляционного слоя могут быть использованы герметики, удовлетворяющие требованиям, приведенным в разделе 4.3.9 настоящего стандарта. Одним из таких материалов является однокомпонентный вулканизующийся герметик Сазиласт $^{\text{TM}}$ - 11 Ty 2513-028-32478306-99 на основе акриловых латексов, характеристики которого приведены в таблице Б.4.

Преимущества герметика Сазиласт™: однородность массы, полная готовность к применению, устойчивость к циклическим температурным, механическим и другим динамическим нагрузкам, высокая адгезия к ПВХ, бетону, дереву и окрашенным металлическим поверхностям.

Таблица Б.4

Наименование показателя	Норма
Диапазон температур нанесения, ⁰ C	от минус 15 до плюс 35
Интервал температур эксплуатации, ⁰ С	от минус 60 до плюс 80
Плотность, г/см ³	1,45
Относительное удлинение в момент разрыва, % не менее	300
Условная прочность в момент разрыва, кгс/см ² , не менее	1,2
Сопротивления паропроницаемости при толщине 3мм, (м 2ч Па)/мг, не менее	2,0
Коэффициент теплопроводности, Вт/(м °C) не более	0,29
Прочность сцепления к бетону, кгс/см ² , не менее	1,5
Прочность сцепления к $\Pi B X$ не менее, $\kappa rc/cm^2$	1,5
Модуль упругости при 50% деформации, не более, кгс/см ²	0,5
Долговечность, условных лет, не менее	20,0

ПРИЛОЖЕНИЕ В (справочное)

Механизмы и инструменты для устройства узлов примыкания

- 1. Перфоратор с набором алмазных свёрл;
- 2. Шуруповёрт ручной электрический с набором насадок;
- 3. Углошлифовальная машина с набором дисков;
- 4. Ножовка по дереву;
- 5. Ножовка по металлу с набором полотен;
- 6. Ножницы по металлу;
- 7. Молоток плотницкий;
- 8. Набор шпателей;
- 9. Пистолет под монтажную пену;
- 10. Пистолет под герметик;
- 11. Щётки проволочные;
- 12. Кисти малярные;
- 13. Отвес строительный;
- 14. Уровень строительный;
- 15. Рулетка;
- 16. Штангельциркуль;
- 17. Набор стамесок;
- 18. Угольник металлический;
- 19. Каска строительная;
- 20. Пояс страховочный;
- 21. Очки защитные;

ПРИЛОЖЕНИЕ Г

Сведения о разработчиках стандарта

Настоящий стандарт подготовлен рабочей группой специалистов в составе:

Авдеев Е.В. ЗАО «САЗИ»;

Большачков Ю.О. ЗАО «САЗИ»;

Гольдинов В.К. ООО «С.О.К.»;

Ким Л.Н. OOO «АПРОК-ТЕСТ»;

Лузина А.Ю. ООО «АПРОК-ТЕСТ»;

Спиридонов А.В. НКО «АПРОК»;

Стоян Ю.Ф. НКО «АПРОК»;