Министерство транспортного строительства

ГУПИКС

ГПИ СОЮЗДОРПРОЕКТ

ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗНЫХ БАЛОК ДЛИНОЙ 12,15 И 18 М

ДЛЯ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР

TEMA NC-89(90)-3-1016-05

выпуск

NHB N 31300-M/1

™0CKBA 1989

ГУПиКС

гпи Союздорпроект

ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗНЫХ БАЛОК ДЛИНОЙ 12:15 И 18 М

ДЛЯ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР (ДЛЯ ОПЫТНОГО ПРИМЕНЕНИЯ).

ТЕМА ИС-89(90)-3-1016-05

ВЫПУСК О

Разработана ГПИ "Союздорпроект" Главный инженер института Главный инженер проекта

Bees-

В.Р.Силков В.И.Литвинов

MHB N31300-M/1

MOCKBA 1989

Cust .				
N.N.	3 N H 3 P A H C O O O	Наименование	λисτ	CTP.
1		Содержание	4	
2		Пояснительная записка	2; 3;4	
3		БАЛКА ДЛИНОЙ 12 М. РАСЧЕТНЫЙ ЛИСТ. ТАБЛИ- ЦА ЧСИЛИЙ В РЕБРЕ БАЛКИ.	5	
4		Балка длиной 15 м. Расчетный лист. Табанца усилий в ребре балки.	6	
5		Балка длиной 18 м. Расчетный лист. Таблица усилий в Ребре Балки.	7	
6		БАЛКИ ДЛИНОЙ 12;15 и 18 м. РАСЧЕТНЫЙ ЛИСТ. РАСЧЕТ РЕБРА БАЛКИ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ТИЙГР.	٥	
7		Балки длиной 12;15 и 18 м. Расчетный лист. Расчет плиты проезжей части.	9	
8		РАСХОД МАТЕРИАЛОВ НА БАЛКИ ПРОЛЕТНЫХ СТРОЕНИЙ, АРМИРО- ВАННЫХ ВЯЗАННЫМИ АРМАТИРНЫМИ КАРКАСАМИ (ЛРМАТИРА А 🗓).	10	
9		РАСХОД МАТЕРИАЛОВ НА БАЛКИ ПРОЛЕТНЫХ СТРОЕНИЙ, АРМИРО- ВЛИНЫХ ВЯЗАННЫМИ АРМАТУРНЫМИ КАРКАСАМИ (АРМАТУРАДО)	44	
10		ГАБАРИТЫ. Схемы компановки.	12	
11		Мостовае полотно. Схема расположения Сборных элементов. Пролеты 12;15 и 18 м	13	
12		Мостовое полотно. Спецификация сборных элементов.	14	
13		РАСХОД МАТЕРИАЛОВ НА ЭЛЕМЕНТЫ МОСТОВОГО ПОЛОТНА.	15	
14		Мостовое полотно. Плита тротуара ПТ.	16	
15		Мостовое полотно. Консоль металлическая КМ-4 для установки тротудрных плит.	17	
16		Мостовое полотно. Консоль металлическая КМ- 2^{T}_{H} для четановки тротуарных плит.	18	
17		МОСТОВОЕ ПОЛОТНО. Конструкция проезжей части	19	
18		Мостовое полотно. Узлы nn 1; 2; 3; 4.	20	
19		Мостовае полатно. Поперечное объединение балок между собай. Узлы ин 5,6.	21	
20		МОСТОВОЕ ПОЛОТНО. ЭЛЕМЕНТЫ ПОПЕРЕЧНОГО ОБЪЕДИ- НЕНИЯ БАЛОК МЕЖДУ СОБОЙ. УЗЕЛ ИЗ.	22	

Mus. Na nogni Nognwca in gata Basmuna. Na 31300 - M/F Acey C. 1353

N N N.N.	Обозначение	Наименование	Лист	CTP.
21		ДЕФОРМАЦИОННЫЙ ШОВ ЗАКРЫТОГО ТИПА. ОБЩИЙ ВИД.	23	
22		ДЕФОРМАЦИОННЫЙ ШОВ ЗАПОЛНЕННОГО ТИПА. ОБЩИЙ ВИД.	24	
23		Деформационный шов с резиновым компенсатором К-8. Общий вид.	25	
2,4		ДЕФОРМАЦИОННЫЙ ШОВ С РЕЗИНОВЫМ КОМПЕНСАТОРОН К-8. ОКАЙМАЕНИЕ.	26	
25		Конструкция непрерывной проезжей части. Общий вид. Узлыми 1,2.	27	
26		Конструкция непрерывной проезжей части. Детали.	28	
27		Конструкция непрерывной проезжей части. Спецификация и выборка материалоб.	29	
28		Опирание Балок пролетного строения. Опорная прокладка.	30	

				226	35-N	C-0	- 01
	Ивянский Постовой	den g	16,08,89 16.08.89	ПРОЛЕТНЫЕ СТРВЕНИЯ ИЗ П-ОБРАЗЬ ДЛЯ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ Р	I DIX BAAD COCP. TEN	K #44H0	ù 12,15 #18m (90)-3-1016-05
	ИВЯНСКИЙ Антвинов	May	14 08.69				Листов
HAN. OR FR. HHY. I.K.	Хосицкий Горохова	AND MADORA	15.08.89	Содержание		31.000	POEKT
NHX. [K.	PEVOP	6	14,08.85		0018	O, OF II	FUCKI

I.COCTAB CEPUN

Выпуск О. Материалы для проектирования. Элементы и конструкция проезжей части мостового полотна. Узлы. Рабочая документация.

Выпуск I. Сборные железобетонные балки пролетных строений длиной I2; I5 и I8м, армированные вязанными арматурными каркасами с применением арматуры класса АП, и АШ. Рабочая документация.

Выпуск 2. Сборные железобетонные балки пролетных строений длиной 12;15 и 18м с внешним армированием. Рабочая документация.

2. Назначение и область применения

Рабочая документация пролетных строений из П-образных одоков с короткими консолями из обычного железобетона длиной 12;15 и 18м разработана на основании задания на проектирование от 07.02. 1989г. и технического задания на проектирование от 21.03.1989г., утвержденных заместителем директора ЦНИИСа т.Хасхачих Г.Д., тема ИС-89(90)-3-1016-05. и договора № 29 от 15.02.1989 ЦНИИС и Союздорпроекта.

Пролетные строения предназначены для строительства малых и средних мостов на внутрихозяйственных дорогах I—с категории по СНиП 2.05.03-84 Нечерноземной зоны РСФСР, при сейсмичности до 7 баллов. При применении балок пролетного строения в других регионах и климатических зонах СССР следует руководствоваться требованиями к материалам, приведенных в таблицах пояснительной записки.

Пролетные строения рассчитаны на пропуск автомобильной нагрузки A II и колесной нагрузки НК-80.

3. Технические требования

При разработке рабочей документации пролетных строений выполнены требования нижеперечисленных нормативных документов:

- СНиЦ 2.05.03-84. "Мости и трубы. Нормы проектирования";
- Региональные норым по проектированию и строительству автомобильных дорог в Нечерноземной зоне РСФСР, разрабатанные Союздорнии и утвержденные Госстроем СССР 28.07.88г;
- СН 393-78 "Инструкция по сварке соединений арматуры и закладных деталей железобетонных конструкций;
- ГОСТ I4098-85 "Соединения сварные арматуры и закладных изделий железобетонных конструкций".

Рекомендации ЦНИИС по железобетонным пролетным строениям с внешним армированием.

Рекомендации Союздорнии по устройству обмазочной гидроизодяции по типу "Вента".

4. Конструктивные решения

Поперечное сечение пролетного строения принято под габарит Г-8 в соответствии с категорией дороги І-с по СНиП 2.05.03-84 приложение І к таблице І. Компановка габарита осуществляется установкой 4-х балок пролетного строения: 2-х промежуточных балок и 2-х крайних балок. Ширина балок по плите 210 см.

Все балки пролетных строений длиной I2, I5 и I8м имеют одинаковую строительную высоту и одинаковые опалубочные размеры для крайних балок и промежуточных балок. В рабочей документации разработано три варианта армирования балок пролетного строения:

- I.армирование вязаными арматурными каркасами с применением арматуры класса АП;
- 2. Армирование вязаными арматурными каркасами **с** применением арматуры класса АШ;
- 3. Армирование полосовой сталью по низу ребер балок (внешнее армирование).

Монтаж балок пролетного строения осуществляется с помощью монтажных петель, устанавливаемых в ребрах балок. Максимальные консольные свесы балок при складировании и транспортировании должны быть не более указанных на рисунке № I.

Puc. N1

L BANKH

2.50 m

Поперечное объединение балок осуществляется посредством приварки стальных накладок из листового проката к закладным деталям, установленным в торцах плит балок пролетного строения, с обжатием их болтами, установленными в зазор между балками.

Рабочей документацией предусмотрены выносные тротуары (служебные проходы), устраиваемые на металлических консолях, крепящихся к крайним балкам. Перильное ограждение принято по типовому проекту инв. 8 384/42.

2265-WC-0-02

H KOHTP.	ИВЯНСКИЙ	JUNIA.	16 08 89	Пролетные строения из П-образн	IDIX BANDI	K TYHHO!	i 12,15418m
HAY. DHC	ПОСТОВОЙ	Very	16 08.89	для мостов Нечерноземной зоны РСФС	P. TEMA HC	-89(90)~	3-4046-05
TA. CHELL	NRAHCKNN	usas	16.08 89				Листов
LNU	ANTBUHDB	B. Muchacho }	15 08.89	The annual transport	PΑ	2	30
	ADCHUKUŃ	15.	15.08.80	Пояснительная записка			
NHM. IK	LODOLOBY	4904	14:08.89		LOWSA	none	ΚT
HHHEHEP	TONONDEOBA	fluil	408.8		20,005		
					AMAGO	T A3	

Одежда мостового полотна состоит из гидроизоляции — Імм; защитного слоя — 40мм и асфальтобетонного покрытия — 70мм.

Гидроизоляция — обмазочная в два слоя бутилкаучуковой мастики типа "Вента".

Асфальтобетонное покрытие двуслойное из мелкозернистого асфальтобетона по ГОСТ 9128-84. Толщина нижнего слоя 35-40мм верхнего слоя 35-30мм.

При сооружении мостов рабочей документацией предусматривается возможность устройства температурной неразрезности пролетных строений.

Для обеспечения плавного проезда по мостам в местах сопряжений разрезных пролетных строений, а также в местах сопряжений температурно-неразрезных цепей пролетных строений предусмотрено устройство деформационных швов. В рабочей документации приведено три типа деформационного шва:

закрытого типа, заполненного типа и деформационный шов с резиновым компенсатором типа К-8. Применение того или иного типа шва зависит от перемещений торцов пролетного строения или температурно-неразрезной цепи пролетных строений и должна соответствовать требованиям таблицы № 1.

Таблица № І

1111 1516	Тип деформационного шва	Максимальная амплитуда до — пускаемых переме щений, мм
I	2	3
I	Деформационный шов закрытого типа	10
2	Деформационный шов заполненного типа	1 5
3	Деформационный шов с резиновым компен- сатором типа К-8	50

Опирание балок пролетного строения предусмотрено в рабочей документации на прямоугольные слоистые резиновые опорные части типа РОЧ I5x35x4,0-0,5 или РОЧ 20x25x6,2-0,8 с применением опорных прокладок.

При подборке других типов опорных частей следует руководствоваться ВСН-86-83.

5. МАТЕРИАЛЫ

Для изготовления сфорных железобетонных балок пролетного строения и сфорных железобетонных тротуарных плит применяется тяжелый бетон со средней плотностью 2200—2500кг/м3 класса прочности на сжатие ВЗО по ГОСТ 25192—82 и ГОСТ 26633—85.

Монолитный бетон защитного слоя мостового полотна принят класса по прочности на сжатие B25, мелкозернистый с водоцементным отношением $B/I \le 0,42$. Марка бетона и железобетона конструкций по водопроницаемости W 6 по ГОСТ I2730.5-84.

Марка бетона по морозостойкости для вышеперечисленных конструкций назначается в зависимости от среднемесячной температуры наиболее колодного месяца по СНиП 2.01.01.—82 для дорожно-климатических районов Нечерноземной зоны РСФСР и должна соответствовать значениям приведенных в таблице № 2.

Таблица № 2

Климатические условия, характери- зуемые среднемесячной температу- рой наиболее холодного месяца согласно СНиП 2.0I.0I-82		железобе-	Монолитный бетон защит- ного слоя
Минус IO и выше	200	200	300
Ниже минус IO до минус 20 включительно	200	300	300
Ниже минус 20	300	300	300

Морозостойкость по ГОСТ 10060-87.

Материаль для приготовления бетона должны удовлетворять требованиям СНиП Ш-43-75 с учетом изменений и дополнений, приведенных в постановлении Госстроя СССР от 31.12.87г. № 318 "Об изменении и дополнении главы СНиП Ш-43-75".

Максимальная крупность щебня 20мм с разбивкой по фракциям в соответствии с ГОСТ 10268-80.

2265-MC-0-03

				Пролетные ст роения из п-о бра <i>ных</i> в	ANOK ANHO	ń 12,15 i	KAL M 814
N.KOHTP.	HBAHCKHH	Meer	16.08.8	MONTO DENEROUNZEMENT ROUND PROPE	TEMA UP-80/	00)-3'-41	NS-05
JHO. PAH	Поставай	Harry	16.08.89	мостов Нечерноземной зоны РСФСР.	ICHIN NC D3	30, 0 1	-
TA.CHELL	НВЯНСКИЙ	delay	4.08.80		Стадия	Лист	Листов
THN	AUTBHHOB	8. Curson	15.08.88	Пояснительная записка	Pγ	3	30
HAY, TP.	уосицкий	hs	15-01-81				
NHH.IK.	ABOXO907	COPOLA			СоюЭ	0977904	EKT
HHHEHED	TOAOAOEOBA	Hereof	14.02.85				
					(Do	DALLT 13	

В зависимости от средней температури наружного воздуха наиболее холодной пятилневки (с обеппеченностью 0,92), определяемой по СНиП 2.01.01-82 в дорожно-климатическом районе Нечерно-земной зоны РСФСР, марки арматурной стали в соответствии с требованиями СНиП 2.05.03-84 следует принимать по таблице В 3.

Таблица № 3

	Арматур ная	арма турн.	Докум., -регла- ментиру-	Марка стали	Диаметр, мм	iohax co ci	оеднеи темпе	таолица № 3 рукций в рай- ратурой на- рлее холод-
	сталь	стали	ющий ка- чество арматур- ной ста- ли			ной пятид минус 30° и выше		ниже минус 40°С
						вязаные каркасы и сетки	вязаные каркасы и сетки	вязаные кар- касы и сетки
	I	2	3	4	5	6	7	8
	Стерж- невая горяче- катан- ная глад- кая	ΑI	TOCT 5781- 82 FOCT 380- -71	Ber.3en2 Ber.3 nc 2 Ber3ITIC2 Cr.3en3 Cr.3ne3	6-I0 6-I0 6-I0	+ + + +	+ + + +	+ +x) + -
				Ст.ЗкпЗ ВСт.Зкп2	6-IO 6-IO	+	_	_
	Стерж- невая горяче- катан- ная пе- риоди- ческого профиля		ГОСТ 578I- 82	Вст.5сп2 Вст.5пс2 Вст.5пс2	I0-40 I0-I6 I8-40	+ + +	+ + -	-
		Acii		IOIT	10-32	+	+	+
				25 Г2 С	6-40	+	+	+
l		AIII		35IC	6-40	+	+	_

^{х)}не допускается для хомутов

Марки стали для закладных изделий следует принимать по таблице № 30 СНиП 2.05.03-84 по средней температуре наружного воздуха наиболее холодной пятидневки(с обеспеченностью 0,92).

Стальные эдементы мостового полотна изготавливаются из стали марки ВстЗсп5 по ГОСТ 380-71 при средней температуре наружного воздуха наиболее колодной пятидневки(с обеспеченностью 0,98) до минус 40°С включительно, при более низких температурах следует применять низколегированные стали по ГОСТ 19281-73 и ГОСТ 19282-73 марок, указанных в п.4.5 примечание п.2, СНиП 2.05.03-84.

Для внешнего армирования применяется сталь марки I5XCHД-I2 по ГОСТ 19282-73. согласно техническому заданию на проектирование.

Для крепления элементов мостового полотна в обычном исполнении и поперечного объединения балок применены болты по ГОСТ 7798-70 класса прочности 4.6 по ГОСТ 1759-70, а также гайки по ГОСТ 5915-70 классов прочности 4 и 5 по ГОСТ 1759-70.

При расчетной температуре по п.І.39 СНиП 2.05.03-84 ниже минус 40° С бодты диаметром 22мм и более изготавливаются из стали марки 09г2 по ТУ I4-I-287-72.

Все сварные соединения элементов закладных деталей должны производиться с соблюдением СН 393-78 и ГОСТ 14098-85.

Поверхности всех закладных деталей должны быть защищены от коррозии.

6. маркировка

Все изготовляемые сборные железобетонные балки пролетных строений должны быть замаркированы.

Марка балки состоит из 3-х групп обозначений (например БІ-І2-І) І группа - буква Б - балка, цифра І, или 2, или 3 - характеризует место расположения балки в компановке габарита.

- I-промежуточная балка; 2-країняя балка без тротуаров; 3-країняя балка с выхосным тротуаром
- балка с выносным тротуаром. 2 группа - цифры I2, или I5, или I8 обозначают длину балки в метрах.
- 3 группа имфра I, или 2, или 3 характеризует тип армирования балок пролетного строения.
- I балки пролетного строения с армированием арматурой класса АІ и АП при армировании ребер вязаным пространственными каркасами.
- 2 балки пролетного строения с армированием арматурой класса АІ и АШ при армировании ребер вязаными пространственными каркасами.
- 3 балки пролетного строения с армированием арматурой класса AlwAII при армировании ребер внешним листом.

Пример маркировки балки: Б3-15-3.

Балка крайняя с выносным тротуаром, длиной 15м, армированная с применением арматуры класса AI и AII с армированием ребер балки внешним листом. 2265-NC-0-04

	Ивянски й Постовой	Just House,	16.08.89 14.08.89	Пролетные строения из П-образны для мостов Нечерноземной эпры РСФСР.	x балок алиной 12,15 n 18 m Tema NC-89(90)—3-4016-05
	ивянскии Воннатих	Bohumon K	16.08.89 15.08.89		Стадия Лист Листов ръ 4 30
HAU. FR. NHW.IK. NHWEHED	1040408089 1060×0808 УОСИПКИЦ	10,0010	1408.89		Союздорпроект
Eiter	TONOROGOUN	A	7,00,07		POPMAT AS

5	\ x					HOI	PMA	THB	ны Е	y	CHI	NHA						PA	C 4 E	ТНЫ	E	у	CHI	N S			
0 r 0 9 ,	# 51 M	# 55 # 55	3	Noc	HROT	RAH	HATI	4 3 K A		BPEMI	RAHH	PATPY	3K.	1	н ля к ин И л		ROTS			P 4 3 K		BPE M	EHHA9	HALDA	SKA	MAKCHI	мальн
A ETH Deh W	BUET DAET	AOKEI	PACYETHЫ И ЗЛЕМЕНТ	6 13300 18			UTJAP RA RAHHROTJO			(* 11 A		HK	-80	DATHETL	ХЛД КИН -39Т АН, -4770XH - - - - - - - - - - - - - - - - - - -	LOSCIE	ЕННЫЙ С	RPOE3HI IR RAPOSI	АТЭАР РА КАННКОТЭО	CYMMA	RAHGI	FFV		HK-		NWE3	APHA
- 11PD	A III			M, TC M	Q, TC	M. TCM	D.	M,	Q, TC	M, TC·M	Q,	М.	D,	M,	Q, TE	, M M 9T	Q, TC	M. TC M	Ω, 3T	. M W 31	E,	M, TCM	ll, TC	M. TC-M	U. TE	M, TEM	Q, TC
	2	3	PEBPO	5	6	7	8	9	40	11	12	13	14	45	16	47	18	19	20	21	22	23	24	25	26	27	28
			KPAUHEH BNAKH	18,2	0,0	10,7	0,0	28,9	0,0	26,2	4,1	37,7	8,3	40,7	_	2 <i>0,0</i>	0,0	12,9	0,0	32,9	0,0	43,8	7,2	44,4	9,1	76,7	9,1
			EAVKN CDETHEN BAVKN	14,5	0,0	4,6	0,0	19,1	0,0	24,9	5,0	37,9	3,8	43,6	_	15,9	0,0	8,8	0,0	22,5	0,0	44,7	8,9	44,6	9,5	64,2	9,5
	1) -		PEBPO KPAUHEN BANKU	43,7	5,2	0,8	1,8	21,7	5,0	20,4	6,0	28,8	12,1	30,5	_	15,0	3,5	9,7	2,2	24,7	5,7	34,1	10,3	347	13,3	58,8	Ì
2	11,6		РЕЬРО СРЕДНЕЙ БАЛКИ	8,01	2,5	3,5	8,0	14,3	3,3	19 <u>5</u> 19,2	7,5	28,4	12,5	33,5	-	11,9	2,8	4,9	1,1	16,8	3,9	32,6	12,9	31,2	13,8	49,4	17,7
			BANKU KPANHEN BANKU	8,0	4,7	4,6	2,8	12,6	7,5	12,1		16,1	_	17,6	_	8,8	5,2	5,6	3,3	14,4	8,5	20,2		47,7	_	34,6	-
		/ 8	PEBPO. CPELHEN BANKN	6,3	3,8	2,0	1,2	8,3	5,0	12,1	_	14,4	_	19,9		7,0	4,1	2,9	1,7	9,9	5,8	19,6	_	(5,5	_	29,5	-
			RAYKII KAYNHEN BEBBO	0,0	6,3	0,0	3,7	0,0	10,0	0,0	11,3	0,0	19,2	0,0	_	0,0	6,9	0,0	4,5	0,0	11,4	0,0	19,0	0,0	21,1	0,0	27,6
			EYVKN CLEVHFN LEPLO	0,0	5,0	0,0	1,6	0,0	6,6	0,0	11,7	0,0	19,9	0,0	_	0,0	5,5	0,0	2,3	0,0	7,8	0,0	19,6		21,9		29,7

ИНТЕНСИВНОСТОЛ ОТООНИВОТОЯ ИХЕКЧТАН N ИОННАВИСТВЕ ЗАГОВИАН ОТЭМ ЙЫНИОТОЯ АН N В N

	PEDPA	DANKU	HOOM KAA	ETOE 12,13
_	HOPMATHBHL	E ACHYNA	Расчетныя	RNANJE
TUT SANKU	Собственный Вес , тс/м	Покрытие проезшей части, тум	Собственный Бес , тс/м	Покрытие проезщей части,те/м
KPANHAS	4,08	0,636	1,19	0,767
RRHABAS	98,0	0,275	0,95	0,390

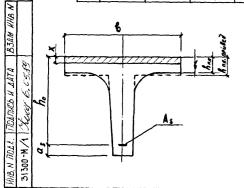
HHB Nº MOAA MOANNED H AATA BSAN HHB Nº SASOD - MA LEWY COS 35

				2265-иС-0	- 05		
H KOHTP	ИВЯНСКИЙ	Ast.		ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗНЫХ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР, Т	BANOK A	NHON 12:	SHIBM AND
HM OHC	NOCTOBON	Apre,	16 08 89				
TA CHELL.	ИВЯНСКИЙ	hory	14 40 64	БАЛКИ ДЛИНОЙ 12м	CTALHR	VALI	YACLOL
THIN DUC		flectif	15 of 49		PY	5	30
HAY TP	NOCHUKHH	7					1

	\z	ıı.i				Hop	M A	тив	ные	у	E H 1	N A						PA	CHE	T H M	E	<u>y</u> (HI	H A			
Ε,	₽	== _=	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Noc	IHROT	RA F	HATE	4 3 K A		BPEMI	RAHH	<u>и</u> чтан	3K!	HAMMES HAMMES		Поп	ROTS	RAHH	HATI) 43K	\	BPEM	PAHHA	EUGTAH	s K N	Максна	49 YPHI
2 X X	E T H	ADXEL	C 4 E T H I A E M E H	Cobetai Be		AMEBUAN On Rayoan		А М М Р.З Н А ГР Р		11th		HK	-80	PACHETA PACHETA PACHETA POTOSH PACHOCIOSH	HKULLP-	87380) 88	с Енный	ПРОЕЗНА Оп ракоча	1	Симма Нагр		FFY		HK-		M M P S P S T A H	APHA
STPOE]]] [40	И, те м	Д, ЭТ	M, Tem	Q, TC	M, TCM	Q, TC	M, Te·M	Q, tc	M, TCM	Q, Te	, М м·3т	Q, TC	тс·м ,	Q, TC	M, TC·M	Д, 37	M, TC·M	Q, TC	M, TC·M	L, TC	M, TC·M	Q, TC	М, тс·м	B
	2	_ 3	4	5	б	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
			PEBPO KPANHEN BANKH	28,8	0,0	16'8	0,0	45,7	0,0	35,2 17,2	4,3	48,4	8,8	62,9	-	31,7	0,0	20,4	0,0	52,4	0,0	56,4	7,3	53,2	9,7	108,5	9,5
		1/2	EVVKN CLETHER LEELO	22,8	0,0	7,4	0,0	30,2	0,0	33, <u>2</u> 32,0	5,3	48,6	9,2	62,2	-	25,1	0,0	10,4	0,0	35,5	0,0	53,5	9,1	53,4	10,1	89,0	10,
5	14,6	٤/	PEBPD. KPAHHEN BANKH	21,6	3,9	12,7	2,3	34,3	6,2	27,2 12,8	6,4	36,9	12,5	47,1	-	23,7	4,3	15,3	2,8	39,0	7,1	43,7	3,01	40,6	13,8	82,7	17,
		4	ENYKN CHETHER EPPO	15,6	3,1	5,5	1,0	24,1	4,1	25,7 24,9	7,9	36,8	12,8	46,0	_	18,8	3,5	7,8	1,4	26,6	4,9	41,4	13,1	40,5	14,1	68,0	19
		٤,	PEBPO, KPAHHEH CANKH	12,6	5,9	7,4	3,5	20,0	9,4	16,1		21,0	-	27,1		13,8	6,5	8,9	4,2	22,7	10,7	25,8	_	23,1	_	48,5	-
		/ 8	PYVKN CDETHEN bepbo	10,0	4,7	3,2	1,5	13,2	16,2	15,4 14,8	_	20,1	-	28,0	_	11,0	5,2	4,6	2,1	15,6	7,3	24,8	_	22,1	-	40,4	-
		0 110 01	Pankh Kbanhen Perbo	0,0	6,5	0,0	4,6	0,0	12,5	0,0	9,8	0,0	19,6	0,0	_	0,0	8,7	0,0	5,6	0,0	14,3	0,0	15,7	0,0	21,6	0,0	29
			PEBPO CPENHEA BANKU	0,0	6,3	0,0	2,0	0,0	8,3	0,0	12,2	0,0	20,3	0,0	-	0,0	6,9	0,0	2,9	0,0	9,8	0,0	19,7	0,0	22,3	0,0	32

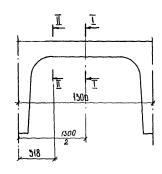
^{*)-} В ЗНАМЕНАТЕЛЕ ПРИВЕДЕНЫ УСИЛНЯ ОТ НАГРУЗКИ А-11, РАСПОЛОЖЕННОЙ В ПРЕДЕЛАХ ПРОЕЗЖЕЙ ЧАСТИВ, В ЧИСЛИТЕЛЕ - НА ВСЕЙ ШИРНИЕ ЕЗДОВОГО ПОЛОТИА.

				2265-ИС-0-06
H KOHTP.	Ивянский			ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗНЫХ БАЛОК ДЛИНОЙ 12.15 И 18M ДЛ. МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР. ТЕМА ИС-80(90)-5-1016-0
HAY DHC Th chel	Noctoboń Nbahckuń	Wars	16 08 89	DAKK TYNHON ISW
JNO NNT 97. PAH	AUTBUHOB Aochlkuú	1	15 08 89	
	Горохова Соловьева	Coson	14 04 85	


EA TAMADO

														•								·					
		u.i				HOP	A M	THB	H b) E	у	E H I	NA						PA	C 4 E	THЫ	E	4 1	CHY	н я			
2 ⁵ .	± ₹	= 0	HPI H	Non	HROT	RAH	HATE	43KA		BPEME	RAHH	U 974H	3K k	CHMADH	NAM RA	No	ROTS	HHAG	HAT	PYTK	<u> </u>	BPEMI	EHHAA	HATPY	KA	MAKCHI	AAAbH k
X H D X H D	1111	DXE	ACUETHE	LOBETBI BE		AWE309N ON RAPO9N				411 411		HK	-80	131 AMUS PACHETA TOOHN, W L3+W-A HROTJON	HA TPE DUKOCTS MMAPHA HA R	Coecte	Енниу	INCEOON IN RAPON	ATJAP RA RAHHROTJO	HATP		£1\$		HK-		HAKP!	APHAS
RPDA1	4 4	10 h	PAG	M, Te m	Q, TC	M, TCM	Q. TC	M, TCM	Q, TC	M , TC-M	Q, II	M, TCM	Q.	.M M 3T	Q,	, M M 37	Q.	M, TC U	Ω,	, M , 3T	Q, TC	M, TCV	U, TC	M. TC·M	Q, Tt	K, TC N	Q, Tt
	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
			PUVKN KDYHHEN BEBDO	41,7	0,0	24,6	0,0	66,3	0,0	44,6	4,4	58,8	9,1	89 <u>'</u> e	_	45,9	0,0	29,7	0,0	75,6	0,0	68,9	7,3	64,7	10,0	144,5	10,0
		2/2	EVYKA CHETHEN DERLO	33,0	0,0	10,7	0,0	43,7	0,0	42,0	5,5	58,7	9,5	83,7		36,4	0,0	15,1	0,0	51,5	0,0	65,1	9,1	64,6	10,4	116,6	10,4
		P /	EVYKN KLVANHEN LEPOO	31,3	4,7	18,4	2,8	49,7	7,5	34,3 17,2	6,7	44,8	12,7	66,9		34,4	5,2	22,3	3,4	56,7	8,6	53,1	10,7	49,3	14,0	109,8	19,3
18	17,6	14	EN NKN	24,8	3,8	8,0	1,2	32,8	5,0	31,2 31,0	8,1	44,8	12,9	63,8	_	27,3	4,1	11,4	1,7	38,6	5,8	48,4	13,0	49,3	14,2	87,9	20,0
	17,6	1	PEBPO KPAWHEN BANKN		7,1	10,8	4,2	29,0	11,3	20.3	-	25,6	_	38,5	_	20,1	7,8	13,0	5,1	33,1	12,9	34,4	_	28,2	-	64,5	-
		8	E B N K N	1.161.1	5,6	4,7	1,8	19,1	7,4	19,3	-	24,5	_	37,7	_	15,9	6,2	6,6	2,6	22,5	8,8	29,9	-	26.9	-	52,4	-
		AGORO		0,0	9,5	0,0	5,6	0,0	15,1	0,0	10,2	0,0	19,9	0,0	_	0,0	10,4	0,0	6,8	0,0	17,2	0,0	15,8	0,0	21,8	0,0	32,8
			DE BANKU BANKU	0,0	7,5	O,O	2,4	0,0	9,9	0,0	1	0,0	20,5	0,0	_	0,0	8,3	0,0	3,4	0,0	11,7	0,0	19,7	0,0	22,5	0,0	34,2

B 3. Наменателе приведены усилия от насучан А-11, расположением в пределах проебыем части, в числипи от деятили изов де делах проебыем изоводень в делах из делах проебыем изоводень в делах проебыем изованием в делах проебыем и делах пределах проебыем и делах пределах проебыем и делах пределах проебыем и делах проебыем и делах пределах п


				2265-ИС-0-07	
N KONTP.	Ивянский	15	V 4000	ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗНЫХ БЛЛОК ДЛИНОЙ 12,15 Н ИВМ ДЛ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР ТЕМА ИС-89(90)-3-1016-05	9
HAY DHC	ПОСТОВОЙ ИВЯНСКИЙ	More	16 M W	БАЛКИ ДЛИНОЙ 18М СТАДИЯ ЛИСТ ЛИСТ	08
JHO OHT	ANTBUHOB AOCULKUÚ	Media	16 00 89 15 08 89	TATALLA VOLLET	
NHX.IV	COACBBEBA	Lopoxel	19 08 89	B PEBPE BANKU CO10340PIDDEKT	
				OPMAT A3)

Pa	CUET HOI	PM A L D H DIX	СЕЧЕНИЙ	PEBPA	Балки на	прочность	NPU JEV	ictbun 1	аэгиба <i>н</i> ощегі	A THE MOM		Расчет на т	ГРЕЩИНОСТОЙ	KOCTH PEBPA	рүүкн
HT DP08.	АНИА,Д. ОТОНТЭЛСЯП	РАСЧЕТНЫЙ	Полонение ВинэнолоП	KAACC	daawoaN hotehrtjag	朴,	Χ,	в,	R€,	М предел.,	M PACHET.,	Образовани	Е ТРЕЩИН	Раскрытие	трещин, см
BAPHAHT APM UPOPOB.	строения, М	M M	บเรเททภ	APMATERU	APMATUPHI A5, CM2	CM	cm	CM	KLG \ CW ₅	TC· M	TC·M	RB,MC≥, KFC∕CM²	OBX, Krc∕cm²	ПРЕДЕЛЬНОЕ	PACHETHOE Q Cr
			r\5		37,3	81,1	0,8			78,6	76,7		63,8		0,000
			4	A-II	32,2	82,2	5,2		Ì	69,2	58,8		50,2		a,006
	12	11,6	L/8		32,2	82,2	5,2			69,2	34,6		0,88		800,0
		,,,,,	1/2		28,7	81,5	6,1			0,08	76,7		71,4		600,0
			L/4	A- <u>III</u>	24,6	82,6	5,2			70,0	58,8		56,4		800,0
			L/8		24,6	82,6	5,2			8,38	34,8		42,4		110,0
1 -			L12		53,3	78,2	8,5				108,5		88,6]	0,007
KAPKACDI			L14	A-11	48,2	79,3	8,7			98,2	82,7		67,8]	0,006
KAP	45	14,6	L/8		32,2	82,2	5,2	105	460	8,03	48,6	150	44,5	0,03	0,005
빌		1,,0	L/2		42,0	9,85	6,8			140,3	108,5		97,6] ′	0,009
Вязаные			L 14	A-ı <u>ī</u> ī	37,0	79,9	7,8		}	99,6	82,7		75,6]	800,0
89			L/8		24,6	82, <i>6</i>	5,2			ס, מל	48,6		49,9		700,0
			L12		83,5	73,0	13,0			145,2	144,5		117,7		500,0
			L/4	A-īj	64,3	76,4	10,2			122,4	109,8		90,5]	500,0
	48	17,6	L/8		32,2	82,2	7,8			69,2	64,5		63,3		0,007
	,	1.,5	L/2		61,6	74,5	12,7			145,6	144,5		128,0]	0,040
			L14	A- <u>111</u>	49,3	77,1	10,3			124,8	8,601		99,5		0,009
			L/8		24,6	<i>3,</i> 28	5,2			70,0	64,5		71,2		0,010

								
					2265-ИС-0	_		
	Н контр.	Ивянский	NJ.	16.08,89	ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗЦЫХ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР.	A NONAZ H AMET	C-89(90)	N.A. MB1 K ET. -3-1010-05
		Постовой	MOSA	16.08.89	БАКИ ДКИНОЙ 12,15 Н 18 М. РАСЧЕТНЫЙ ЛЙСТ.	RNAATT	AHCT	AHCTOB
	TAN DHÉ	NBAHCKUU KUTBUHOB	Heurton AD	16.06.35	РАСЧЕТНЫЙ ЛИСТ.	PA,	8	30
	HAY. PP. UHH. III. K.	UDVAKOP YOCHTKAĄ	1	15.09.89 14.08.85	PACUET PEBPA BANKU NO NPENENDHAID MICHAENEN	Co10.	3 L DP 110'	DEKT
لـ	ЧЭНЭННИ	TONONOGOBA	Finit-	14.08.89	I H I PYNNEI,	POPMAT	r A 3	

	PACHE	ІДТИЛП Т	пеп дн	чность	חם אזרא	БАЮЩЕМ	IMOM EI	нту		PACHET NI	T AH IDTNI	РЕЩИНОСТ	OKKOCTH	PACHET MA	
Сечение	PACHETHAR	Профиль,	٨.	ha	v	g	RB,	Мпред,	МРАСЧ.,	OBPAZOBAH GBX < RB,	HE TPEWAH	PACKPUTHE OLCT <	TPEW, WH,	ПРОЧНОСТЬ РЕЧНОЙ С	NYE D UOUE-
	APWAF	MM KAACE APMATU- PLI	AS, CM ²	hа, См	cm	o, en	KLC/CM5	TC·M	M·3T	RB, MC2,	бвх.	△CF, CM	acr, em	Q MPEA.,	Q PACH,
T-T	нишняя	7Ø12 AI	7.92	12.3	1.34	100	160	2.49	2.3	150	30.41	0.03	10.0		
	пинняя	7Ø10A™	5.50	12.4	1.22	100	עטו	2.30	2.3	150	43.24	0.03	20.0		
11 11	КВНХАЗА	7Ø12AI	7.92	12.3	1.34	100	160	2.49	1.82	150	14.05	0.03	10.0	10.15	ar.a
1 -1	DENIM	7Ø10 A 🗓	5.50	12.4	1.22	Oar		2.30	1.82	עניי	4g.24	0.03	10.0	าม.าบ	מו,ט

HHE N NOAA FOAMUED U AATA BEAM WHE N

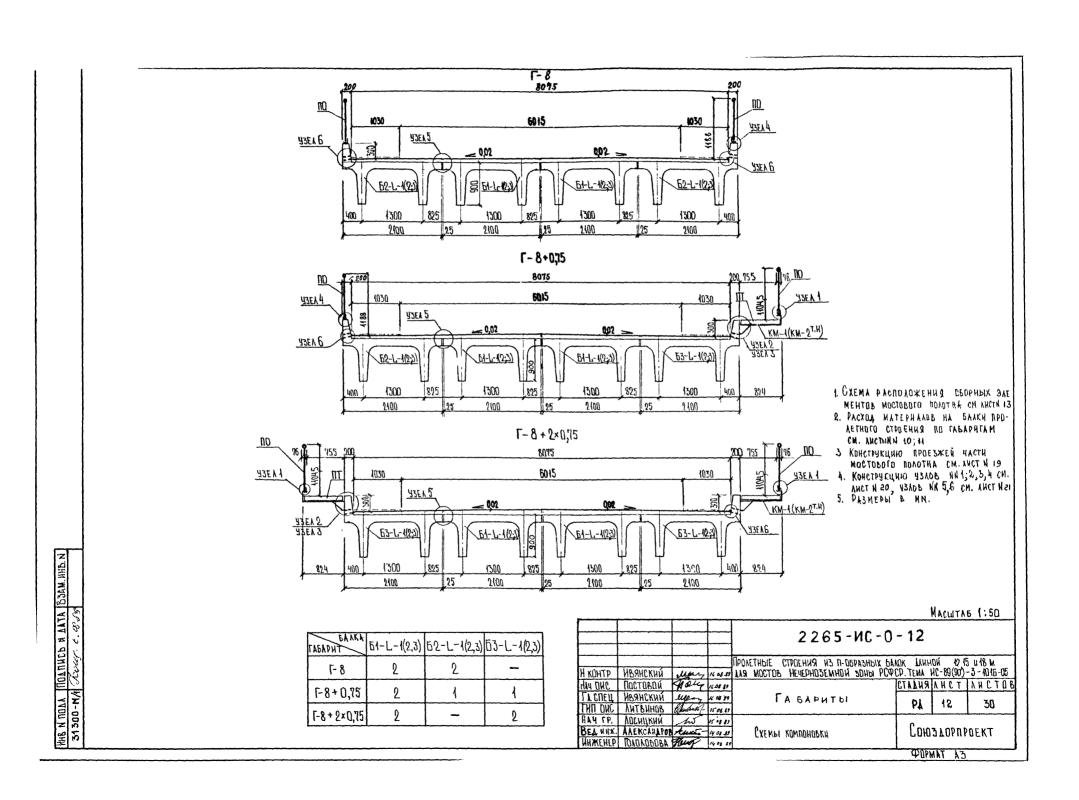
				2265-ИС-О	- 09		
Н контр	ИВЯНСКИЙ			ІНСКАРОС-П СИ КИНДОРТЭ ДІОНТЯКОРП ЭР ІОНОС КІОНМЭСОНРЯРУЯ ФОТЭОМ КК∆			M81 N 21, S1 1 20-2101-C-(00
TA CREU.	ПОСТОВОЙ ИВЯНСКИЙ ЛИТВИНОВ	10 7	16 03 89 16.09.89 15 08 89	PACHETH LIN ANCT.	<u>ста дия</u> РД	ANCT 9	30 30
HAY TR. WHH IX WHH IIX	АПСИЦКИЙ ГОРОХОВА ПОЛЯКОВ	to go xay	15 11 15 NN 10	PACYET NUTH NPOESHEY YAGTIA	Сон	1740AE	POEKT
INHH TEX	HUNAKAUH	A	1408 85		40Pr	ATA3	

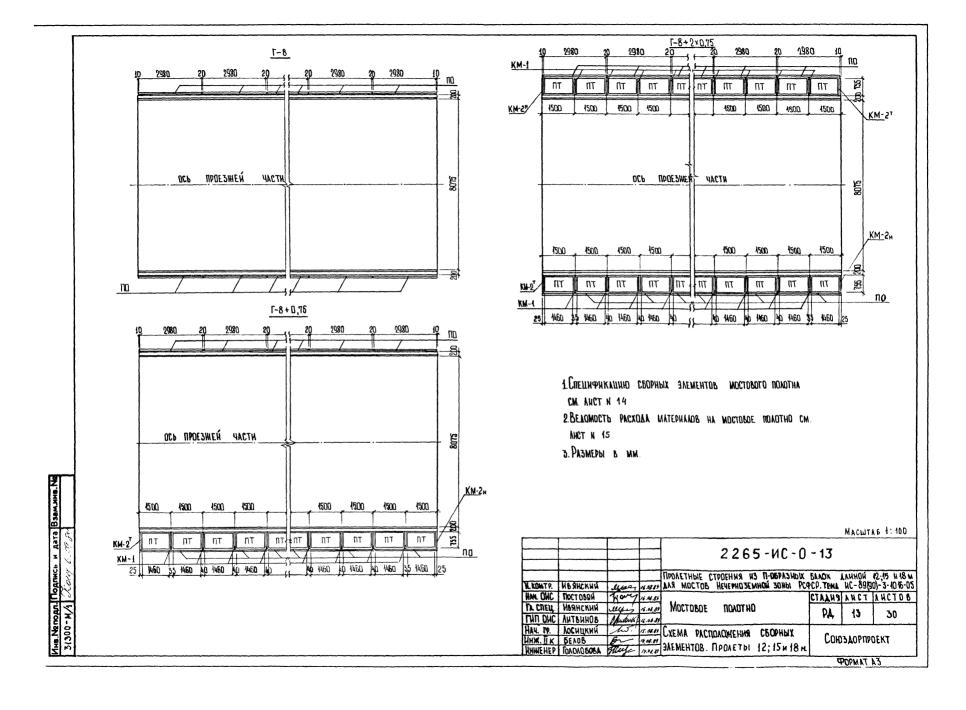
≨			Б	N O K W	Ubore	тных с	TPDEHV	ΙŃ	Поперечі		Ито	ГО НА	ONTO			Onopi	H bi E
FIPONETA ,		KONHYEC NPONETHI M	TBO ENC LAPOK	OKOB EHNÑ	Потре	<i>Б</i> НОСТЬ	MATEPUA	ADB		OKOB	АСРП	ETHOE	. ETPO	EHHE		9 % 0	ТИ
	THAUGUL		Б2-L-1,	53-L-1.	БЕТОН В30,	T J T A M Q A	RAHQU	ПОЛОСОВАЯ	A T 3 100000000,		Бетон В30.	L PMAT			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P E 3 H H I P E 3 H H I,	3 1d 8 0 RA8020A0FF , dAAT3
Алина		шт	шт	ШТ	M ₃	KNAECA AI, Kr	KNACCA AL KNACCA ACI, KT	KI	KF	TAÑKH KT		KNACCA AI, KT	KNACCA ACII. Kr	KΓ	Kr Kr	<u>тш</u> Т	T T
	r-8	2	2	-	34,8	1775,8	5312,0 204,8	38,2 622,0	296,2	48,3	34,8	1775,8	53 12. 0 204.8	334,4 522,0	18,3		
12,0	F-8+0,75	2	1	1	34,8	1775,8	5306,6 204,8	49,4 622,0	296,2	18,3	34,8	1775.8	<u>5306,6</u> 204,8	315,3 622,0	18,3	16	0,0 59
	F-8 + 2×0,75	2		2	34,8	1775.8	5301,2 204,8	622,0	296,2	18,3	34,8	1775,8	5301,2 204,8	<u>296,2</u> 622,0	18,3	-,	
	r-8	2	2		43,4	2258.0	7853,0 281,6	46,6 745,6	374,3	22,9	43,4	2258,0	7853 <u>,0</u> 281,6	447, <u>9</u> 745, 6	22,9		
45,0	[-8+0,75	2	1	1	43,4	2258,Q	7846,4 281,6	23,3 745.6	371,3	22,9	43,4	2258,0	7846,4 281,6	394.6 745,6	22,9	$\frac{46}{0.032}$	0,059
	Γ-8+2×0,75	2		2	43,4	2258.0	7839,8 281, 6	745,6	374,3	22,9	43,4	2258.0	<u>1839,8</u> 281,6	374,5 745,6	22,9		
	Γ- 8	2	2		54,8	2795,6	41774,8	55, 2 869,2	446,4	27,4	51,8	2795,6	410,0	501,6 869,2	27,4		
18,0	Γ-8 +0,75	2	1	1	51,8	2795,6	11767,0 410,0	27,6 869,2	446,4	27,4	51,8	2795,6	410,0	494,0 869,2	27,4	<u>16</u> 0,032	0,059
	T-8+2×0.75	2	_	2	51,8	2795,6	440,0	869.2	446,4	27,4	51,8	2795,6	41759,2 410 0	446,4 869,2	29,4		

- 1. B TABANUE AAH PACXOA HA ONOPHHE YACTH MAPKH POY 15x 35x 4,0-0,5
- 2. PACKOJ MATEPHANDO HA MOCTOBOE ROJOTHO CM. AMET N 15 , HA ROKPOLTNE RPDESKEŬ HACTN CM AMET N 19.

2265-WC-0-10

				IPONETHUE CTPOEHNA NO N-OSPABILIEN BANG	JK TYNHO	DA 12,15 H 18 M LAR
H.KOHTP	Ивянский			мостов Нечерно земной зоны РСФСР Темі	NC-89(9	90)-3-1016-05
HAY DHC	Noctobox	Hores	16 08 85	PACKOL MATEPHANDS HA BANKH	RHAATS	A HCT A HCTOR
TA. CHELL	Ивянский	Nger	16 02 85	PACALLA MATEPHANUS HA BANKH	PA	10 30
THU OHC	ВОНИВТИЛ	Bling	15 M 64	HPUNETHEIX CIPDEHNN, APMUPOBAH-		
97 PAH	Хосицкий	his	15 08 89	NMICHPETAMPA NMICHAERB XICH		
HHHA.IK	PODVOEA	Coporal	/4 at .10	KAPKACAMH C ПРИМЕНЕНИЕМ APMATY-	์ ก เกร	ΙΔΩΡ ΠΡΟ Ε ΚΤ
NHHEHEP	TONONOGOBA	Hay	1408 85	PH KNACCA A II.	Duido	ו אשט ווו וושגו
					O AD	MATAS


TA, M		Количе		BADKOB	пролетн Потреб		OEHHŃ MATEPUAN	n k	HOLD CLLO HOLD CLLO HOLD CLLO		į.	ОГО Н ЭОНТ:	H			l	Э <i>Н Ы</i> Е . Т И
NPOAETA	TABAPHT		ных ст	T	hernu	7 3	d A A		e T A	<i>у</i> Р	Бетон	C T	h h	Ь		D E 2 M H	
Алина		Б1-L-2, ШТ	Б2-L-2, шт	Б3−L-2, шт	В30, М ³	KAACCA AI, KT	PHAR KNACCA AM KNACCA ACI,	РАСОННАЯ.	RABO 30AOT	TANKH Kr	В 30, м ³	APMAT KAACCA AI, KT	KAACCA AIII KAACCA ACII,	<u>RABOOOAOП</u> , , , , , , , , , , , , , , , , ,	EDATЫ, FLÜKH KT	PE3HHA, WT.	RABOSOAON CTANA TS
	Γ-8	2	2	_	34,8	1775,8	4285,6 204,8	38,2 622,0	296,2	18,3	54,8	1775,8	4285,6 204,8	334,4 622,0	18,3		
12,0	r-8 + 0,75	2	1	1	34,8	1775,8	42.80,2 204,8	48,1 622,D	296,2	18,3	34,8	1775,8	4080,2	315,3 622,0	18,3	0,032	0,059
	r-8 + 2×0,75	2	_	2	34,8	1775,8	4274,8	622,0	296,2	18,3	34,8	1775,8	4274,8 204,8	296,2 622,0	18,3	3,002	
	r-8	2	2		43,4	2258,0	<u>6309,4</u> 281,6	46,6 745,6	371,3	22,9	43,4	2258,0	6307,4 281,6	447.9 745,6	22,9		
15,0	r-8 +0,75	٤	1	1	43,4	2258,0	6300,8 284,6	23,3 745,6	374,3	22,9	43,4	2258,0	8300,1 281,8	394,6 745,6	22,9	16 0,032	0,059
	r-8 + 2×0,75	2	_	2	43,4	2258,0	6294,2 281,6	745,6	371,3	22,9	43,4	2258,0	6294,2 281,6	391,3 945,6	22,9		
	8-7	2	2		51,8	2795,6	9477,2	55,2 869,2	446,4	27,4	54,8	2795.6	9177,2	504,6 869,2	27,4		
48,0	F-8 + 0,75	2	4	1	51,8	2795,6	9169,4 440,0	27, 6 869,2	446,4	27,4	51,8	2795,6	9169,4 410,0	474,0 869,2	27,4	16 0,032	0,059
	r-8 + 2×0,75	2		2	51,8	2795,6	9161,6	869,2	446,4	27,4	51,8	2795,6	9161,6 410,0	446,4 869,2	27,4		


- 1. B TABANUE AAH PACXOA HA ONOPHBIE YACTH MAPKH POY 15×35×4,0-0,5
- 2. PACKOL MATERNANDE HA MOCTOBBE MONOTHO CM. NHCT N 15 , HA NOKPHITHE NPDESKEH HACTH CM. AHCT N 19.

2265-MC-0-11

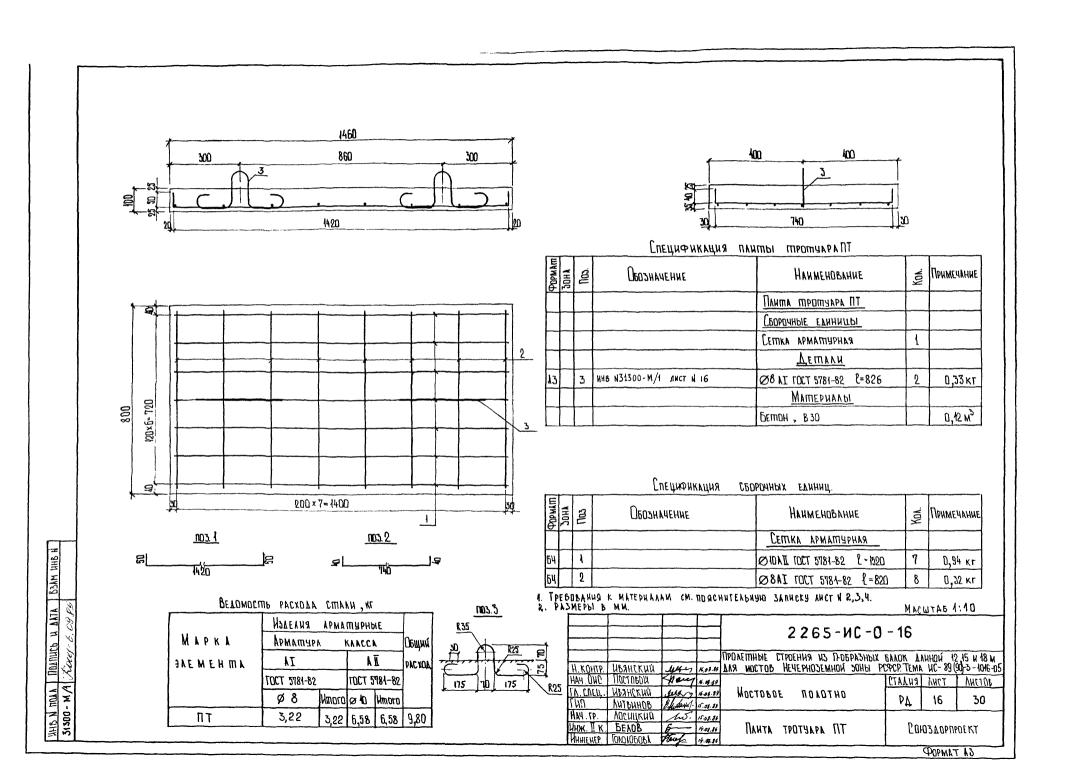
H. KOHTP.	Ивянский	45.		ПРОЛЕТНЫЕ СТРОЕНИЯ ИЗ П-ОБРАЗНЫХ БАЛО! МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР ТЕМА !			RIA AIR
HAY, DHC	Постовой	-			RHAATS		AUCTOB
TA. CNEU.	ИВАНСКИЙ	Tous	16.08.89	пролетных строений, армированных	A9	- 11	30
ראוו	ВОНИВТИЛ	Munis	15.08.09	BASAHDINA KAMAHDUTAMPA KMINABARA-			
Нач. гр.	Лосицкий	W	15.07.99	МН С ПРИМЕНЕНИЕМ АРМАТИРЫ			
HHH.IK.	ΤοροχοβΑ	topoxof	14.00 89	KNACCA A III.	Гожо 📗	пападага	EKT
NHMEHEP	TOYOYOROBY	Touch	14.08.89				
					Φα	DMAT 13	

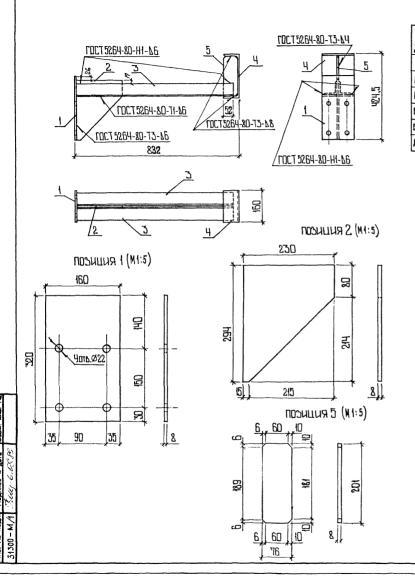
HHD.N MOLA. MOLINICO W LATA B3AW, WHB.N. 37300-M/1, Zerry 6, 0.5757

POPMAT	30HA	<u> </u>	Обозначение	Наименование			Kov	НЧЕ	CTBD	АН	ГАБА	PHT,	MT		Γ
اع	2	므	ОВИЗНАЧЕНИЕ	MANMEHUDAHNE		1	8 – 7		Γ-8	+ 0.		Γ-8+			ПРИМЕЧАНИЕ
				ПЕРНАЬНОЕ ОГРАНІЛЕНИЕ								- 0	2 × U	,73	
			3.503-42, BONTLICK 15; HHBN=384/42 1.80	ENOK NO		8	10	12	8	10	12	8			
				Консоли металлические							<i>i</i>	-	10	42	125,6KT
13			NHB. N 31300-M/1 AHET N 17	Консоль км-1					٦	9	11	4			
13			II AHCT N 18	Консоль км-2т					1	1	-	_	18	22	19,4 KT
KA			- N	Консоль км-24		 				-	1	2	2	2	12,2 Kr
64			FDCT 7798-70	50AT M20 -68 × 220.58		 			32	40	1	2	2	2	12,2 KT
64			FOCT 11371-78	Шайба 20.01.08 KN 016					64		48	64	80	96	0,614 KT
54	_	-	FOCT 5915 — TO							80	96	128	160	192	0,047 Kr
04	_		1001 393 - 10	TAUKA M20 - 6 H. 5		ļ			32	40	48	64	80	96	0,063 KT
		_		ПАИТЫ ТРОТУАРНЫЕ				<u> </u>							
13	L	L	HHB. 31300-M/1 ARCT N 16	Патиа ПТ					8	ła	12	16	20	24	0,12 m ³
					H	0.2	ă	ā	ă	8	E				U,12 M
					1	ב	7	2	1-12	6	78-	16.0	(5.0	8	
13			HHB. 34300-M/1 ANCT N 16	TIN ATUANI	ДЛИНА	L =42.0W	L-15.0m	L-48.0 _W		L-15.0m OF	L-18.0M 23	L=2:0m 35		L=45.014 B3	

PACKUL MATERNAABB HA CEOPHIE BARMENTIN MOCTUBORD ADAOTHA
CM. ANCT N 15

2265-NC-0-14


	Постовой	Four	16.08.89	TYX WOCLOR	строения Нечернозе	CH NOHM.	11-06PI 30Hы	УСФСР РСФСР	BAAOK Tema HO	йонкк л -(00)28-:	12,15 u 18m -3-1016-05
THE DHC	AUTBUHOB	Blustus).		MIDETOBI					тадия ДФ	Лист 14	Листов 30
HHX.IIK.		5-	15.08-89 14.08.89	34	АЦИЯ СОО ІОТНЭМ З	в Ірных		Γ	Сою	3 <u>1</u> 09 09 0	EKT
HHHEHED	TOADADADA	Harefe	4.08.89	L					Φ0	PMAT A	5


-																												
	٤. ٢		NEPUA	PHOE	970	4×1	EHU	E	Конс	orn	ME.	TAKKL	HECK	UE	TPOT	YAP	HME	Π	hutb	1	Mare	ЕНТЫ	067	нидэ	EHUA	В	CELO	
	ANUHA NPONETA,M	Габарит	MAPKA BNOKA	KOALIVECT BO	TPVBA CTALLH FOCT 8732-78 Ø76=4	CTAND	FOCT 5781-89	Τ,010ΓU	MAPKA	Количество	huct. FOCT 82-70	1 67 61	NB B N 9 TOCT 8240-72	Цтого,т	MAPKA BAOKA	IECT B	БЕТОН КЛАССА ВЗО ПО TOCT 25192-82, М ³	roc 5781	T,RAH9 KX (IIA)[[A T	OTO CTANU, T	TOCT 1732-78	БОЛТЫ ГОСТ 7798-70	113H-38		ד, סדמדא	БЕТОН КЛАССА В30 ПО ГОСТ 25191-82 М5	CTAND APMATYPHAS U NPOKAT, T	METU361, T
		r - 8	по	8	0,17	0,24	0,60	1,01	_	_		1	1	_	_	_	_	1	1	_	o'01			_	10,0	_	1,02	_
-	12	Γ- 8 + 0,75	по	8	0,17	0,24	0.60	1,01	KM-1	7	0,05	0,06	0,02	0,16	ΠT	8	nac	0.00	205	0.04		000	221		200	0.00	100	
	+					·		, -	KM-2 ^{xu}	2		10,0		0,10		٥	0,96	0,02	0,05	0,08	0,01	0,02	10,0	0'01	20,05	0,96	1,26	0,04
		Γ-8+2×0,75	по	8	0,17	0,24	03,0	1,01	KM-1	14	0,10		0,05	0,33	ПΤ	16	1,92	0,05	11,0	0,16	0 01	0,04	DDT	10,0	0,07	1,92	1,51	nne
t			-		-				KW-2 TM	4	0,02	0,02	0,01				7,32	-,		<u> </u>		4,0 ,	4,52	-,		1,42	1,01	0,06
		Γ-8 ————	ПО	10	0,21	0,29	0,75	1,25	-	-	-	_	-	-	-	_	_	_	-	_	10,0	-	_		10,0	_	1,16	-
	15	r - 8 + 0,75	no	10	0,21	0 29	0,75	1,25	KM-1	g	0,06	80,0	0,03	0,20	דת	10			2.07									<u> </u>
	-		-		'	,	9,10	2,20	KM-2 TM	2	10,0	0,01	10,0	4,20	ПТ	10	1,20	0,03	0,07	0,10	0,01	0,03	0,01	0,01	0,06	1,20	1,56	0,05
		r-8+2×0,75	no	10	0,21	0,29	0,75	1,25				0,16		0,40	ПТ	20	2,40	מסג	0,13	n 10	0,01	0,05	10,0	0,01	80,0	2 10	105	0.00
t	-		┼		┼─				KNH-2 TM	4	0,02	0,02	0,01	<u> </u>	ļ		2,70	0,00	0,10	9,23	0,01	4,05	u,u1	0,02	U,00	2,40	1,85	0,07
		F-8	ПО	12	0,25	0,35	0,90	1,50	-	-	-	-	-	-	-	-	_	-	_	-	0,02	_	_	_	0,02	_	1,52	_
\dashv	18	Γ-8-0, 7 5	По	12	025	0,35	090	1,50	KM-1	11	0,08	0,10	0,04	DOE	n.T		 	<u> </u>				_						
			-	<u> </u>	-,	-	1,30	2,00	KW-274	2	10,0	10,0	10,01	0,25	1113	12	1,44	0,04	0,08	0,11	8,02	0,03	10,0	0,01	0,07	1,44	1,89	0,05
250		Γ-8+2×0,75	no	12	0,25	0,35	0,30	1,50	KM-1	22	0,16	0,20	80,0	0,49	пт	24	2,88	מחמ	0,16	024	0,02	30,0	0,01	0,01	0.10	200	205	
3				<u> </u>	<u> </u>	L	<u> </u>	L	KM-5	4	0,02	10,08	10.01				2,00	13,00	1,10	10127	0,02	0,00	U,41.	0,0.7	U,10	2,88	2,25	0,08

Марки применяемых стадей, а также требования к бетону по морозостоикости и водочепроницаемости см пояснительную записку лист и 2,3,4.

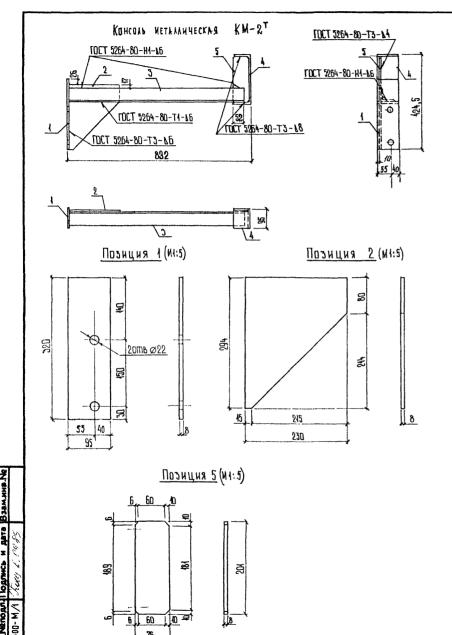
2265-WC-0-15

HAY DHC HOCT	CKNH LLE DBOH War	16 46.83	до-П Е и кинаочто зінталочП анов йонмаєбнязизн Воторм КЛД	1 26461	. TEMA U	C-89(9D)	-3-1016-05
THE ONC ANTE	WHOS Chitag	150819	Althropis Magazalasa	HA	ETALHS 49	AHCT 15	A D T D A A
HHHEHED TOADA	1608A Heng	15.03 89 14 08 89 14 08 89	Элементы мостового полотна.		Сон	пчолс	POEKT
		17 40 67			0001	TIME	· · · · · · · · · · · · · · · · · · ·

Спецификация консоли металлической

DODWAIT	30HA	COL	9индрънс000	Наименование	Ko.	Примечание
				<u>APTANU</u>		
Å3		1	HHB. N31300-M/1 AHCT N 17	≠320×8 FDCT 82-70	1	3,2
A3		2		≠294×8 CDCT 82-70 €=230	1	2,8
54		3		L63×63×610CT &509-72 €=790	2	4,5
54		4		EN2211 FOCT 8240-72 &=460	1	3,4
Å3		5	NH8. N34300-M/L ANCT N 17	+201×8 TOCT 82-70 €=76	1	1,0

BEADMOCTH PACKDAA CTANA HA GARMEHT, KI'


	1	HZTEVAN ZYKVYTHPIE											
Mapka	NPOKAT MAPKH												
TIAPNA 3/PMPHTA	CTAND	шнроко	ПОЛОСН	RAI	CTALL	РАНИОЗАФ	DELLUÚ Pacxoa						
3/10/10/17/7		7.201	82-70)	FDCT8509-72	LDC1 854D-25	1						
	≠201×8	+294×8	+320×8	מזמדא	L63×63×6	EN22 _П							
KM-1	1,0	2.8	3, 2	7.0	9.0	3.4	19.4						

1. CBAPKA DCYMECTBARETCR ENEKTPDAAMA TUNA 3-42 /ND FDET 9467-75/

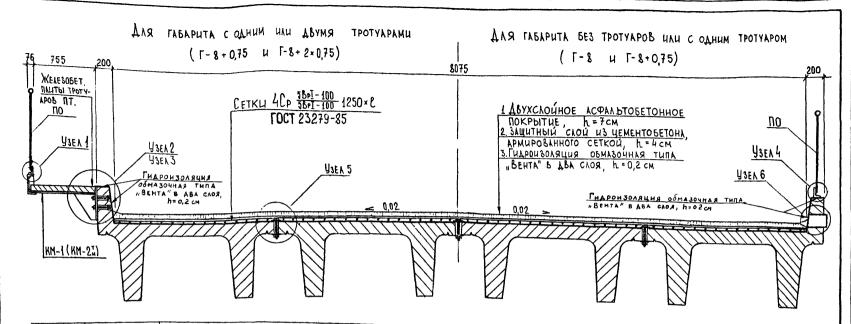
2. PASMEPHI B MM.

					MACH	01:10ATL						
			2265-ИС-0	-17		:						
Ниманраи этном.н			ДЛЯ МОСТОВ НЕЧЕРНОЗЕМНОЙ БОНЫ РСФ	MABA 21,51 WOMMAL MORAGA KUHE AGADA NA MARAHANDA EUGHARANDA BADA KADA 100-20-002/98-DN AMAL AGADA WOO MORAMA KADA MARAHANDA MA								
HAY. DUC NOCTOBOU	Hour	16.04.89		Стадия		Пистов						
ГЛ.СПВЦ, ИВЯНСКИЙ ГИП ОИС ЛИТВИНОВ	Blue 41-	16.08.85 15.08.85	MOCTOBOE NOVOTHO	49	17	30						
HAY. PP. NOCULKUÙ	15	15.01.85	КОНСОЛЬ МЕГЛАЛЛИЧЕСКАЯ КМ-1 ДЛЯ УСПАНОВКИ ПРОПУАРНЫХ ПЛИП.	СОЮЭ⊿ОРПРОВКТ								
CONRIGIO NELHHU	4-2	14.08.8										

POPMAT A3

Спецификация консоли нетальнической КМ-ДН

POPMAT	30 HA	.501	Обозначение	Наименование	Koy.	Примечание
				<u> A EMIA N N</u>		
A3		1	NHB. N 31300-N/A AHCT N 18	320×8 MCT 82-70 €=95	1	4,9
A3		2			1	2,8
64		3		L63×63×6 TOCT 8500-79 €= 790	4	4,5
54		4		[N22 17 FOCT 8240-72 L-95	1	2,0
77		5	NHB. W34300-M/4 ANCT N 18	+201×8 TOCT 82-70	1	1,0


BELOMDOMO PACXOLA CMANN HA BAEMEHM, KT

		Из	VEYH	9,	3 A K A A .	<u>м</u> н ы е	
MAPKA			ПРП	KA	A M T	PKH	Общий
3 NE MEH TTI A	CTARB	ШИРОК	эал опа.	RAH.	CTALL	РАСОННАЯ	PACXOA
JE MCHINA	1	TOCT	82-70		TOCT 8509-72		
	+201×8	× 294×8	-320×8	Итого	L63×63×6	EN2277	7
KM-2 ^{T,N}	4,0	2,8	1,9	5,7	4,5	2,0	12,2

- 1 Сварка ОСУШЕСТВЛЯЕТСЯ ЭЛЕКТРОДАМИ ТИПА 3-42 (ПО ГОСТ 9467-75).
- 2 PAZMEPDI B MM.
- 3 Квиструкция консоли металлической КМ-2н зеркально симметрична консоли металлической КМ-2^T.

MACHTAS 1:40

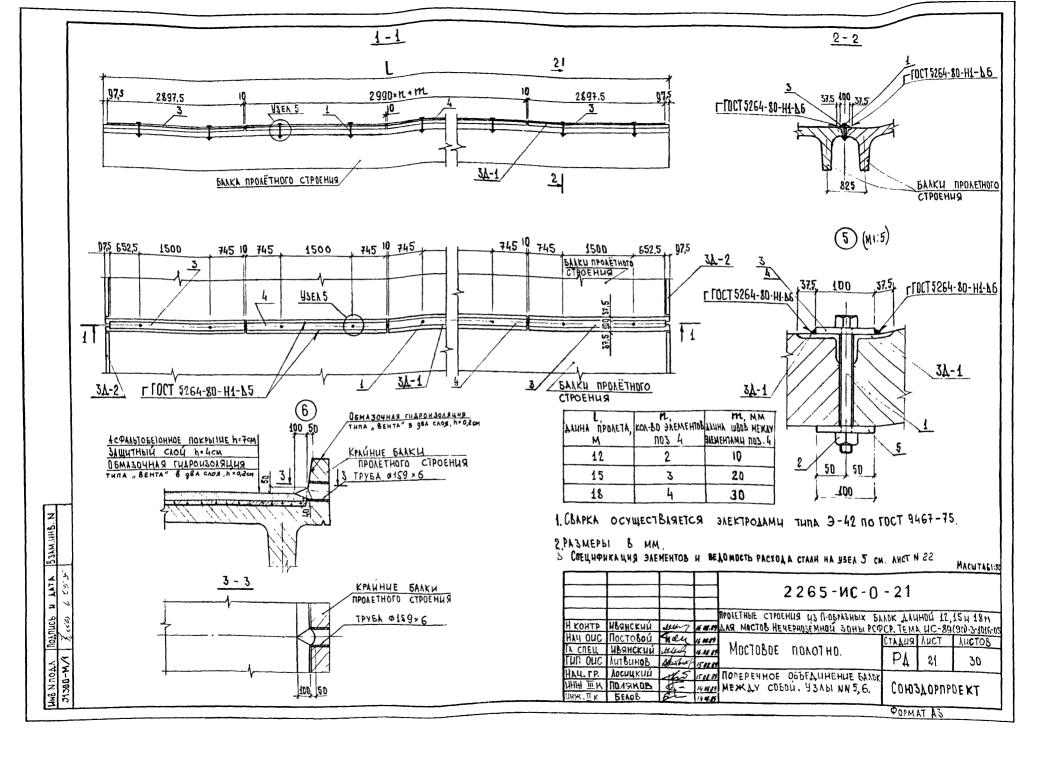
						MACHTA	B 1:40				
				2265-MC-0-18							
11.	11			ПРОЛЕПНЫЕ СПРОЕНИЯ ИЗ П-ОБРАЗНЫХ	BANDK A	AHHAA TOHHAA	2,45 u 18 m				
Н контр	ИВЯНСКИЙ	Magn	16 08 89	ДЛЯ МОСТОВ НЕЧЕРНОЗЕМНОЙ ЗОНЫ РСФСР	. IEMA HU-	99(FIT) - 9-	1016-U5				
JNO PAH			16 08 89								
LY CLIER	ИВЯНСКИЙ	Mes	16 08-89	Мостовое полотно.		10	3.0				
LNU ONC	ЛИШВИНОВ	Phillip	15.08 89		44	18	30				
HA4 FP.	У ОСИПКИЙ	15	15.08 89	KOHCOAD MEMAANUHECKAS KM-2 ^{T,M} LAS							
HHX IK	TOPOXOBA	Coporal	14 08 89								
НЖЕНЕР	A & O D O A O A O A	Hul	14 08 89								
					POPM	CA MAI					

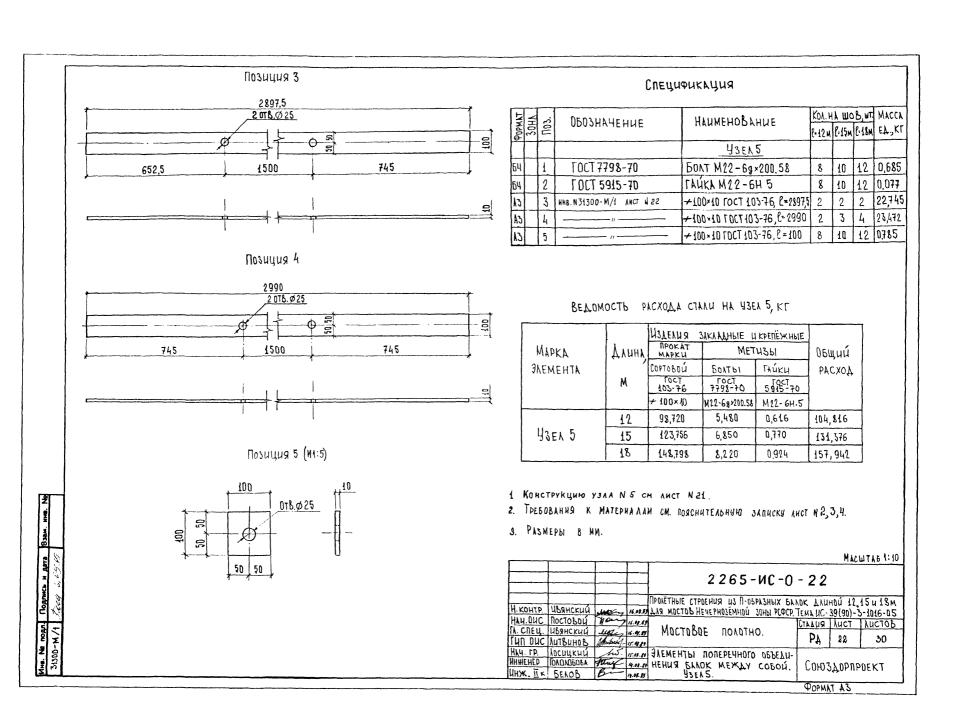
		ПРО	RAKEBU	ЧАСТЬ	
Т УИНУ	Габарит,	АСФАЛЬТОБЕТОН	Защитный слой БЕТОН КЛАССА	APMATYPA	Гидроизоляция
NPONËTA,	•		B25	KNACCA BP-T	'
М	М	M3	M3	Т	M2
	r-8	6,18	3,88	0,37	111,30
12	Γ- 8+0,75	85,3	3,86	0,39	111,30
	r- 8 + 2×0,75	6,78	3,88	PE,0	111,30
	r-8	8,48	4,84	747,0	139,10
15	r - 8+0,75	8,48	4,84	0,47	139,10
	Γ - 8 + 2×0,75	8,48	4,84	77,0	139,10
	Γ-8	10,18	5,82	0,56	167,00
18	Γ- 8+0,75	10,18	5,82	0,56	167,00
	Γ-8+2×0,75	10,18	5,82	0,56	167,00

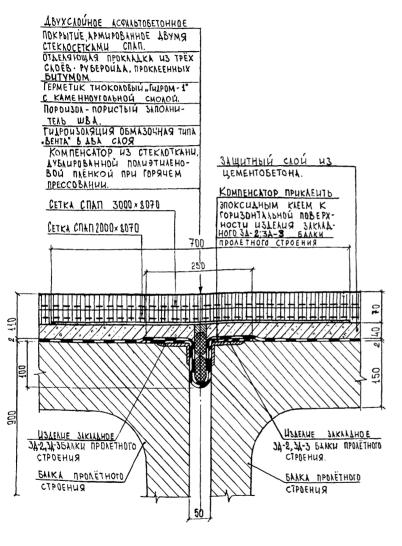
1. Anuha cetok e pabha Anuhe spoaëta.

Stepenaect cetok he mehee 250 mm.


2. PASMEPHI B MM

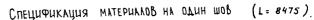

- 3. ТРЕБОВАНИЯ К МАТЕРНАЛАМ СМ. ПОЯСНИТЕЛЬНУЮ ЗАПИСКУ АИСТ N 2,3,4.
- 4 KOHCTPYKUNIO Y3AOB NN 1;2;3;4 CM ANCT N20, Y3AOB NNS,6 CM ANCTN21


Иасыта 4:25


						PIRCEI	NO 1.00
				2265-ИС-0	-19		
		<u> </u>		ПРОЛЕТНЫЕ СТРОЕНЦЯ ИЗ П-ОБРАЗНЫ			
H KOHTP	NBAHCKUŃ		16 08 89	LLA MOCIOB HEYEPHOSËMHOLL SOHLI PCPCI	P. TEMA L	IC-89(91	0) 3-1016-05
HAY OHC	Постовой	444	4.08.89		CTALUR	AHCT	AHETOB
TA CREU	HB 9HCKHH		16 04 80		DI	*0	30
LAU DAC	ANTBUHOS	8 Juntourest	15.08.09		PA	19	30
HAU TP.	YOCHUKHH		FAIN				
UHH. IK.	DONAKOB	1	4 08 19		l Co	ЮЗДОРГ	IPOEKT
HHM IT K.	БЕЛОВ	bir	14 08 89	ЧАСТИ	"		
					POPM	CA TA	

JISOD-M. MOLANICO N LATA BOM HIB N JISOD-M./1 FELG GUSTY

CREGUAPUKALUAS MATERNANDB HA DAUH WOB. (L = 8475)


DOPMAT JOHA Flo3.		103.	OPO3HVAEHNE	OPOSHVAEHNE HYNWEHOBYHNE K		Примечание
		-		UN AT 3 A		
5 4			TY 6-11-217-71 MUHXUMNPOMA	CTEKNOCETKA CHAN 3000 × 8070	1	70,20Kr
БЧ		-	TY 6-11-217-71 MUHXUMNPOMA	CTEKNOCETKA CHATI 2000 × 8070	1	46,81Kr
64				MPOKNALKA TPËXCLOÚHAS	1	5,65 M ²
64			ТУ 38-105411-72 МИННЕФТЕХИМПРОМА		_	12,71 Kr
54				NOPOUSON HAH "TEPHHT IT"	-	20,34 KT
B 4				KOMNEHCATOP	1	4,16 m ²

1 КОНСТРУКЦИЯ ДЕФОРМИЦИОННОГО ШВЬ РАЗРАВОТА В СООТВЕТСТВИИ С "МЕТОДИЧЕСКИМИ РЕКВИЕМА ТО ПРОВЕТИРОВ ЧСТТОРУ КОНСТРУКЦИЙ ДЕФОРМИ ПО ПРОВЕТИРОВИНИИ И УСТРОЙСТВУ КОНСТРУКЦИЙ ДЕФОРМИНЬІХ И ГОРОДСКИХ МОСТАХ И ТУТЕПРОВОВЬЯ В АВТОДЬОРНИИ М, 1982г. И СООТОВИННОЙ ОПОРОЙ. ДЕФОРМЕНТИ В ЧЕРТЕЖЕ ИЗВИРАЛ НЭЖДЯВЕН НЭЖДЯВИНОЙ ОПОРОЙ МИНОИНЫЙ ДЕОТОВИТЬ В ТООТОВИТЬ В ТООТОВИТА В ТООТОВИТА В ТООТОВИТА В ТООТОВИТА В ТООТОВИТА В ТООТОВИТА В ТООТОВИТЬ В ТООТОВИНЕНТА. В ТООТОВИНЕНТА В ТООТОВИТЬ В МИНОТО ТИПИ ПРИМЕНТА В МЕРСЕЯ ОТ КЕНТЕТЬ В ММ.

MACHTAB 1:5

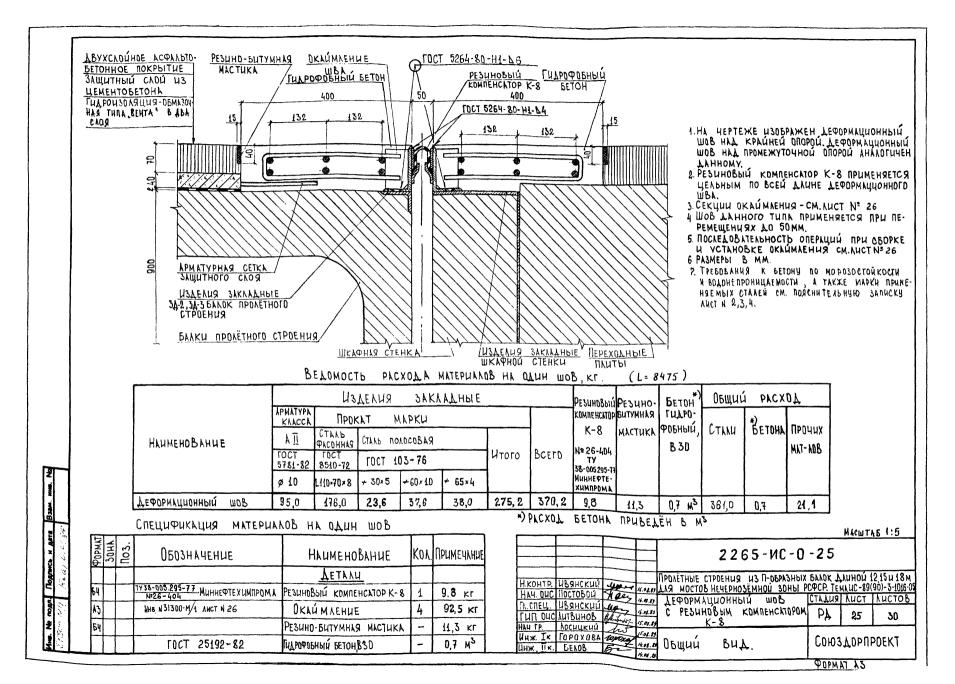
				2265-V				
INAM. BUC. TOOL TOOLUG	77 (4-4-		ПРОХЁТНЫЕ СТР КАЯ МОСТОВ НЕЧ ДЕФОРМАЦІ	TEPHOSEMHOU ?	ьоны РСФ	BANOK AN CP. TEMA CTALUЯ	NC-88(8	2,15 u 18m 10)-3-1016-05 NUCTOB
TA. CREU. UBAHCKUÚ TUN OUC LUTBUHOB HAU. TP. LOCUUKUÚ	Blunk 1	15.08.89	3 AKP 61 TOF	O TUNA.		PA	23	30
	MODE KA	15.0 8.85 14.08.85 14.08.83	Oblyuú	BUA		Союз	4пчоД	0EKT

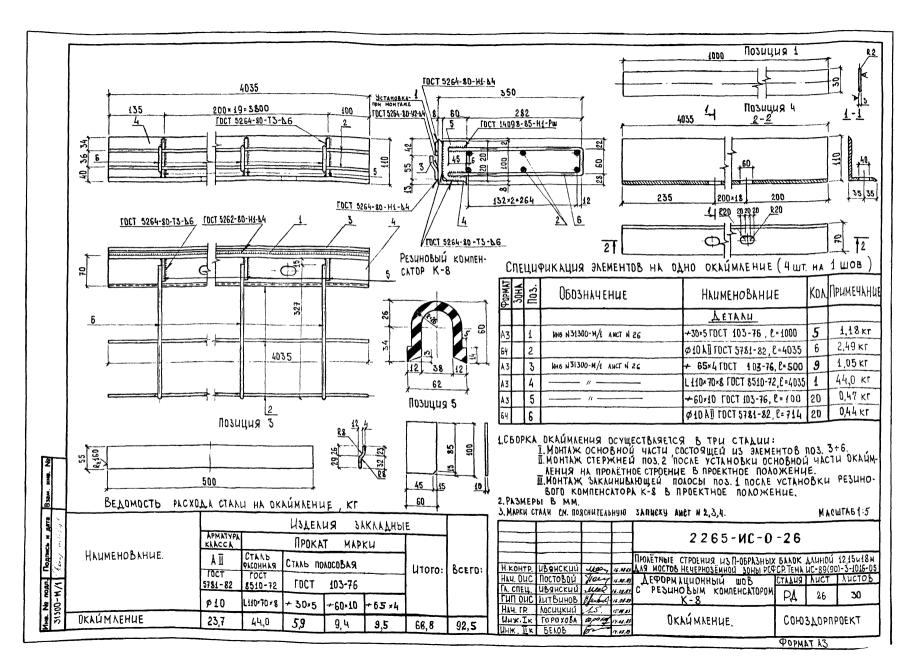
POPMAT A3

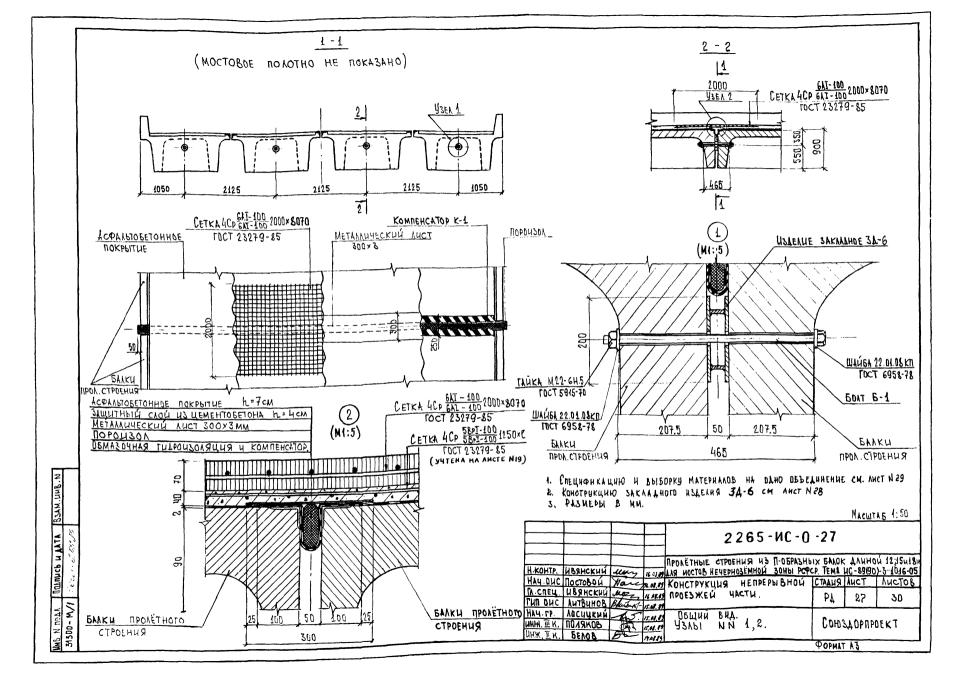
POPMAT	30HA	1 83.	OD03HA4EHUE	HAUMEHOBAHUE	KON.	ПРИМЕЧАНИЕ
				<u> AETANU</u>		
64	Γ		TY 38-105411-72 MUHHEPTE XUM NPOMA	ГЕРМЕТИК ТИОКОЛОВЫЙ, ГИДРОМ-1"	_	12,71 KT
54				ПОРОИЗОЛ ИЛИ "ГЕРНИТ-П"	_	20,34 KT
54				Компенсатор	1	4, 16 m²

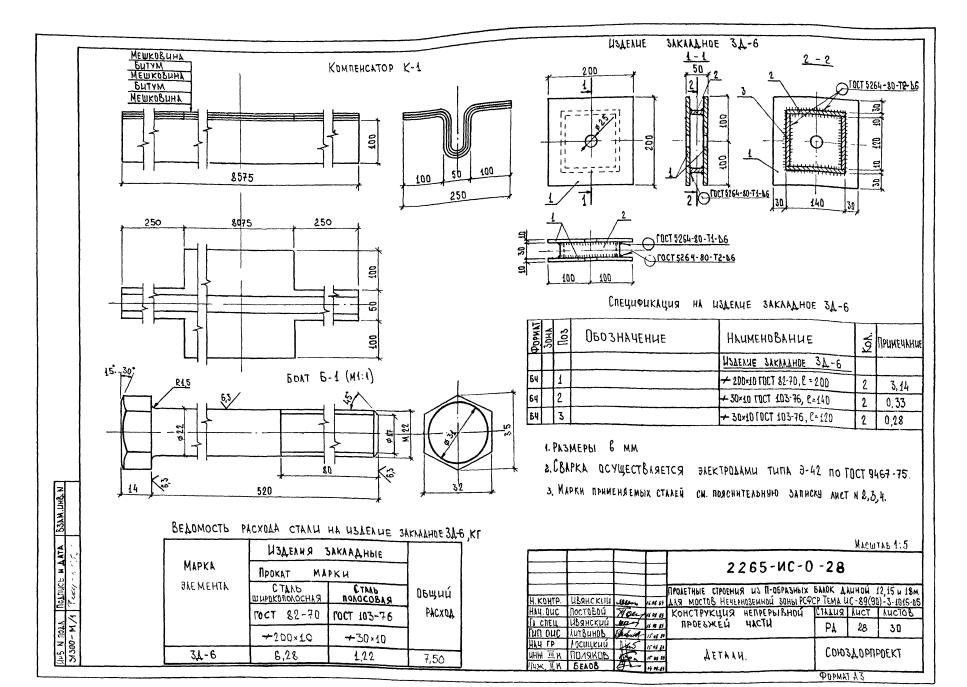
C KAMEHHOYTONDHOÙ CMÔNOÙ. ПОРОИЗОЛ- ПОРИСТЫЙ ЗАПОЛНИ-TEAD WBA. АПИТ ВАНРОБАМДО ВИДВАОБИОЧДИТ BEHTA" B ABA CADA KOMMEHCATOP US CTEKNOTKAHU, - ОНЗЛИТЕИЛОП ЙОННЛЯОЧИЛЬЙ - ОВ МЭРКОО ПРИ ПРОВОЙ ПЛЕНКОЙ ПРИ ГОРЯНЕМ TPECCOBAHUU. ABYXCHOUHOE ACPANATO-BETOHHOE MOKPHITHE KOMNEHCATOP NPUKAEHTE ЭПОКСИДНЫМ КЛЕЕМ К ЗАЩИТНЫЙ СЛОЙ -хазвои поналатновичал HOCTH HISAEAUS BAKAAA-HOTO 3A-2; BA-3 US LEMENTOBETONA BANKH TPONETHOTO 250 CTPOEHN 9. UZLENUE ZAKNALHOE 34-2;34-3 BANKU RPONET-UZZENUE ZAKNAZ HOE 34-2;34-35AAKU

RPONETHOTO CTPOEHUS HOTO CTPOEHUS BANKA MPONETHORO BANKA MPONETHOLD СТРОЕНИЯ. CTPOEHUS.


LEDMETRY LAOKOVORPHY "LATTOR-1


І.Конструкция деформационного шва разработана в соответствии с методическими рекомендациями по проектированию и устройству конструкций деформационных швов в абтодорожных и городских мостах и путепроводах," союздорнии м. 1982 г. 2.На чертеже изображён деформационный шов над промежуточной опорой. Деформационный шов над промежуточной опорой. Деформационный шов над крайней опорой аналогичен дакному. 3.Тиоколовый герметик "Гидром-1" по ту 38-105411-72 миннефте химпрома применяется с каменноу гольной смолой по ту 14-6-83-72 минчермета. 4.Шов данного типа применяется при перемещениях, не превышающих 15 мм. 5.Размеры в мм.

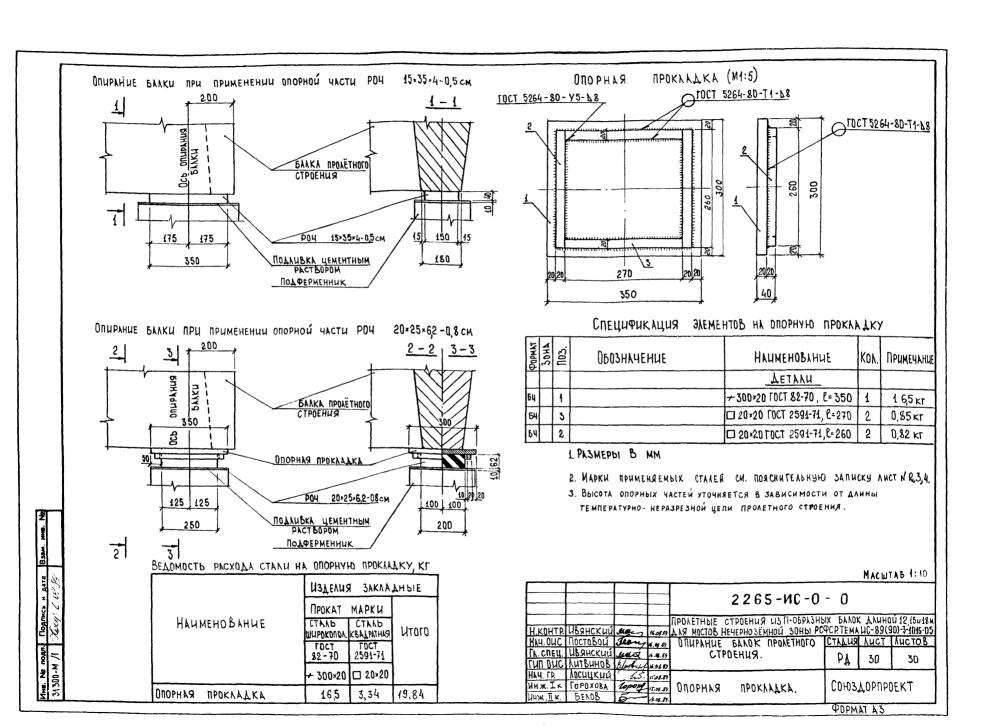

MACHTAB	1	:5	_
	_		-


						5-ИС-0			
U KOUTE	ווגמערצוווי	MAL.		NPONETHЫЕ СТРОЕ	HUS US	1-06PK3HbIX	OLD TEN	UHOÚ 12	! 15 u 18M 9n)-3-In(6-05
HAM DUC I	Ποςτοβού	Marie		1 5 000 11 11110	нный Н	иов шов	CTALUS	LUCT	LUCTOB
IIA. CHEY.	ИВЯНСКИЙ ЛИТВИНОВ	Miller	11 45 04	1 3x110x11EH1	НОГО	TUNA.	PΑ	24	30
НАЧ. ГР.	Хосицкий	15	JE 48.89						
UHX.IK UHX IIK	TOPOXOBA BENDB	Topora	15.08.89	Общий	ВИД	,	Сою	3, ∆ 0PN	POEKT
NUW IK	שנייטט	1	14.08.85				<u></u>		

POPMAT 13

СПЕЦИФИКАЦИЯ НА ОТНО ТЕМПЕРАТУРНО-НЕРАЗРЕЗНОЕ ОБЪЕТИНЕНИЕ

POPMAT	SOHA	Поз.	OEO 3 H A 4 E H U E	Наименование	KONU4E1 HA Y3EN	CTBO HA DGBEA.	MACCA EA.,
L				43EN 1.			
43			NHB. N 31300-M/1 AHCT N 28	UBLENUE BAKNALHOE BL-6	1	4	7,5
L				LETANU			
13				BOAT B-1	1	4	1,64
64			FOCT 5915-70	TAUKA M22-6H.5	1	4	₽ <i>0,</i> 9
64			FOCT 6958-78	WAUGA 22.01.08KN	2	8	0,12
				43EL 2.			
54			FOCT 23279-85	CETKA 4CP 6AT-100 2000×8070	1	1	74,00
64				+ 300×3 roct 19903-74, E= 8070	1	1	57,01
Å3			HHE. N 34380-M/4 AUCT N 28	KOMNEHCATOP K-1	1	1	54,40
Бч				NOPOUSON HAH , TEPHUT IT	_	_	20,58


BELDMOCT B PACKOLA MATERIAADS HA DAHO TEMPERATYPHO-HERASPESHDE DEDELUHEHUE, KT.

		RUABAKU BUHAYTAMAA	R NY37EM	3AKN1	ина	E	NSVE	NU9 KP	епёжные		Компен-	Порризру	Общий РІ	CX07
Наименов	i	APMATYPA KAACCA	NPOKAT	М	PKH			МЕТИЗЫ			CATOP			ПРОЧИХ
		ĨA	CTAAL TOHKOAUCT.	сталь ширако-	TOROC.	LITOTO:	БОЛТЫ	FAÚKU	Шайбы	UTOTO:			CTANU	MAT-AOB
		1001	TOCT 19903-74	FOCT 82-70	roct	1	5-1	TOCT	FOCT 6958-78		K-1			משוו ואוייו
L		ø 6	+300×3	→200×10	+30×10		M 22	M22-6H.5	22.01.08KN					
DEPETATION A	непрерывную СТЬ	74,00	57,01	25 ,1 2	4,88	87,01	6,56	0,32	0.96	7,84	54,40	20,58	168,8 1	74,98

МАРКИ ПРИМЕНЯЕМЫХ СТАЛЕЙ СМ. ПОЯСНИТЕЛЬНУЮ ЗАПИСКУ ЛИСТ N 2,3,4.

0	0,02	0.30	1,84	54,40	20,58	166,81	74,98			
							-0-29			
	THE OUC	UBAHCKUÚ	X seech.	LENGTH MOCIO	<u>в Нечернозе</u> Ция неі	иной зоны Иной зоны	ЫХ БАЛЯК ДЛ 1 РСФСР.ТЕМА 1 СТАДИЯ РД	7C-23(30)	15 u 18 m -3-1016-05 NUCTOB	
		DUNAMOD	15.08.1	9 СПЕЦИФІ 8 МАТЕРИА		и выбор	COHO3	СОЮЗДОРПРОЕКТ		
			17.03.5	71			OUDWY.	1 A3		

MAS N MOLE MOLINCE LI LATA SSAM WHS N 34508-MA LEGGY CASTES

