Типовые материалы для проектирования 407 - 03 - 48487

Схемы вторичных цепей трансформаторов напряжения $\tilde{\mathbf{D}} - 10 \, \mathrm{KB}$ и выше

Альбом І

ПЗ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА СТР. 5-26
ЗВ СХЕМЫ ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПИАЛЬНЫЕ СТР. 22 — 50
СМ СПРАВОЧНЫЕ МАТЕРИАЛЫ СТР. 51-21

Типовые материалы для проектирования 407 – 03 – 484.87

Схемы вторичных цепей трансформаторов напряжения 6—10кв и выше

Альбом I

ПЗ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА СТР 5-26 ЗВ Схемы электрические принципиальные стр 27-50 СМ Справочные материалы стр 51-21

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ ПРОТОКОЛОНИ МИНЭНЕРГО СССР ОТ 119 07 88г N 12

ГЛАВНЫЙ ИНЖЕНЕР ОТДЕЛЕНИЯ ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА А А ГГАЛИЦЫН Н.Н ШИФРИНА

Содержание

N N AUCTHOB	Наитенование и обозначени е д ок утентов Наитенование листа	Cmp
	Титульный лист	,
	Содержание альбома 1	2-4
	Пояснительная записка 407 - 03 - 484 87 - ЛЗ	5
1	1 Введение	
1-4	2 Основные технические решения	5-8
4,5	3 Область применения разрабоманных схем и подключение трансформаторов напряжения на подстанциях	8,9
5	4 Резервирование, питания нагрузок вторичных цепей трансформаторов напряжения	9
6	5 Особенности работы трансформаторов напряжения типа НКФ и НФЕ	10
6,7	6 Сигнализация затыкания на землю В сетях 6—35 кв	10,11
7-9	7 Определение нагрузак вторичных абмотак трансформатора напряжения	11-13
9	8 выбор автоматических выключателей	13
9-11	9 Выбор сечений проводов кабелей во вторичных цепях ТН	13-15
11-21	10 Особенности расчетов вторичных цепей ТН	15-25
22	11 Пояснения к схетот	26
22	12 Технико - экономические обоснования	26
	Схемы электрические принципиальные 407 - 03 — 484 87 - ЭВ	
1,2	TH 3 × 3H0/1 - 6 - 10 , HAMU - 10 , 3 × 3H0M - 35 HA 660de 6 - 10 - 35 KB ABMOMPAHC\$OPMAMOPA	27,28
3,4	Трансформаторы напряжения НАМИ - 10, 3×3н0Л - 6-10 на шинах 6-10 кв	29, 30

anbboma N1

N N nucmob	Наименование и озбозначение документов Наименование листа	Cmp
5,6	TH6-10 KB DAR CYIEMYUKOB, TH HQ 660DE 6-10 KB MPAHCOPOMICMOPA, TH NQ NUNUN 35 KB	31,32
7	Трансформаторы напряжения 3×3H0M-35 на шинах 35 кВ	33
8	Трансформаторы напряжения 3× НКФ-110-220 на линиях 110—220 кВ	34
9	Трансфарматоры напряжения 3× нкф - 110 - 220 на шинах 110 - 220 кв	35
10	Трансформаторы напряжения 3× НКФ - 330 - 500 , 3× НФЕ - 500 на линиях 330 - 500 кв	36
#	Трансфортаторы напряжения 3× НФЕ- 750 на линии с однит котплектом конденса- торов связи	37
12	Трансформаторы напряжения 3х НДЕ - 750 на линии с двумя комплектами кон- денсаторов связи	38
13	Трансформаторы напряжения 3× НКФ-330, 3× НФЕ-500-750 на шинах 330-750 кВ	39
14	Поясняющие схеты РУ 330 - 750 кв	40
15	Организация цепей напряжения РУ 35 кВ	41
16	Организация цепей напряжения Ру 110— 220 кв со «схемой», мостик"	42
17	Организация цепей напряжения РУ 110 - 220 с двутля систетами илин	43
18	Организация цепей напряжения РУ 220—750 кв по схете "Четырехугольник", "Треугольник"	44
19	Организация цепей напряжения РУ 330—750 кВ по схеме "Трансформа- торы — шины"	45
20	Организация цепей напряжения РУ 330—750 кв по схете "Полуторная"	46

N N Nucmob	Наименование и обозначение докум ентов Наименование листа	Cmp.
21, 22	Организация цепей напряжения РУ 750 кв по схете Четырехугольник", ,Треугольник' при двух котплектах ТН на линии	47,48
23	Организация цепей напряжения РУ 750 кв по схете "Трансфортаторы— шины при двух котплектах ТН на линии	49
24	Организация цепей напряжения РУ 750 кв по схете Полуторная" при Ввух котплектах ТН на линии	50
	Справочные татериалы Приложение в	
1	Технические характеристики трансфар- маторов напряжения 407-03- 484 87-см1 Таблица СМ1-1 Таблица СМ1-2	51
	Прилож е ние 2 Нагрузки вторичных цепей ТН 407-03-48487-СМ2	
1	Потребление аппаратуры, приборов и устройств Таблица СМ2-1	52
2	Нагрузки вторичных цепей ТН 3 х НКФ - 110 - 220 кв на линиях 110-220 кв Таблица СМ2-2	53
3	Нагрузки вторичных цепей ТН 3× НКФ - 110 - 220 на шинах 110 - 220 кв Таблица СМ 2 - 3	54
4	Нагрузки вторичных цепей ТН 3 × НКФ - 330 - 500 , 3 × НФЕ - 500 - 750 на линиях 330 - 750 кВ Таблица СМ 2 - 4	55

N N Nucmob	Наименование и обозначение документов Наименование листа	Cmp
5	Нагрузки вторичіных цепей ТН 3 × НКФ - 330 , 3 × НФЕ - 500 - 750 на шинах 330 - 750 кв Таблица СМ 2 - 5	56
1, 2	Приложение 3 Выбор уставок автоматов вторичных цепей ТН 407-03—48487-СМЗ	57,58
	Приложение ⁴ Допустичые сопротибления проводов кабелей вторичных цепей ТН	
1	407-03-484 87-см4 Допустимые сопротивления проводов кабелей вторичных цепей ТН для линий 110-220 кв Таблица СМ4-1	59
,	Допустимые сопротивления проводов кабелей вторичных цепей ТН на шинах 110—220 кв Таблица СМ4—2	59
2	Допустимые сопротивления проводов кабелей вторичных цепей ТН для линий 330—750 кв Таблица СМ4—3	60
2	Допуститые сопротивления проводов кабелей вторичных цепей ТН на шинах 330-750 кв Таблица СМ4-4	60

Наименование и обозначение документов

Приложение 5

N N nucmob	Наитенование и швозначение докутентов Наитенование листа	Cmp
	График д, =f(l,) для ТН НАМИ-10, 3 × 3НОЛ - 6 - 10 на шинах 6 - 10 кв СМ 5 - 2 - 5	
6	Графики д, = f(l,) и д, = f(l2) для TH 3 × 3HOM - 35 на шинах 35 кВ CM 5 - 22 - 6 - 10	66
7	Графики д., = f. ((l.) и д. = f.(l.) для TH 3×HKФ - 110 - 220 на линиях 110 - 220 кВ ПС на постояннюм оперативном токе	67
ı	CM 5 - 2 - 11, 12	l
8	Графики д, = F (l1) и д, = f (l2) для TH 3×HKФ - 110 220 на линиях 110 - 220 кв ПС на выпрятленнот оперативнот	68
	moke.	
	CM5 - 2 - 13, 14	
9	Графики д, = £ (l) и д, = £ (l2) для ТН 3× НКФ - 110 - 220 на шинах 110 - 220 кв	69
	CM 5 - 2 - 15 - 18	
10	Графики 9, = f (le,) и 9,2 = f (le ₂) для TH 3× HKФ - 330 - 500 3× HAE - 500 - 750° на линиях 330 - 750 кв CMS - 2° - 19 - 21	70
H	Графики 9, = f (l ₁) и 9, 2 = f (l ₂) для TH 3 × HK ф - 330 , 3 × H Ф E - 500 - 750 На шинах 330 — 750 кВ	71
	cm 5 - 2 - 22 ÷ 26	
		_L

1 Введение

Настоящие типовые татериалы для проектирования разработаны в сеответствии с поз 731 24 10 плана типового проектирования Госстроя СССР на 1988 г по теме "Схеты вторичных цепей трансфортаторов напряжения 6-10 кв и выше" N 407-03-484 87

- 1 1 в работе приведены необходитые для конкретного проектирования технические данные и технические решения, являющиеся основными критериями для разработки полных ехем трансформаторов напряжения (ТН) 6-750 кв, схем организации цепей напряжения защиты, автоматики, измерительных приборов и учета для подстанций с различными схемами распредустройств 6-750 кв, а также даны таблицы и графики для определения сечения жил кабелей во вторичных целях ТН
- 1 2. 8 типовых татериалах для проектирования использованы данные по ряду технических характеристик и расчетов, приведенных в типовой работе N52770-Э "Анализ и разработка схет вторичных цепей трансфортаторов напряжения для цепей защиты и изтерения", вып 1980г (с изт 1982г), института "Теплоэлектропроект", 107815, г Москва, ГСП 6, Бакунинская 7, строение 1
 - К числу указанных данных относятся
 - --- технические характеристики по ТН 6-750 кВ,
 - расчеты величин уставок автоматов для защиты вторичных цепей ТН,
 - расчеты предельных сопротивлений жил кабелей во вторичных цепях ТН в зависитости от используетой тощности и классов точности сответствующих ТН
- 1 3. С выпуском настоящей работы аннулируются типовые решения института "Энергосеть проект" 107844, г Москва, ГСП6, $2^{\frac{98}{2}}$ Баутанская, 7 "Схемы вторичных цепей трансфортаторов напряжения для различных схем электрических соедине ний подстанций 40-500 кв N 5554 TM \overline{I} , \overline{I} (\overline{I} редакция, 1973 \overline{I})

2 Основные технические решения

5

- 2 1 Разработанные схемы организации цепей трансфортаторов напряжения обестечивают питание устройств защиты,
 автоматики, измерения, учета электроэнергии, органов контроля напряжения и синхроншэма в устройствах АПВ, устройств
 регулирования напряжения силовых трансформаторов, автотрансформаторов под нагрузкой, устройств контроля изоляции сетей с малым током замыкания на землю и т д.
- 2 2 Трансфортаторы напряжения, собираетые из однофазных ТН, должны итеть одинаковые группы соединений вторичных обтоток для
 - "звезды"— нулевую группу,
- "разомкнутого треугольника" одиннадцатую группу

 Для трекфазных ТН 6-10 кВ сохраняется заводскае соединение обтоток
- 2 2 1 0т основных вторичных овтотак, соединяетых в звезду и предназначенных для питания устройств релейной защиты, автотатики, учета, изтерений, выводятся три фазных ч один нулевой провод, обозначенные соответственно "а", "в", "с", "Л"
- 2 2 0 т дополнительных вторичных обтоток, соединяетых в разопкнутый треугольник, такситально выводятся четыре провода, обозначенные условно "Н", "К", "У (И)", "F"
 Провода "Н" и "К" предназначаются для выведения напряжения
 нулевой последовательности (300).

Провод V(H) используется для снятия векторных диаграмм при проверках рабочим током защит от замыканий на землю, получающих питание от цепи 3Uo.

Цепи "Н" — VI(H) предназначаются для питания блокировки линейных защит при неисправностях цепей напряжения линий (ст п 26).

ДЛЯ устройств, питающихся от TH шин $35 \, \kappa B$, вывод "F" не выполняется, m κ не требуется B схемах

run	ШІифрина	Allenso		407 - 03 - 48487	-113		
	Меерэленкова	141		Схеты вторичных цепей	Cradus	Aucm	Aurinas
	XMENEB	10th	L	трансформаторов	PII	1	22
	Тунпашов	super		напряжения 6 кв и выше	THERE	TETL	DOUCKT
PYK ZPJA	Мизяева	us.		Пояснительная записка	Terpha 08	1988	ndi nerwe C

2. 3. Защита от повреждений первичных обтоток осуществпяется предохранителями и выполнена для ТН 6 - 10 - 35 кв, установленных на шинах соответствующих напряжений.

Предохранители обеспечивают сохранение в работе шин и подключенных к ним первичных цепей при повреждении ТН. В схемах предусмотрен контроль исправности предохранителей.

На напряжение 110 кв и выше предохранители не выпускаются, и ТН включаются без них.

Опыт эксплуатации ТН, подключенных без предохранителей, показал, что их отсутствие не приводит к понижению надежности работы установок.

2.4.3 ащита вторичных цепей ТН от всех видов коротких замыканий осуществляется с помощью автоматических выключателей (автоматов), имеющих блок – контакты.

Автоматы в целях ТН типа НКФ, устанавливаетых на линиях, должны быть отстроны от срабатываний при бросках тока во вторичных обтотках ТН во время разряда ел-кости ненагруженной линии при ее отключении.

2.4.1. Для защиты основных вторичных обтоток ТН (соединенных в звезду) предустатривается один трехполюсный автомат.

При больших расстояниях между щитом управления подстанции и релейными щитами, на которые выводятся цеть ТН из соответствующих распределительных устройств, автометы в шкафу ТН могут оказаться нечувствительными к кз в цепях нагрузок, удаленных от релейного щита (цепи измерительных приборов и др.). Для защиты этих цепей могут предусматриваться дополнительные автоматы, с установкой послейних в помещении релейного щита. При выборе уставок автоматов допускается неселективное действие автоматом в шкафу у ТН при влизком кз за дополнительным автоматом.

Если по условиям обеспечения минимальных допустимых потерь для расчетных счетников оказывается целесообразным прокладывать к ним отдельные кабели или отдельные жилы, то эти цепи защищаются отдельным автоматом.

2.4.2. Для ТН, в сетях с талыми токами замыкания на землю, в цепи выводов 340 (от обмоток, соединенных в резомкнутый треугольник), где в нормальных режимах работы сети напряжение отсутствует, предусмотрена установка защитного овтомата.

Указанный автомат предназначен для защиты обмотки от длительного протекания по ней токов КЗ в случае замыкания между проводами, по которым подается напряжение 300, и возникновении затыканий на землю в первичной сети. Необходимость такой защиты обуславливается возможностью длительной работы сети, имеющей малые токи КЗ на землю Указанная защита должна применяться при наличии в ней кабеля более 10 м или при разводке этой цепи по панелям отдельных присоединений, в противном случае автомат не уста-

2. 4. 3. В сетях с большими токами замыкания на землю влительное протекание токов в цели обмоток, соединяемых в открытый треугольник, не может иметь места, т.к. такие повреждения отключаются соответствующими защитами. В обязи с указанным, автомат в цели 300 для ТН 110 кв и выше не устанавливается.

Скеты предустатривают периодический контроль исправности цепи обтотки ТН, соединенной в "разоткнутый треугольник", с потощью тиллиатпертетра, зашунтированного кнопкой. Изтерительный прибор при его включении и исправности цепей затеряют ток небаланса.

- 2. 4. 4. Для защиты цепей выводов от неразомкнутых. Вершин треугольника ("V", "F") предусматривается отдель-ный автомат.
- 2. 4. 5. На основании технических характеристик ТН, а также рекомендаций по выбору уставок автоматических выключателей для защиты основных и дополнительных обтоток ТН, приведенных в типовой работе N 52770 3 (см. п. 1. 2), в настоящих типовых материалах для проектирования выполнена сводная таблица по уставкам автоматов, см. приложение 3.
- 2.5. Во вторичных цепях ТН предустатриваются меры, исключающие возтожность неправильных действий ре-лейной защиты, устройств регулирования возбуждения синх-ронных компенсаторов и др., в виде обеспечения контроля исправности цепей напряжения с организацией сигналов:
 - при отключении защитных автоматов в цепях ТН всех напряжений с помощью их блокконтактов;

- при нарушении работы реле-повторителей шинных разъединителей, контактами которых производится переключение цепей напряжения присоединения;
- при перегорании предохранителей для ТН, в цепях первичных обтоток которых установлены предохранители, Цепи сигналов выводятся в схету центральных устройств Звуковой и световой сигнализации.

В цепях разомкнутого треугольника ТН 110 кв и выше (см. П. 2.4.3) предусматривается периодический контроль исправности цепи 3Uo.

Кроме того, релейная защита элементов напряжением 35 кв и выше, питание которой выполняется от ТН, снабжается устройствами:

- автоматически выводящими защиту из действия и сигнализирующими об этом, если неисправности в целях ТН могут привести к неправильному действию защиты в мормальном режиме;
- сигнализирующити появление указанных неисправностей в цепях напряжения во всех остальных случаях.
- 2.6. Во всех вторичных цепях ТН устанавливается аппаратура, обеспечивающая видимый разрыв цепи при ремонтах.
- 2.7. Для защиты персонала в случае повреждений в ТН, сопровождающихся перекрытием изоляции между первичной и вторичной обтотками, во вторичных цепях ТН предустатривается защитное заземление.

Оно выполняется путем соединения с зазетляющим устройством одного из фазных проводов вторичных обтоток (фазы В). Заземление вторичных обмоток ТН должно выполняться либо на ближайшей от ТН сворке зажимов, либо на зажимах ТН.

В заземленных проводах тежду ТН и тестот зазеттения его вторичных цепей не допускается установка каких-либо котмутационных аппаратов (переключателей, блок-контактов, рубильников, автоматов и т.д.).

При установке заземления на зажитах трансформатора запрещается объединение заземленных вторичных целей разных
трансформаторов напряжения в других точках, для исключения
возможности протекания токов замыкания на землю в первичной
сети через провода вторичных целей ТН, что может привести
к неправильному действию некоторых видов устройств релейной
защиты.

2. 8. При переводе присоединения е одной системы шин на другую в установках, имеющих две системы сборных шин, питание

цепей напряжения указанного присоединения автотатически переводится на цепи ТН соответствующей системы шин. Перекличение осуществляется контактати реле повторителей влок-контактов разъединителей.

2. 9. в соответствии с требованиями директивных материалов схемами предусматривается возможность резервирования питания цепей нагрузок при выходе ТН из строя или при выбоде
его в ремонт.

Пояснения к организации цепей резервирования для ТН по отдельным присоединениям приведены в разделе 4 настоящей ПЗ.

- 2. 10. Нагрузки ТН не должны превышать допуститые в задонных классах точности, которые приведены в технических характеристиках ТН 6-750 кв., ст. приложение 1.
- 2. 11. Определение сечений жил (проводов) кабелей выполнено с учетом требований, изложенных в разделе 9.

В типовых татериа. Лах для проектирования разработаны таблицы и графики с данными по определению сечений проводов в кобелях для наиболее характерных сочетаний нагрузок во вторичных цепях ТН, с учетом треобуетых классов точности ТН и допуститых падений напряжения в кобелях. Таблицы и графики ст.
в приложении 5.

2. 12. во избежание увеличения индуктивного сопротивления жил кабелей разводку вторичных цепей напряжения необходито выполнять таким образом, чтабы сумма токов этих цепей в каждом кабеле была равна нулю в любых режимах.

в качестве тероприятий, обеспечивающих выполнение этой задачи, предустатривается:

- 2. 12. 1. Разделение цепей нагрузки, питаемой от обмоток траноформатора напряжения, стединенных в "звезду" и в разомкнутый треугольник.
- 2. 12. 2. Пракладка в одноги кабеле трех фазных и нулевого проводов от основных обтоток TH на щит.
- 2. 12. 3. Прокладка в одном кабеле проводов от дополнительных обмоток на щит.
- 2. 12. 4. Использование разных кабелей для прокладки цепей по п. 2. 12. 2 и 2. 12. 3 обусловлено необходимостью применения ка-белей со значительным сечением жил.

407-03-484.87-03

2 12 5 Для прокладки вторичных цепей напряжения от ТН до щита с использованием силовых кабелей должны применяться только четырехжильные кабели в металлической оболочке. При этом указанная оболочка должна быть заземлена с обоих концов каждаго кабеля.

При наличии соединительных туфт оболочки кабелей по обе стороны каждой из туфт должны быть электрически сое-динены между собой,

При этом использование металлической оболочки в качестве одного из проводов вторичной цепи напряжения по воображениям надежности не допускается

Кабели в цепях основных и дополнительных обтоток
ТН по всей длине от шкафа ТН до щита должны прокладываться
рядом.

- 2 12 6 Прокладка и монтаж кабелей от выводов ТН до шкафа с защитными автоматами должны всуществляться с учетом требаваний повышенной надежности, т к эти кабели не входят в зону защиты автоматов. Для этой цели должны применяться кабели с изоляцией на моминальное напряжение не менее 1000 в
- 2 13 Для предотвращения сатопроизвольных стещений нейтрали и повреждений ТН, в соответствии с директивными документами Минэнерго СССР, в цепи разоткнутого треугольника ТН установлены резисторы, за исключением ТН типа НАМИ-10, обладаю щих повышенной надежностью
 - 3. Область применения разработанных схем и подключение трансформаторов напряжения на подстанциях
- 3 1 Типовые схемы вторичных цепей трансформаторов напряжения 6-750 кв выполнены применительно для подстанций энергосистем с высшим напряжением 110-750 кв
- 3 2 Применение разработанных типовых схем предназначено для вновь сооружаемых подстанционных объектов

Для расширяемых и реконструируемых подстанций использование технических решений, принятых в работе, следует проводить по каждому конкретному случаю индивидуально

3 3 Размещение релейной аппаратуры ТН 35 - 750 кв предусматривается на панелях, устанавливаемых в потещении общеподетанционного пункта управления либо в релейных щитах, каждый из которых приближен к распредустройству соответствующего напряжения. Аппаратура ТН 6-10 кв, кроте вольттетра с переключателем, устанавливается в соответствующих шкафах КРУ, КРУН 6-10 кв.

- 3 4. Подключение ТН 6-7'50 кВ предустатривается в соответствии с типовыми материалами для проектирования N 407-03-456 87 "Схеты принципиальные электрические распределительных устройств напряжением 6-750 кв подстанций:"
- 3 5 Трансформаторы напряжения установливаются на Линиях 35 - 750 кв в следунащих случаях
- 3.5 1 На линиях 35 кв ПС 110 220 кв е треховтаточными трансформаторами установка ТН типа НОМ-35 производится при соответствующем обоснювании (возможности питания со стороны линии) Цепи напряжения ТН 35 кв используются для контроля АПВ по синхронизту и наличию (отсутствию) нап-ряжения
- 3 5. 2 На линиях электропередач 110-220 кв установка ТН соответствующего напряжения ЗхНКФ-110, 3хНКФ-220 выполняется для распределительных устройств с мостиковыми схемами.
- 3 5. 3 Установка ТН на линиях электропередач 330-500-750 кв предустатривается для всех вариантов схем РУ соответствующих напряжений

На линиях 330 кв установливаются ТН типа $3xHK\Phi-330$, для линий 500 кв могут быть использованы $3xHK\Phi-500$ либо $3xH\PhiE-500$, а для линий 750 кв применяются $3xH\PhiE-750$ с установкой двух трансформаторных устройств на линии.

- 3 6 Трансформаторы натряжения установливаются на каждой системе (секции) шин 6-750 кв.
- 3 6 1. Питание цепей напряжения защиты, автотатики, изтерения и технического учета на питающих вводах секций шин 6-35 кв осуществляется от ТН типов НАМИ 10, 3х 3нол-6-10, 3х 3нол-6-10,

Аля цепей напряженния счетчиков отходящих линий на секциях шин 6-10 кв, как правило, устанавливаются дополнительные TH типа 2xHOM-6-10, $2^{1}xHON-6-10$, cospanhe no exeme henotheron схете негольного треугольника.

3 6 2 На каждай системе (секции) сборных шин 110-220-330кВ выполняется установка TH типіа $HK\Phi-3xHK\Phi-110$; $3xHK\Phi-220$, $3xHK\Phi-330$ соответственна

3, 6. 3 На шинах 500 кв могут устанавливаться TH типа HK ф либо H ФЕ ($3 \times HK$ ф-500 или $3 \times H$ ФЕ-500) в зависи-

ДЛЯ ИСКЛЮЧЕНИЯ возможных феррорезонансных явлений в РУ 500 кв с воздушными выключателями, имеющими смкостные делители напряжения, рекомендуется установка TH типа $H \Rightarrow E-500$, для остальных PY = 500 кв применяются TH типа $HK \Rightarrow 500$.

О явлениях феррорезонанса трансформаторов напряжения типа НКФ см. раздел 5 настоящей ПЗ.

3 6. 4. На шинах 750 кв устанавливаются ТН типа НФЕ-750 (3× НФЕ-750).

4. Резервирование питания нагрузок вторичных цепей трансфортаторов напряжения.

Типовые татериалы для проектирования предустатривают обеспечение питания нагрузок, подключаетых к вторичным цепят ТН при выходе из строя или при выводе в ремонт соответствующего ТН

Резервирование питания цепей ТН выполнено с учетом требований директивных татериалов следующим образом:

4. 1. В РУ 35-220 кв с двойной системой (двумя секциями) шин для взаимного резервирования целей ТН предусматрчвается переключение нагрузки с одного ТН на другой с помощью переключателей.

При этом обе системы шин должны быть объединены шиносоединительным (секционным) выключать лем и перевод присоединений с одной системы (секции) шин на другую не выполняется.

- 4. 2. ДЛЯ ЛИНИЙ 110-220 кВ РУ с тостиковыти схета. ти питание нагрузки ТН одной линии резервируется оп ТН другой линии переключателем.
- 4.3. Для линий 220, 330, 500 кв со схемами РУ "треугольник", "Четырехугольник" питание нагрузки ТН одной линии резервируется от ТН другой линии через переключатель.
- 4.4.4. Для линий 330, 500 кв со схетати РУ "Трансфортаторы — шины с присоединениет линий через два выключителя" питание нагрузки ТН линии резервируется от ТН на шинах.

4. 5. Для линий 330, 500 кВ со схетати РУ "Полуторная" и "Трансформаторы — шины с полуторным подключениет линий" питание нагрузки ТН линии резервируется от ТН той системы шин, с каторой линия связана посредством одного выключателя.

4.6. Для линий 750° кв способ резервирования нагрузки зависит от количества котплектов конденсатаров связи, устанавливаемых на каждой фазе линии.

4. 6. 1 При одном жомплекте конденсаторов связи на каждой фазе выполняется два тракта с саответствующими электромагнитными устройствами трансформаторов типа НФЕ, шкафа с автоматическими выключателями и кабелями, прокладываемыми к памелям защиты

Электромагнитные устройства присоединяются к конденсаторам связи через разъединители.

Одновременнае подключение двух электромагнитных устройств к одному комплекту конденсаторов не допускается по условиям обеспечения точности работы трансформаторов НФЕ.

Питание всей нагрузки осуществляется по одноту тракту, 9 при сго неисправности развединители и нагрузка переключаются на исправный тракт

При этом необ'їходимо предусматривать также резервирование питания нагрузки в таком же объеме, как указана в п. 4.3; 4.4, 4.5 при соответствующих схемах РУ 750 кв.

4 6 2 При двух компілектах конденсаторов связи на камдой фазе, устанавливаетых в соответствии с техническими требованиями к устройствам связи, выполняется подключение через
разъединители электромагнитных устройств ТН к каждому из
комплектов конденсаторов, то-есть производится полное дублирование цепей напряжения по двум трактам от конденсаторов связи до панелей защиты.

При нормальной работе основная защита и АПВ питаются по одноту тракту, а резервные защиты и измерительные приборы — по друготу.

При неисправности одного из трактов нагрузка поврежденного тракта пережлючается вручную (переключателет) на исправный тракт, так выполняется резервирование пита-ния нагрузки по цепят напряжения линии 750 кв при нали-чии на ней двух комплектов конденсаторов связи.

5 Особенности работы трансформаторов напряжения типа НКФ и НДЕ

Как показал опыт эксплуатации, при работе дифференциальной защиты шин, УРОВ и при оперативных переключениях ители тесто случаи повреждения электротагнитных трансфортаторов юпряжения типа НКФ при притенении выключателей (ВВБ, ВНВ и др) с еткастныти делителяти напряжений, шунтирующити дугогасящие катеры.

После отключения указанных выключателей в результате работы защиты шин и УРОВ трансформатор напряжения остаелся подключенным к сети через емкости, шунтирующие катеры отключенных выключателей.

Повреждение трансформатора напряжения в таких ехемах объясняется феррорезонансными явлениями, возникающими в сложном контуре (создаваемом нелинейной индуктивностью НКФ и емкостями шин и выключателей), и сопровождающимися превыиением номинального тока в высоковольтной обмотке ТН в 50-100 раз.

Упомянутый контур, в котором возникает явление феррорезонанса, создается в частности и при оперативных переключениях линий при установке НКФ до линейного разъединителя (то-есть со стороны подстанции)

В схемах РУ 110 - 220 кв со сборными шинами, к котсрым присоединен НКФ, феррорезананс не возникает при шунтировании ТН шин сткостью линии или индуктивным сопротивлением трансформатора (автотрансформатора)

Не сопровождаются явленияти феррорезонанса и аперативные переключения на установке НКФ на линиях за линейныти разгединителяти, т к при этот ТН шунтируется еткостью линии

Указанное подсоединение ТН типа НКФ на линих 330 - 500 кв выполнено в типовых материалах для проектирования N407 - 03 - 456 87 "Схемы принципиальные электрические распределительных устройств напряжением 6-750 кв подстанций."

При применении емкостных ТН типа НДЕ как на шинах, так и на линиях опасность возникновения феррорезонанся после отключения воздушных выключателей с ем-костными делителями напряжения - отсутствует

Для предотвращения повреждений ТН типа НКФ 220 - 500 кв в условиях феррорезонанса, действующими директивными и руководящими материалами Минэнерго СССР, до выпуска и внедрения специальных устройств, осуществляющих подавление феррорезонанса, намечен ряд мероприятий, предлагающих

- 5. 1 В схемах РУ 5001 кВ на сборных шинах устанавливать трансформаторы напряжения типа НФЕ 500.
- 5. 2. В схемах РУ со сборными шинами 110-220 кв при действии дифзациты шин и УРОВ предустатривать одно из следующих условий.
 - не отключать одну из тупиковых линий;
 - отключать одну из питающих линий с противоложной стороны, объеспечивая шунтирование НКФ сткостью линии;
 - вместо отключівния автотрансформатора или трехобмоточного трансформатора с заземленной нейтралью со стороныі поврежденных шин отключать его
 выключателями с других сторон
- 5.3 На обходной системе шин 110 220 кв вместо одной фазы НКФ устанавливать конденсатор связи со шкафом отбора напряжения

6 Cuzhamusayun sambikahu \hat{u} Ha semnha 6 cemu 6 \pm 35 kB

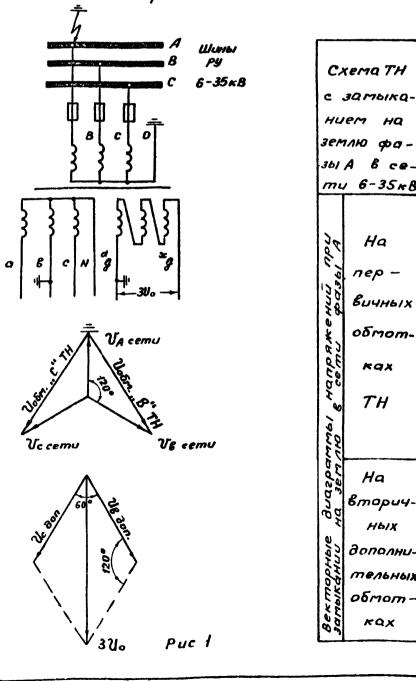
Сигнализация затыканий на зетлю в сетях, работающих с изолированной нейтралью и итеющих талый ток затыканий на зетлю, осуществляется от цепей дополнительных вторичных обтоток ТН, соединенных в разоткнутый треугольник

Сутта напряженний трех фаз 30° подается к обтотке реагирующего реле, д'ля действия которого при затыканиях на зетлю нулевая точкаг первичных обтоток должна быть зазычена

В нормальном режиме результирующее напряжение обмоток, соединенных в гразомкнутый треугольник, теоритически равно нулю, практически же имеет некоторое напряжение небаланся, недостаточное біля срабатывания реле

Действие реле обеспечивается напряжением, возникающим в обмотке разомкнутого треугольника при замыканиях на землю со стороны первичиной обмотки (в какой-либо фазе).

вследствии того, что нейтраль сети изолирована, короткое замыкание не возникает и симметрия векторной диаграммы напряжений сети не нарушается.


407-03-48487-N3

Однако, из-за того, что нулевая точка первичных обтоток ТН заземлена, обтотка фазы, замкнутай на землю, оказывается замкнутой накоротко, а к двум другим будет приложено линейное напряжение. В дополнительные обтотки соответствующих фаз будут трансформироваться напряжения, совпадающие по фазе с напряжением на первичных обмотках этих фаз.

На выходе обтотки, соединенной в разоткнутый треу-гольник, будет сутта векторов двух фаз едвинутых между собой на 60°

$$3U_0 = 2\sqrt{3}U_{\phi}\cos\frac{60^{\circ}}{2} = 2\sqrt{3}U_{\phi}\frac{\sqrt{3}}{2} = 3U_{\phi}$$

На рис. 1 приведена схета ТН и векторные диагратты напряжений сети, первичных и вторичных обтоток ТН при те-таллическом замыкании на зетлю фазы А в сети.

Номинальное напряжение дополнительных вторичных обмоток TH, предназначенных для использования в сетях с изолированной нейтралью принитаются равныт $\frac{100}{3}$, максимальное значение будет $3U_0$ тах $= 3 \cdot \frac{100}{3} = 100$ В

В евязи с тем, что напряжение на выходе обтоток, соединенных в разомкнутый треугольник, может возникать и при перегорании одного из предохранителей в цепи первичных обтоток ТН, для обеспечения четкой сигнализации о замыкании на землю предустатривается влокирование действия сигнализации устройством контроля предохранителей.

Сигнализация о замыкании на землю выполняется с выдержкой времени для отстройки от сигналов, связанных с повреждениями, отключаемыми защитами

Для выявления фазы, на которой произошло затыкание на зетлю, используется шинный вольттетр, определяющий любое фазное и теждуфазное напряжение с потощью переключателя.

7. Определение нагрузок вторичных обмоток трансформаторов напряжения.

7. 1. Характер нагрузки ТН.

К вторичным обтоткам ТН подключаются нагрузки, требующие питание по цепят напряжения в различных классах точности.

Последние опредемяются положениями директивных и руководящих материалов и соответствующими разделами "Правил устройств электроустановок" (ПУЭ),

Для расчетных счетчиков электрической энергии должны применяться ТН кмасса точности 0,5. При этом до-пустимое падение напряжения в кабеле, связывающем ТН и панель счетчиков межсистетных линий, не должно превышать 0,25% Ин, а в кабеле между ТН и панелью расчетных счетчиков потребительских линий — 0,5% Ин.

Допускается использование ТН класса точности 1,0 для включения расчетных счетчиков класса точности 2.

407-03-48487-03

Для измерительных приборов, как правила, может использоваться ТН, работающий в классе точности в или в. ТН, используемый для релейной защиты, должен работать в классе точности не ниже в

При пытании от Одной и той же обтотки ТН нагрузок различного характера должна обеспечиваться работа ТН в высшем из требуемых классов точности

По результатам расчета оценивается применимость выбранного ТН. В случае превышения допустимой для ТН нагрузки в требуетом классе точности следует принимать меры по разгрузке ТН (переводу части нагрузки на другой ТН) либо по переходу на ТН большей мощности

7 2. Порядок определения нагрузак вторичных цепей ТН, 12 1 Определение нагрузки ТН производится по данным о потреблении релейной и изтерительной аппаратуры, счетчиков и других устройств, подключаемых к ТН

Для расчета потребления всей аппаратуры, вклкченной на линейное напряжение, потребление должно быть приведено к напряжению 1008, а аппаратуры, включенной на фазное напряжение — к 110/V3 В.

Пересчет с другого напряжения на расчетное производится по выражению

$$S_{pacy} = \left(\frac{U_{pacy}}{U}\right)^2 \cdot S_U \qquad (7-1)$$

где Su - потребление, заданное при напряжении Ц;

Spacy - потребление при расчетном (линейном или фазном)
напряжении Ирасч

Если известно только сопротивление Ереле или прибора, то потребление определяется по выражению

$$S_{pacy} = \frac{U_{pacy}^2}{Z} \qquad (7-2)$$

7 2 2. Для более полного использования мощности ТЧ по возможности выравнивают их вторичную нагрузку по фазам Однако, обычно имеется некоторая неравнотерность нагрузки, поэтому расчет сводится к определению нагрузки наиболее загруженной фазы ТН.

С целью упрощения в практических расчетах суммирование потребляетой мощности производят арифтетически, без учета разных коэффициентов мощности отдельных нагрузок, неравномерность нагрузки учитывают приближенно, что создает некоторый расчетный запас

7 2 3. Ниже приводятья расчетные выражения для определения нагрузок на фазу основной вторичной обтотки ТН (соединенной в звезду) согласно данным типовой работы 52770 - Э (ст л 1.2 настоящей ЛЗ).

And past A
$$S_{N\phi} = \frac{S_{Nac}}{\sqrt{3}} \sqrt{K^2 + K + 1}$$
 $K = \frac{S_{Nac}}{S_{Nac}}$

And apasts B
$$S_{H\phi} = \frac{S_{H\phi} S_{H\phi}}{\sqrt{3}} \sqrt{\kappa_i^2 + \kappa_i + 1}$$
 $K_i = \frac{S_{H\phi} S_{H\phi}}{S_{H\phi} S_{H\phi}}$

Ann фазы C
$$S_{H\phi} = \frac{S_{HQC}}{\sqrt{3}} \sqrt{K_2^2 + K_2 + f}$$
 $K_2 = \frac{S_{HQC}}{S_{HQC}}$

 S_{HBC} — Линейная нагрузка между фазани BC

 S_{HQC} — линейная нагрузка тежду фазати АС при этом условии принято следующее неравенство линейных нагрузок $S_{HQC} > S_{HQC} > S_{HQC}$ Наибольшее значение S_{H} будет для той фазы, к которой присоеди-

паиодльшее значение он субет оля той фазы, к которой присоединены две междуфазные нагрузки, каждая из которых больше третьей При неравенстве нагрузок, тринятом выше (SHEC > SHAB > SHAC) макситальная нагрузка будёт у фазы В, то-есть S_{HP} В

При наличии інагрузок, включенных на фазные напряжения (в четырехпроводных віторичных цепях), потребляетая ити мощность Sнф, приведенная к фазноту напряжению должна суммироваться с тощностью ітеждуфазной нагрузки соответствующих фаз При этом полная тощность нагрузки любой из фаз TH будет S_{H} = $\frac{S_{H}\phi}{\sqrt{3}}\sqrt{K^2+K+1}$ + S_{Φ} (7-3)

При отсутствии нагрузок, включенных на фазное напряжение, $S_{\phi} = 0$

При соединении вторичных овтоток однофазных ТН в звезду нагрузка, подсчитанная для наиболее загруженной фазы по выражению (7-3), должна сопоставляться с тощностью одной фазы трансформаторов в требуетом классе точности

При питании вторичной нагрузки от трехфазного ТН с его тощностью в нужнот классе точности сопоставляется утроенная тощность нагрузки наиболее загруженной фазы, подсчитанная по выражению ((7-3).

23388-01

Следовательно, при схеме открытого треугольника выгоднее распределить нагрузку между напряжениями Иов и Ивс.

7 2 5 Нагрузка Уни цепи 300 дополнительной обтотки приводитья к напряжению 100 в.

Аля трехфазных ТН типа НАМИ она сопоставляется с тощностью 30 вА, указанной в ТУ 16-671 159-87

Для однофазных ТН нагрузка Sим суммируется с нагрузкой основной обтотки и сопаставляется с тощностью трансформатора в классе точности 3

7 2 6 Расчет суммарной нагрузки на ТН выполняется по формулам, входящим в состав типовых матерчалов, указанных в п 12 настоящей ПЗ

Суммарная нагрузка ТН, установленного в сетях с изолированного нейтралью вычисляется по выражению

$$\sum S_{NTH} = \frac{S_{NN}}{\sqrt{3}} + S_{n\phi} , \qquad (7-4)$$

а для сетей с заземленной нейтралью

$$\sum S_{HTH} = S_{HN} + \frac{S'_{HT\Phi} + S''_{HT\Phi}}{3}, (7-5)$$

нагрузка в цепи ЗИо, rde SHN ---

нагрузка наиболее загруженной фазы,

Sнтф, Sнтф- макситальные значения линейных нагрузок.

По вычисленной величине нагрузки ∑ Янти определяется класе точности, в котором будет работать ТН При этом решается вопрос о необходимости установки дополнительных ТН 6 mom chydae, echu \Shith > Sth & mpebyenom khacce modhocmu

8. выбор автоматических выключателей

8 1 Общие положения

В качестве защитных автомотов во вторичных цепях ТН применяются автоматические выключатели типа АП 506

ДЛЯ Обеспечения должной чувствительности электротагнитных расцепителей (отсечек) автоматав, при коротких замыканиях во вторичных цепях ТН во всех случаях, их кратность принитается равной 3,5

При этом следует также учитывать, что электромагнитные расцепители тогут итеть разброс в пределах (3-4) Эн

Ввиду большой величины тока срабатывания электротахнитного расцепителя, превышающей его ногинальный ток в 3-4 раза, для повышения чувствительности автоматов к удаленным КЗ и внутриаппаратным повіреждениям, рекомендуется применение автоматов с электромагнитными и тепловыми расцепителями

Последние начинают работать при токе 1,35 номинального и, с учетом возможного отключения тока срабатывания на ± 25%, обеспечивают надежное действие при токе порядка 1,7 номинального тока расцепителя.

Номинальный ток расцепителя должен выбираться по условию наибольшего возможного тока длительной нагрузки При малых величинах тока нагрузки расцепитель выбирается по отключающей способности, которая жарактеризуется величиной допуститого moka K3

Необходимая чувствительность автотатов должна обеспечиваться при выборе сечения жил кабелей во вторичных цепях ТН.

в 2 Анализ ситуаций, возникающих при неисправностях в цепях ТН с разработкой и определением расчетных выражений для вычислений уставок автотатов, с рекотендацияти по их вы-Бору приведен в типовой работе N 527703 (ст П 1 2 настоящей ПЗ)

На основании указанных материалов выполнена сводная таблица принятых уставок автоматов во вторичных цепях ТН 6-750 кв в зависимости от места установки последних с приведением расчетных выражений - см приложение 3

9. выбор сечений жил кабелей во вторичных цепях

9 1 Основные условия расчета.

9 1 1. Выбор сечений жил кабелей определяется двутя Z ЛАВНЫМИ ППРЕВОВОНИЯМИ

- потеря напряжения в проводах вторичных цепей ТН не должна превышать значений, установленных ЛУЭ.
- должна обеспечиваться надежная работа автоматических выключателей при КЗ во вторичных цепях ТН

407-03-48487-03

На аснове этих требований с использованием расчетных данных и фортул, приведенных в типовой работе 52770-3

(ст. п. 1.2 настоящей ПЗ), составлены таблицы по определению ногорузок вторичных цепей ТН с расчетати допуститых сопротевлений кабелей, а также сечений жил (проводов) кабелей, питавимих указанные нагрузки, притенительно к схетам распределительных устройств подстанций 110-750 кв по типовым тактериалам для проектирования N 407-03-456.87.

Потимо таблиц выполнены графики, отражающие зависимость сечения жил (проводов) кабелей от их длины при определенных нагрузках во вторичных обмотках ТН с учетом допустимых потерь напряжения в кабелях при соответствующих классах точности ТН и счетчиков.

В таблицах и графиках приведены данные по расчетым выражениям, расчету и выбору сечений жил (проводов) кабелеч, прокладываемых как в ячейках ТН распредустройств соответтвующих напряжений, так и связывающих ящик зажитов ТН с панелью ввода цепей напряжения на щите, а также кабелей по щиту тежду панелью ввода и панелями РЗА, счетчиков, изтерений.

Таблицы и графики выполнены раздельно для определенных схем распределительных устройств 6-750 кв с учетом места установки ТН (на шинах, на линиях). Расчеты сечений проводов кабелей проведены для наиболее характерных сочетаний нагрузок на ТН при установке последних на линиях и шинах

Содержащиеся в таблицах и графиках данные го определению и выбору сечений жил (проводов) кабелей предназначены для использования при конкретном проектировании

Таблицы определения сечений проводав кабелей и грз-фики даны в приложении 5

- 9 2 Порядок выполнения расчета
- 9 21 Расчет начиняется с определения нагрузки и выбора необходитой тощности ТН в заданном классе точно-

Пояснения по характеру и расчету нагрузок на ТН приведены в разделе 7 настоящей ЛЗ

9. 2. 2. По полученному значению максимальной нагрузки для обтоток "звезда" и "разомкнутый треугольник" с округлением до ближайшей большей величины нагрузки, приведенной в таблицах приложения 4, определяется значение дапустимых сопротивлений в проводах кабелей от "ячейки ТН до щита для основных и дополнительных обтоток ТН, с учетом допустимых падений напряжений в кабеле.

Допуститое сопротивление жил кабеля, полученное по заданному падению натряжения, сравнивается с допуститым сопротивлением кабеля по условию надежной работы защитного автомата при $2^{\frac{\pi}{2}}$ фазнот K3.

По результатат сравнения для определения сечения жил кабеля принитается теньшее по величине допуститое сопротивление кабеля.

9. 2.3. По принятоту допуститоту значению сопротивления проводов в кабеле (Спр дот), определяется расчетное сечение жил кабелей для выбранного расстояния тежду ячейкой ТН и щи-тот по выражению

$$q_1 = \frac{\ell_1}{r_{2np}\partial n}$$
 (9-1), $r\partial e$

- Н длина, в которую входит удвоенная длина кабеля от икафа ТН до нашбалее удаленной фазы + длина кабеля от икафа ТН до панели ввода цепей напряжения на щите; удвоенная длина кабеля в ячейке ТН принитается в связи с объединением нуля вторичных цепей ТН в ящике зажитов;
- У удельная проводитюєть по теди = 57 (для контрольных кабелей при наличии тежсистетных линий и для под-станций 330 кв и выше); по амотинию = 34,5 (для силовых кабелей, а также контрольных кабелей, где не разрешается притенение меди).

По расчетному значению сечения провода 91 подбитрается ближайшее большее сечение кабеля и определяется его сопротивление 7 пр 1 и 7 пр. м с учетом выбранного сечения на участке длиной сечения на участке длиной сечения на мастем длиной сечения провода 91 подбитем сечения на сечения провода 91 подбитем сечения провода 91 подбитем сечения на сечение кабеля и определяется сечения на мастем сечения на м

Величина Z np 1 должна быть меньше Z np доп, а Z np 1 + Z np N меньше соответствующего значения допуститого сопротивления, обеспечивающего надежность работы автомата при 1^2 фазном K3 (см таблицы приложения 4)

9 2 4 Сечение жил кабелей по щиту зависит от величины допуститых сопротивлений в отдельных кабелях, отходящих от панели ввода общих цепей напряжения к панелят — потребителят — (РЗА, изтерений, счетников и т д) и от длины кабелей по щиту—12

Допуститые сопротивления жил (проводов) кабелей для панелей защиты и автоматики определяются по выражению

$$Z_{np P3A} = \frac{(3-3S_{HG2P TH} Z_{np1}/100) 100}{3 S_{HG3P P3A}}$$
 (9-2), zde

Sнагр ТH — Общая нагрузка на ТH,

Znp1 - сопротивление кабеля на участке L1,

S нагр РЗА - Потребление панели защиты

Допуститые сопротивления жил (проводов) кабелей до панели с изтерительными приборами, осциплографом, датчи-ками телеизтерений вычисляются по выражению

$$Z_{np \text{ usm}} = \frac{(1.5 - 1.5 \text{ Shazp TH} \ Z_{np} \text{ I/IOO}) \text{ IOO}}{3 \text{ Shazp usm}} (9-3), 2de$$

Sнагр изт — потребление панели изтерения (осциллографа и тд)
Аналогичное по структуре выражение может быть
испальзована для определения сечения кабелей к панелям счетчиков с учетом соответствующих △U (для расчетного учета
0,25 или 0,5, для технического 1,5), если кабель, связывающий
ТН с панелью ввода цепей напряжения, был общим для цепей
напряжения счетчиков, РЗА, измерений и т д

При прокладке отдельного кабеля от ТН к панелят счетчиков допуститое сопротивление проводов кабелей определяется по выражениям

для двухэлементных счетчиков типа САЗУ, ЭЭЕ700

$$Z_{npcz} = \frac{\Delta U \ 100}{2,64 \ Sez \ N}$$
 (9-4)

для трехэлементных счетчиков Ф443А

$$Z_{npez} = \frac{\Delta U \, 100}{3 \, \text{Ser} \, R} \qquad (9-5) \, , \, z \partial e$$

AU — допуститое падение напряжения,

Scz - потребление данного счетчика,

П - количество счетчиков на панелях

9 2 5 Сечения саатветствующих кабелей подсчитываются по формуле

$$\varphi_2 = \frac{\ell 2}{r^2 mp \, PSA \, (usm)}$$
, $z \partial e$

12 — расстояние между панелями

Спр рзя (изт) — допуститое сопротивление провода, кабелей соответствующих назначений по выраженият 9-2.9-3

10. Особенности расчетов вторичных цепей ТН

Типовые татериалы для проектирования содержат таблицы с расчетати вторичных цепей ТН по видат ТН и их подключеният в схетах распределительных устройств соответствующих напряжений (на линиях, шинах, вводах транеформаторов, автотранеформаторов)

Кроте того выполнены графики зависитости свчений проводов кабелей от их длины для наиболее характерных нагрузок по отдельным видат ТН

Ниже приводяться пояснения к соответствующим расчетам и графикам для ТН, используемым в схемах под-

10 1 TH 6-10 кв на вводах трансформаторов, автотранеформаторов предназначены для питания цепей напряжения устройств

- контроля изоляции (РН-153/ 60Д),
- контроля наличия напряжения, синхронизта (РНФ-1M-158A на фазу, реле РН153,154-4 шт-по 1ВАНО Обтотку, обтотка РН-55-6,58A, РВ 238-20ВА-на Обтотку),
- дистанционной защиты автотрансформатора (ЛЭ2105 - 628А на фазу)

При подсчете нагрузки для реле напряжений их потребление приводится к напряжению 100 в

$$\partial_{\Lambda} R PH - 154/160$$
 $S = \left(\frac{100}{40}\right)^{12} f = 6,25 BA$

$$PH-153/200$$
 $S = \left(\frac{100}{50}\right)^{2}$ $1 = 4BA$

I noðn noðn u ðama Bsam

Определение такситальной нагрузки на фазу произвадится по выражению

$$S_{H\phi} max = \frac{S2}{\sqrt{3}} \sqrt{\left(\frac{S1}{52}\right)^2 + \frac{S1}{52} + 1} + S\phi$$

где \$2 > \$1 — межфазные нагрузки примыкающие к одной фазе,

Sф — нагрузка включенная на фазу

Нагрузка подключается к указанным TH, допускает потерю напряжения в кабеле (связывающем шкаф KPY (KPYH) 6-10 кв
со щитом) $\Delta V = 3B$, m к састоит из аппаратуры устройств защиты, μTH тожет работать в классе точности μTH

Согласно таблице СМ 1-1 (приложение 1) тощность TI типа $3H0\Lambda-6$, $H0\Lambda-6$ (H0M-6) 6 классе 3 составляет $200\,8A$, 9 типа $3H0\Lambda-10$, $H0\Lambda-10$ (H0M-10) — $300\,8A$

Для ТН типа НАМИ-10 в заводских татериалах отсутствуют данные по мощности ТН в существующих понятиях по классам точности, имеются данные по основной погрешности ±0,2%, и по дополнительным в зависимости от распределения нагрузок по обтоткам ТН (ст таблицу СМ 1-2, приложение 1) Для каждога из вариантов сочетания нагрузок предлагается определять дополнительную погрешность ТН типа НАМИ по выражениям.

$$\Delta U_{ab} = -\left[\frac{Sab - 75}{100} + \frac{Sac}{2100}\right] \, \bar{z}_{\kappa}$$

$$\Delta U_{bc} = -\left[\frac{Sbc - 75}{100} + \frac{Sac}{2100}\right] \, \bar{z}_{\kappa}$$

$$\Delta U_{cA} = -\left[\frac{Sab - 75}{2100} + \frac{Sbc - 75}{2100} + \frac{2Sca}{100}\right] \, \bar{z}_{\kappa}$$

где Sa6, S6c, Scq — мощности нагрузок, включенные на линейные напряжения, E_{κ} — сопротивление короткого замыкания, равное 0,60 м

Ниже проводится расчет вторичных цепей ТН на вводах 6-10 кв автотрансформаторов, трансформаторов

10 1 1 По дейетвующим типовым работам для ТН на вводе автотрансформатора по основной автотке (Д) нагрузка распределяется спедующим образом

$$S_{N+2 \text{ max}} = \frac{S_06}{\sqrt{3}} + S_{+2} = \frac{36}{\sqrt{3}} + /39 = 160 \text{ BA},$$

ДЛЯ ТН типов 3 x НОЛ — 6 (3 x 3НОЛ—10) 98 В Л и 160 < 200 (300 в Л)

«Веспечивается работа ТН в классе точности 3

 A_{AB} TH типа НАМИ – 10 определяется дополнительная погрешность с учетом распределения нагрузки S_{aB2} тах = 175 вА по выражению 10-1

$$\Delta U_{ab} = -\left[\frac{175 - 75}{100} + \frac{139}{200}\right] \quad 0.6 = -1.017$$

$$\Delta U_{bc} = -\left[\frac{139 - 75}{100} + \frac{139}{200}\right] \quad 0.6 = -0.007$$

$$\Delta U_{ca} = -\left[\frac{175 - 75}{200} + \frac{139 - 75}{2000} - \frac{2139}{100}\right] \quad 0.6 = +1.76$$

Максимальная суттарная погрешность HAMU-10 составит $\sum \Delta U c_0 = +0.2 + 1.1176 = +1.376$

Полученное значение суммарной погрешности позволяет утверждать, что ТН при этом обеспечивает работу не ниже класса точности 3

Допуститое сопро тивление провода кабеля основной обтотки TH па потере напряжения в классе 3 — при включении обной панели ПЭ 2105 $Z_{np} = \frac{\Delta U \ U_H}{3 \ S_{Hazo}} = \frac{3}{3} \frac{100}{113} = 0.885 \ Om$

— при включении двух панелей ПЭ 2105
$$Z_{np} = \frac{\Delta U \, U_H}{3 \, \text{S нагр}} = \frac{3 \, 10}{3 \, 1755} = 0 \, 571 \, \text{ Om}$$

Допуститое сопротивление провода кабеля по надежности действия автоматов в режиме двухфазного КЗ подсчитывается

$$Z_{np} = \frac{\sqrt{3} \ U_{HTH}}{12. \ J_{N PQCU}} = \frac{\sqrt{3} \ 100/\sqrt{3}}{1/2 \ 2.5} = 3 \ 33 \ Om$$

Расчет сечений троводов кавелей основной обтотки определяется по сопротивлению Z_{np}

при включении одной понели ЛЭ 2105

$$9 = \frac{\ell}{8 r_{np}} = \frac{\ell}{57 \cdot 0885} = \frac{\ell}{504} - \partial_{AB} \kappa \alpha \delta \epsilon_{AB} c medhamu npobodanu$$

$$Q = \frac{\ell}{8^{-8}7_{np}} = \frac{\ell}{34,5} \frac{\ell}{0.885} = \frac{\ell}{30.5} - \frac{\partial}{\partial} A R R R R R C AND MUHURBOITU$$

$$\frac{1}{100} = \frac{1}{100} \frac{1}{100}$$

$$q = \frac{\ell}{r} = \frac{\ell}{345 \ 0571} = \frac{\ell}{1969} - \frac{\partial AB}{\partial AB} \ radeAB \ c \ announce element of the probability of the probabi$$

Выбор сечения кабелей при конкретном проектировании производится по графику СМ 5-2-1 приложения 5

Допуститое сопротивление кабеля дополнительной обтотки принитается по надежности действия автотата, из-за незначительной нагрузки в цепи 300

Расчет производится по выражению

$$Z_{np} = \frac{1}{2} \frac{3U_{HTH}}{6 J_{HPacy}}$$

Зависимость сечения кабеля от его длины для дополнительной обмотки определяется для ТН типа НАМИ-10

$$q = \frac{\ell}{57 \ 15625} = \frac{\ell}{8906} \ \text{MM}^2 - \text{NPU} \ \text{medholx NPOBODOX B}$$

$$9 = \frac{\ell}{345 \ 15625} = \frac{\ell}{539} \ mn^2 - npu \ annomunuebux npobodax & kabenax,$$

DAR 3HOA-6-10

$$9 = \frac{\ell}{57333} = \frac{\ell}{189,8} \text{ MM}^2 - \text{ NPU METHALIX NPOSOTION & Kabensk,}$$

$$q = \frac{\ell}{345333} = \frac{\ell}{1149} mm^2 - npu annonunuebaix npobodax 6$$

Выбор сечения кабелей при конкретном проектировании производится по графикам СМ 5-2-2,3 приложения 5

10 1 2 ТН на вводе 6-10 кв трансформатора собирается по схете открытого треугольника с притенением 2НОЛ (НОМ)-6-10

в связи с указанным ранее для наилучшего испозьзования мощностей обмоток ТН, целесообразно равномерно распределить нагрузку между двумя обмотками

$$S_{\phi} = 158A$$

 $S_{c6} = 625 + 20 = 26258A$

Sac = 625 + 6,5 + 625 = 198A

Характер нагрузки — устройства РЗА допускает работу ТН в классе точности з

Макситальная нагрузка на обтотку

SH max = SaB max = $15\sqrt{3} + 26 55 = 52 2$

SH max = 52,2 < 200 (300) — ногинальной тощности на ТН типа НОЛ-6 (-10)кв

в классе точности 3

Допуститое сопротивление провода кабеля па потере напряжения для устрайства РЗА

$$Z_{np} = \frac{\Delta U \ 100}{3 \ S_{HQZP}} = \frac{33 \ 100}{3 \ 52 \ 2} = 1,9 \ Om$$

Расчет сечения проводов кабеля проводится по сопротивлению 1,90, т. к допустите сопротивление про-вода кабеля по надежности действия автомата при двухфазнот КЗ больше (3,33 > 1,90m)

. Зависимость сечения кабеля от длины определяется выражениями

$$9 = \frac{\ell}{572_{np}} - npu$$
 medhux npobodax 6 кабелях,

$$q = \frac{\ell}{34,5} \frac{1}{2np}$$
 — npw announces nposodax & Kasensk

По принятому допустимому сопротивлению $Z_{np} = 1,90 m$ зависимость 9 от ℓ просчитывается по

$$9 = \frac{\ell}{6555} \text{ mm}^2 - \theta) / 8 \text{ кабелей с алютиниевыти проводати}$$

Выбор сечения кабелей при конкретном проектировании производится по графику СМ 5-2-4 приложения 5

10 2 TH 6-10 кв на шинах для питания цепей защиты автоматики, измерения, учета (3×3нал-6-10, нами-10)

Нагрузки на ТН'6-10 кв можно подразделить на два вида

— общеподстанционные,

407-03-48487-03

 счетчики	ภ บหนนิ	6 - 10 K	B	
К общелоб	станци	OHH61M	OMHOCAMCA	

- контроль напряжения на шинах 6-10 кв,
- контроль исправности цепей ТН,
- контроль изаляции,
- блокировка по напряжению макситальной токовой защиты, защиты от дуговых замыканий секция шин 6-10 кв,
- питание устройства автоматической частотной нагрузки секции шин 6-10 кв.
- вольттетр показывающий с переключателем,
- ваттметр, варметр на выключателе ввода трансформатора, автотрансформатора.
- питание устройства регулирования напряжения под нагрузкой на трансформаторе, автотрансформаторе,
- питание защиты от замыканий на землю, дейспвующей на отключение

10.2.1. Для выполнения оптитального распределения общеподстанционных нагрузок на основную обтотку (Д) предлагается подключение их в следующет порядке:

$$= 2 \cdot 6,25 + 2 \cdot 3,7 + 2 \cdot 10 = 39,9 \cdot 8A$$

$$=6,25 + 3,7 + 2 \cdot 3 + 10 + 2 = 27,95 8A$$

$$S_{H\phi} max = S_{H\phi} = \frac{S_{ec}}{\sqrt{3}} \sqrt{\left(\frac{S_{ab}}{S_{ec}}\right)^2 + \frac{S_{ab}}{S_{ec}} + 1} + S_{\phi}$$

Sup max =
$$\frac{33,65}{\sqrt{3}}\sqrt{\frac{39,9}{33.65}} + \frac{39.9}{33.65} + 1 + 24 = 60,868A$$

S нер тах = 60,86 учитывает использование счетчиков с потреблением — 3,78А

ДЛЯ СЧЕТНИКОВ САЗУ и САЧУ с потреблением — 68А на обнотку

Sup max =
$$\frac{38,25}{\sqrt{3}}\sqrt{\left(\frac{44,5}{38,25}\right)^2 + \frac{44,5}{38,25} + 1+24 = 68,068A}$$

10 2 2. Согласно тежническим данным, ТН типа ЗНОЛ-6 работает в классе 1 при нагрузке до 75 ВЛ

Следовательно, при притенении счетчиков типа 336700 разница тежду пощностью ТН и общеподстанционной нагрузкой составит

а при использовании счетчиков САЗУ и СРЧУ

в первот случае к ТН тожно подключить одну линию с расчетным учетом, во втором подключение расчетных счетчиков линии не допускается.

Если на подстанции все пинии 6-10 кв. имеют технический учет, то шх питание вместе с подстанционной нагрузкой допускается окуществлять от ТН в классе точности ниже 1, то - есть 3. Для знол-6 допуститая нагрузка в указанном классе составляет 2008А, запас по тощности выражается в 139,1 и 131,94 вд в зависитости от типов притененных счетников.

Количество линии с техническим учетом может быть 19— при использовании счетчиков типа ээв700 или 11— при САЗУ и СРЧУ

При конкретном проектировании весьма редко имеются точные данные по виду учета на линиях 6-10 кв и паловероятно, что все они будут иметь только технический учет.

Если же на шинах 8-10 кв подстанции итеются линии с техническим и расчетным учетом, то количество линий (соответственно количества счетчиков, питающихся от общих цепей напряжения) должно определяться по возможностям
расчетного учета, т к ТН должен работать в классе точности 1.

10 2 3, TH типа 3H0/1-10 в классе точности в допускает подключение нагрузки до 150 вА, поэтоту к общит цепят напря-жения тогут быть подключены цепи расчетных счетчиков линий в количестве 7 — со счетчикати САЗУ и СРЧУ или 12 — со счетчикати ЭЭ6700.

Если от шин 6-10 кв подстонции отходят линии только с техническит учетом, то работа TH допустита в класее точности 3 с нагрузкой до 300 ВА.

При этом к ТН помита общеподстанционной нагрузки тогут подключаться линии с техническим учетом практически без ограничения их количества (32 линии со счетчиками ЭЭ6700 или 19 линий со счетчиками САЗУ, СРЧУ)

При наличии на шинох 6-10 кв линий с техническит и расчетным учетом количество линий определяется числами ~7 (САЗУ и СРЧУ) или 12 (ЭЭ6700) пояснения ст п 1022

10 2 4 ДЛЯ TH типо HAMU-10 выполняется расчет дополнительной погрешности, учитывающей принятое распределение нагрузок по обтоткат — $\Delta Ugon$, согласно п 10 2 1 и выражениям 10 - 1.

При притенении счетников 336700 SaB = 39,9 + 24 = 63,9 8A SBC = 33,65 + 24 = 57,65 8A SCO = 27,95 + 24 = 51,95 8A

 $\Delta Uolling = -\left[\frac{63.9 - 75}{100} + \frac{51.95}{2100}\right] \cdot 0.6 = -0.089$

 $\Delta U \delta_{C} \partial_{00} = -\left[\frac{57,65-75}{100} + \frac{51,95}{2\cdot100}\right] \cdot 0,6 = -0,052$

 $\Delta U_{CQ} \partial_{QQ} = -\left[\frac{63.9 - 75}{2 \cdot 100} + \frac{57.65 - 75}{2 \cdot 100} + \frac{51.95}{100}\right] \cdot 0.6 = -0.226$

Макситальная суттарная погрешность будет:

ZAUca = AUOCH + AUDON, 2de

«Мосн — основная погрешность по напряжению ±0,2%;

AUdon - дополнительная погрешность по напряжению - 0,226.

ZAUmax = -0,2 - 0,226 = -0,426

При применении счетников САЗУ и СРЧУ

Sab = 44,5 + 24 = 68,5

Sec = 38,25 + 24 = 60,25

Sea = 30,25 + 24 = 54,25

 $\Delta U_{ab} \partial_{ab} = -\left[\frac{68, 5 - 75}{100} + \frac{54, 25}{2100}\right] \cdot 0, 6 = -0.085$

 $\Delta U_{6c} \partial_{00} = -\left[\frac{60,25-75}{100} + \frac{54,25}{2100}\right] \cdot 0.6 = -0.074$

 $\Delta U \cos \theta \cos z = \left[\frac{68.5 - 75}{2 \cdot 100} + \frac{60.25 - 75}{2 \cdot 100} + \frac{54.25}{100} \right] \quad 0.6 = -0.262$

Максимальная сумітарная погрешность будет

ZAUCA = A UOCH + A Udon

ΣΔUmax = -0,2 - 0,262 = -0,462%

Полученное сочетание сумтарных погрешностей позволяет утверждать, что ТН обеспечивает работу не ниже класса точности 0,5.

Подключение к TH счетчиков расчетного учета линий не должно выводить его из класса точности 1, то - есть должно быть справедливо жеравенство $\sum \Delta U$ тах $\leq 1\%$.

Проверка возможности подключения дополнительной нагрузки от счетчиков линий проводилась тетодот последо-вательных приближений.

При применении на линиях счетчиков типа 336700 количество линий с расчетным учетом, подключаемых к ТН типа НАМИ, помимо общелодстанционной нагрузки составит 6, при этом $\sum \Delta U$ мах = -0.2-0.733 = -0.933%

. Количество пиний с расчетным учетом с счетчиками САЗУ и СРЧУ бущет 4, при этом

Σ ΔUmax = -0,2 - 0,694 = -0,894%.

Еели от шин 6-10 кв подстанции отходят линии только с техническим учетом, то работа TH допустима 6 классе точности 3.

Для ТН типа НАМИ-10 по расчетат дополнительной погрешности возможно подключение (помито общеподстанционной нагрузки) волее 30 линий с техническим учетом при исполь-30 вании счетчиков 396700 или 23 линии с счетчиками САЗУ и СРУУ.

113

10 2 5 Результаты расчетов по числу линий, счетчики которых подключаются по цепят напряжения к шинныт ТР. 6-10 кВ (в дополнении к общеподстанционной нагрузке в сом-ветствующих классах точности), приведены в таблице.

Tαδλυμα 10-1

Виды нагрузок		Tunos TH 6 - 10 KB						
		3H0/16		3HON 10		HAMU 10		
		Knace	точности	KAQCCI	точности	KAGCC A	no4Hoemu	
		1	3	1	3	1	3	
1		2	3	4	5	6	7	
Общеподстан- ционная нагрузка		_	F	_	+	_	H	
Количество	<i>Э</i> Э6700	1	19	12	боле е 30	6	50/ee	
CASA'			11	7	19	4	23	

Количество линий, указанные в графах 2, 4,6, дано при наличии линий с расчетным и техническим учетом (пояснения ст п 10 2.2), в графах 3, 5, 7 — при наличии линий только с техническим учетом.

10 2 6. При установке на шинах 6 кв ТН типа 3 x 3 нол 6 при конкретном проектировании необходимо предуе-татривать установку дополнительного ТН для питания счетчиков линий расчетного учета.

Необходитость применения дополнительного ТН при установке на шинах 3 х 3 нол 10 и нлми 10 решается в конк-ретном проектировании по характеру учета отходящих линий в зависитости от их числа.

Дополнительный ТН для питания счетчиков собирается из двух однофазных ТН типа НОЛ 6-10 (НОМ 6-10), соединенных по схеме открытого треугольника.

Нагрузка на обтотку
$$TH$$
 определяется по выражению: $S_H = S_{aB} \sqrt{\left(\frac{S_{ac}}{S_{aB}}\right)^2 + \frac{S_{ca}}{S_{aB}} + 1}$, где

$$Sab = Sbc = 7,4 BA$$
 $Sca = 3,7 BA$
 $Sab = Sbc = 12 BA$
 $Sca = 6 BA$
 $Sab = Sbc = 6 BA$
 $Sab = Sbc = 12 BA$
 $Sca = 6 BA$

$$S_H = 7,4 \sqrt{1,75} = 9,8 \approx 108A$$

$$S_H = 12\sqrt{1,75} = 15,9 = 168A$$

Для ТН 2×НОЛ (НОМ 6) НОМИНОЛЬНОЯ МОЩНОСТЬ

ОБМОТКИ В КЛОССЕ 1 — 75ВА; К ТН ПОЖНО ПОДКЛЮЧИТЬ

СЧЕТНИКИ ТИПО ЭЭБТЮО — 7 ЛИНИЙ ИЛИ СЧЕТНИКИ ТИПО

СЛЗУ И СРУУ ~ 5 ЛИНИЙ С РОСЧЕТНЫМ УЧЕТОМ.

ДЛЯ TH 2 x HØЛ (HOM)-10 HOMUHQЛЬНОЯ MOWHOCMЬ ОБМОМКИ В KЛQCCE 1 — 150 BA; K TH MOWHO NOGKЛЬЮЧИМЬ СЧЕМЧИКИ <math>MUHQ MUHQ MUHQ

10 3. Потребители цепей вторичных соединений на шинах, как правило, размещаются в шкафах KPY (KPYH) 6-10 KB, и их питание осуществляется от шинок 4 mm^2 , проходящих вдоль всех шкафов секции.

Исключением звляются цепи измерительных приборов и РПН на щите, к которым прокладывается кабель, S нагр для них составляет 32 в A, допустимая потеря по напряжению $\Delta U = 1,5$.

Допустимое сопротивление провода кабеля по потере напряжения для шэтерительных приборов и РПН:

Расчет сечения проводов кабеля проводится по потере напряжения, т к. по надежности действия автотата допуститое сопротивление больше (3,33 > 1,56 0m).

Зависимость сечения кабеля от его длины определяется по выражению:

$$9 = \frac{\ell}{\ell^{-2} np}$$

And ochobnoù obmommu TH
 $9 = \frac{\ell}{57.1.56} = \frac{\ell}{88.92} - \partial_{1}9$ кабелей е медными проводами;

$$q = \frac{\ell}{34,5.1,56} = \frac{\ell}{533,82} = \frac{\partial AA}{\partial A} \times \frac{\partial AB}{\partial B} \times \frac{\partial AB}{\partial B}$$

выбор сечения кабелей при конкретном проектировании производится то графику СМ 5 - 2-5, приложение 5.

Расчет цепей напряжения дополнительной обтотки (как в п. 10.1.1.) для TH6-10 кв на шинах не требуется,
т к соответствующая аптаратура установлена в шкафах
КРУ (КРУН) 6-10 кв.

407-03-48487-N3

25388-01

10 4 TH muno HOM-35 Ha AUHUU 35 KB

ТН предназначается для питания цепей контроля
АПВ по синхронизму и наличию (отсутствию) напряжения

В связи с талой величиной нагрузки ТН, допуститое сопротивление кабеля определяется по надежности действия автомата—

$$Z_{np\ aon} = \frac{1}{2} \frac{3 \mathcal{J}_{HTH}}{6 \mathcal{J}_{pacy}} = \frac{1}{2} \frac{3 100}{6 2,5} = 10 \ Ord$$

3abucumocmb cevenus raters om ero dounts - $q = \frac{\ell}{2 r_{np} d_{on}} = \frac{\ell}{34.5 l0} = \frac{\ell}{345},$

позволяет принять однозначно — для TH типа HOM-35 (на ли HOM-35 кабель 2,5 mm^2 с алюминиевыми жилами

10 5 ТН типа 3 × 3ном-35 на вводе автотрансформаторя Нагрузка основной обтотки на ТН 3 × 3ном=35, включенного на вводе автотрансформатора, незначительна, поэтоту допуститое сопротивление проводов от ТН до нагрузки выбирается по условию обеспечения надежного действия автомата, и не должно превышать 6,70m

Указанное 2 пр доп обеспечивается при прокладке кабелей от TH до щита на расстояние до 570 т при использовании как медных жил сечением 1.5 тм 2 , так и алюминие— вых — 2.5 тм 2 Дополнительная обтотка TH 3×3 ном-35 на вводе 35 кв автотрансформатора имеет то же назначение и ту же нагрузку, что и TH на вводе 6-10 кв автотрансформатора

Необходитые пояснения по определению нагрузок, допуститого сопротивления проводов кабелей, а также данные по зависитости сечения кабелей от длины для вторичных цепей дополнительных обтоток см в п 10 1

10 6 TH 3 × 3 HOM-35 HO WUHOX 35 KB

ТН на шинах 35 кв предназначается для питания цепей защиты, автоматики, изтерения и учета

Нагрузки на ТН 35 кв тожно лодразделить на два вида

- общеподетанционные,
- устройства РЗА и счетчики линий 35 кв К общеподстанционным относятся следующие нагрузки.
 - контроль напряжения на шинах 35 кВ,
 - контроль исправности цепей ТН,
 - -- контроль изоляции,

- Питание устройств автоматической частотной нагрузки секции шин 35 кВ (уточняется при конкретном проектировании),
- вольтметр, показывающий с переключателем, возтожна установка регистрирующего вольттетра,
- ваттпетр, вартетр на выключателе ввода 35 кВ трансформатора, автотрансформатора,
- питание устройства регулиравания напряжения под нагрузкой трансуворматора

К нагрузкам линии относятся панели защиты линий (ПЗ – 4 и др.) и счетчики

10 6 1 Характер общетодстанционной нагрузки и ее распределение в основном повторяет принятые для ТН на
шинах 6-10 кв, отличием является возможность установки
регистрирующего вольттетра

Учитывая изложенное, в соответствии с п 102 в части расчета нагрузок, для основной обтотки ТН на шинах 35 кв принимается следующее распределение общеподстанционной нагрузки

$$S_{H\phi max} = S_{H\phi a} = \frac{S_{cq}}{\sqrt{3}} \sqrt{\left(\frac{S_{a}B}{S_{cq}}\right)^2 + \frac{S_{a}B}{S_{cq}} + 1} + S_{\phi} =$$

$$= \frac{38}{\sqrt{3}} \sqrt{\left(\frac{40}{38}\right)^2 + \frac{40}{38} + 1} + 15 = 54,1BA - \partial_{1}A \text{ evem-}$$

$$= \frac{41}{\sqrt{3}} \sqrt{\left(\frac{45}{38}\right)^2 + \frac{45}{41} + 1} + 15 = 58BA - \partial_{1}A \text{ evem-}$$

$$S_{H\phi max} = \frac{41}{\sqrt{3}} \sqrt{\left(\frac{45}{41}\right)^2 + \frac{45}{41} + 1} + 15 = 58BA - \partial_{1}A \text{ evem-}$$

$$= \frac{41}{\sqrt{3}} \sqrt{\left(\frac{45}{41}\right)^2 + \frac{45}{41} + 1} + 15 = 58BA - \partial_{1}A \text{ evem-}$$

$$= \frac{41}{\sqrt{3}} \sqrt{\left(\frac{45}{41}\right)^2 + \frac{45}{41} + 1} + 15 = 58BA - \partial_{1}A \text{ evem-}$$

10 в 2 Согласно техническим данным, ТН типа 3×3нот-35 работает в классе точности 1 при нагрузке до 250 вА и в классе 3 при нагрузке 600 вА

Разница тежду тощностью ТН и общеподстанционной нагрузкой на шинах 35 кв предназначается для питания цепи напряжения линий 315 кв

Общая нагрузка от одной линии на фазу складывается из потребления счетчиков активной и реактивной энергии и потребления устройств защиты S& HAZP NUHUU = 12 + 60 = 72 BA

Sф нагр линии = 12 + 35 = 478A счетчики + направленная защита

Sep Harp MUHUU = 12BA

При конкретном праектировании определяются устройства РЗА, измерений и вид учета на линиях

Если на линиях установлены счетчики расчетного учета, то потребление нагрузки, подключенной к вторичным цепям ТН, не должно превосходить величину его мощности в классе 1, то - есть 250 вА При техническом учете на линиях ТН тожет работать в классе точности 3 с нагрузкой до 600 вА в режите резервирования допускается переход ТН в более низкий класс точности в связи с кратковретенно-стью указанного режима

10 6 3 Допуститое сопротивление кабеля по падению напряжения при расчетном учете на линиях будет определяться как —

при техническом учете -

Допуститое сопротивление па надежной равоте ав-

momama

$$Z_{np} \partial O = \sqrt{\left(\frac{\sqrt{3}^{2} U_{NTM}}{12 J_{Npqqq}}\right)^{2} - \chi_{TM}^{2}} = \sqrt{\left(\frac{\sqrt{3}^{2} 100}{12 10}\right)^{2} - 0.167^{2}} = 0.820m$$

10 6 4 Расчет сечения проводов кабеля основной обтотк! ТН проводится с 2 пр доп па падению напряжения

При прокладке от ТН до щито общего кавеля для устройств релейной защиты и автотатики (РЗА), изтерений (ИЗМ), счетчиков (СZ), сечение проводов определяется по выражениям

$$\varphi = \frac{\ell}{r^2 n \rho \partial o n} ,$$

 $q = \frac{\ell}{34.5 \ 0.067} = \frac{\ell}{2.3}$ npu pacyemnom yyeme na Auhuax,

$$q = \frac{\ell}{345 \ 0.2} = \frac{\ell}{6.9}$$
 NPU MEXHUYECKOM YYEME HO AUHUAK

Для уменьшения сечения кабеля при расчетном учете на линиях целесообіразно проложить отдельный кабель вля счетчиков, при этам

— для кабеля счентчиков Z_{пр доп} = <u>0.5 100</u> = 0,33 0м

$$9 = \frac{\ell}{345 \ 0.33} = \frac{\ell}{1114}$$

— для кабеля ремейной защиты и измерения Z_{пр доп} = <u>1,5 100</u> = 0,25 Ом

$$9 = \frac{\ell}{345 \ 0.25} = \frac{\ell}{86}$$

Выбор сечения кабелей при конкретном проектировании произбодится по графикам СМ 5-2-8-9 приложения 5

Если на линиях 35 кв установлены простые защиты, не требующие питания по цепям напряжения, то кабель прокладывается только для цепей Общеподстанционной нагрузки и счетчиков

При этом, если на шинах 35 к в отсутствуют линии с расчетным учетом и сложными защитами, то 2 пр доп может выть определено по фактической нагрузке ТН - 35, которая в данном случае не превысит 100 - 120 в А

$$9 = \frac{\ell}{r \cdot r_{np \, \partial on}} = \frac{\ell}{34 \cdot 5 \cdot 0417} = \frac{\ell}{14 \cdot 3}$$

10 6 5 Допуститое сотротивление кабеля дополнительной обтотки принимается по надежности действия автотата, из-за незначительной нагрузки в цепи 3Uo

Расчет производитея по выражению

выбор сечения кабелей при конкретном проектировании производится по графику СМ 5 - 2-10 приложения 5 107 ТН на линиях 110-220 кВ на подстанциях с тости ковыти схетати предназначается для питания цепей защиты автотатики, изтерения и учета

10 7 1 Нагрузки на ТН приведены в таблице см2-2 приложения 2

Расчет нагрузок на ТН выполнен для подстанций на постояннот и выпрятленном оперативном таке с притенением стабилизированного блока питания БЛНС-2

Суммарные нагрузки определены в режите равоты
ТН на одну линию, а также при резервировании нагрузки второй линии путем увеличения нагрузки на один ТН - вдвое

10 7 2 Допуститые сопротивления проводов кабелей основной обтотки ТН определялись для следующих видов учета на линиях

- расчетного с $\Delta U = 0.25\%$ (для пежсистетных линий), $\Delta U = 0.5\%$,
- --- технического c aU = 1,5 %.

Расчет допустимых сопротивлений по all и данные по допустимым сопротивлениям проводов кабелей по надежности работы автоматов приведены в таблице СМ4-1 приложения 4

1073 Расчет сечений кабелей вторичных цепей напряжения основной обтотки ТН 110-220 кв проведен по допуститыт сопротивлениям проводов, выбранным в составе данных таблицы ТСМ 4-1 по падению напряжения и по надежности работы автотатов

в связи с незначительными нагрузками на ТН а также небольшими размерами щитового помещения, сечения кабелей по щиту между панелью ввода цепей напряжения и соответствующими панелями — потребителями релейной защиты, автомотики, измерений, счетчиков не выходят за пределы 2,5 мм² по алюминию для ПС на постоянном оперативном таке

ДЛЯ ПС на выпрятленном оперативном токе в блокоми БПНС - 2 при наличии на линиях расчетного учета требуется прокладка отдельного кабеля до панели счетчиков
При организации на линиях технического учета от ТН
до панели ввода цепей напряжения используется общий
кабель

В таблице СМ 5 - 1 - 1 и графиках СМ 5-2 11-14 даны забиситости сечения прободов от длины кабелей

При этом в графиках 9,1 = f (£1) приведены расчетные зависимости се чения кабелей от длины обозначенные тонкими линиями, и выбранные сечения силовых кабелей, показанные утолщенными линиями

в графиках $q_{,2} = f(\ell 2)$ приведена зависимость сечения (провода) от длины кабелей по щиту

На основании указанных графиков при конкретном проектировании прошзводится выбор сечения кабеля с учетом расстояний по конкретному объекту

10 7 4 Допуститае сопротивление кабеля дополнительной обтотки принитается по надежности действия автотата, из-за незначительной нагрузки в цепи ЗИо
Расчет зависитости сечения провода кабеля от длины и
график ст СМ5-1-2 и СМ5-2-17 приложения 5

10 8 ТН на шинах 110 - 220 кв предназначается для титания цепей напряжения устройств защиты автоматики, измерений, учета на

- шинах 110 220 кВ,
- отходящих линия¹х 110 220 кВ
- --- стороны 110 22'0 кВ силовых трансформаторов, овтотрансформаторов

10 8 1 Нагрузки на ТН приведены в тоблице СМ 2-3 приложения 2

Расчет нагрузак выполнен для аднаго из видов подстанций с учетом тотребления по цепям напряжения на один ТН 110—220 кв. от устройств РЗА, изтерений, учета 6-ти линий, одного трансфортаторного ввода 110—220 кв и соответствующих устройств на шинах Общая нагрузка на ТН составляет порядка 420 8А,

что обеспечивает работу ТН в классе точности 1 Для определения допуститых сопротивлений кабелей, а также требуютых сечений принята полная

мощность TH в классе точности 1-600 вл Указанное целесофбразно в связи с возтожными рас-ширениями PY 110-220 кв

Распределение 600 ВА тежду нагрузкати РЗА, изтерительныти приборати и счетчикати осуществлено пропорционально полученным соотношеният. При нагрузке 420 ВА В режите резервирования на ТН одной системы шин подключается двойная нагрузка (от двух систем шин)

При этом трансформатор будет работать в клоссе точности 3 (Shom = 1200 BA)

в связи с непродолжительностью такого режина, это считается допуститым

10 8 2 Допуститые сопротивления проводов кабелей опре-

- расчетного c aU = 0,5 %
- технического c AU = 1,5 %

Данные по допуститым сопротивлениям проводов кабелей приведены в таблице СМ 4 - 2

При подключении на шины 110 - 220 кв межеистет. Ных линий потребуется установка дополнительного ТН, работающего в классе точности не ниже 0,5 Общая нагрузка на указанный ТН не должна быть больше 400 в А

Определение допуститых сопротивлений для кабелей от дополнительного TH к счетчикам класса 0,5
(для $\Delta U = 0,25$ при межсистемном участке) см в л 10 7 2 и
таблице CM4-1 соответственно

10 8 3 Расчет сечений кабелей цепей напряжения основной абтотки ТН выполнен по принципат, изложенныт в п 10 7 3 по данным таблицы СМ 4 - 2 приложения 4

В связи со значительной нагрузкой на ТН шин 110-220 кв, при расстоянии от ячейки ТН РУ 110-220 кв до щита более 150 т сечение общего кабеля (РЗА и изтерений) будет превышать 50 тт² Учитывая сложность подключения силового кабеля сечениет более 50 тт² к зажитат ТН, следует учитывать соответствующую затену кабеля на участке между зажитати ТН и ящикот зажитов — как пропорциональное удлинение кабеля

В таблице СМ 5-1-3 и графиках СМ-5-2-15-16-18 приложения 5 даны зависитости сечения проводов от длины кабелей, по которым производится выбор сечений при конкретном проектировании

Обозначения расчетных и принятых сечений кабелей выполнены аналогично п 873

10 & 4 Допуститые сопротивления кабеля в цепях дополнительных обтоток ТН 110 - 220 кв на шинах и линиях однозначны и даны в таблицах СМ 4-2 и СМ 4-1 соответственно Таблица расчета сечения провода кабеля и график в соответствии с п 1074 приведены в приложении 5 (СМ 5-1-3 и СМ 5-2-17) 10 9 ТН на линиях 330—750 кв предназначены для питания цепей защиты, автоматики, измерения и учета

109 1 Нагрузки на ТН приведены в таблице СМ 2-4 приложения 2

Расчет нагрузак на ТН выполнен для потребления по цепят напряжения от устройств одной линии, а для режима резервирования со схетами распредустройств "Треугольник", "Четырехугольник" приведена суттарная нагрузка от двух линий

10 9 2 Допуститые стпротивления проводов кабелей основной обтотки ТН отределялись для тех же видов учета с допуститыми потерями по напряжению, как указано в п 1072

Расчет допустиных сопротивлений по AU и данные по допустиным сопрютивлениям проводов кабелей по надежности работы автютатов приведены в тавлице СМ4-3

В данном елучае от ТН на щит направляются два кабеля — один для счетчиков, второй общий для устройств защиты, автотатики (РЗА) и устройств изтерительных приборов, преобразователей и пр (изт)

При техническот учете на линиях от ТН да щита прокладывается один общий кабель (ДИ = 15%) на панель вбода, от которой кабельными перемычками подаются цепи на панели защиты, автоматики, управления, счетчиков и т д

Расчет сечений кабелей основной обтотки ТН приведен в таблице СМ 5-1-44, графики зависитости сечений от длины кабелей СМ 5-2°-19-21 даны в приложении 5

10 9 4 Допуститое сопрютивление кабеля дополнительной Обтотки принимается по надежности действия автомата из-за незначительной нагрузки в цепи 300

Расчет зависитости сечения провода кабеля от Олины и график ст СМ55-1-6 и СМ5-2-24 приложения 5

10. 10. ТН на шинах 330-750 кв предназначены для питания цепей напряжения устройств РЗА и изтерений на шинах, а также для соответствующих устройств на лениях 330-750 кв в режиме резервирования

10.10.1. Нагрузки на ТН приведены в тавлице СМ 2-5 приложения 2.

Расчет нагрузок выполнен для потребителей РЗА и измерений на шинах, а также устройств РЗА, изтрений и счетчиков, установленных на одной из резервных AUHUŪ,

10.10.2. Допустимые сопротивления проводов кабелей основной обтотки ТН определялись по потере напряжения раздельно для кабеля к панели счетчиков (по $\Delta U = 0,25\%$ U DU = 0,5%) U ANA KABENA YEMPOÜEMB P3A, USMEPEHUÜ, Πρεοδρασοδαπελεῦ α θρ (πο Δ<math>U = 1,5%) πρυ μαλύμου μα ρεσεμвируемой линии расчетного учета энергии.

При техническом учете на резервируемой линия donyemumoe conportubnetue onpeden sлось по $\Delta U = 1,5%$ для οδщετο καδεΛΑ (Ρ3Α, изм, сч).

10.10.3, Расчет сечений кабелей вторичных целей насряжения основной обмотки ТН 330-750 кв проведен по падениям напряжения в кабелях, т к. допустимые сопротивления по ДИ получились менее допуститых сопротивлений проводов по надежной работе автотатав.

Β παδλυμε CM 5-1-5 υ εραφυκαχ CM 5-2-22,23; СМ 5 - 2 - 25, 26, приложения 5 даны зависимости сечения проводов от длины кабелей, по которым производится выбор сечений при конкретном проектировании.

Обозначения в графиках расчетных и принятых сечений кабелей, прокладываемых от РУ до щита выполнены чналогично п 8.7.3.

10.10.4 Допуститые сопротивления кабеля в цепях дополнительных обтоток ТН 330 - 750 кв на линиях и шинах однозначны и приведены в таблицах СМ 4-3 и СМ 4 ~ 4 соответственна.

Таблица расчета сечения кабеля и график приведены в приложении 5 (СМ 5-1-6 и СМ 5-2-24).

10 11. в качестве справочного материала по требовани-AM 1143 (11.11. 1.5.15; 1.5.19; 1.5.44), npedaABAREMbim K KAGCсат точности работы ТН , устройств учета и допускаемым падениям напряжения ДИ, составлена παδλυμα.

Tabauya 10-2

8 ua u	oδъeκnη	Knacc	Aonyemu - moie nome.				
94	e m a	TH	Счетчиков	ри напра- жения в кабелях %			
Расчетны <u>й</u>	На тежсистетных линиях 1220 кВ и выше	0,5	0,5 (0,7)*	0,25			
yvem	На межсистетных Линиях 110 кв	9,5	1	0,23			
	На прочих объек- тах учета	1	2	0,5			
Технический	На линиях с двухсторюнним питанием 220кв и выше	допускает-	1				
учет	На прючих объектах учета	eя ниже 1	2	1,5			
*) Значение, указанное в скавках, относится к итпорти- Ругтым счетникам							

11 Nogchehus K cxemam

Разработка схем трансформаторов напряжения 6-750 кв и схем организации цепей напряжения выполнена на основании технических решений, перечисленных в разделе 2 настоящей ПЗ

Схемные решения, в основном, реализованы в действующих в настоящее время типовых полных ехемах по подстанциям соответствующего типо в связи с указанным в данных материалах не приводится описание работы схем

В принципиальных схетах содержится информация по обращению к графикам, разработанным в составе данных типо-вых татериалов и позволяющим подобрать необходитое сечение и тип кабельных перемычек между распредустройством соответ-ствующего напряжения и щитом, а также по щиту, без выполнения расчетов

Схемные решения по организации резервирования питания цепи нагрузки трансфортаторов напряжения, присоединенных к линиям электропередач 110-750 кв соответствуют требованиям п 4 16 Сборника директивных материалов Глав-техуправления Минэнерго СССР, вып 1985 г Пояснения по принципам резервирования даны в разделе 4 настоящей ПЗ

В указанном разделе приведены также описания принципов резервирования цепей напряжения нагрузки, подклю-ченной к ТН на шинах

Для автотатического перевода питания цепей напряжения автотрансфортаторов, трансфортаторов со схетати РУ "Треугольник", "Четырехугольник", "Полутарная", потито переключателя, используются реле переключения цепей напряжения

Разрабатка цепей автоматического перевода с притенением реле переключения выполняется в составе типовых полных схем по определенным видам подстанций и распредустройств

12 Технико - экономические обоснования

Разработанные типовые материалы для проектирования содержат пояснения в части основных технических решений, принятых для схем вторичных цепей трансформаторов напряжения (TH) с учетом особенностей эксплуатации последних, а также определеный набор расчетных и справочных документов в виде тоблиц и графиков в работе приведены принципиальные схемы вторичных цепей ТН 6-750 кв, установленных на подстанциях энергосистем и схемы организации цепей напряжения для типовых схем РУ.

Типовые татериалы для проектирования предус**татривают.** 12 1 Проведение выбора автот**ат**ов для защиты вторччных

12 1 Пробедение обноора автоматов оля защиты чторичтах цепей трансформаторов напряжения на основе выпалненных рас-четов по таблице СМЗ ((Приложение 3)

12 2 Определение сечений проводов кабелей и выбор соответствующих марок кабелей без выполнения расчетов по графикам зависимости сечения от длины кабелей g = f(t).

Графики разработаны для втаричных цепей трансформаторов напряжений (ТН,) применительно к типовым ехемам распределительных устройств 6-750 кв и предусматривают подключение к ТН суммарнюй нагрузки, по характеру и значениям наиболее часто встречающейся в практике проектирования

Графики выполніены на основании расчетов, приведенных в таблицах СМ 2 (Прилож ение 2), СМ 4 (Приложение 4), СМ 5 (Приложение 5) 12 3 Описание методики проведения расчетов вторичных

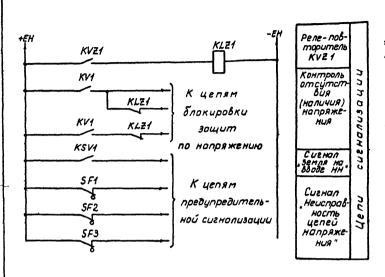
12 3 Описание методики пробедения расчетов вторичных чепей ТН

12 4 Поленение к методике расчета симморных погречи-

12 4 Пояснение к методике расчета суммарных погрешя—
ностей ТН типа НАМИ-10 и приведение примера определения
погрешностей для наиболее характерных распределений нагругок,
включастых на обтотку указанного ТН

Uспользование при конкретном проектировании спра - вочных материалов, обоснованных проведенными расчетами, обеспечи-вает повышение

- качества проектырования,
- надежности работы вторичных цепей трансфортаторов напряжения,


а также сокращение

- расходов цветных теталлов в результате уточненных данных по требуетым величинам сечений проводов кабелей,
- трудозатрат при проектировании, требовавшихся ранее на проведение расчетьв по определению сечений кабелей во вторичных цепях ТН по каждату конкретному объекту.

Типовые принципиамьные схеты ТН и организации вторичных цепей напряжения служат основой для разработки типовых полных схет по различным видам подстанций.

Перечисленное выше подтверждает технико-экономическую целесообразность разработки и внедрения типовых татериалов для проектирования "Схеты вторичных цепей трансформаторов напряжения 6-10 кв и выше"

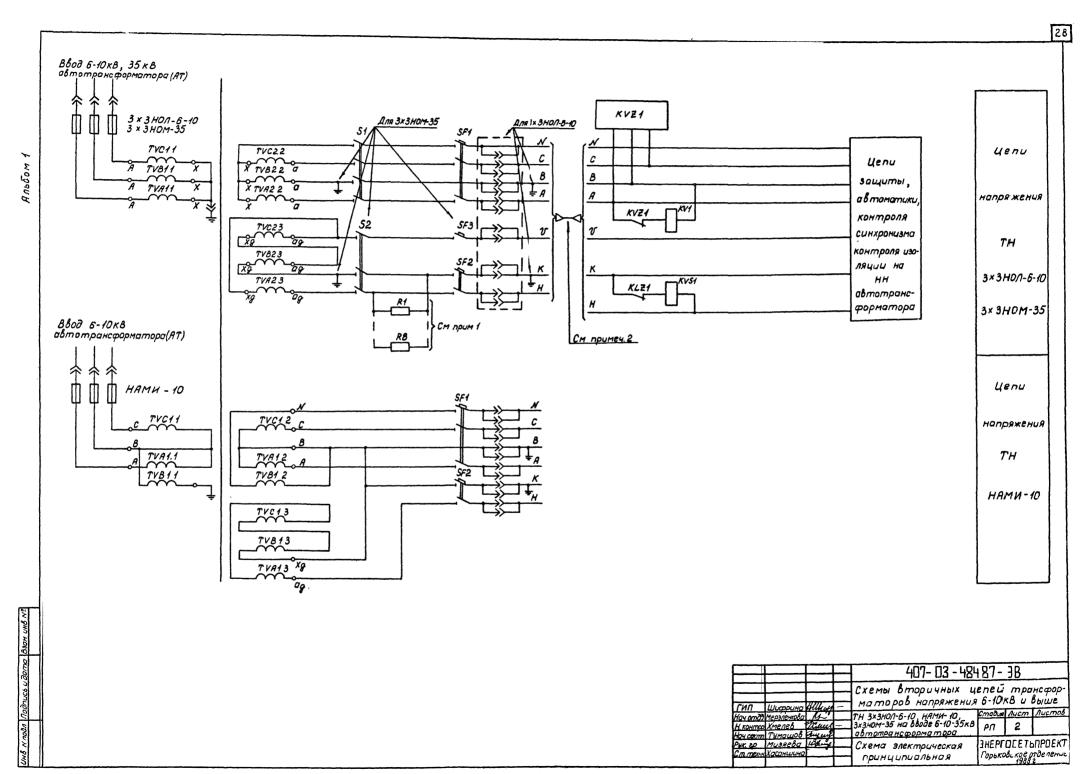
407-03-48487-N3

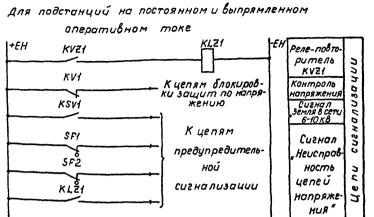
Примечания.

1 Необходимость установки резисторов R1+R8 в цепях ТН типа 3×3H0Л6-1С, 3×3H0М-35 для защиты от перенапряжений при Сімопроизвольных смещениях ней-трали уточняется при эксплуатоции Для ТН типа НЯМИ установка резисторов не требуется 2. Сечение кабелей, прокладываемых от шкафа КРУ(КРУН) 6-10кв кщиту для ТН 6-10кв и от шкафа ТН 35кв к щиту, пределяется при конкретном

3 Расположение сппаратуры для ТН 6-10 кВ типа 3×3нол 6-10 и НАТИ-10 уточняется при разработке полных схем.

см примечание 5.


проектировании по данным графиков СМ5-2-1,2,3;

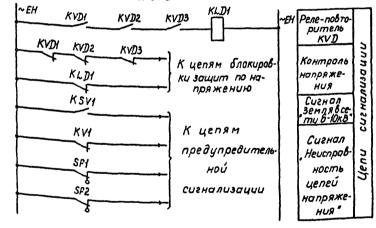

ч Тип рубильников определяется при разработке полных схем. Перечень оппаратуры

			.				
ycma-	/1033UUUUH HO2° 0503- HO44EHUE NO CC X 8 ME	Наименование	Mun	техни характ ти	терис-	Кол	Приме- чание
		сении оперативного	220	#0			
3 10	K'LE1	РЕЛЕ Промежиточное	PN15-14	220	110	1	
KPY (KPYH) YNDA BAE- YNDA BAE- YNDAMEH 3)	KISVI	Реле Напряжения	PH-153/60A			1	
15308		THE					
300	K:V1	Реле напряжения	PH-154/160			1	
- 2 μς - 2 μς - 3 μς - 3 μς - 3 κη -	KWZI	фильтр-реле напряже- ния обратной последоват	PHP-1M			1	
更更							
	SSF1	выключатель	AN505-3MT	JHP = Jome = BK =	2,5A 3,5Унр 2П	1	
					2.2.2		100
шкаф ру (КРУН) 4 6-10 КВ	SF2 Выключатель	Вык лючатель	AN506-2MT	BK=		1	ANA 3x 3HON 6-10
KPY (J.,			JHO =	3,50HP	1	ДЛЯ НАМИ-10
* 6	R'1-R8	Pesuemop	C5-35875	200 Om	,±5%	8	OPUMBY 1
	.51	Рибильник	 	 		+	См
	:52	Рубильник	 	 		1	npumey 4
40 % 70 %	SF1	Выключатель	AN 50 6-3MT	JH.ρ. = Jome = 8K =	3,5 JHP	2 1	
WKOG 30×UMOB TH 35 KB	1 (52)	Выключатель	AN505-2MT	JHP = Jome = BK =	10A 3,5 JH P 2N	1	используется тепловой расцепи - тель
	SF3	Вык лючатель	ANSO 6-2MT	JH P = JOME = BK =	:3,55HP	, 1	

				407-03-484	.87 -	3B	
run	Шифрина	(6/]/m	-	Схемы вторичных це маторов напряжения			
	М1ерзленково			TH 3/3HDN-6-10 HAMU-10	Стодия	nucm	Листов
Н контр	Хімел ев Т. Умашов	Drue		ТН 3×3НОЛ-6-1D, НАМИ-1D, 3×3НОМ-35 На 600де6-10-35КВ 08 тотрансформатора	РΠ	1	
PYK 20		ichnig		Схема электрическая	ЭНЕРГ	DCETE	NPOEKT
	30000	1024		принципиальная	Гороко	1988	тделение 2

Япьбом

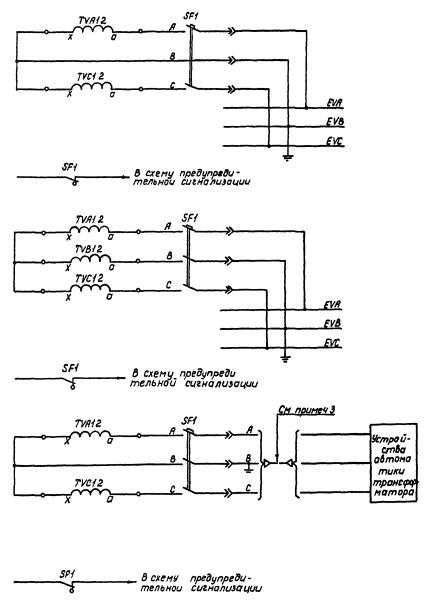
Примечания:

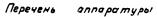

- 1 Необходимость утановки резисторов R1+R8 в цепях ТН типа 3×3НОЛ-6-10 для защиты от перенапряжений 1ри самопроизвольных смещениях нейтрали уточняется при эксплуатации. Для ТН типа НАМИ-10 установка резисторов не требуется
- 2 Cevenue Kabens CM приложение 5, график CM 5-2-5.
- 3. Яппаратура и шинки предустатриваются при установке на зиниях 6-10к8 защит типа 33П-1
- 4 В маркировку шин 6-10 кВ в место "..." вводятся буквы, обозначающи уровень напряжения:
 для 10кВ-К, для якВ-Р

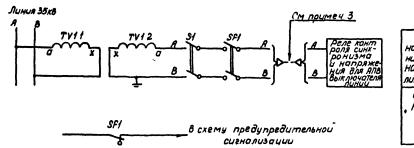
TexHUYECKAR Место Поэшци-онн сое уста - обозынач новки посжеме Примеч характерис mun Наименование 220 110 При напряжении оперативного тока, в 3-365 PIVI Вольтметр ... KB ULUM UNDOBNEHUS ΠΜΟΦ45-H2222/I-A1 SIN1 Переключатель 220 110 Pene PN16-14 KLZI промежуточное PN16-74 ГГС на пере ~ 220 менном трансформатора Шинах 6-10кв KL. D1 PENE HYMOYHOE PN16 -74 ~ 220 moke KSIVI PERE WHURE
KSIVI PERE HURE
KIVI PERE HURE
KIVI PERE HURE
KWZI OSPAMHOU TO CHEOLOMICHE PH 153/60A PH154/160 PH P-1M 100B ПС на пере КИДУ - РЕЛЕ КУДЗ напряжения PH 154/160 3 C5-35875 200 0m ± 5% 8 CM ABUM R1' R8 Pesuemop SINI 17MOΦ45-334466/1-427 1 Переключатель 10 KB JHP = 2,5 A AN506-3MT JOIC = 3,5 JH SIF1 Выключа тель BK = 211 JHP = 1,6 A Jome = 3,5 JHP HAMH-10 WKOO KPY(KPYH) HONDAREHUR CM SIF2 AN506-3MT BK = 211 DOUM 3 Выключате пь JHP = 2,5 A 3×3H016-10 Jome = 357H p 8K = 211 NOUM 3 Блок питания Вспомогательное устройство UIG1 5NH-#/2 CM npum 3 841

аппаратуры

Перечень

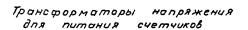

Для	подста нций	HO	пере менном	оператив но м			
mo KR							

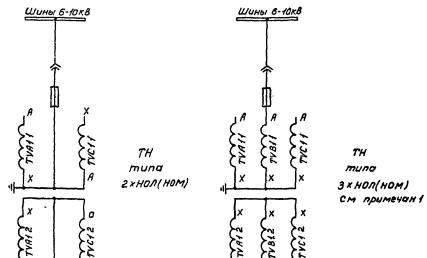

			407-03-48487- <u>3</u> 8			
ГиП	ШЈифрина	HII.	 Схемы вторичных це маторов напряжения	6-10 K	But	ыше
Ноч о тд Н кон тр	Мерэленкова	trues	Трансформатор напряжения НЯМИ-10, 3×3 НОЛ 6-10 На шинах	Стадия Р(1	лист З	Листов
PUK 20		No.	Схема электрическая			NPOEKT Proenue



Трансфор- мітор ногряже- лия 2×ЮЛ (НОМ) іля пипания счепчиков	кпнажедирн попряжения
Сценал "Нисправ ность ТН"	,
Тренсфор- мятор нагряже- гия 3 х чол(ном) 7 ля п итония сч тчи- гов	Цепи напряжения
Ενεκαπ "Ητυεπροδ καπιδ Εί	
Трингфор- метор нагряже- гия 2×10Л(нам) на вгоде 6 10кв тринсфор- метора	Цепи напряжения
Cue Hon Hwenpab Hoems T	

yema	NOBULL ODOBHION DO CXEMIE	Наименование	Tun	Тех ническая характерис тика	Kan	Примечан
WKOGO KPY (KPYH) 6-10KB	SF1	Выключатель	AN506-2MT	Jnp = 25A Jomc = 3,5Jnp. BK = 2N	з	Puc 1-3
74 UMOB / 35KB	SFI	выключатель	AN 506-2MT	JHP=2,5A Jamc=3,5 JHP BK=2N	1	Puc 4
30x 7H	54	РУбиль ник				CM HOUME-

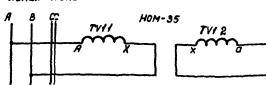



Цепш напряже-ния Т.Н ном 35 линиц 35кВ Cushav Неисправ -ность

TH"

				407-03-48487-38				
				Схемы вторичных ц. маторов напряжения	mpar	сфор		
ГИП	Шуфрина	Allen,						
	М1еголенкова			TH 6 10KB DAR CHEMYUKOB,	Стадия	Aucm	Nucmob	
		Louell		TH HO 600DE 6-1UKB GOMO MPOHCOPOPMAMQLO,	PA	5	1	
lau.cekt	ттумашов .	lunces	_	TH HO NUHUU 35 KB			L	
				Схема электрическая	JAHEDI	OCETI	שהטיגד	
Інжене р	Eroposa	My	-					
Нач отд Н кантр Нач.сект Рук го	<u>М1еруленкова</u>	As wells		тн на вводе 5-10кв авто трансформатора, тн на линии 35кв Схема электрическая	3HEDL	5	מואט ביו	

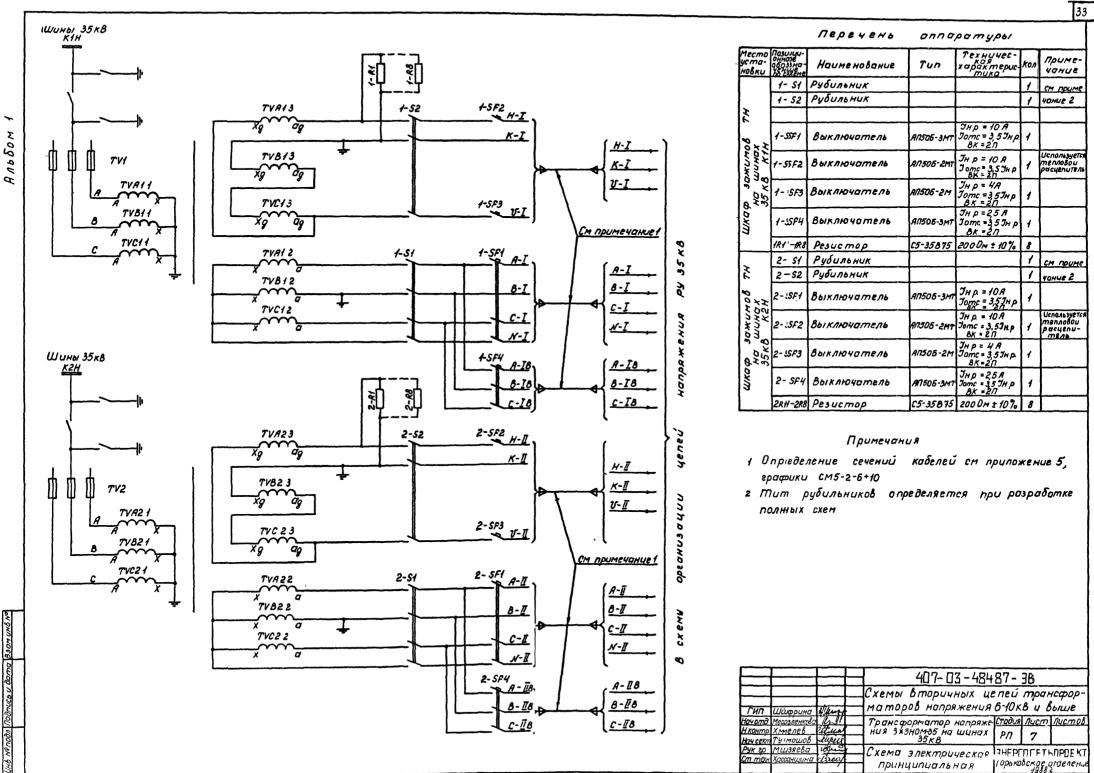
AABSOM 1

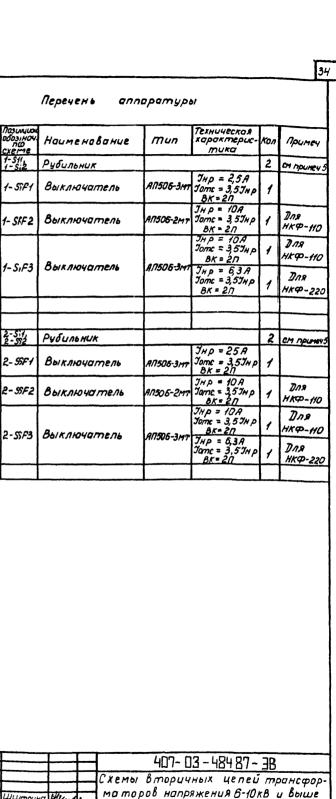


вонсформатор напряжения Ha BBODE 6-10KB трансформатора

Трансформатор напряжения HO NUHUU 35 KB

Примечания


1 Ucnonesobatue donontumenenes TH 6-10KB 2×HON-6-10 unu 3 × НОЛ-6-10 для питания счетников линий 6-10 кв с расчетным учетом определяется при конкретном проектировании в зависимости от числа линий, счетники которых подклю-YOUTHOR K LIEDAM BODORHUMENHUK TH DO MOROLILE


TUROMEN K	HENNM DE	ושתיישתייחפי	NOHOIX IM,	ונטסודו פרו	1446
ТН 6-10к8 для питания счетчиков	HAN BEAU	ьная расчет нина нагруз зу от счет- ий линии	C 000/100	Номинальноя мощность ТН на фазу	
CHEITIYUKUO		CHEMYUKU CA3Y, CP4Y	29 6700	CHEMYUKU CR3V, CP4Y	
2×HON(HOM)-6	42	~ 20	~6	~4	75
2×HON(HOM)-10	~ 13		12	8	150
3×HON(HOM)-6	7.11	12	10	6	75
3 × HON(HOM)-10	× HON(HOM)-10 7,4		20	12	150

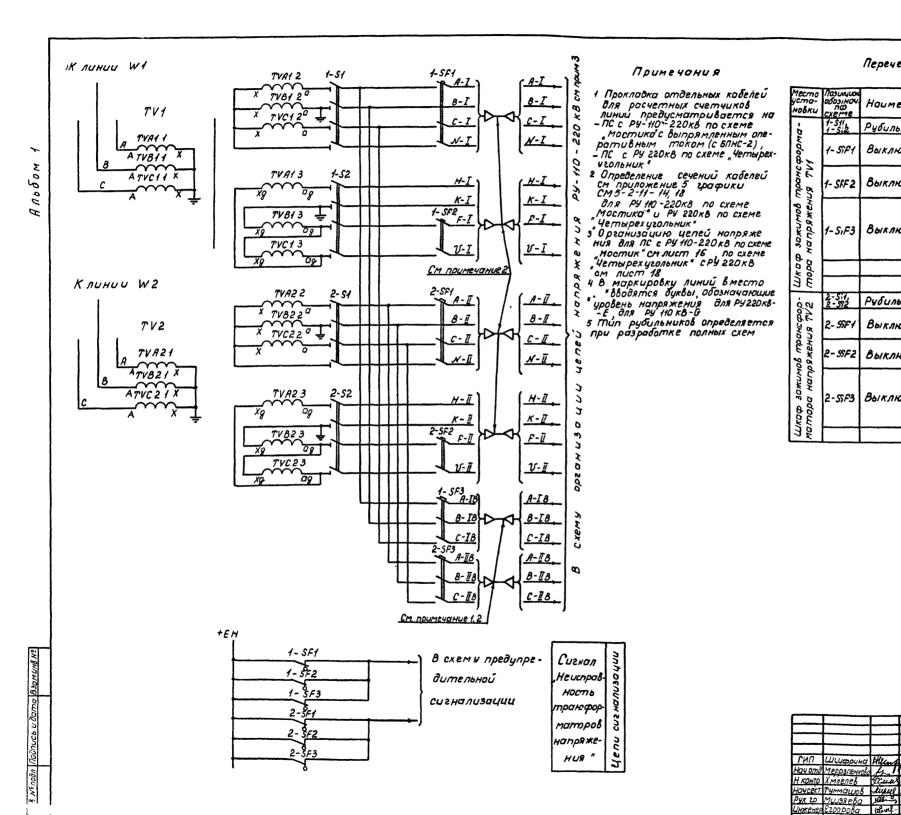
- г Шинки трансформаторов напряжения 6-10кв для питания счетчиков линий должны прокладываться отдельно от шинок напряжения основных (шинных) ТН 6-10КВ
- 3 Сечение кобеля см приложение 5, график СМ5-2-4
- ч Тип рубильников определяется при разработке полных схем

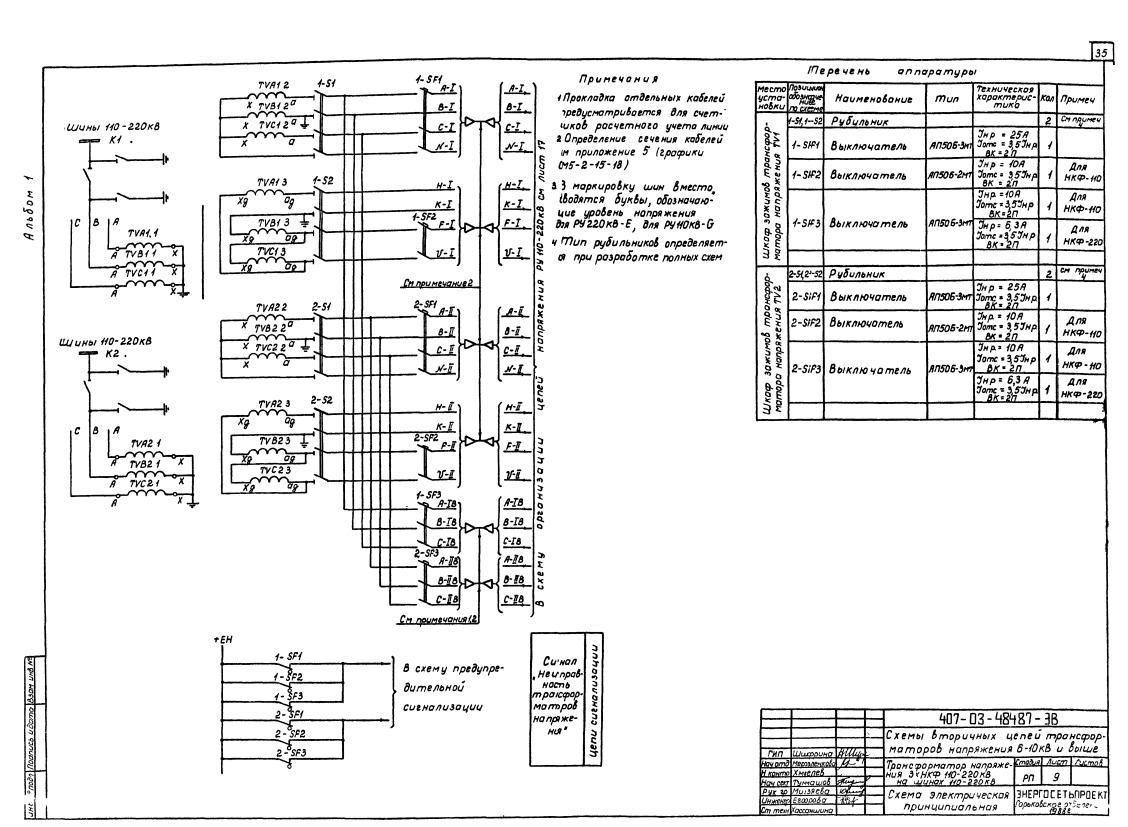
			407-03-484	.87-	3B	
Сил	Шіцфрцна	Hira	Схемы вторичных це маторов напряжения			
Ноч отд Н контр	Мегрэленкова	fy Il	ТН 6-10кв для счетчиков, ТН на вводе 6-10кв трансфор Матора ТН на линии 35кв			
PYK 2D	М <u>ьизяева</u> Ужева Хохан ична	When	Схема электрическая	3HEPT Popokal	DICETI	OPDEKT General

				Схемы отпоричных цепен трансфор-				
	Шіцфрина			ма торов напряжения 6-10кв и выше				
	Мегрэленкова			TH 6-10KB DAR CHEM YUKOB, Emades Aucm Aucmob				
LCENT	Тузмашов			ТН 6-10КВ для счетчиков, Стады Лист Листов ТН на вваде 6-10КВ трансфор матора, ТН на Линии 35КВ РЛ 6				
,	М <u>ьизяева</u> Ужен ична Хожан ична	May Cacal		Схема электрическая ЗНЕРГО СЕТЬПРОЕКТ ПРИНЦИПИО ЛЬ НА Я ГОРЬКОВСКОЕ 1988 Г				

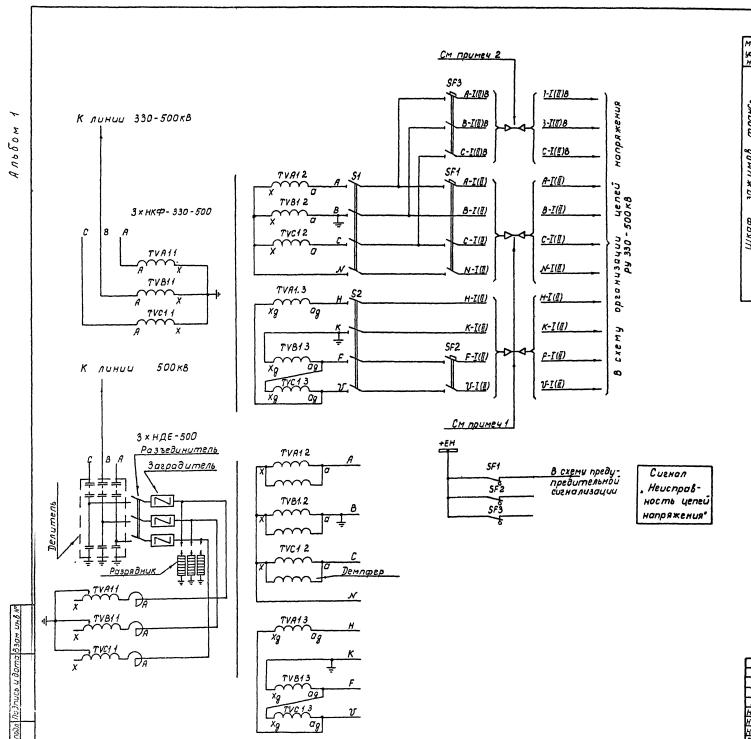
Транссрорматор напряжения Стадля Ликт Листов

РΠ

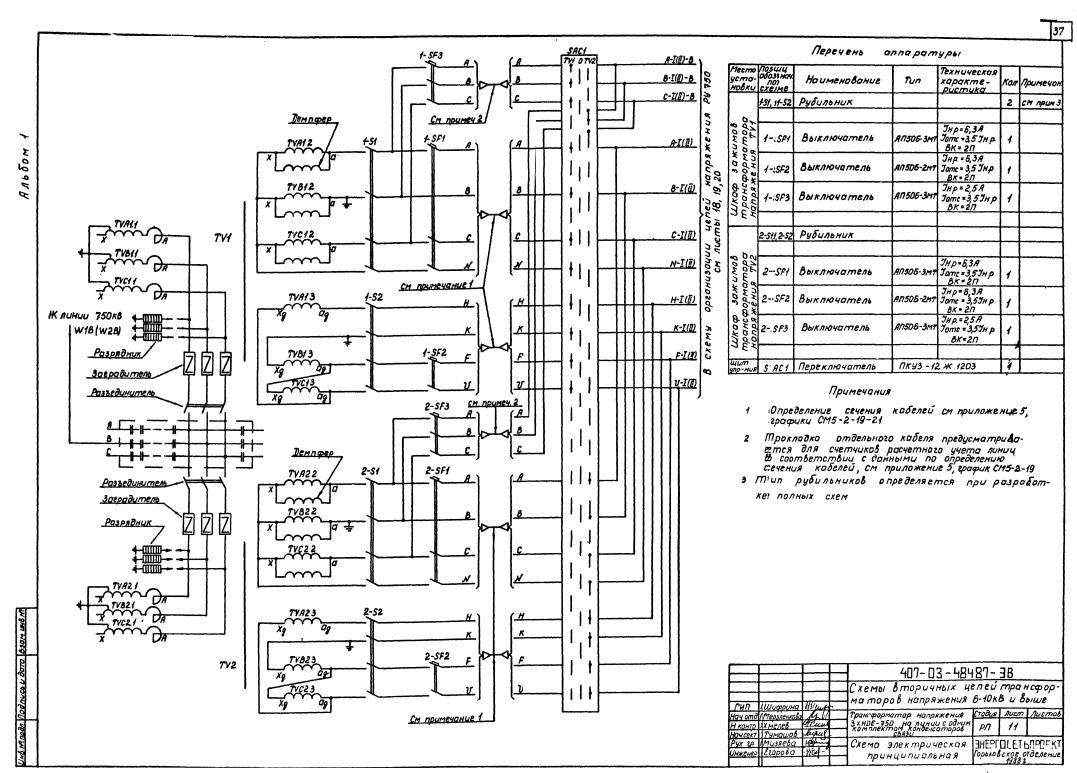

8


ЗНЕРГОСЕТЬПРОЕКТ Горьковское отделение 1988 2

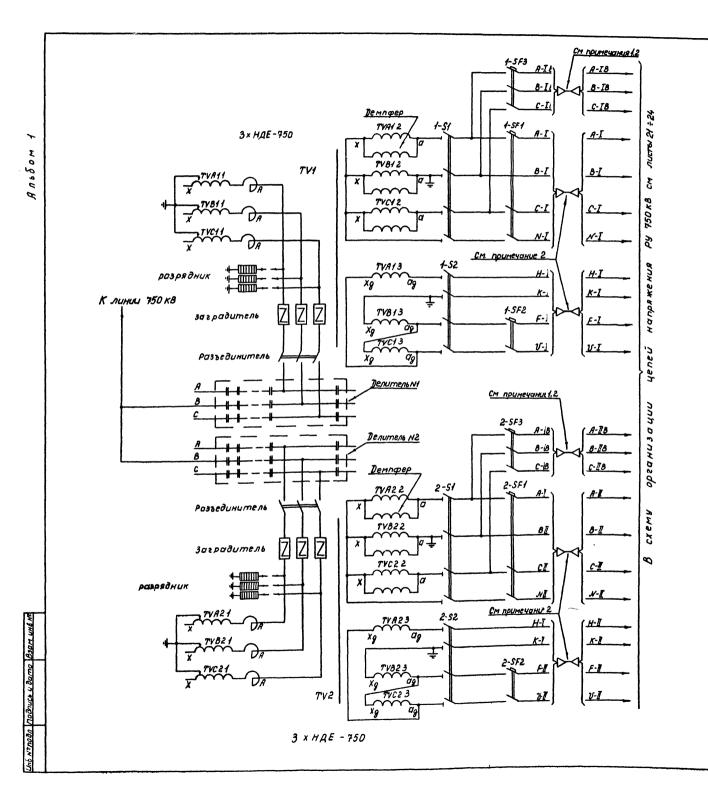
3×HK 4 -110-220 HO NUHUU 110-220 KB


Схема электрическая

принципиальная

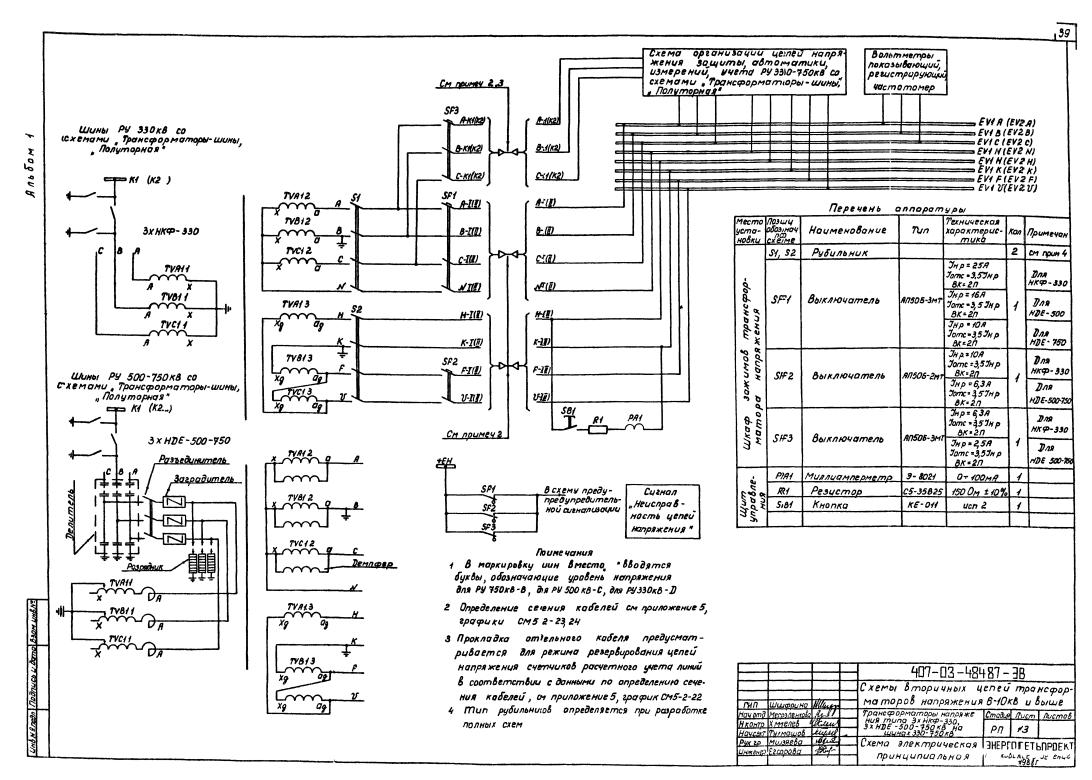

Перечень	аппара туры

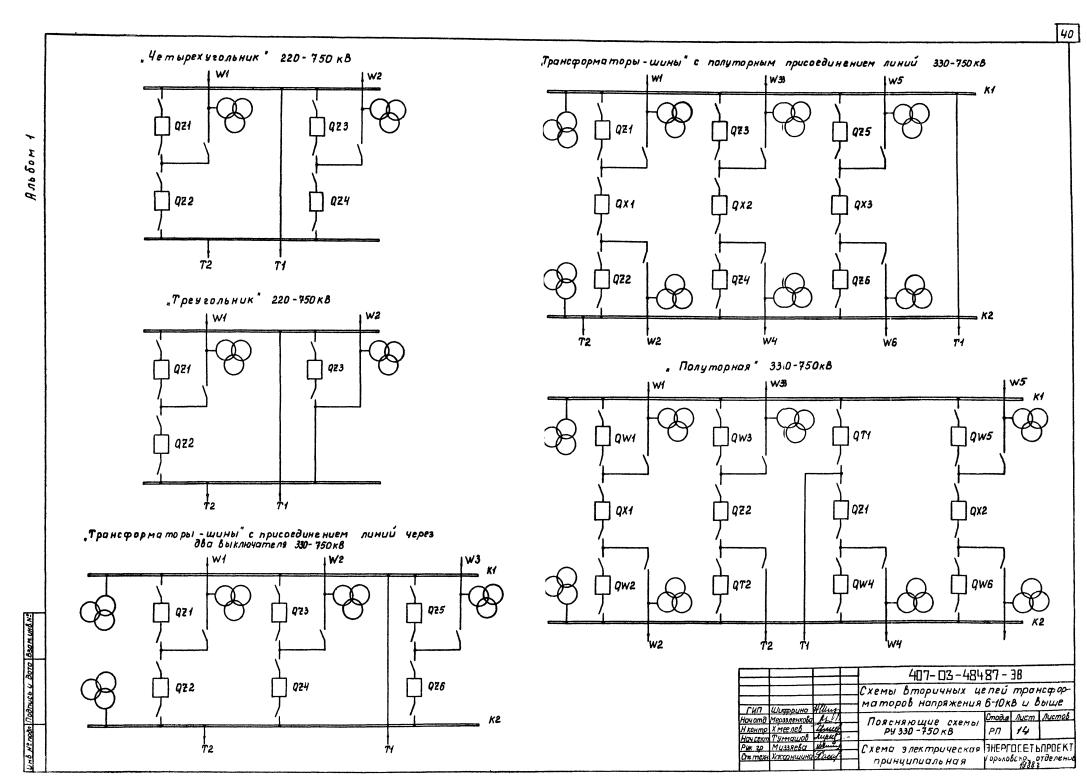
Mecmo yema- Hoßku	Позиц обозначе ниче по сххеме	На именование	Mun	Техническая характерис- тика	Kon.	Примечан	
	51, 152	Рубильник			2	см примеч	
, HC- 8	S#1	8	2000 2	Ун р = 25A Уотс =3,5Ун р 8K= 2П	,	Для нкф	
транс же ния	3/-1	<i>Выключатель</i>	AП506-3MT	Энр=10А Эотс=3,5Энр 8K=2П	1	Дпя нде-500	
30 × UMOB	SF:2	0	22505-0-1	JHP =10A Jome = 3,5JHP 8K=2N	,	Для нкФ-330	
80	Stic	Выключатель	AN 505-2MT	Энр=6,3 А Уотс=3,5 Энр ВК=2П	1	Для НКФ-500, НДЕ-500	
Шкаф з Форматор	S#3	Cros	0		JHp=6,3A Jomc=3,5JHp BK=2N		Для нкф
90,6	3 m 3	<i>Выключатель</i>	AП506-3MT	Энр= 2,5A Эотс= 3,5Энр	1	Для нде-500	
[

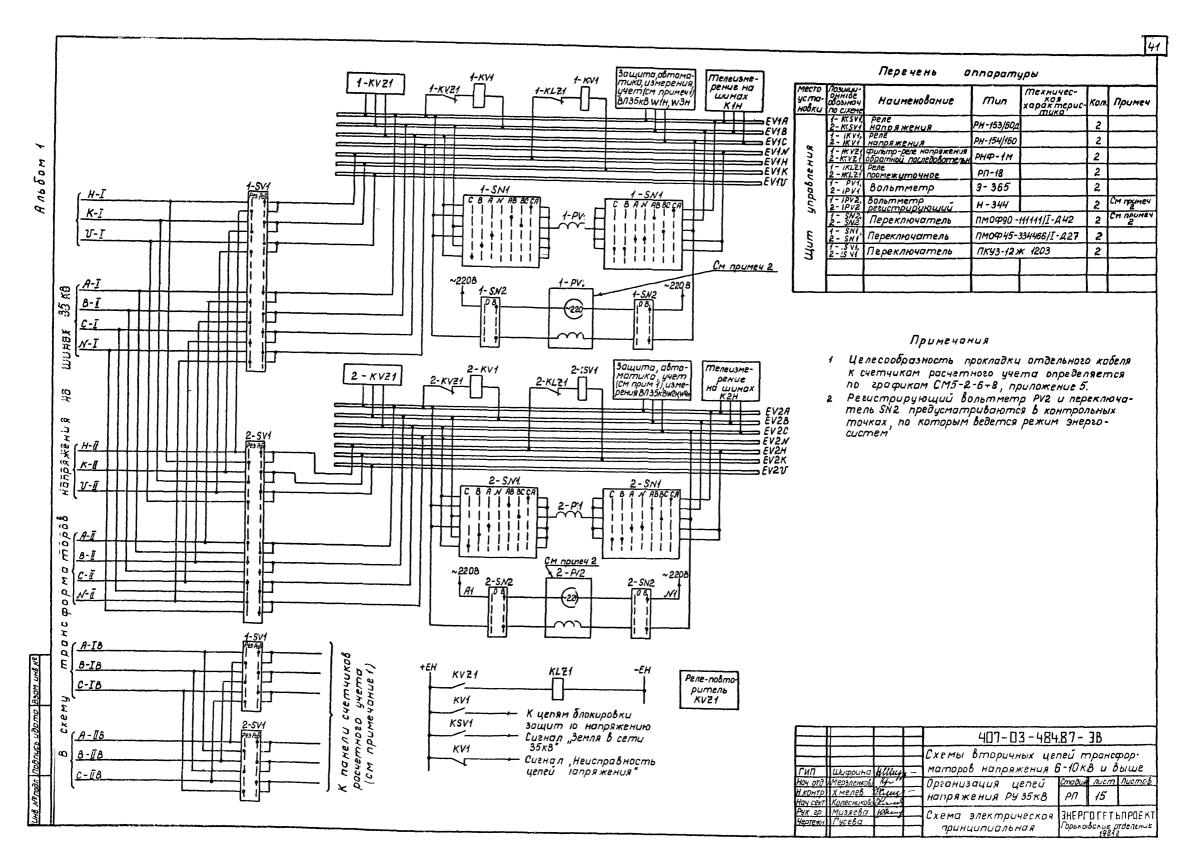

Примечания

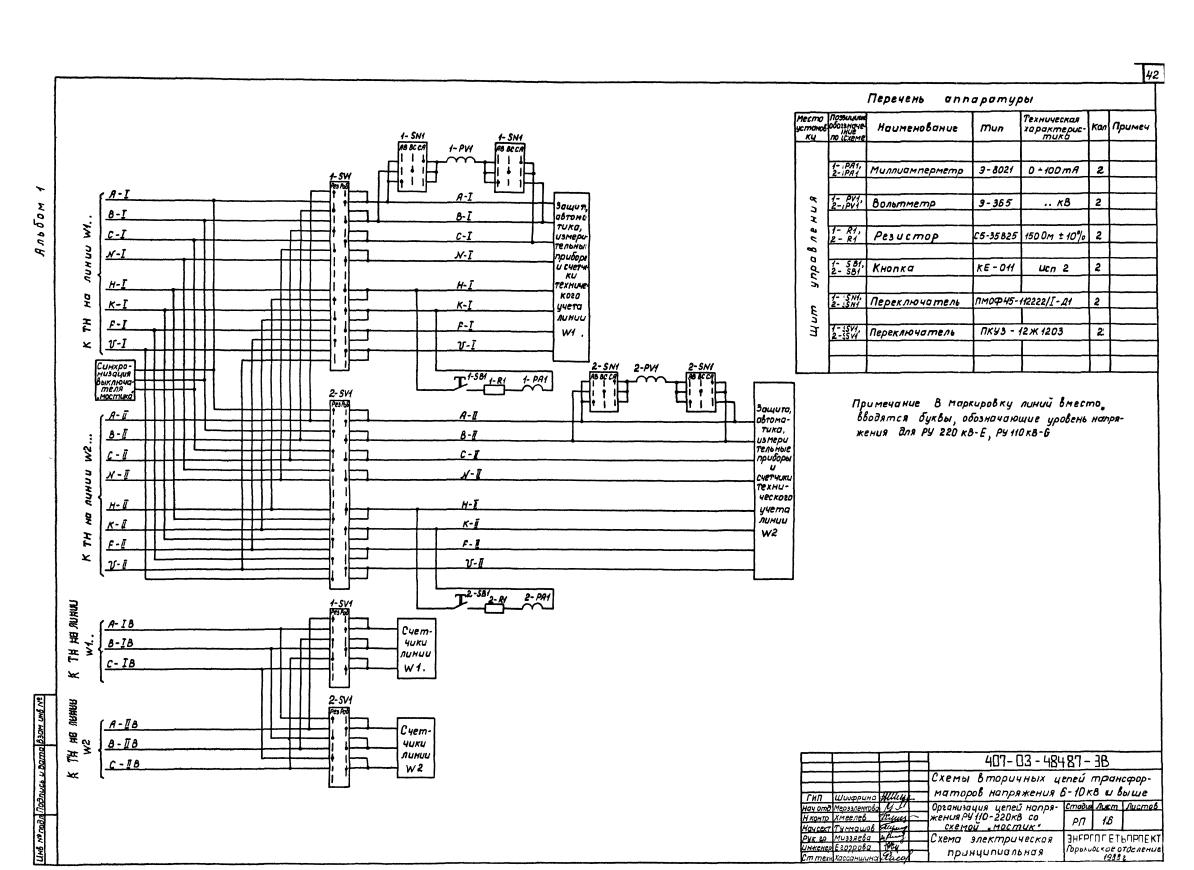
- 1 Определение сечения кабелей см приложение 5, график СМ55-2-20
- 2 Прюкладка отдельного кабеля предустатривается для счетчиков расчетного учета линии в соответствии с данными по определению сечения кабелей, см приложение 5, график СМ5-2-19.
- 3 На вл 500 кв устанавливается, как правило, один треансформатор напряжения, тип его (НКФ или НДЕ) опръеделяется при конкретном проектировании. Установка второго трансформатора допускоется при наличии соответствующего обоснования Цеппи напряжения при установке на линии 500кв двух ТН аналогичны приведенным для линии 750кв, ст листы 11,12.
- 4 *Мішпы рубильников спределяются при разработке* поілных схем.

			407- 03 - 484	407-03-48487-3B						
CHIL	Шифрина	(MIII)	 Схемы вторичных ц маторов напряжения							
Нач отд Н контр	мерзленково Хмелев Тумашов	Kun	Трансформаторы напряже- ния типа 3х нк Ф -330-500, 3х н д Е -500 на линиях 330 - 500 кв							
Рук гр	Мизяева Егорова	Weigh	Схема электрическая принципиальная	3HEPI	DEET	POEKT				

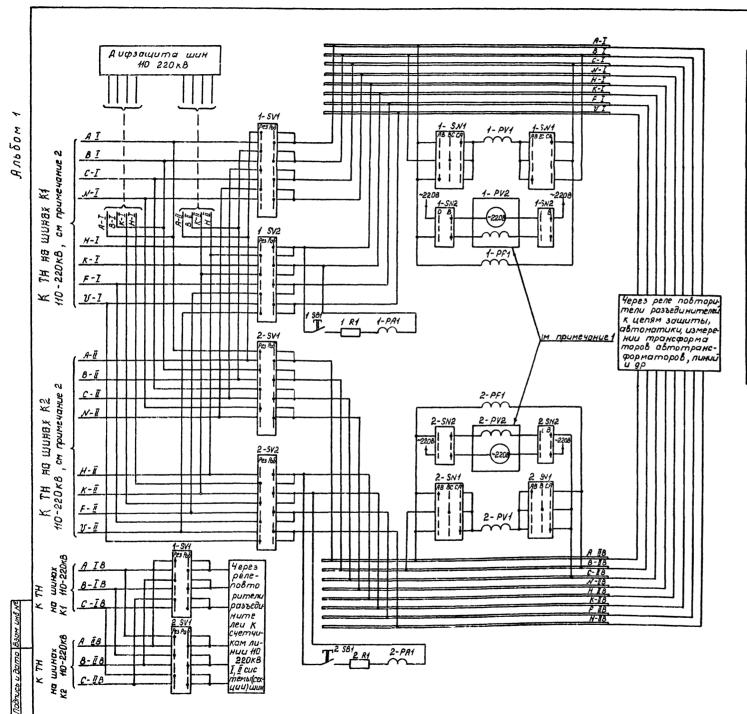


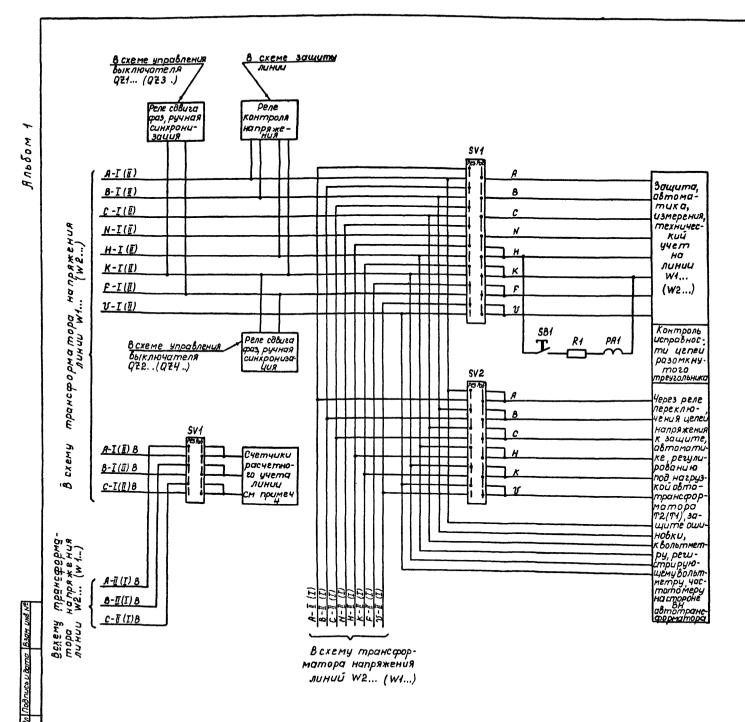

		Tun	xapakmepuc- muka	KOA	Apuneyan
1-51, 1-552	Рубильник			2	CM NOUMES
1-SFH	Вык лю чатель	AN506-3mT	Inp=6,3A Iomc=3,5Inp BK=20	1	
1-5Fi2	выключа тель	AN506-2M7	JHP = 6,3 A	1	
1-SF33	Выключатель	AN506-3MT	JHP=2,5A Jome=3,5 JH.P BK=2A	1	
2-51,2-152	Рубильник	•		2	en ngunes
2-5F"1	Выключатель	AN506-3MT	JHP = 6,3A Jame = 3,5 JH P BK = 2.0	1	
2-SF72	Выключатель	AN506-2MT	JHP = 6,3 A Jome = 3,5 JH P BK = 2N	1	
2-5F-3	Выключатель	AN505-3MT	IHP = 2,5 A Tanc = 3,5 THP BK = 211	1	
	1-5F22 1-5F33 2-51/2-152 2-5F71 2-5F72	1-SFi2 Выключатель 1-SFi3 Выключатель 2-Sfi2-IS2 Рубильник 2-SFi1 Выключатель 2-SFi2 Выключатель	1-5Fi2 Выключатель Ал506-2нт 1-5Fi3 Выключатель АЛ506-3нт 2-5f2-152 Рубильник 2-5F1 Выключатель АЛ506-3нт 2-5F2 Выключатель АЛ506-2нт	1-SFH Выключатель ANSOS-3MT Лотс = 3,51 кр Выключатель ANSOS-2MT Лотс = 3,5 Пкр 1-SFi2 Выключатель ANSOS-2MT Лотс = 3,5 Лкр Вк=2Л Пкр = 2,5 Я Лотс = 3,5 Пкр Вк=2Л Пкр = 3,5 Пкр Вк=2Л Пкр = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Лотс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Лотс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Лотс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Потс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Потс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Потс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Потс = 3,5 Пкр Вк=2Л Пкр = 6,3 Я Потс = 3,5 Пкр	1-5FH BUK NO 49 MEN 16 AND 505-3MT JOMC = 3,5 JH P 1 BK = 2N JH P = 6,3 A N JM P = 6,3 A N JM P = 2,5 JH P 1 BK = 2N JM P = 2,5 JH P 1 BK = 2N JM P = 2,5 JH P 1 BK = 2N JM P = 2,5 JH P 1 BK = 2N JM P = 6,3 A N JM P =


Принечания


- 1 Прокладіка втдельных кабелей предусматривается для счетчиков расчетного учета
- 2 Определение сечения кабелей см приложение 5, графијки СМ5-2-19+21.
- 3 Тип рубильников определяется при разработке полных схем

				407-03-484	127 ₋	JR		
				14, 14 14 14 14				
				Схемы вторичных ц	eneú	mpa	HCPOP-	
				ма торов напряжения	6-10	- A	KILLIE	
ГИП	Шифрина	Heur		, , , , , , , , , , , , , , , , , , , ,				
Начатд	Мерзэленкова	15-10		Трансформатор напряжения 3х нде- 450 на линии с двучя комплектами конденсато-	Стадия	Sucm	Листов	
	Хмеглев			ухиде 450 на ланаа с обущя Комплектами Конденсато-	РΠ	12		
Нач сект	Туташов	diane	-	POB CB 934	111	12		
	Миззяева			Схема электрическоя	3 HL DL	DEET	nenr kt	
<i>Чнжене</i> р	Ecompoba	perh					DENCHUE	
				принципиальная	טטאסקט ון	LAUE UI	DELICHUE	




Mec/mo ycma -	Поэзициан 06бознач			Техническая		
новки	по) схеме	Наименование	Mun	харак терис тика	NON	Примеч
	1'- PA1, 2!-PA1	Миллиамперметр	3-8021	0 ÷ 100 mA	2	
	1 051		ļ			
ĺ	1 - PF1, 2 - PF2	Частотомер	9-372	ļ	2	
	1- PV1, 2 PV1	Вольтметр	9 - 365	кв	2	
	1 - PV2, 2 - PV2	Вольтметр	H-393	кВ	2	
æ	7- 87			- 0		
вния	1- R1, 2-R1	Pesucmop	C5-35B25	1500M ± 10%	2	
101	17-581	Κηοπκα	KE -011	ucn 2	2	
181	2'-581	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AL 011		-	
od uĥ	1 - SV1, 2 - SV1	Переключатель	ΠKY3 -	12× 8012	2	
'n	4 010					
	1 5V2, 2 - 5V2	Переключатель	ПКУЗ -	12 × 4037	2	
£	4= CA14		<u> </u>	<u> </u>		
מתחש	1- SN1 2-SN1	Переключатель	ПМОФ45	-112222/ <u>I</u> -A1	2	
7	1- 5N2, 2- SN2	Canan avava masi	74000	00 - 444417 - 040	_	
	2- SNZ	Переключатель	1111049	'0 -11HH/ <u>I</u> I-Д42 1	2	
			 	 	-	
L	L			<u> </u>		L

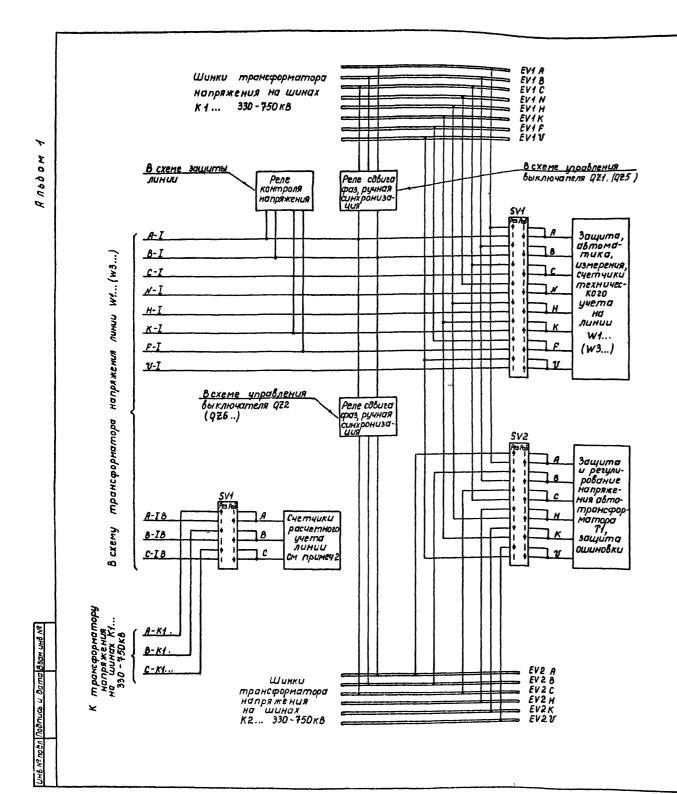
Примечания 1 Регистрирующие вольтметры предусматриваются на сборных шинах узловых подстанций, от которых отходят межсистемные линии и линии с двухсторонниму питанием Часто томеры устанавливаются при необходи-

Часто томеры устанавливаются при необходимости точной (ручной или полуавтоматической) Синхрюнизации

2 в маркировку шин вместо " * вводятся буквы, обозначающие уровень напряжения для РУ 220кв-Е, для РУ ИОКВ-Б

407-03-48487-3B	
Схемы вторичных цепей транса	
Ноч ата мерозленкова 19 11 Организация цепеи напря Стодля Лист Лис	nob
H KOHTO XMENES TEME XEHUR PY HO-220KB C BBU- OO ATT	
нач сект тумашов Радии . Мя сигтемоми шин	
Рук го миляева Схема электрическая ЭНЕРГОСЕТЬПРІ	EKT
<u>Инжене</u> Еггорова Тир принципиальная Горьковское отдел.	ние

Позициюнное обозначение по сжеме		mun	Ге хническая характе - ристика	KON	Примеч
PA1'	Миллиамперметр	3-8021	0 100mA	1	
R11	Pes uc mop	C5-35825	1500m±109.	1	
5811	Кнопка	KE - 0H	ucn 2	1	
5V'1	Переключатель	ПКЧЗ - 12	* 1203	1	
SV'2	Переключатель	NKY3-12	2× 6001	1	
	obasharvenue no excene PA1' R11 S811	обозначение на именование по сжеме РА1' Миллиамперметр R11 Резистор S811 Кнопка SV1 Переключатель	обозначение на именование тип РЯ1' Миллиамперметр 3-8021 R11 Резистор С5-35825 S811 Кнопка КЕ - 011 SV11 Переключатель ПКЧ3 - 12	Обознатение по сжене На именование Пип характе-ристика РА1' Миллиамперметр 3-8021 0400mR R11 Резистор C5-35825 1500m±10% S811 Кнопка КЕ-0H исп 2 SV1 Переключотель ПКЧ3-12ж 1203	обозначене по сжене РА1' Миллиамперметр 3-8021 О 100mA 1 R11 Резистор (5-35825 1500m±10%, 1 S811 Кнопка КЕ-ОН исп 2 1 SV1 Переключотель ПКЧЗ-12Ж 1203 1


Примечания

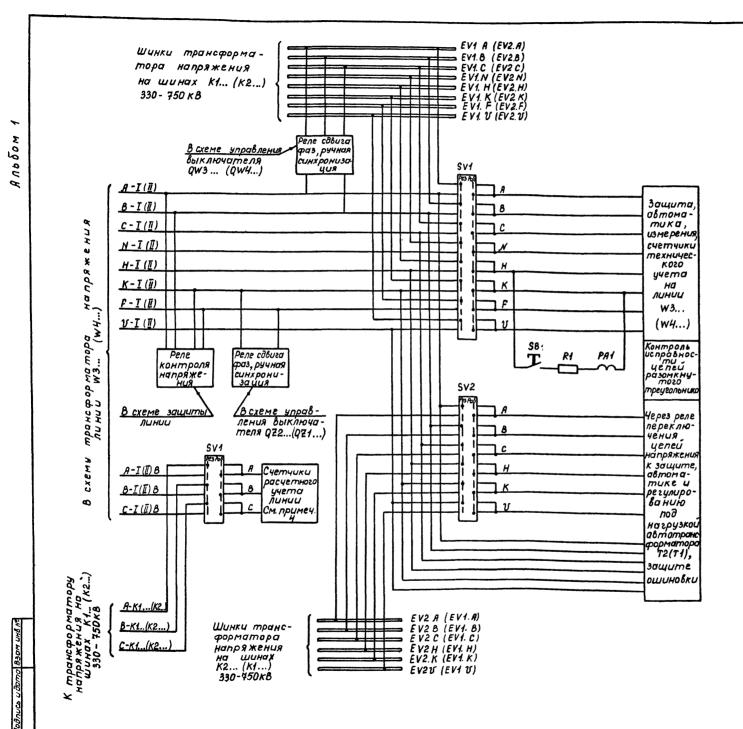
1 Органшзация вторичных цепей напряжения выполнена для схемы РУ "Четырехугольник", "Треугольник"

Поясня ношино схеми см лист 14

- 2 Резерівирование питания нагрузки цепей напряжения линии производится от ТН другой Линии
- 3 Питаїние цепей напряжения автотрансформаторов Т1, Т2 выполняется от ТН линий через реле переключения цепей напряжения в зависимости от включенного положения выключателей QZ1..., QZ3, QZ2... QZ4...
- 4 Прокладка отдельных кобелей предуснатривается для счетчиков расчетного учета линий в соответствии с данными по определению сечений, см приложение 5, графики СМ5-2-19+23
- 5 в тајркировку шин , линий , выключателей втесто ввидатся буквы , обозначающие уровень напряжения для ру 450кв - в , 500кв - С; 330кв - Д, 220кв - Е

				407- D3-484.87- 3B					
ГИП	Ш үзфру на	Allen		Схемы вторичных ц маторов напряжения	6-10K	B"4 6	ыше		
ач отд КОнтр	Мерэзленкова Хмеелев Тумпашов		,	Организация цепей напряже- ния РУ 220-450кВ по схете "Четырехугольник" и ТРЕУ ольник"	Стадия РП	Лист 18	Λυςποδ		
	Μ <u>ι.339</u> ε βα Εξογροδα	May			34EP[[80x 490]	CETE CXDE 07 1983	ПРОЕКТ Гделение		

Место уста- новки	Поэищионное обозначение по исхеме	Наименование	Mun	техническая характерис- тика	Kon	Примеч
KUH	S IV1	Переключат ель	NKY3- 1	2 <i>ж 1203</i>	1	
управления	SW2	Переключатель	Π KY - 12	ж 6001	1	
Wwm y					-	

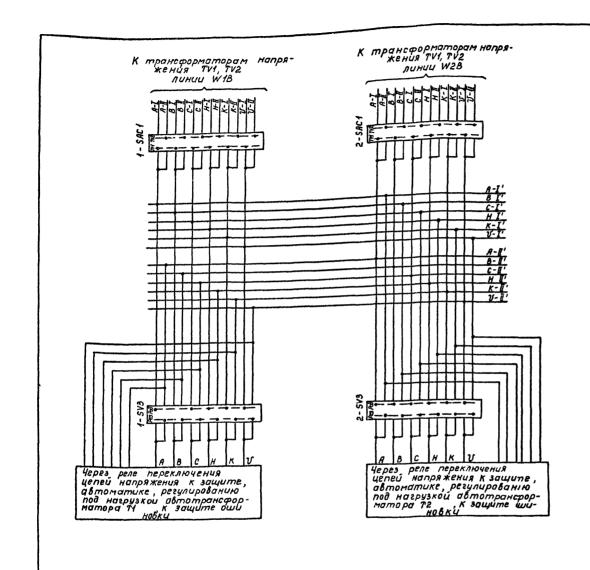

Примечания

1 Организация вторичных цепей напряжения выполнена для склемы РУ 330-750 кв "Трансформаторы-шины" для линий с нечетными номерами W1... (W3...) и трансформатора т1 при присоединении линии через два выключателя. Для сххемы "Трансформаторы-шины с полуторным присоединением» линий маркировка выключателей QZ2... (QZ6...) заменяется на QX1... (QX2...) соответственно с подачей цепей напряжения "Я", "в", "с" к реле сдвига фаз от ТН личий W2(W4) При вытолнении схемы организации вторичных цепей напряжения для линий с четными номерами W2..., W4... необходимо изменить маркировку шинок EV1 на EV2 для подачи резервного питания цепей напряжения на устройства защиты, автоматики и др

Для ав тотрансформатора Т2 подачу рабочего питания выполниить от шинок EV2..., а для резервирования - отшинок EV1..... Изменения в маркировке выключателей следует выполнить в соответствии с поясняющей схемой, приведенной на листе 14

- 2. Прокладка отдельных кабелей предусматривается для счетчиков расчетного учета линий в соответствии с данными по определению сечений кабелей, ст. приложение 5, графики СМ5-2-19, 20
- 3 в маржировку шин, линий, выключателей вместо ..." вводятся буквы, обозначающие уровень напряжения. для РУ Т50кв-В, 500кв-С, 330кв-Д

			407- 03 - 484	407- 03 -48487- 3B						
			 Схемы вторичных це маторов напряжения	neú r 6-10	прансе	pop-				
	Шифрина Мгериенкова					Aucmos				
		Run	Организация цепей напря- жения ру 330 - 750 кВ по схеме "Трансформа торы-шины"	РΠ	19					
Hay cert	ТЭмашов	theun	трансформатторы шаны.	1711						
		Henry	Схема электрическая	THEDE	TETE	U DU E KI				
Unxemp	Eleopoba	-Mill	принципиальная	CODEKO	Bekar a	n denemu				
Cm mex.	Маслова	L	TIPORQ anounting A	1,000	1988	n denemua ?				



	Пазиционное обоззначение поэ схеме		Mun	Мехническая Харак терис- тика	Kan	Примеч
	PA1	Миллиамперметр	3-8021	0 100mA	1	
Ø,						
e Hu	,R1	Pesucmap	C5-35825	1500m ± 10%	1	
RUHARGAEHUR						
ngu	SSB1	Кнопка	KE-011	ucn. 2	1	
щпш	55V1	Переключатель	ΠKY 3 - 12	ж 1203	1	
2	<i>\$</i> \$V2	Переключатель	ПКУЗ -12.	* 6001	1	
					Π	

Примеча ния

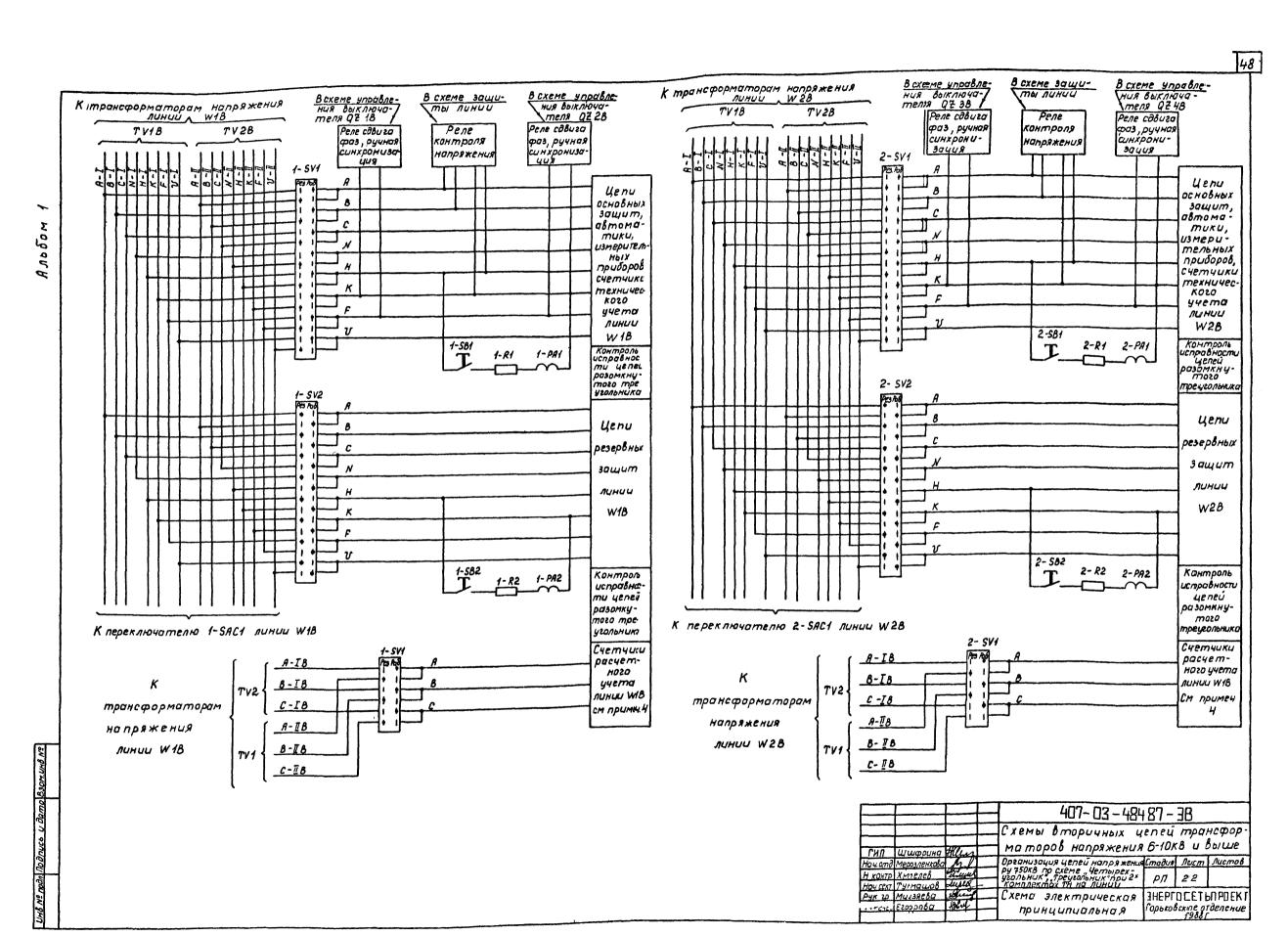
- 1 Организация вторичных цепей напряжения выполнена для схемы моста линия w3... (w4...) автоптрансформатор T2(T1).
 Поясиняющию схему ст. лист 14
- 2. Резервирование питания нагрузки цепей напряжения линии W3... (W4...) производится от TTH той системы шин, к которой линия подключается через один выключатель, т е. K1... (K2...).
- 3. Питание цепей напряжения автотрансформатора T2(T1) в рабочем режиме осуществляется от TH системы шин, к которой они подключены через один выключатель, резервирование производитс:я от TH смежной линии W3... (W4...).
- 4. Прокмадка отдельных кабелей предустатривается для счетчиков расчетного учета линий в соответствии с данными по определению сечений кабемей, ст приложение 5, графики СМ5-2-19,20.
- 5. в маркировку шин, линий, выключателей вместо "…" вводятся буквы, обозначающие уровень напряжения для РУ: 750кв-В; 500кв-С; 330кв-Д.

				407-03-484	.87 -	3B	
CHO	Шифрина	William		Схемы вторичных ц маторов напряжения			
Начотд Н Контр	меерэ <u>ленкова</u> Химелев		P.	Организация целей напряжения РУЗЗО-750кв по схеме "Полуторная"	Стадия Р П	<i>Лист</i> 20	Листов
PYK ZP	Миизяева	100 m		Схема электрическая			ъПРОЕКТ Гделенци

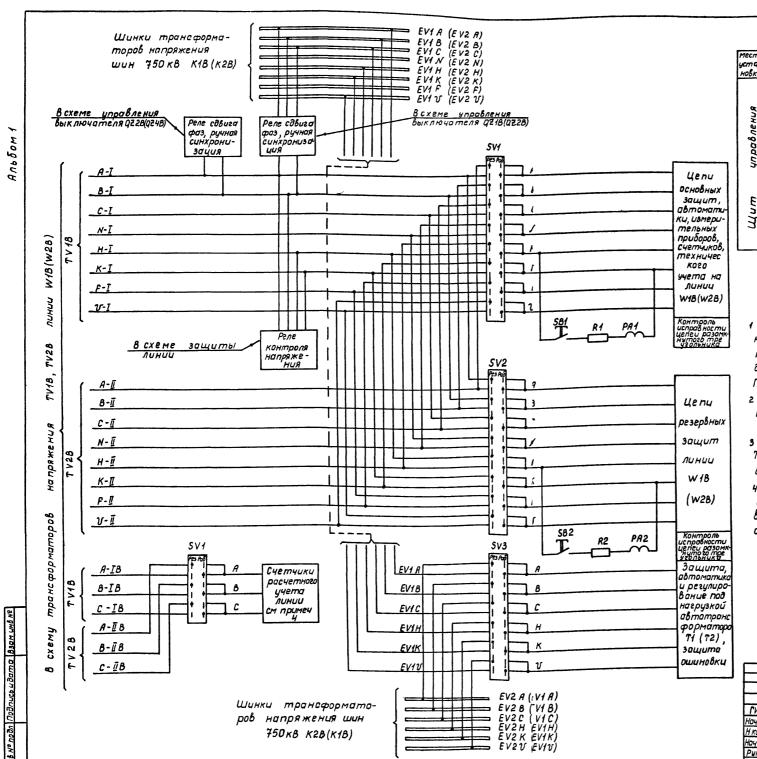
ycma	Позиционное обозначение по «Схеме	Наименование	Tun	Техническая характерис тика	Kon	Примеч
	1-PA11, 1 PA2, 2 PA11, 2 PA2	Миллиамперметр	9-8021	0 100 mA	4	
87.	1 R1',, 1-R2, 2 R11, 2 R2	Pesucmop	C5-35825	1500m ± 10%	4	
	1 SB11, 1 SB2, 2 SB31,2 SB2	Кнопка	KE -011	טכח 2	4	
duh	1- SV1, 2- SV1	Переключатель	NKY3 - 12	! <i>ж1</i> 203	2	
E	1- SV2, 2- SV2	Переключатель	ΠKY3 - 1	2ж 8012	2	
mnm	1 SV:3,2 SV3, 1- S>AC1, 2-45AC1	Переключатель	ПКУЗ - 1	2 <i>ж6001</i>	4	

Примечания

1 Организация вторичных цепей напряжения выполнена для схемы РУ 750кв "Четырехугольник", "Треугольник" при установке на линиях двух комплектов трансформаторов напряжения


Поясняющую схему РУ 750кВ см лист 14

2 Питание цепей напряжения отдельных видов нагрузки линий распределяется между трансформаторами напряжения TV1 и TV2 данной линии Резервирование цепей напряжения осуществляется переключателями (1-SV1, 1-SV2 для линии W18 и 2'-SV1, 2-SV2 для w28), переводящими питание всех цепей напряжения линии на TV1 либо TV2 данной линии

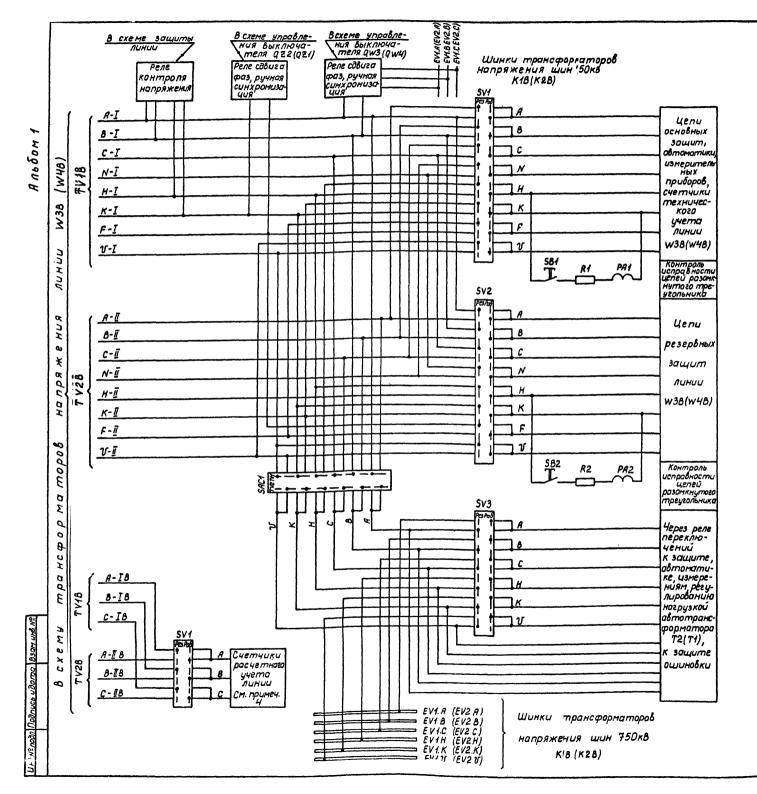

3 Цепи напряжиения автотраноформатора T1(T2) в рабочем режиме питанотся от TH линии W18(W28) по выбору от TV1 либо TV2 через переключатель 1-SAC1(2-SAC1) Резервирова ние цепей напряжения автотраноформатора T1(T2) осущес твляется от TTH линии W28(W18) через переключатель 1-SV3 (2-SV3) и реле переключения цепей напряжения

4 Прокладка отдельных кабелей предусматривается для счетчиков расчетного учета линий в соответствии с данными по определению сечения кабелей, см приложение 5, графики СМ5-22-19,20

			407-03-484	87-	7 R	
CHO	ШЈифрина	2401	 Схемы вторичных це маглоров напряжения	neú	mpar	
Нач отд Н конто	Мёгрэлені ово Хімелев Тэмашов	Aun	Организация цепей напряже ния рузбокв посхете Четырех угольник Треугольник придбух Кот лектох ТН на линии	Стадия		
PYK 2D	<u>М1изяева</u> эснова	Hung	Схема электрическая	3HEPF	DCETI OBCKOP 1988	ЫПРОЕ K

место уст q- новки	Позшционное Обозэначение INO Схієме	На име нова ние	Тип	Техническая характе- ристика	Кол	Примеч
	PA11, PA2	Милли амперметр	3-8021	0 100mA	2	
управления	R1,, R2	Резистор	C5-35825	1500m±10%	2	
pduh	S811, SB2	Кнопка	KE-OH	ucn 2	2	
Ę	5,11	Переключатель	ПКУ3-12	2 <i>ж 1203</i>	1	
Щит	SIV2	Переключатель	ПКУЗ-12	2 × 8012	1	
	<i>5</i> 5 V 3	Переключатель	NK43-1	2 <i>ж 6001</i>	1	

Примечания


1 Организация вторичных цепей напряжения выполнена для РУ-750кв по схеме "Трансформаторы-шины" при установке на линиях 750кв двух комплектов конденсатторов связи

Поясняющую схему РУ 750кв см лист 14

- г Резервирование питания нагрузки цепей напряжения линий осуществляется переключением цепей TV1B., TV2B данной линий на переключателях SV1, SV2
- 3 Питание цепей напряжения овтотрансформаторов ТУ(Т2,) выполняется от ТН на шинах К1В (К2В) и резервируется от ТН на шинах К2В (К1В).
- 4 Прюкладка отдельных кабелей предустатривается діля счетчиков расчетного учета линий всоответствии с данными по определению сечений кабелей, ст приложение 5, графики СМ5-2-19,20

				407- 03 - 484	87 -	∃B	
				Схемы вторичных ц			
run	Щифрина	Muco	-	паторов напряжения			
Нач оглд	млерзпенково	MU		Организация цепеи напряже ния РУ 750 кВ по схеме	Стадия	Jucm	Nucmos
		Minu	~	ήμη ΡΥ 350 κΒ ΜΟ CXEME' Τησητοροματήρου υμμου που	РΠ	23	
Нач сект	Пумашов	Turney		Трансформаторы шины при авух комплектох ТН на линии	1 ///	43	
		Klay				DEFT	DPDE KT
Инже нео	Ε ^ς εοροδα	Hour					יארי יאניני אריושרי יאניני

	Позициомнов обозначиение По СХЕ°ме		Mun	Мехническая Характерис- тчка	Kon	Примеч
	PA1, PAR2	Миллиамперметр	9-8021	0 100mA	2	
ния	R1, R22	Pesucmop	C5-35825	1500m ± 10%	2	
управления	581, S182	Кнопка	KE - 011	uen 2	2	
	SV1	Переключатель	ПКУЗ - 12	1 !ж 1203	1	
Щит	5V2'	Переключатель	ΠKY3 - 12	ж 8012	1	
2	SV3, SACH	Переключа тель	ПКУЗ - 12	x 6001	2	

Примечания.

- 1. Органивация вторичных цепей напряжения выполнівна для РУ 750кв по схеме "Полуторная" при установке на линиях 750кв двух комплектов трансформаторов напряжения.
 Прясняющию схему РУ 750кв см. луст 14.
- 2. Резервшрование питания нагрузки цепей напряжения линии осуществляется переключателями SV1. SV12 данной линии.
- 3. Питание цепей напряжения автотрансформатора ТН(T2) выполняется от TH на шинах К18(к28) и резе;рвируется от TH(TV1,TV2 по выбору с помощью перектючателя SAC1) смежной линии w48(w3B) через переключатель SV3.
- ч. Прокілодка отдельных кабелей предусматривается для счетчиков расчетного учета линий в соответствии с данными по определению сечений жабелей ст. приложение 5, графики СМ5-2-19,20.

				407-03-484	.87-	3B	
			_	Схемы вторичных це	neú	יוסקודו	ефор-
СИП	Шузфочна	Allup	_	маторов напряжения			
нач отд	мерэзленково	1/4 TY		Организация цепей нопряже	Cmadus	Лист	Sucmos.
H KOHTP	Хмеелгв Тумашов	Mucy	Ξ	Организация цепей нопряжения РУ 750кВ по схеме Лолу- торная при двух комплек- тах НН на линии	РΠ	24	
		retuit					
	Мизяева Егсорова	700		Схема электрическая			ы⊓РОЕКТ
2126.52 45	F 440/5004	1111	_	_ принципиальная	Горьк	obcikoe (วุกาชิยภยมนะ

, PPUNOXEHIUE 1

Основные технические данные трансформаторов напряжения используемых для питания цепей напряжения устройств защиты, автоматики, измерений, учета и др

Tabnuua CM1-1

Тип трансформатора	Номинальн обмоток			Номиналь кл		Heemb BA	dng	Превельн			Ur %	/aonuya	
напряжения	84	(OCHOBNOS)	НН (даполнительной)	0,2	<i>a5</i>	1	3	ος μοδ μού οδ μο μεν	dononwiment-	BH - HH OCHOBHOU OGMOMIKU	BH - HH SONOAHUMEAS- WOU OBMOMEU	HH OCHOBHOD HH BONONHU MENSHOU	Z ĸ
HAE -750-72	750 000/V3	100/13	100		300	500	1000	1600		49 "	0,65"	0,151)	
HAE - 500-72	500000/13	100 / 13	100		300	500	1000	16 00		1, 97 1)	0,659	a,15 ¹⁾	
HK-49-500-18	500000 V3	100/13	100			500	1000	2000	-	4,448	6,4	0,3	
HK90-330-73	330000/13	100/13	100		400	600	1200	2000	1200	4, 33.5	4,2	0,27	
HK90-220-58	220000/13	100 / 13	100		400	500	1200	2000	1200	4, 113	5,15	0 54	
HR9-110-57	110000 /13	100/13	100		400	500	1200	2000	1200	4,015	3,87	0,62	
3HOM-35-65	35000 /13	100/13	100/3		150	250	600	1200		5,100	11,2	124	
HOM-35-66	35000	100			150	250	600	1000		3, 187			
HOM - 10-66	10000	100			75	150	300	630		6,4			
HOM - 6 - 77	6000	100			50	75	200	400		6:15			1
3 нол- 06-10 3 нол- 09-10	10000 13	100/\3	100 3 unu 100	50	75	150	300	540	300	4, 8	7,9	6, 65	
3нол- 06 - 6 3нол- 09- 6	6000/ 13	100/13	100/3 UNU100	30	50	75	200	400	200	<i>3, 55</i>	5,6	465	
HAMU - 10	10000	100	100	Cm ,	таблицу	'		1000	100				
HAMU - 10	6000	100	100			, -			/50				4,6
HOA- 08-10	10000	100		50	75	150	300	630		4,,95			
HON- 08-6	600	100		30	50	75	200	400		3,47			

1) Для НДЕ значения Uк% вн-нносн и вн-нндоп соответствуют активному опротивлению, Uк% нносн-нндоп соответствуют индуктивному сопротивлению

Таблица технических данных для НАМИ-10

Tagnuna CM11-2

Tun	Номиналь		RX CHUC	Мощность на ричногос о	ввоваж асно бмоток, в	PHUDE EMO-	Annye Kalemas Ochobnas	Pedensi Bondahutenshen	EUMMACHAE	Неминаальная мощность
транеформатора напряжения	8 H	(основнои)	HH (BORGAHUTEASHOÙ)	aß	вc	cα	пагрешнасть Δ 4 %	norpewнocmeú △Ug %	поврешность	dononihumem Meeix bmopuly Heix domo:mor
				50	50	Ø		+ 0,15	+ 435	
				50	50	15		† 0,15	± 0,35	
HAMU-10	10000			7 5	75	0		0	± 92	
		100	1	100	100	ø	± q2	- 0,15	- 0,35	300 BR
HAM H - 10	6000			7 <i>5</i>	75	30		- 0,5	- 0,7	
				150	150	a		- 0,5	- 97	
				150	150	150		-3	- 3,2	

1) При симметричном номинальном первичном фазном напряжении -38, при металлическом замыкании одной из фаз сети на землю - 90,1008

run	Шифрина	Willy	407-03-4848	7 - CM	11	
Нкантр	Мегрэленково Жиелев	Truck	 Сжемы вторичных цепей трансформаторов напря- жения 6-10кв й выше	Cmadua PN	Rucm 4	Aucmas
Hay cerm Pur Ep.	Тымашов Мизяева Е горова	Wind .	Pucmuku mpaneapopma-	ЭНЕРІ	croe o	PUBUEKT
Инженер	E zopola	Holey	торов напряжения	(3,20,15)	1988	

dna (8) u (c)

на фазу

		,, o ,,, p	• • • • • • • • • • • • • • • • • • • •
			Tabnuya CMZ-1
w= "/n	Начтенование	Потребление обмотки напряжения ВЯ (при Ином)	Притечание
	Pen	e u yempaier	mba
	PH-53, PH-153	1	на обмотку
1	PH-54, PH-154	′	
	PH-53 60A	5	на обмотку
2	PH-55 _, PH-155	6, 5	на обмотку
3	PH9P - IM	15	на фазу
4	PM-11, PM-12	35	наобтотку
5	PMON-2	15	на двазу
6	KPC-2	18	на фазу
		10(A) 5(B) 5(C)	Ha apasy
7	KP5-12	5	3 U o для напряжения 110-330 кВ
		16	на фазу для напряжения 35 кв
8	KP5 - 125	20	на фазу
9	KP6-126	8,5	на фазу
10	6 P 3 - 2801	2	на фазу
•	Παμεπυ υ ωκαι προπυβοαβαρυύ	1 фы защиты, ной автома	CUCMEMHOÚ U MOKU
. 1	Ann 502	30	на фазу
1	ANB - 503	75	300
2	ДФЗ - 201	10	на фазу
3	· AP3-503	55	на фазу
4	A9P3-504	12	на фазу
5	NA3 - 0301	2	на фазу
6	WA 3 - 2501	5	Ina (A)
8	~#3 E QU/	3	для (8) и (C)

WA3-2801

	$\Pi_{\mathcal{F}}$	одозжение Та	блица СМ2-1 °
7/2	Наитенование	Потребление обтотки нагряжения ВЯ (при Инот)	Примечание
8	NA 3 - 2001	6	на фазу
9	NA 3 - 2002	2	340
10	NA 3 - 2003	5	на фазу
11	NA 3 - 2004	2	на фазу
12	NA 3 - 2005	3	на фазу
	_	60	на фазу
13	П3-4	70 прі срабатыва- ниі защиты	на фазу
14	NA 3 - 2006	3	на фазу
15	ПДЭ - 2802	3	на фазу
16	ПДЭ-2101, ПДЭ-2102	2,5	на фазу
17	WN- 2701	2	на фазу
18	Wn- 2702	2	на фазу
19	WN- 2703	2	на фазу
20	WN- 2704	6	на фазу
21	N3-2105 A	62	на фогзу
22	N3-21056	50	на фазу
-	Приборы учета	u ısmepumenor	HAIR NOUGOPAL
1	Счетчик актив- най, реактивной энергии 99443 АР	15	на фазу
2	Cvemyuk akmub- Hou shepeuu OP 443 A	10	на фазу
3	Cvemvuk akmub- noù, peakmubhoù shepzuu C #3 9 - U.6 70 M C P 4 Y - U.6 73 M	6	на обтотку
4	Cvemvuk yvema 3.nekmpo3.nepzuu 336700-A 336701-A 336702-A	3,7	на автотку

	1/po		nuya CM2-1
√2 √n	Наитенование	Потребление обмотки напряжения ВЯ (при Цном)	Примечание
5	Счетичк учета знектроэнергич 336700 \ (Кл Г2) 336702 (КЛ Т3)	3	на обмотку
6	ваттнетр показы- вающций с двух- сторюнней шкалой Д-365	10	на обмотку
7	Ваттметр регис- триручощии Н-348	10	на обмотку
8	Вартетр показы- вающий с двуж- сторюнней шкалой 4-367	10	на обпотку
9	Вольтметр 38021 38023	4 u 7	на обнотку
10	Вольтметр показы- вающций, с одно- сторюнней шкалой 3-365	2.0	на обтотку
11	Вольттетр регист- рирунощий Н-344	10	на обнотку
	Cunxipockon 3-327	10	на обнотку 3 Uo
12	ЛИФОЛ-В Измерительный преобразователь активнаи мощнасти	1(ab, bc), 3(ac)	на обпотку
13	Частютомер пока- зыванащий 3-372	3	на обнотку
	.,	7	npeden 45-55 F4
14	Υαςιποποπερ ρεευιςπρυργισιμυά	5	предел 49-51 Гц 48-52 Гц

				407-03-4848	37-C	MZ	
run	Шидоэрина	Allenso					
	Мерзиленково			Сжемы вторичных цепеи	Cmadus	Aucm	Ayemol
	I'me'ne8	Zuel		трансорорматоров напря жения 6-10кв и выше	PfI	1	5
	Tymeawol	timey	_	Kemus 6-10 kB u Boiwe	שוחרטו	יינEיו	NPOFEE
Pyx ep	Musaresa	when	ı	Потребление аппара	OPEROL	erae o	тделение
Инженер	EzappaBa	Ment		myper o gempadems		1988	2

Ταδπυμα CM2-2

Наименование	Основная обто	mka TH ()	Дополнительно
элетентов нагрузки	S Hazpysku Ha apazy , BA	Внагрузки на обнотку, ВА	S HOPPYSKU 300 , BR
Счетчик активной знереии 9° 443 Я	10 1)		
Счетчик активной энергии С ЯЗУ-И 670М		5"	
Cyemyur 336700		3,7 1)	
Панель ПДЗ-2802	3		
Шкаф защиты ШДЭ -2801	3		3
Λυφη- β υзмерительный ηρυδορ ακπυδιού Μουμιοςπου		1(a8,8c),3(ca)	3
Вольтметр показы- вающий с одно- сторонней шкалой 3-365		2	
Ватттетр показы- вающий с двух- сторонней шкалой Д-365		10	
Варметр показы- вающий с двух- сторонней шкалой Д-367		10	
Уастотомер показы. вающий 3-312		3	
Реле напряжения РН-55		6,5	
БПНС-2 (при нагрузке ~1908т	160		

Продоложение Таблица СМ2-2

Расчет нагрузок на обмоткаж ТН	Основная обтотка ТН (人)	Дополнительноя обмотка $TH(\Delta)$
77		SHORPYSKY 3Vo, BR
ne	$S_{HQP_{most}} = \frac{Sbc}{\sqrt{3}} \sqrt{\left(\frac{Sab}{Sbc}\right)^2 + \frac{Sab}{Sbc} + 1} + Sqp$	
HO NOCMORHHOM	npu 3a8 > 5 bc > 5a8	
оперативном	Sab = 2+10+110+1 = 23,0 BA;	SH3U0 = 6, 0 BR
more	SEC = 6,5+1+.3+10=20,5 BA ;	
	Sep = 10 1) + 3 + 3 = 16 BA ;	
	$S_{Hqp_{magx}} = S_{Hqp_B} = \frac{20.5}{\sqrt{3!}} \sqrt{\left(\frac{23}{20.5}\right)^2 + \frac{23}{20.5} + 1 + 16} =$	
	= 37, 681 BA ≈ 40²) BA	
Пс на	Sab=23,08A, Sbc = 20,58A	
выпрятленном	Sep = 16 + 16 (7 = 176 BA	
аперативном токе	S _{Hopmax} = 21,68 + 176 = 197,68 BA ≈	
c BNHC-2	≈ 2100 °) BA	1

Сопоставление суттарной нагрузки в режите резервирования с тощностью ТН в клаксе точности 3

$$\sum SH = SHN + \frac{S'm\varphi + S''m\varphi}{3}$$

SHN = 25 M3U = 2 × 6 = 128A, 25 p = 1776 × 2 = 3528A; 25 ab = 2 × 23 = 468A, 25 bc = 2 × 20;5 = 41 BA; S'map = 25 p + 25 ab = 352 + 46 = 398; S"map = 25 p + 25 bc = 352 + 41 = 393 BA

 $\sum SH = 12 + \frac{398 + 393}{3} = 275,667 \ll 1200 BR$

г) в режите резервиравания нагрузка на ТН удваивается и равна соответственно во вя и 400 вя.
При указанных нагрузках ТН работает в классе точности 0,5

¹⁾ При расчете такситальной нагрузки на фазу учитывалогь потребление счетчика типа Ф443A (10BA)

						Ταδπυμα	CM2-
	Наитенование	Основн	09 06m	omka Ti	4 (1)	DETERMINE THE	
-	злементов	1701	npefner	ue Ha	обтот	Kaz]//pumi
L	нагрузки	MUHH,	JUHUR	WUND,	JUHUR	300	

Наитенование	DCHOBH	an abric	mka Th	<i>(U)</i>	OSMOTRA TH(L)	
злементов нагрузки		mpe fre n	ive Ha	обтотк	· a æ	Apumera-
HOEPYSKO	WUHN, M-p	AUHUR	WUNN,	SUHUR	300	
Шкаф защиты ШДЭ 2801		3				Sumuú 6
Панели	-					
A 993 - 201		10				Sunut 3
N3 - 2105 A	62		5(Bc)			
NA 3 - 0301	2×2					
Wn- 2701		4				SUHUU- 2
พศ- 2702		2				JUHUÚ-2
W11- 2703	12					Линий- 2
ANAX		45				
Реле напряжения			1			
PH-53/60A		Ì				
PH-55				6,5 (8c)		
AU PN 8		1			3	1
Измерительный преобра- зователь активной мощности				s(ab, bc), 3(ca)		
Вольтметр показываю- щий с односторонней шкалай Э з 365			2(08)			
Вольтметр регистри-			10(ca)			
Ваттметр показываю- щии с двужсторонней шкалой 4-365				10(ab, bc)		Sunux - 6
Варметр показывам- щии с двужсторонней шкалой 4-367				10(08,80)		Линиі - 6
Частотомер показыва- ющий д-372			3(8c)			
Счетчик активной и реактивной энергии Слзу- И 67017						Suneú - 6
C 739-0 010/1				6		8800 110-
C P44-U 673M				6		22CR8
Датчики активной и реактивной тощности				1(ab, bc) 10 (ca)		Линии бх2 и вватъст

Продолжение Тоблица СМ2-3

Sa	8 = 2+6 × 1	0+6×10+14×11+36+12 =184 8A,
580	c = 5 + 6,5	+6 × 10 + 6 × 10 +3 + 44 × 1 +36 +12 = 196 5 8A.
S co	a = 10 + 14.	× 10 + 12 = 162 BA,
5 90	- 6 × 3 + 3	3 × 10 + 62 + 2 × 44 + 2 × 2 + 12 + 2 × 45 + 4 = 228 8 A ,
SHqp _n	max = Suppl = .	$S_{ap} + \frac{Sab}{\sqrt{3}} \sqrt{\left(\frac{Sbc}{Sab}\right)^2 + \frac{Sbc}{Sab} + 1} =$
	2	$28 + \frac{184}{\sqrt{3}} \sqrt{\left(\frac{1965}{184}\right)^2 + \frac{1965}{184} + 1} = 418,3884 \approx 4208.$
42	PORRI FOOR	Я, ТН работалет в классе точности 1

рования с мощностью ТН в классе точности 3 2 Sab = 368 8 A , 258c = 393 8 M , 2 Sab = 456 8 A , Sun = 2 Saun = 6 8 A , \$'map = 456 + 368 = 8248A , .S map = 456 +393 = 849 8A , $\sum S_H = S_{HN} + \frac{S'_{MQD} + S''_{MQD}}{3}$ $\Sigma S_{H} = 6 + \frac{824 + 8499}{3} = 563,78$ \(1200 8)

Phymeranue

Для расчета сечений проводов кабелей принимается палная мощность ТН в классе точности 1-600 ва, с распределением нагрузки SpsA = 3308A , Susm = 216 8A , Sev = 54 8A , пропорционамено рассчитанным при Supmex = 4208A Tabnuya CM 2-4

Наитенование	Основная обтоп		BONDAHUMEALANDI OBNOMBA TH (L)
злетентов нагрузки	S HOIPYBRU	5 Haspyaru	SHOIPPYRU
	на фазу, ВЯ	Ha obmorney , BR	300; BA
Cyemyuk ακπυβμού 3μερευυ 99443A	10 1)		
Счетчик активной энергии САЗУ- U670M		<i>5</i> ⁹	
Панели			
NA 3 - 2001	5		
NA 3 -2002			2
<i>NJ3-2003</i>	5		
NA 3 - 2004	2		
WN- 2703	2		
WN- 2704	6		
MB 3 - 0301	2		
ANAX	45		
109Π β υδιατεροίο πρεοδρα- 3ο δαιπεπο ακπυδιαύ Μοιμικος ποιμος ποιμος πο		1(08, 60); 3(00)	3
Вольтметр показыва- ющий с адносторон- ней шкалой 3-365		2	
Вольтметр регистри- рующий H-344		10	
Ваттметр паказываю- щий с двужсторонней шкалой Д-365		10`	
варметр показывающий с двужсторонней шкалой Д - 367	I .	10	
Yacmomomep nokasula-		3	

5,5

Реле напряжения РН-55

Продолжение.	Ταδπυμα	CM2-4
, ,	/ WO 2/04 W	C//6-7

rx 7.H	Основная обтотка ТН (Д)	Дополнительная обмотка ТН(L) 5 нагрузки
Гасчет нагрузок на обноткої	$S_{Hopmon} = S_{Hopb} = \frac{S_{bc}}{\sqrt{3}} \cdot \sqrt{\frac{S_{ab}}{S_{bc}}}^2 + \frac{S_{ab}}{S_{bc}} + 1 + S_{ap};$ $S_{ab} > S_{bc} > S_{ac}; S_{ab} = 2 + 10 + 10 + 1 + 6,5 = 29,5 8R$ $S_{bc} = 10 + 3 + 1 + 10 = 248R, S_{ca} = 108R;$ $S_{ap} = 10^{1} + 6 + 5 + 2 + 6 + 4 + 4.5 = 788R;$ $S_{hapb} = \frac{24}{\sqrt{3}} \cdot \sqrt{\frac{23.5}{24}}^2 + \frac{29.5}{24}^2 + 1 + 78 = 27,775 + 78 + 104,7758R$ $\approx 10.15^{2} + 8R$	Sugue = 588
6	Сопоставление суппарной нагрузки в режит ирования с мощностью TH в классе точн $\sum S_H = S_{HH} + \frac{S'_{nop} + S''_{nop}}{3}$	e pesep- loe mu 3

SHOUD = 5 BA; SHN = 2.5 = 108A, 25 ap = 2.78 = 1568A: 2508 = 598A; 258c = 4:88A; S'map = 25 mp + 25a8 = 156 + 59 = 215 8A; S"map = 2 Sup + 258c = 1156 + 48 = 204 8A; $\sum SH = 10 + \frac{215 + 204}{3} = 1.39,667 \ll 1000 BA.$

1) При расчете максимальной нагрузки на фазу учитывалось потребление счетчика типа Ф 443A (10 ВА).

г) в режиме резервирования (для сжем РУ ("Треугольник", Четырежугольник")) нагрузка на ТН удваивается и равна 210 вд. При указанной нагрузке TH muna НКФ-330; НДЕ-500; НДЕ-750 работанат в классе точности 0,5; TH muna НКФ-500в классе точности 1.

Tabnuya CM2-5

		, 00,,,	14 C112-5
Наименование	Основная об	momka TH()	Дополнительная обтотка ТН (Д)
элементав нагрузки	\$нагрузки на фазу, 8Я	S HEEPYERU HE OBMOMRY, BR	SHORPYSKU 340, BR
Счетчик активной знергии Ф443Я	10		
Автоматическог управ- ление шунтирующим реактором	8		
Шкаф защиты WA3-2601	5		
Устройство фиксации тяжести КЗ по сниже- нию Ц прятаи после- довательности (нетиповое)	E		
Панели			
Wn- 2703	12		
Wn- 2704	6		
NA 3 - 0301	2		
Измеритель преабразова- тельный активной мощности		1(08,80),3(00)	
AUPN B			3
вольттетр показыва- ющий с односторон- неи шкалой 3-365		2	
Вольттетр регистри- рующий Н-344		10	
Ваттметр показыв аю - щий с двужсторон- ней шкалой Д-365		10	
варметр показываю- щий с двужсторон- ней шкалач Д-367		10	
Частототер покажывага- щий 3-372		3	
Реле напряжения РН-55		6,5	
Нагрузка от ВЛЗЗО-750кВ в режите резервиро- вания	78	29,5(08),24(80)	

	Продолжение Таблица	× CM2-5
7.1/	Основная обнотка ТН (Д)	Дополнительная обтотка ТН (Д) S нагрузки 300 ВЯ
Расчет нагрузок на обноткаж	Sab = 1 + 2 + 10 + 10 + 6 5 + 2 9 5 = 59 8A, Sbc = 10 + 3 + 1 + 10 + 24 = 48 8A, Sop = 10 + 8 + 5 + 4 + 2 + 12 + 6 + 78 = 127 8A, Supmarb = 48 \tau \frac{59}{48} + \frac{59}{48} + 1 + 127 = 180,668A \approx 185 8A, And HK4330 181 \(\tau \) 1400 TH patamaem \$\text{Knacce QS} \text{Rnacce QS} And HDE-500-750 185 \(\tau \) 300 TH patamaem \$\text{Knacce QS} \text{Knacce QS}	S _{34°} = 38A

Сопоставление суммарнои нагрузки в режите резервирования с мощностью ТН в классе точности 3

2 Sqp = 254 BR , 2 SqB = 2 x 59 = 118 BR , 256c = 2 x 48 = 968R S'map = 25 map + 25 ab = 254 + 1118 = 372 BR , Smm = 2xS300 = 2 x 3 = 68A, S'map = 2 Smap + 256c = 254 + 198 = 352 BR ;

$$\sum S_H = 6 + \frac{372 + 3552}{3} = 247, 333 \approx 2508A$$

 Выбор авто

Выбор автоматов вторичных

yeneu

TH

Tabnuya CM3

Tunei	Mecmo	Автоматы в цепя	ж основной обмо	mru Tl		Almomar		дополнител	нои обмо	meu TH	
прансерорма торов напряжения	присаединения	выбора уставки		PUNAMO 1 JN POC4 A	LUGHHOU	BRAIDYEH	Pacvemnoe 6. pamenue ZTH 100 Snped	Расчетная максима льна		RPUHAMENU JH PACY A	Td ny mumenu na kommyma uuonnoi enocabnocru abmomama
	मव шपमबञ्च	Јрасч = Кн <u> 5 тн</u> Ц нтн	15 300 100/\3 78	10						63 ²⁾	800
HAE 750	на линии	7 pac4 - 57H UHTH	$\frac{300}{100/\sqrt{3}} = 52$	64		V - F			√3 87 ¹⁾ =150	25 ²)	400
	в цепях питания счетчиков	Прасч П ⁽³⁾ к3 на выводаж ТН	1681)	2,5	400						
	HA WUHAŒ	Jpacy - KH UHTH	$\frac{15}{100 \sqrt{3}}$ - 13	16						63 ²⁾	800
HA E 500	אם אינאיני	Jpacy - STH UHTH	$\frac{500}{100 \sqrt{3}^{\circ}} = 8,63$	10		V-F			√3° 87 ¹⁾ 150		400
	в цепяж питания счетчиков	Jpacy STH UHTH	1581)	25	400						
HK - 9-500	на линии	Jpacy - KH Jz emk	$\frac{13\ 60}{35} = 223$	25		V -F	54 100 ²	TR3 = \frac{\frac{1}{3} \cdot U HTH}{Z TH}	√3 100 032 540	63 ²⁾	800 600
7 300	8 yengæ numanua cyemyukob	J _{K3} 100 Snped UK /6 UHTH	$\frac{100}{64} \frac{2000}{100 \sqrt{3}} 541$	64	800						
HK9 330	на шинах	7 pac4 - KH 72 emk 35	<u>13 60</u> 22,3	25		V F	42 1002	JR3 V3 WHTH	V3 100 021 820	10	2000
	B yenaz numanua cyemyukob	9 K3 - 100 Snped UHTH	$\frac{100}{12} \frac{2000}{100 \sqrt{3}} 795$	64	800						
HK9 220	на шинах	Jpac4 = KH STH	$\frac{2 \ 600}{100/\sqrt{3}} = 20.8$	25		V-F	5,15 1002	JK3 V3 UHTH	√3 100 0257 -675	63	800
, 620	в ценях питания счетчиков	JR3 UR% UHTH	100 2000 5 15 100/\3'	64	800						
HK9 110	на шинах	Jpacy - KH STH	$\frac{2 600}{100 / \sqrt{3}} = 20 8$	25		V -F	3,871002	JR3 V3 WHTH	√3' 100 193 897	10	2000
''\Y 110	8 yenax numanua cyemyukak	JK3 100 Snped UNTH	100 2000 387 100/\3	64	800						

				407-03-4848	7- EM	13	
Tun	ALL GOD NO	Allera					
Hay ama	MPAN 60	BU	<u> </u>	Сжемь вторичных целеи	-тадия	1 m	1 mab
	IM n 8	lines		тра ф рматоров напряже	P/1	1	2
	T MOWOS	Lupea		HUA 6 10 KB U BOILLE	3HEP [DEETH	NPDEKT
	M 3A 80	Home	ı	Bulgop yemabok abmonamab	TPR6	FOC 01	пделение
Инженер	8 8	1864	1	в поричных целечТН	<u> </u>	198	88
21,111,11							

Приложение 3

Выбор	abmomamob	вторичных	ueneú	TH
·/-		01110000111000	O,	

Поподолжение. Таблица СМЗ.

								,05	OOOJIXENGE.	raonoga	
Типы	Mecmo	Явтоматы в ц	епяж основной	οδηοτηκυ	TH	Almon	ramer & 4e	ensa danosn	יאטרחפאנאסט	obmomku	TH
трансформа- торов напряжения	присоединения	Росчетная величия выбора уставки	на тока для автоната, А	Принятый Эн. расц., Я	долустимый ю котту та- ционной посодности гвтот а та, А	Almorram Baniquen npoloda	Parverninge Suparence UK%U NTH ZTH= 100. Super.		величина оео тока КЗ,А	Принятый Эн. расц.,	Пдопустить ій по котнута в ционной способно сти автогіа то ,
	HO WUHOX	Jpacy = KH . STH	$\frac{2 \cdot 250}{100/\sqrt{3}} = 8,66$	10		V Yens 3Us		JR3 = V3 UHTH Z TH	$\frac{\sqrt{5} \cdot 100 3}{0.103} = 560$	43)	600
3H0M-35	на вводе АТ	Урасч. = 100 Snped. U нтн		2,5	400	4ens 300	11.2. (100/3) 2 1/03	$J_{R3} = \frac{U_{HTH}}{Z_{TH}}$	$\frac{100/3}{0,103} = 326$	Tennoloù 10") Inermportaz- mummerù 8,5 4)	400
HOM - 35	HO NUHUU	Jpack = 100 Saped. UHTH	$\frac{100}{3,87} \cdot \frac{1200}{100} = 318$	2,5	400						
3H0J1-10	на шинаж	Урасч. = √3 · <u>100</u> · <u>Sпре</u> д. <u>Ин1</u> Н	$\sqrt{3} \cdot \frac{100}{4,8} \cdot \frac{640}{100/\sqrt{3}} = 400$	2,5	400						
3HON-10 (HON-10)	на вводе АТ (т)	Просч. = <u>100</u> . <u>Snped.</u> <u>U</u> мтн	$\frac{100}{4.8} \cdot \frac{640}{100/\sqrt{3}} = 230$	2,5	400	4en6 340	7,9. (100/3) ² 100. 640	$J_{R3} = \frac{U_{HTH}}{Z_{TH}}$	100/3 = 245	2,5	400
3нол- 6	на шинах	Jpacy. = √3. 100 · Snped. UK% · UMH	$\sqrt{3} \cdot \frac{100}{3,55} \cdot \frac{400}{100/\sqrt{3}} = 388$	2,5	400						
3 HO N- 6 (HO N- 6)	на вводе AT(T)	Jpacy. = 100 Snped UK% UHTH	$\frac{100}{3,55} \cdot \frac{400}{100/\sqrt{3}} = 195$	2,5	400	4en. 30.	5,68·(100/3) 2 100·400 =0,155	$J_{RS} = \frac{U_{HTH}}{Z_{TH}}$	100/3 = 215	2,5	400
HAMU-10	на шинаж на вводе ЯТ (Т)		75 - 150 ^{\$)}	2,5	400	yens 3Vo			10 5)	1,6	300

Примечание, Все автоматы должны иметь электромагнитные 1 тепловые расцепители за исключением случаев, перечусляемых в пояснительных сносках 3), 4).

- 1) Данные, полученные опытным путём.
- 2) 6,4 в уставка автомата в шкафу ТН при наличии в цепи теледовательно второго автомата с уставкой 2,5 в, устанавливаетого на релейном щите при больших расстояниях между шкафами ТН - релейным щитом (ЩР) - ОПУ; 2,5 - уставка автомата в шкафу ТН при небольших расстояниях РУ-ЩР-ОЛУ, когда автотот с уставкой 2,5А чувствителен к к3 в конце цепи.
- 3) Автомат в проводе V для ТН типа ЗНОМ-35 может иметь только электромогнитный расцепитель, так как провод V, как правило, имеет небольшую длину.
- 4) Явтомат в цепи 300 для ТН типа ЗНОМ-35, подключенного к ийнам, должен быть только с тетловым расцепителем, а при подключений на ввой автотрансформатора - только с электромагнитным.
- 5) Данные завода изготовителя (ЦАЯК, 671.241.008.ТУ).

Условные обозначения

SIH - НОМИНАЛЬНАЯ МОЩНОСТЬ ТН;

Snped.- предельная мощность основной вторичной обтотки ТН;

Uнтн - номинальное напряжение вторичных обмоток TH;

Кн - козффициент надежности работы автомата;

Цк!.- напряжение короткого затыкания тежду обпоткати вН и НН оснавнай вторичной обтотки ТіН;

Јенк, - наксимальная величина емкостного тока во вторичных цепях;

Ін расц - номинальный ток расцепителя;

КЗ - короткое замыкание.

407-03-484.87-CM3

Дапустимые сопротивления проводов кабелей вторичных целей TH для линии 110-220 к B

Tabnuya	CM4-1
---------	-------

		8	Основная об	momka TH	(A)	Дополнитель ТН (ная обмотка (Ц)
3	0.5	706 [[, [Допустимое сог	npomulaenue bloo	npobada rabe	INA OM TH	do nameny
Tun	CHO	300	по паденим	по надежност	nu pabomei npu	по падению напряжения	по надежности работы автопата
Tun Nademany u v	Bud y'	Honyen	Lonyemumae colonomia nadenum A	2 x goashom K3 7 np (3 Unith 2 2 1) 2 Jupacy XIII	Topashom K3 Topashom K3 Topashom K3 Topashom K3 Topashom K3 Topashom K3		7mp=1 (2xm), (2xm), (3xm), On
		_	ISHARP = 80BR	•		Shaep = 15 8A	
om onepo-	Расчетный	04 = 025	Inp = 0,25 100 -0,104	1)			
nocmoshhom	ø/	2 /0 = 0,5	Znp = 0,5 100 -0,208	0,324 1)	Q, 765 ¹⁾		7 _{np} 110 =
TIC HO NOC MUBHOM	Tez Huyer-	5'1 = N P	7 _{пр} = <u>1,5 100</u> = 0,625 Принимается 0,324 ¹⁾			Клаес точности	$\frac{1}{2} \sqrt{\left(\frac{100}{610}\right)^2 - (2021)^2}$ = 0.81
30		0,5	Sex = 20 8A		ı	3	
onepamus-	PacyemHolu	Į.	Tnper = 0,5 100 -0,833			$\Delta U = 2\%$ $T_{np} = \frac{2100}{215}$	$7 \text{ np } 220 = \frac{1}{2} \sqrt{\left(\frac{100}{6.6,4}\right)^{2} (2032)^{2}} = 1.26$
ξ.	340 46		Sp3A U3M = 380 BA			= 6,667	- 7,20
Bompannehom	4	51=10	$T_{np} = \frac{1.5 100}{3 380} = 0.13$	9324	Q,765	3 , 3 5 7	
NC HO BEIL	MEZHUYECKUÚ	1,5	E Snazp = 400 BA obwww npobod psa wan Cnp = <u>1,5 100</u> = q,125				

Приложение 4 Допустимые сопротивления приоводов кабелей вторичных цепей ТН на шинах 110-220 кв

Taknun CMU-2

						aonuya	6174-2
	. 00	Основная	obnomka 1	TH (X)	Дополнитель ТН	HOR DOM	mka
yvema nunuu	200	A onye mumoe	сопротивле панели вв	HUE npalad	a Rabena d Wume	mTH a	°0
27.6	36.2	по падению напряжения	no HademHach	nu pabomel	по падению напряжения	по надеж работы а	
[130	$T_{np} = \frac{\Delta UU_H}{3S_{Harp}}, O_M$	2 gpashom K3 7 np \(\frac{\sqrt{3 Uhrh}}{2 Jh pacy} \) \(\frac{2}{3} \tag{1} \)	1 quashom K3 1 = VUHTH 2 x2 1/1p (3) H pacy 7 7H	Top= AUUH OM	7 np 2 VIUN	1) 17H 2 (2XFH) 2 19 0 M
٠,		Sc4 = 548A			ESHORP = 38A		
Pacvemnorú	50=77 0	7 _{np} = 0,5 100.0309			Knace movinoe- mu 3 $\Delta U = 2\%$ $T_{np} = \frac{2100}{23} = \frac{100}{23}$		
κυύ	5	Sey = 548A T _{np} = 15 100 =0,926			= 33, 333	7np 11a = 0,811)	7npzto= 1, 26†
Texnuveckuú	1-70	ZS _{p3A} , U3m = 546 8A 7 _{np} = 1,5 100 3 546 -0,092	a,324 ¹⁾	a, 765 ¹⁾			

1) Расчетные выражения и велшчины приняты по татериалам CM N 1 2 NORCHUMENGHOÙ BONUERU

Условные обозначения

 ΔU - nadenue напряжения в жабеле,

UHTH - HOMUHASSHOE HANDAXEHUE TH,

Эн расц - номинальный ток расцепителя автомата,

Хтн - индуктивное сопротивление ЖН,

≥5 HORP - CYMMAPHAR HARPYSKA,

Scz - потребление устройств учета,

Sps., изм - потребление устройстив защиты, овтомотики и измерений

				407-03-484			
run	Шидорочна	Aller		Сжемы вторичных цепеи транкорорматоров напря жения 6-10кв и выше	Comadua	Sucm	Nemas
	Xmerne8			трансорорматоров напря	ا م	1	8
Hay amid	Р'ерзлегнкова	The _		WEHUR 6-10KB U BOILLE	3HEPT	OCETH	NPOEKT
	Ειοριοδα	Tout		Допуститое сопротивления проводов кобелеи	VOPEROS	CROE OF	ndesenue
Cm mesn	Macmaba	Holide	u_	npatadat kaaeneu		198	'8 e

									Tabn	vya	CM4-	3
	3	Основная	обмог	nna	TH	(人,)		Дополнительн	OF OFM	mka 7	# (U)
1 5	و	Aonye mumo	e car	pomul	Snenue	пров	oda n	caben;	a omTH do nan	enu 860	да на и	une Om
חטאמט	падение	по падению напряжения	no He	adeжно	emu p	a bom	6/ 0	8mo-	по паденита напряжения	no Had	v 1060-	
на	Bud grema na Aongemunoe na	$\gamma_{np} = \frac{\Delta U U_{HTH}}{3 S \text{ Hasp}}$	Inp pan us, HR qo 330 ! Inp Pan us, HAE 500	750 12J H P	TH - Z TH		<u>Шити</u> Эмрасц)	2 -X TH	T _{np} = <u>DUUH</u> 25 naep			
1	Suc		нк Ф - 330-550	HAE - 500	HAE - 750	117-90- 330 500	MAE- 500	750		HE 90-	HK92- 500	14 E - 50-750
80	A		ANR N	оовада	P3R U	anene Ism	v 880	र्वे ल	Swazp = 58A			700
Асчетный	2 P3A, U3H 5	$S_{P3R} usm = 1908R$ $T_{np} = \frac{1.5 \cdot 100}{3 \cdot 190} = 4263$	0 324	0,394	126	0755	,	3 07	Knace			
TezHUVEC- PRYEMHING	51:77	Sharp = 210BA 1 _{np} = <u>1,5 100</u> = 0238 064440 npo808 P3A U3M SY	<i>U,324</i>	0,394	7,20	<i>(4,743</i>	1,89		Δ4 = 2%	0,818	1,26	7,610
пныч	25	Sc4 = 208A 2 _{17e4} = 0,26100 -0,416						<u> </u>	$I_{np} = \frac{2100}{25}$			
Pacyemner	20 = DV	7 . 0,5 100 0023										

1) Расчетные выражения и величины приняты по натериаламсм п 1 г пояснительной записки Приложение 4 Дапуститые сапротивленшя правадав кабелей вторичных цепей ТН на шинаж 330-750кВ

								Ταδπο	140	CM4	-4
	8	Основная	obnome	e i	TH (久)		Даполнитель ТН	HOR (山)	obmoi	חאמ
ş	4	Lonycmumae co				da Ka	беля		w 880F	а на щ	ıme,On
חטאמני	400	по падению напряжения	по наде	יחסו	ש ער עקח	a60m	6/	по падению капряжения	по надежности		
101	ابر ا		2 × qpasho	האי הי	1900	SHOM	K3				
1 .		$I_{np} = \frac{\Delta U U_H}{3 S Hazp}$	7 - V3UM	W 22 2 1	Zno = V	UHTH Y	2 2 - X 7 4	Zno= AUUN	700==	UNTH	
yvema		ं ३ ७ भवरह	THE WILLIAM PO	164) 1111	"	VIL POCK)	7.11	25 Naep	1	100 <i>H</i> ,PG	cegn 1mg
Bud	Hany		нкф- нд. 330 500		- HK92 330	HAE- 500	HAE - 750		HK9-	HAE- 500	HAE- 750
		Sp3A U3M = 2608A	Ann npo	reinu	M MANG	usm	हन्त्रेय	Snazp = 38A			
	51=77	Znp = 15 100 -0192	1 1					Knace			
kul		€SHAPP=300 BA	0,324 0,35	1,26	2.765	1,89	2,97	точности 3			
mexwu veckuó	5%=	7 _{np} = 1.5 100 = 0167 06444						DU=2%			
MEXH	70							$I_{np} = \frac{2100}{23} =$	081	0,61	0,51
	5	Sey = 40 BA						inp = 2 3			
7/94	20 = 00	7 npex = 925 100 =0208						± 83,3			
Pacyemusi	3	7 _{nPe 4} = 0,5 100 0,916									
9	1 '	יירבע אייטיי		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- Au				

Примечание в ракчете допустимых сопромивлений проводов кабелей Т.Н. на шинах 330-750кв (таблица СМ4-4) Суммарная величина нагрузки принята равной мощности Т.Н. НДЕ-500-750 в классе точности 0,5 (300вА)

Условные обозначения

№ 1 - падение напряжения в кабеле, Интн - номинальное напряжение ТН, Ун расц - номинальный ток расцепителя автомата, Хтн- индуктивнае сопротивление ТН,

Етн - полное сопромивление ТН,

Е благр – суммерная нагрузка, всч – потребление устройств учета, врзя изм+патргбление устройств защиты, автотатики и измерении

OBMOMKO

Основная

Tagnuya CM5-1-1

		*	00	e 57	y am Th	4 20	uuma		70/11/60		k	aber	/ 70 4		
2/2/	Buc	761	ية.	320	Расчетное сечение	Принятое	Conportubnetue Topobodo no nou- Hamomy cevenue	Сопротивление	Τ	-				UM	
" "	HO	710	SUS OF	4760	Pacyemnoe sevenue (astromunui) 9:= T. Top das	cevenue,	пробода по при- нятому сечению	Ny ne Bozo nposoda	7/1p1+	0000	Par	CHUE	e conpomub-	NOKO POPO POPO POPO POPO POPO POPO POPO	правода (mede, Флюминий), В ММ
1			40	Α,	1) Trong dan	MM 2	$T_{np} = \frac{\ell_1}{f \cdot g_1}, 0m$	ZN = F GIN, OM	. , ,	Henn	7 ₁₁₀ =	<u> </u>	Swarp 1 _{AP} +400 100	450	PE - T. Inp ASA (USM CY
		%		Σ·	1) S Harp = 808A	; T'np don ALL	0,104			l	1 27		SP3A = 12BR, SC		
more		= 925		120	120 34,5 0,104 = 33,445	3 ×35+1×16	120 34,5 35 = 0,099	120 34,5 16 = 0,217	0,099+ 0,217 L 0,765 2)	Henc.	1 . 1	_	3-3-80 0101/100		<u>550</u> = 1,489
om.	Heré	77 0	20,0	125- 175	<u>175</u> 34,5 0,104 =48,774	3.50+1.25	175 34,5 50 = 0,101	175 34,5 25 = 0,202	0,101+ 0,2022 0,7652)	0 110	Usm	7 no 1/n	075.026 00 atol.		80 57 0,957 = 1,467
480	ie m		8	5.	1) S = 80 80	7 2 44	- 2002		<u> </u>	1	3	7 6	3 20 100 = 0,3 83	1 1	30 57 0,383 =1,374
E	30%	5%	İ	_	105	110 80 11 24	1		0,192+	0	38	SHAIP.	3 3 80 0,203/100 3 12	600	500 545 0.98 = 2,492
onepam	100	. 0.	enu	105	105 34,5 0,208 11,632	3×16+1×10	34,5 16 = 0,192	$\frac{105}{34,5} = 0,304$	0,3042	8600	W	2 3	15-15 80 0 202/100		
3		770	пан	110-	175 34,5 0,208 24,386	3	175	105	0 203 +	`	63	3.6	100= 0 872	/5	
HHO		_	20	175	34,5 0,208 24,380			34,5 16 = 0,19	0,765 2)	25.0	Š	-= (05-05 80 0203/100 3 20 100= 0,598	60	60 34,5·0,698 = 249
cmos	ACC	%	7.		5 Harp = 8081			<u> </u>	0,272 +	חמצ	AEd		3-3 80 0,272/100 3 12	1430	1430 34,5 16,6 = 2,49
HQ 70	HUVE	542	1 wo	150	150 34,5 · 0,324 = 13,419	3 x 16 + 1 x 10	$\frac{150}{34,5} = 0.272$	150 34,5 10 =0,435	0,435 4	1		P3A (U3M	1,5-1,5 80-0272/100 3 48	13.5	135 34,6 1,6 = 2,445
110	7ex,	7 7	ľ	155. 220	220 34,5 Q324 13,679			•	1 '	1	1 ~	i	0,5-0,5 80 0,272/100 3 20		160 34,51,938 2,393
8			2000		€5c4 ¹⁾ = 2	2088 , 7 np	Jan 14=0,8330m amdenemoù Kafe.				209	7 /Pacs	emhoto yve		<u> </u>
SUHC	,5/6/	%	NAH	110	110 34.5 0,833=3,83	4									
200	yem!	0.0	د ما		140 34,5 0,833 =4,872	 									
36	20	700	ט ייו	4110	220 34,5 0,833 = 7,655					·.					
640					500	2	7on 4U = 0,131 (1	<u> </u>	ò		0	5" . 222.80	L	Suam = 488A
76%		1%	6.	4	110		110		0,128 +	6	0	200/	S P3A = 332 8A 3-3 400 · 0130/100		
Juep	1	1,5%	809	115	110 34,5 0/31 -24,339	3×25+1×16	34,5. 25 =0,128	34,5 16 =0,199	0.7652)	100	P3.A	('č')	3 332 100 = Q149	10	10 34,5.0,149 1,201
Wo.		7		150	34,5 0,131 -33/89	3×35+1×16	34,5 · 35 = 0,124	34,5.16 =0,271	0,2712		<u> </u>	1 6	1,5-1,5 400 0,13/100		
DEHH		٧	5	155 225	34,5.0131 -49,784	3×50+1×25	$\frac{225}{34,5\cdot50}$ = 0,13	225 34,5·25 = 0,261	0,13+	8600	13,	£Sna.	3 48 -100 = 0,522 1) 5 _{P3A} = 3328A; S us. 3-3 400 0125/100		45 34,5.0,522 =2,48
pami	1.5		חמא		Est Harp = 4	400 BA , 72)	p dan 14= 0425	5 QM		1 •	l	3.50	Sp3A = 3328A; Su3.	-48	1) BR; S ey = 208A
6617	1.5%		90	105	105 34,5 Q,125 ⁻²⁴³⁴⁸	1	105 34,5.25 =0,122	105 34,5 16 -019	0,122 + 0 19 L 0 765 2)	Hene	P3A	1 4	3-3 400 0125/100 3 332 100= 0,15		10 34,5 0,15 =1,93
Ha 6			1 1	110	150 34,5 0125 -34,783 215		150 34,5 35=0124	150 34,5 16 =0,273	0,124 + 0,273 4 0,765 2)	1 2	Usm	(آرهنا)	1,5-1,5 400-0,125/100 3 48 100 = 0,521	40	40
7/2	7.	00	0	155 215	215 34,5 0,125 - 49,	3×50+1×25	215 34,5 50=0,125		10,700	9	2 40	Za 020	1.5-1.5 400 0125/100	105	105 34,5 1,25 =243.
							-				1	<u> </u>	1		

- 1) Определение нагрузки см приложение 2 (СПЕ-2).
- 2) Значение допуститых сопротивлений ст приложение 4 (СМ4-1)
- 3) $\int portopuru q_1 = f(\ell_1) u q_2 = f(\ell_2)$ $cm \quad poundmenue 5 (CM5-2-11-14,18)$

Условные обозначения

ДИ — падение напряжения в кабеле

7 пр дап ДИ - допуститое сопративление
провыда по падению напряжения,

7 пр доп ЯВ - допуститое сопративление
провыда по надежности действия автомата

∑ 5 нагр - суммарная нагрузка,

\$ рзя - патребление устройств защиты и
автюматики;

\$ изм - патребление устрайств измерения;

Sc4 - потребление устройств учета.

			 407-03-48487 - CM5										
<i>run</i>	Шифрина	Allena	Сжемы вторичных цепей	Cmadus	Ayem	Aus mab							
HRONTP	DCMENES"	Very	трансформаторов напря-	P	7	11							
Hay ord	Миераленкова	PL	KEHUR 6-10 KB U BUWE	JHE D	MIFT	PUDUEKI							
	Machoka	Prof	 Определение сечении	TOPERO	Scree !	emderenue							

Таблица СМ5-1-2

						Основна	9 05	MOM	κα					
		15e	лч		o wuma					Ko	бели	७० थ्य		
8и86 Учен На лини	ma I	KUZÇAX ANA HOUDO EYE-	KOGENA	Pacvemhae ceve- Hue nosbada (asromumuu) G = C1 A1 y Tapdak		Compomue nenue nposedada no npunsmomy cerenuro	Сопротивление нулевого провода Z _N = <u>l1</u> , Om	7np.1+ 7 N 2)	Hanpagne- Kabeng	Pace Znp=	AU-AU	Canpornubne- poboda CSHarp Top 100		Pacuemnos cevenue Aposoda (antomumuu) Pz P3A Pz P3A Pz P3A Pz P3A Pz P3A Pz P3A
				S 1) C4 =	54 88	t np don	AU = 0,309 0m					S cy = 548A		
пный	2%		105	105 34,5: 0,309 = 9,849							100	<u>0, 5-05 0307 54/100</u>		
Расчетный	0 = 17	۶,		765 34,5-0,309 =15,478	3×16+1×10				anenu		. i_	3 54 100 = 0,257	20	<u>20</u> 34,5 · 0,257 - 2,256
	Δ	sus un	170 265	34,5 0,309 -24,858					0		, men			
		0		S ¹⁾ c4 = 54	488	TE) np don	A4 = 0,926 OF	7	9		3 8	Scz = 5481	9	
		nosm	125	125 34,5 0,926 ^{-3,913}	4	125 34,5 4 = 2,906			eneú	64	U & SHORP . SHORP P3A(
exHUVECKUÚ	2 %	- auad	130 155	155 34,5 0,926 - 4,852	2 × 2,5	155 34,5.5 = 0,899			nopor		3.3	<u>15-1,5 0,924 54/100</u> 3 · 5 4	Va.	40 34,5 0464 - 2,499
ex HU 4	1 - 7	HEAU	160 225	225 34,5 0,926 7,982	2×4	225 34,5 8 -0,924			e - nosmop		z (*>'.	100= 0,464	,,	34,5 0,464 4 100
	۵	do na	22 5 31 5	315 34,5 0,926 9,86					pene		рзя (Изм			4
		ľ		ΣS^{0} Hazp = 5	46 BA; 22) n	p don AU = 0,	092 Om		5			S" P3A = 3308A	,	5"u3M=216BA
9	,,	Ì `	80- 100	34.5 0092 -31 511	3×35+1×16	100 34,5 35	100 34,5 16 = 0,181	0,083+ 0,181 4 0,765 ²⁾	панел	P3A	du 2	' <u>-3 546 10,092/100</u> 3 33 0	20	20 34,5 0,15 = 3,84
TexHUYERRUG	1 = 1,5%	0	150	150 34,5 0,092 47,262	3×50+1×25	150 34,5 50 -0,087	150 34,5 · 25 = 0,174	0,087+ 0,174	E O			100 = 0,15		34,3 0,13
TexH	7 4			34,5 0,09z=69,313			 	0,255 4		7.		1,5-1,5 546 0,092/100 3 · 216	15	15 34,5 Q,115 = 3,78
			225 285	- <u>285</u> 5 34,5 0,092 ⁻⁸ 9,791	3×90+1×25	285 34,5 90 = 0,092	285 34,5 · 25 = 0,33	0,092+		43.		100= 0,115		J7,7 (,11v ·

Tun TH		Ao.	707	ume	ελίκας οδησηκα
и место установки	Posad Rasena	Направление кобеля	Anuna Kabenal, M	2) np don, Om	$Q_1 = \frac{L_1}{y \cdot T^2 / np \partial an}, mm^2$
НК Ф-110 на шинаж и линияж	Medo	pomerei		Q81	9, = 200 = 4,33
HK Ф-220 на шинаж и линияж	Ne	oere-nobnopumerev		1,26	91 = 200 = 2,78
HK 9-110 na wunaz u nunurz	HUŮ	HONEN P	200	0,81	9 ₁ = \frac{200}{57. 0,81} = 7,16
HK-Ф-220 на шина≈ и линия»	Ялюмини	m TH 30		1,26	91 = 200 57. 1,26 = 4,6

- 1) Определение нагрузки см приложение 2 (см2-3).
- 2) Значения допустимых сопротивлений см приложение 4 (CM4-2)
- 3) $\Gamma_{parpulku} q_1 = f(\ell_1) \quad u \quad q_2 = f(\ell_2)$ cm приложение 5 (CM5-2-15-18)

Условные обозначения

∆ U — пандение напряжения в кабеле;

Ппр доп Д. Ц — допуститое сопротивление провода по падению напряжения;

7 пр доп АВ — допустимое сопративление провода по надежности действия автомата;

∑Sнагр — суммарная нагрузка;

Sp31 — потребление устройств защиты и автоматики;

Susm — потребление устройств измерения;

Scy. — потребление устройств учета

Таблица	CM5-1-4
---------	---------

			7	d A	ели	0m	TH	2	Основная	οδΜοπικα								
HC	ma	-Supague	1000	E	acvernia ilue npa (antomu. 71 = 77	e ceye- 8000 HUU)	Приняп сечен мм	144,		Сопротивление нулевого провода 7 _N = <mark>l1</mark> , Ом		anpague	GOEAN	Kaber Pacyerni Hue i Lacka	10 2 [0]	no w npomubae- nes/hoo no.	Le ma	Pacyemhoe ceve
			5	n)	208A,	Inp don	AU = 0,416	9 Om	отдельный ка	EPA PAR POCUETUR	en uvera	X	`	<i>np</i> 3	Harp	<u> </u>		42 7 TAP PAR CUARCE
		8	1	- 1	110	i c =7,654					, y, , , _							
	% 52'0	mvero	11.		140 145 0,416	, - 9,755	3×10+1	× 6										
	n	2942	22	5-	225 34,5 Q410	5 =15,677	3 x 16 +	1×10										
	V	200	35			5 24,387	3×25+											
1		Ĭ	Ŀ	ہے ک	= 208 R	Top do	7 DU=0,8	330 m	;атвельный кабе,	16 das parvemnoso	yvema							
/ 0/4		30 11	//		110 34,5 Q83		4											
	5 %	7.11	"	5-	140 34,5 0,83.	3 =4,87	2× 2	,5										
	0 = 77	100	2.	10- 25	225 34,5 q8	33 ^{-7,829}	2×4	,										
	۷		2.	30- 85		કુ ^{-9,9/7}	ľ											
		Γ			ES Har	ep = 1901	8A , T	np do	n DU = 0,263 0	77		T			5" 236	= 140 B A	51/2	13M = 508A
1	%		-	_			1		145 34,5 16 = 0,263		0,263 + 0,42 L 0,765 ² ,		P3.A	00/- (10 0,263/ho		45 57 Q319 -2,47
	21 = 77	88000	2	50- 25	225 34,5 · 0,26	3-24797	3×25 +	1×15	225 34,5 16 = Q261	225 34,5 16 - 0,408	0,261+	anen.		7 np 1/100 (UBM, CV)		0, 319 Plo 0,263/10	<u> </u>	37 4,373
			2	90	290 34, 5 0,26	3 -31,961	3×35	+1×16	290 34,5 25 0,24	290 34,5 16 -0,525	0,24 + +0,5254 0,765 ²)	9%	U3H	Snarp rep P3A	3 5 100= 0	0 1448	60	57 Q448 4°
		1			Σ5" H	dep = 2.	10 BA ,	7 ²⁾	np dan AU = Q	238 Om	-	090		5 40	51) 13	= 1408 i = 2088	9, .	S)) U3M = 508A
, ,	1.5%			30	130		3×16+		1	130 34,5 10 = 0,377	0,236+ 0,377 < 0,765 ²)	8	63	144-1	3-3 210	140 140 0,357	50	50 57. 0,357 = 2,4.
ンロストントラントン	7 = 7	17.			•		3×25+		205 34,5·25 = 0,238	205 34,5 16 - Q371	+	76	V3M.	рзя(шт cv) ⁵⁻		0 0,238/100 50 1, 5	70	70 57 0,5 -2,4
6.7	<		E 2	10- 185	<u>285</u> 34,5 q23	8 34,709	3×35+	1×15	285 34,5 35 - Q236	285 34,5 16 -0,516	Q236+ 0,516 4 0,765	. ६	20	180 du 2		10 0,238/100 20 7,416	55	55 57 0416 = 2,31

- 1) Определение нагрузки см. приложение 2 (СМ2-4)
- г) Значения допуститых сопротивлений ст приложение 4 (СМ4-3)
- 3) Графини 9, = f(l1) и 92 = f(l2) см приложение 5 (CM5-2-19+21, 24)

YCROBHELE OGOSHAYEHUS.

Всловные вобълачения

Д И - падение напряжения в кабеле;

Г пр дот ДИ - допуститое сопротивление провада

по пагдению напряжения;

Г пр доп ЯВ - допуститое сопротивление провада

по наглежности действия автомата;

Е\$ нагр - суммарная нагрузка;

\$ рэл - потребление устройств защиты и автоматики;

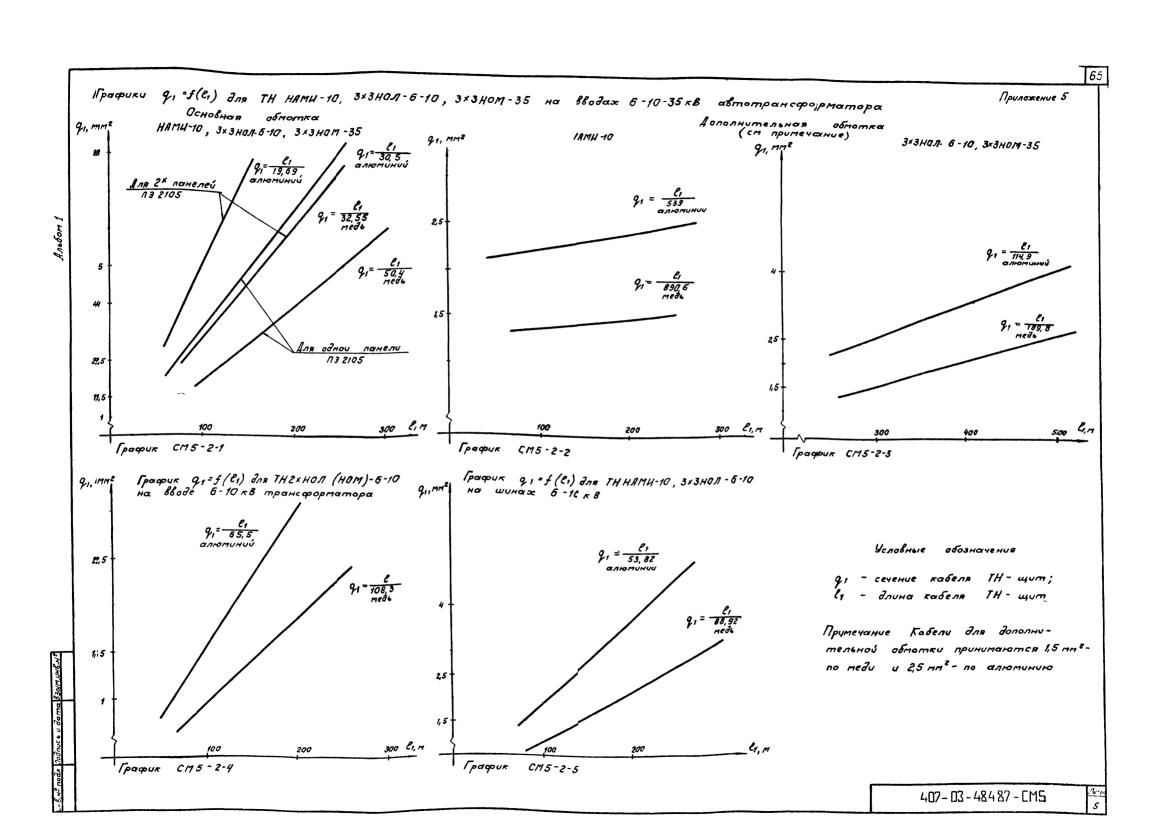
Эрзя - потребление устройств защиты и автоматик
Susm - потребление устройств измерения;

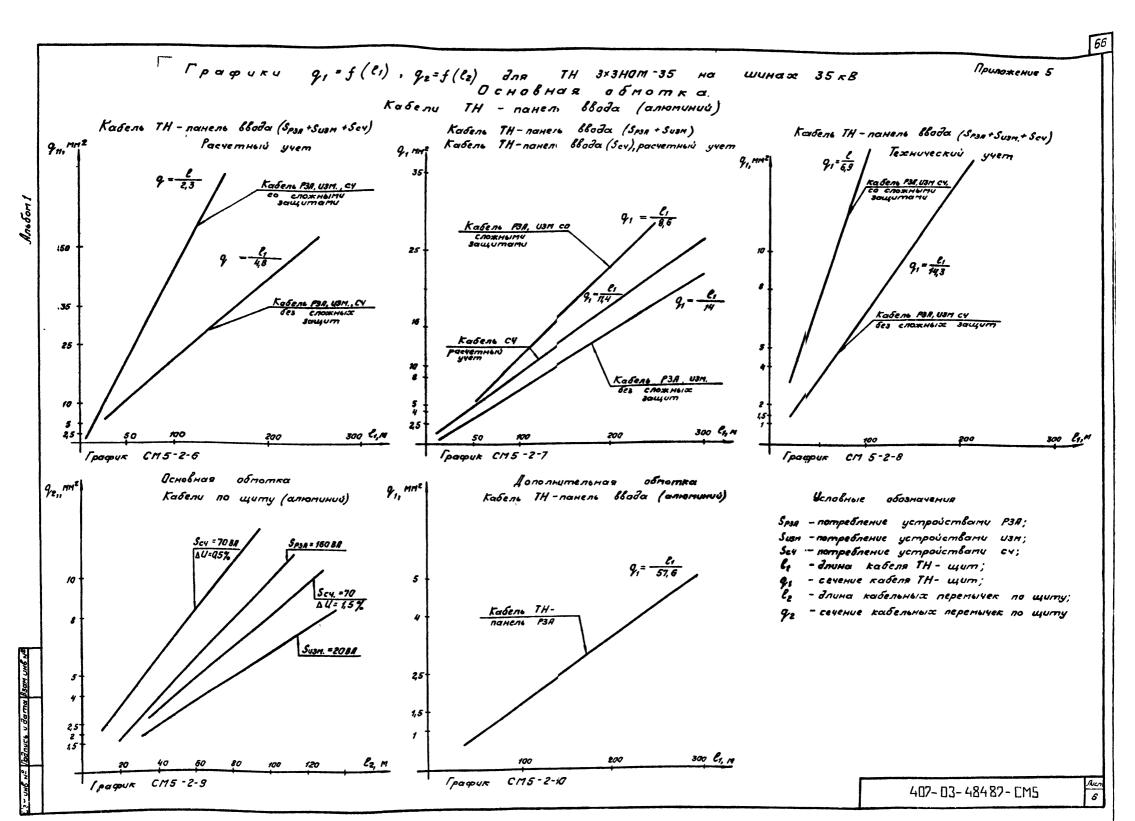
Sc4 - потребление устройств учета

Mecmo	Допол	HUMEA	SHO R	обмотка
ycmab- RU TH	TW noi TH	galenue dauna dauna Gene Cm	, don, Om	Расчетное сечение правода (медь)
Ha wu-		1 1 1	27.0	4 F. 7 np Ban

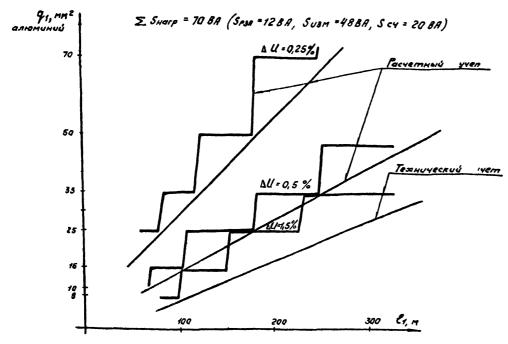
TH

TH $\frac{1}{2}$ $\frac{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$


- 1) Определение нагрузки ст. приложение 2 (сп2-5)
- 2) Значения допустимых сопротивлений см. приложение 4 (см4-4)
- 3) $\Gamma p \alpha q p w \kappa u \quad q_1 = f(l_1) \quad u \quad q_2 = f(l_2) \quad c m \quad n p u n o$ **Refue 5 (CM5-2-22+26)

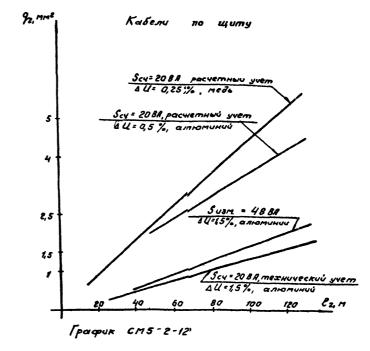

Условные обозначения.

- AU madenue напряжения в кабеле;
- Inp. dan. 4 U danycmumoe conpomulaenue npoloda no nade: nuro напряжения;
- 7 пр. дот АВ допуститое сопротивление провода по надежности действия автомата;
- ∑ Sнагр. суммарная нагрузка;
 - 5 рзя потребление устройств защиты инвтогнатика
 - S изм. потребление устройств измерения;
 - Зсч потребление устройств учета.


					0	новная	обмотка	γ					7-	CM5-1-5
		K	abe	מת ס מת	TH	do wum	ø			Λ	aben	, 40 m	um.	U
40	מת	Hanpaene- Kadena	Roden	Pactembog ceverue (posedo do ceverue) (antomunui) 21 Million M	MW S	Conpagnue nemue in posada na nou- namony cevenue in mony cevenue 7 1= 10 / 00 / 00 / 00 / 00 / 00 / 00 / 0	To gin on	2 N 3)	Hanpagre	Pacy HU!	AU-AU2	canpamubne- obada <u>Swarplap 1/100</u> 100 Swarp On	_	Pacvemnoe seven npobada, (medi Lz Lz y Inp Pan Lusm. c
١						Ом; атдельный	Rabens dia pacverno	eo yvera		- [
		8021	110	110 34,5 0,208 =15,329	3×16 + 1×10					l				
	125%	ema	115- 175	<u>175</u> 34,5 q208 ⁼ 24,386	3×25+1×16									
2	0=17	٥,	1001	245 34,5 0,208 34,14	3 x 35+1×16									
Action	, ∆	HEAU	250- 350	350 <u>-</u> 48,774 34,5 0,208	3×50 + 1×25									
, 1		110	504	=408A; Znp don 40	U=0,4160m; om	रिट्राह्मकाई स्वर्धहत्रक व	na pacvemnaso	yverna						
0	2 %	20	140	140 34,5 0,416 = 9,754	3×10+1×6									
	0 = 17	, 7H	145 225	<u>225</u> 34,5 0,416 ¹ 5,677	3×16+1×10									
_	4	om	250- 350	350 34,5.0,416 24,387	3×25+1×16									
		l		∑5" Harp = 20	GOBA, TONP	dan 14=0,192	Om .					5 P34 = 508A , .	5 U3	m = 2008A
			105	105 34,5 0,192 =15,815	1	105	105 34,5 10 0,304	0,19 + 0,304L 0,765 ²)		980	00	3-3-260-0,191/100	70	70 57 · 0,83 = 1,47
l	1,5%	1	110- 165	165 34,5 0,192 =24,911	3×25+1×16	165 34,5 25 =0,191	165 34,5 16 = Q 299	0,191+ 0,2994 0,785 ²⁾	2		100 · 100	3 · 60 100 = 0,83	115	115 57.0,83 = 2,4
	= 777	88000	170- 230	230 34,5 0,192 ^{=34,} 722	3×35+1×16	230 34,5 35 0,19	230 34,5 16 - 0,417	210+	Hes	E	TP TAP (1,5-1,5-260 0,191/100 3 · 200	10	10 57.0,126=1,3
		٤		34,5·0,192 ^{=49,819}			34,3 63	0,191 + 0,3834 0,765		Usm	\$ 5 Har	100 7 0 105	15	15 57. 0,126 - 2,0
		10,		∑5 Harp = 300	BA; 7 np	Pon 44 = 0,167	Om .				7 2 2	Sp3A= 608A , S u3H	-20	1) 08A: Seuz 40
		00,		140 34,5 0,167 = 24,295	ł	140 34,5·25 = 0,162	1	0,162 +	ة ا	P3A	35	3-3.300 0.185/100 3.60		
うろとい			145-	200	 	200 345·35 = 9165	200	0,165+			(v) =			5 / 0,842 4
ロオンエ	7 = 77	1 ~	200		1 23 7 7 70	27,5.35	34,5 /6 = 0,362	0,765 2] ξ	U3M	UBM.	1,5-1,5-300 0165/100 3- 200	10	57.01267,3
'azo	A			= 49456	3×50+1×25	285 34,5 50 = 0,163	285 = 9,330	0,765) 8	L	P3A (U3M.	100 = 0,126	15	15 57. 0,126 = 2,0
			290 350	350	3×70+1×35	350 34,5 70 = 0,145	350 34,5·35=0,285	0,145+	0	ટ	du 2	1,5-1,5 500 0,165/100 3 · 4 0	-	50 57. 0,631 = 1,
_	L			3,30,707	1	34,5 /0 /	34,5.35	0,765	7	1	1	100 = 0,631	85	85 57.0,631 = 2,3

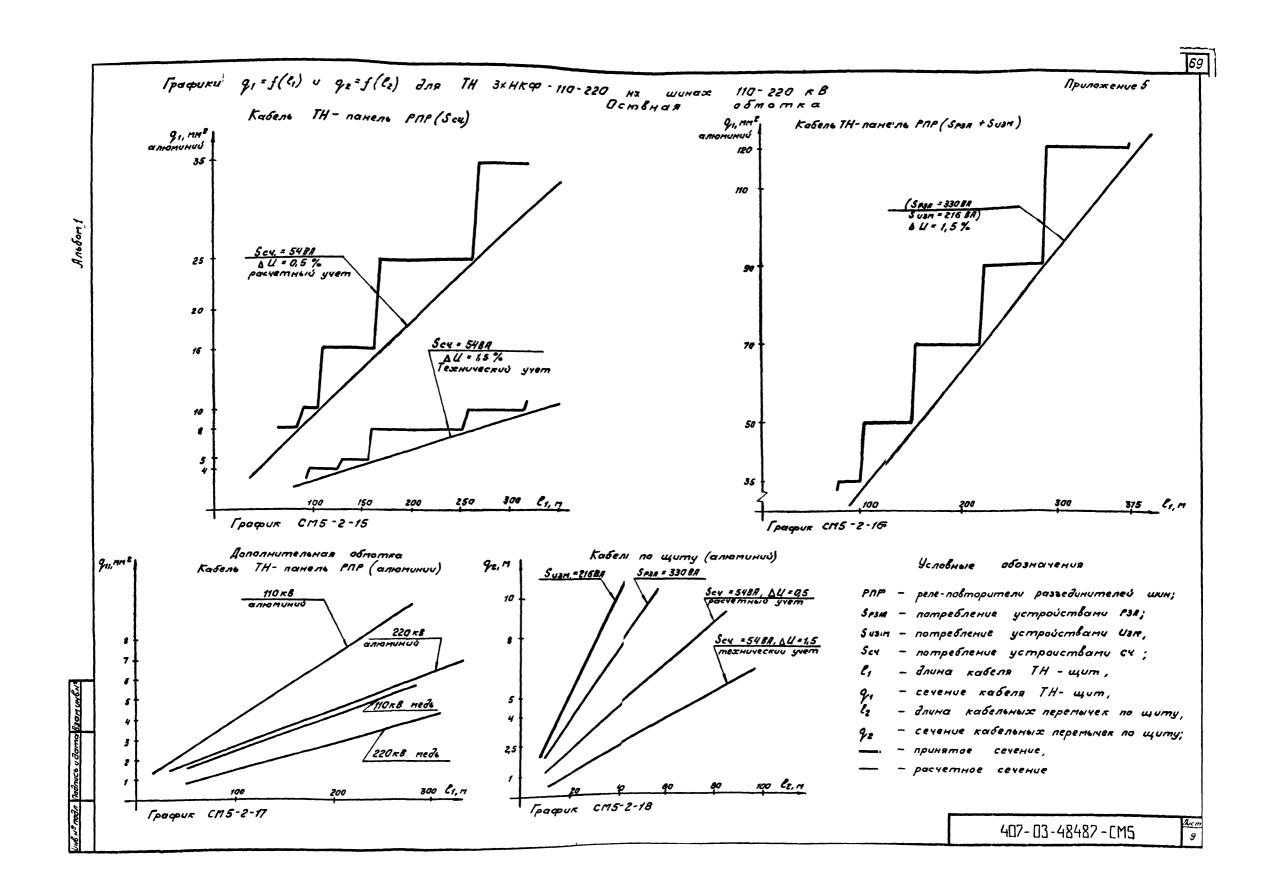
407-03-4848/-LM5

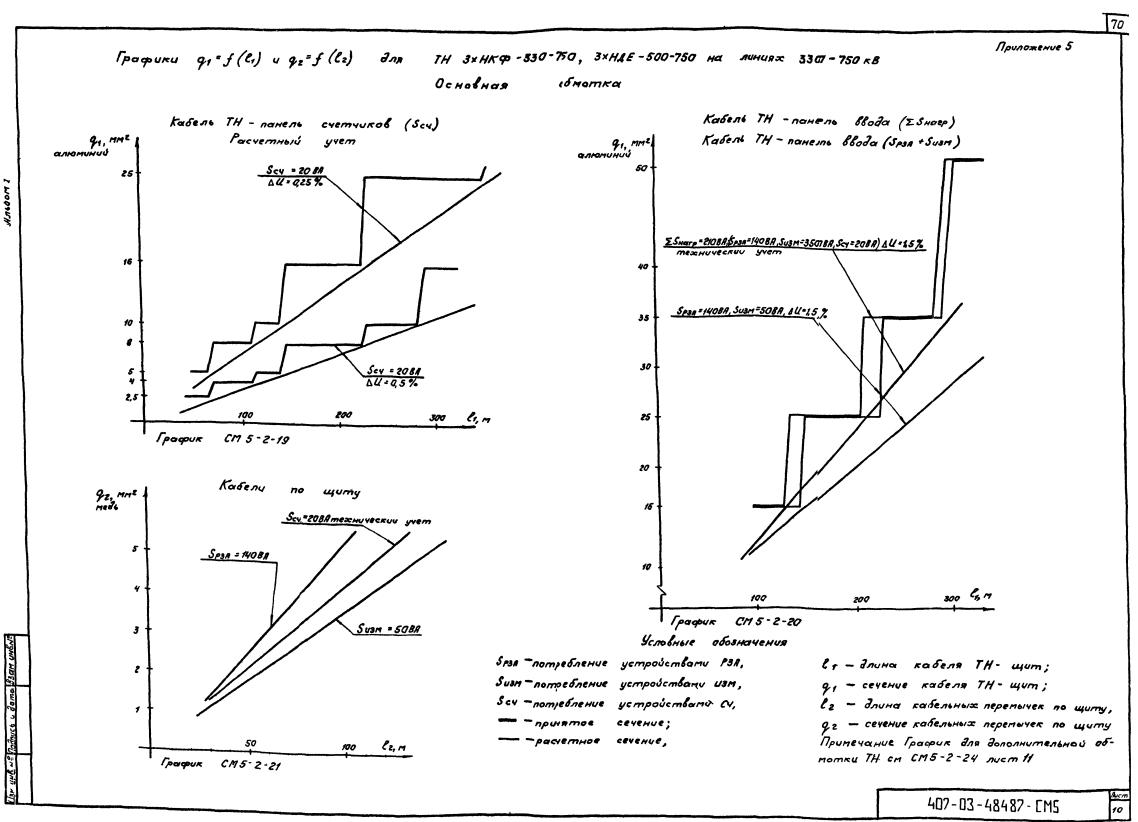
Kabeno TH - nameno bloda (E Smare)

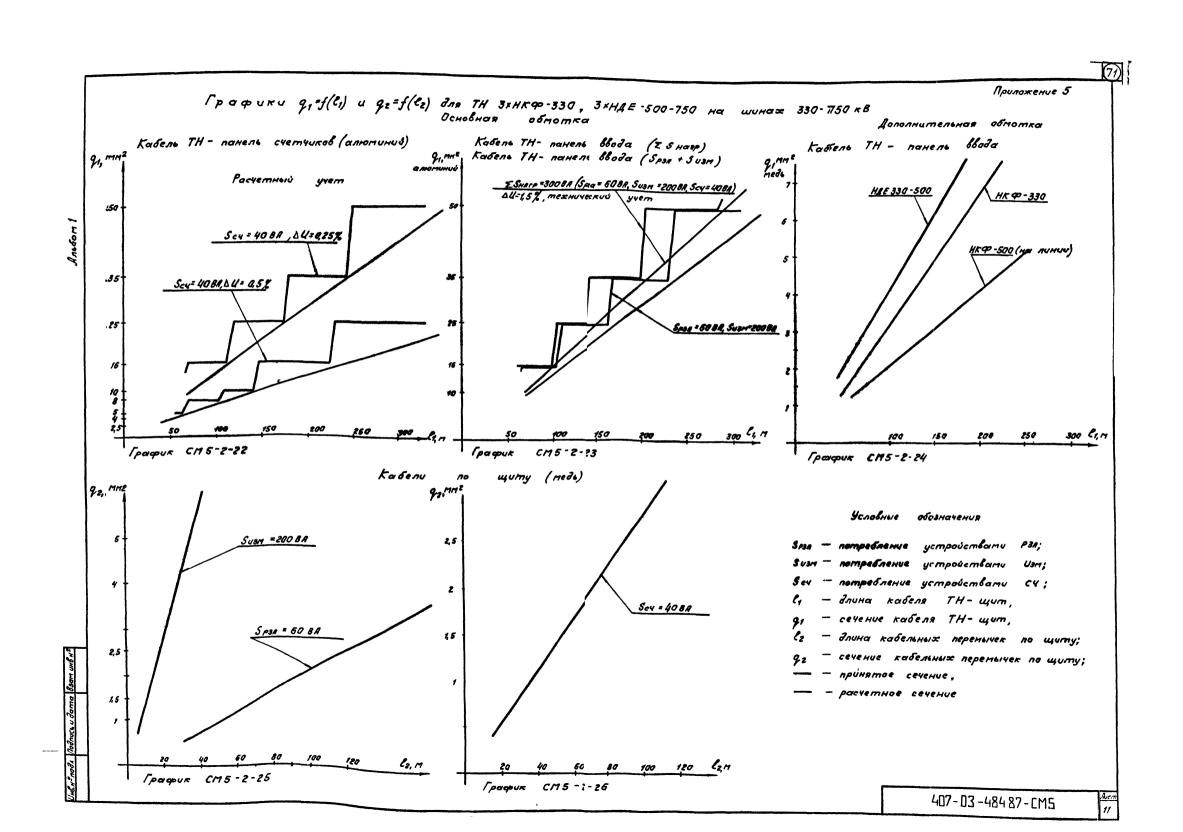


FROIDPUK CM5-2-11

Уславные обозначения


\$134 - потребление устройствами РЗА,
\$134 - потребление устройствами изм;
\$44 - потребление устройствами СЧ;
\$1 - длина кабеля ТН - щит,
\$2 - длина кабельных перемычек по щиту,
\$2 - сечение кабельных перемычек по щиту,
\$3 - сечение кабельных перемычек по щиту,
\$3 - принятое сечение кабеля


- расчетное сечение кабеля



Примечания 1 Кащельные перенычки по щиту устройств РЗЯ принимаются 15 mm²по теди и 25 mm²- по алюминию
г Гргафик для дополнительной обтотки ТН ст СМ5-2-17 (лист 9)

Nodnu u damo

