Документы по стандартизации Конструкции металлические

СТАНДАРТ ОРГАНИЗАЦИИ

Конструкции стальные строительные

ОСНОВНЫЕ ПРИНЦИПЫ РАСЧЁТА НА ПРОЧНОСТЬ, УСТОЙЧИВОСТЬ, УСТАЛОСТНУЮ ДОЛГОВЕЧНОСТЬ И СОПРОТИВЛЕНИЕ ХРУПКОМУ РАЗРУШЕНИЮ

CTO 02494680-0049-2005

цниипск

им. МЕЛЬНИКОВА

1971

1990

СТАНДАРТ ОРГАНИЗАЦИИ

Конструкции стальные строительные

ОСНОВНЫЕ ПРИНЦИПЫ РАСЧЁТА НА ПРОЧНОСТЬ, УСТОЙЧИВОСТЬ, УСТАЛОСТНУЮ ДОЛГОВЕЧНОСТЬ И СОПРОТИВЛЕНИЕ ХРУПКОМУ РАЗРУШЕНИЮ

CTO 02494680-0049-2005

Предисловие

- 1 РАЗРАБОТАН ЗАО Центральный ордена Трудового Красного Знамени научно-исследовательский и проектный институт строительных металло-конструкций им. Мельникова (ЗАО «ЦНИИПСК им. Мельникова»)
- 2 ВНЕСЕН организацией-разработчиком Стандарта
- 3 ПРИНЯТ на научно-техническом Совете ЦНИИПСК им. Мельникова от 27 января 2005 г. с участием представителей организации-разработчика стандарта
- 4 ВВЕДЕН впервые
- 5 ПЕРЕИЗДАНИЕ ноябрь 2005 г.
- 6 Разработка, согласование, утверждение, издание (тиражирование), обновление (изменение или пересмотр) и отмена настоящего Стандарта производится организацией-разработчиком

Содержание

Область применения	1
	1
	2
Общие положения	2
Требования по составлению расчётных схем	3
Устойчивость сооружения в целом и его частей	5
Прочность и устойчивость стержней, пластин и оболочек	6
7.1 Растяжение с изгибом	6
7.2 Общая устойчивость сплошностенчатых стержней	10
7.3 Устойчивость стенок и поясных листов	13
7.4 Прочность и устойчивость сквозных стержней	13
7.5 Устойчивость оболочек	15
Соединения	19
Усталостная долговечность	23
	28
	31
	Нормативные ссылки. Термины и определения. Общие положения. Требования по составлению расчётных схем Устойчивость сооружения в целом и его частей. Прочность и устойчивость стержней, пластин и оболочек 7.1 Растяжение с изгибом 7.2 Общая устойчивость сплошностенчатых стержней 7.3 Устойчивость стенок и поясных листов 7.4 Прочность и устойчивость сквозных стержней 7.5 Устойчивость оболочек

Ввеление

Настоящий стандарт разработан в соответствии с Федеральным законом «О техническом регулировании» № 184-ФЗ и предназначен для применения всеми подразделениями ЗАО «ЦНИИПСК им. Мельникова», специализирующимися на разработке проектов КМ и КМД и реконструкции промышленных зданий и сооружений различного назначения.

Стандарт может применяться другими организациями, если эти организации имеют сертификаты соответствия, выданные Органами по сертификации в системе добровольной сертификации, созданными организациейразработчиком стандарта.

Организация-разработчик не несёт никакой ответственности за использование данного стандарта организациями, не имеющими сертификатов соответствия.

Необходимость разработки стандарта продиктована тем, что опыт, накопленный организацией-разработчиком стандарта, а также отечественными предприятиями и организациями в области проектирования, изготовления и монтажа металлических конструкций содержится в различных нормативных документах, рекомендациях, ведомственных правилах и других, частично устаревших и не охватывающих в целом проблему безопасной эксплуатации промышленных зданий и сооружений различного назначения.

Основной целью разработки стандарта является создание современной нормативной базы по вопросам расчета металлических конструкций.

Замечания и предложения по дополнению и изменению настоящего стандарта просим направлять по адресу:

117393 Москва, ул. Архитектора Власова, 49, ЗАО «ЦНИИПСК им. Мельникова», факс 960-22-77, телефоны для справок: 128-77-77, 120-10-21.

СТАНДАРТ ОРГАНИЗАЦИИ

Конструкции стальные строительные

ОСНОВНЫЕ ПРИНЦИПЫ РАСЧЁТА НА ПРОЧНОСТЬ, УСТОЙЧИВОСТЬ, УСТАЛОСТНУЮ ДОЛГОВЕЧНОСТЬ И СОПРОТИВЛЕНИЕ ХРУПКОМУ РАЗРУШЕНИЮ

Утвержден и введен в действие Приказом ЗАО «ЦНИИПСК им. Мельникова» от 18 мая 2005 г. №133

Лата введения 2005-05-30

1 Область применения

Настоящий стандарт содержит правила и требования по расчёту несущих и ограждающих стальных строительных конструкций. Требования стандарта должны учитываться как при проектировании вновь возводимых сооружений, так и при разработке проектов реконструкции и ремонта сооружений.

При расчете конструкций, эксплуатируемых в особых условиях (сейсмические и взрывные воздействия, высокие температуры, сильноагрессивные среды и др.) следует соблюдать дополнительные требования, учитывающие особенности работы таких конструкций.

Стандарт не распространяется на расчет мостовых конструкций и магистральных трубопроводов.

2 Нормативные ссылки

СНиП II-23-81* Стальные конструкции. Нормы проектирования СНиП 2.01.07-85* Нагрузки и воздействия. Прогибы и перемещения.

Дополнение. Раздел 10

СНиП 2.09.03-85 Сооружения промышленных предприятий

СТО 02494680-0045-2005 Прокат для строительных конструкций. Марки стали

СТО 02494680, 01408401-0041-2004 Конструкции стальные строительные. Болтовые соединения. Проектирование и расчёт

СТО 02494680-0046-2005 Конструкции стальные строительные. Соединения сварные. Общие требования при проектировании, изготовлении и монтаже

1

3 Термины и определения

- 3.1 параметры расчётные: Вычисленные величины, характеризующие напряжённо-деформированное состояние конструкции и её элементов под действием расчётных нагрузок (усилия, моменты, напряжения, деформации, прогибы, углы поворота, эксцентриситеты, частоты и амплитуды колебаний).
- 3.2 параметры предельные: Величины, принятые по нормативным документам или рассчитанные в соответствии с требованиями настоящего стандарта.
 - 3.3 элементы: Простейшие части конструкций:
- стержни (прокатные, сварные, гнутосварные, открытого или закрытого профиля);
 - листовые (стенки, полки, рёбра, фасонки);
 - оболочечные (различные обечайки);
 - компактные (литые опоры, фланцы, болты и т.п.).
- 3.4 **суперэлементы**: Части конструкций, собранные из нескольких элементов:
 - поперечники зданий, фермы, колонны, арки, панели, мембраны, узлы.
- 3.5 проверяемые элементы: Элементы конструкций, для которых определяются предельные параметры (несущая способность, долговечность и т.д.).

4 Общие положения

- 4.1 В стандарте формируются (или даются ссылки на иные документы) правила составления расчетных схем конструкций в части представления стержневых и оболочечных элементов, а также узлов конструкций. Сформулированы правила замены в расчетной схеме жестких узлов на шарнирные. Определены критерии прочности, устойчивости, долговечности, а также сопротивления хрупкому разрушению конструкций и их элементов. Даны методики расчета предельных параметров, определяющих несущую способность и устойчивость сплошностенчатых и сквозных стержневых элементов. Определены критерии прочности сварных соединений различных типов.
- 4.2 Для обеспечения безаварийной работы зданий и сооружений должны быть проверены для сооружений в целом, для суперэлементов и для отдельных элементов:
 - все виды потери устойчивости;
- прочность, усталостная долговечность, сопротивление хрупкому разрушению;
 - перемещения (прогибы, углы поворота, амплитуды колебаний).

- 4.3 Входной информацией при определении расчётных параметров являются:
- чертежи или схемы конструкций, в которых указаны исходные параметры;
 - схемы нагрузок.

При расчёте суперэлементов воздействиями на них являются расчётные параметры (усилия, моменты, эксцентриситеты и т.д.), полученные при расчёте сооружения в целом.

При расчёте элементов, составляющих суперэлемент, воздействиями на них являются расчётные параметры, полученные при расчёте суперэлемента.

- 4.4 Предельные параметры принимаются по соответствующим нормам (расчётные сопротивления, предельные прогибы и т.п.) или рассчитываются в соответствии с требованиями настоящего стандарта. При этом вид нагружения должен быть принят таким, каким он получился при вычислении расчётных параметров, т.е. должны быть сохранены соотношения между усилиями, моментами, эксцентриситетами и другими параметрами.
- 4.5 Определение расчётных параметров следует выполнять в линейной постановке (исключения см. п. 5.5).
 - 4.6 Стандарт не содержит рекомендаций по конструированию.

5 Требования по составлению расчётных схем сооружений, конструкций и их элементов

- 5.1 При действии расчётных статических или динамических нагрузок в расчётную схему следует включать только основные несущие элементы (суперэлементы), образующие силовой набор конструкции или сооружения, а второстепенные элементы и ограждающие конструкции рассматривать отдельно. Расчётная схема составляется из ограниченного числа элементов и суперэлементов.
 - 5.1.1 Расчёт проводится в четыре этапа:
- определение (сбор) расчётных нагрузок по данным ТЗ и по нормативным документам;
- определение напряжённо-деформированного состояния (вычисление расчётных параметров) несущих и ограждающих конструкций под действием расчётных нагрузок;
- определение несущей способности (предельных параметров) проверяемых элементов (суперэлементов). Предельные параметры по прогибам и перемещениям приведены в СНиП 2.01.07 85* Прогибы и перемещения;
- сопоставление расчётных и предельных параметров для проверяемых элементов.

- 5.1.2 При необходимости производится уточнение расчетных параметров и подбор сечений элементов. Эти расчеты выполняются с использованием универсальных или специализированных программ.
- 5.2 Расчётная схема составляется по чертежам или по принципиальным схемам сооружения, а также по схемам расчётных нагрузок.

Проектировщик обязан:

- произвести выбор методики расчета и (или) требуемого программного средства;
 - составить расчётную схему с необходимой степенью детализации;
 - выполнить расчёт для определения расчётных параметров;
- отобрать проверяемые элементы и определить для них предельные параметры;
 - выполнить анализ полученных результатов;
 - произвести сопоставление расчётных и предельных параметров.
- 5.2.1 Для упрощения анализа результатов, получаемых при расчёте, многоэлементные сооружения или конструкции в расчётной схеме разбиваются на части (суперэлементы), которые рассчитываются отдельно.
- 5.2.2 Стержневые конструкции следует схематизировать линейными элементами с заданными длинами и характеристиками сечений.
- 5.2.3 Для оболочечных элементов в расчётных комплексах используются оболочечные расчётные элементы. Для осесимметричных и цилиндрических оболочек рассматриваются радиальные сечения или сечения, перпендикулярные оси, в последнем случае оболочка заменяется криволинейным элементом (например, аркой).
- 5.2.4 Компактные элементы рассчитываются по двух или трёхмерным расчётным схемам.
- 5.3 Конструктивно жёсткие соединения (узлы) в расчётной схеме должны приниматься жёсткими.

Замена в расчётной схеме жёстких узлов на шарнирные допускается только в том случае, когда изгибом элементов можно пренебречь и считать их нагруженными продольными силами, действующими центрально (по оси элемента) или с малыми эксцентриситетами. Такая замена допускается также для связевых стержневых конструкций, которые удовлетворяют следующим трём требованиям:

- все нагрузки приложены в узлах;
- к опорным узлам подходят на менее двух элементов в каждой плоскости конструкции;
- углы между осями элементов, сходящихся в одном узле, должны быть не менее 25° .

В остальных случаях необходимо учитывать изгиб элементов, т.е. считать узлы жёсткими.

- 5.4 В расчетную схему суперэлемента обязательно включаются все составляющие его элементы. При этом должно учитываться влияние второстепенных элементов (фасонок, ребер) на характер работы основных элементов.
- 5.5 Ряд конструкций требуют проведения расчётов с учётом их перемещений под действием расчётных нагрузок. К таким конструкциям относятся: ванты, мембранные покрытия и некоторые стержневые конструкции. При оценке несущей способности таких конструкций используются нелинейные расчётные схемы.
- 5.6 Расчёт предельных параметров при рассмотрении устойчивости элементов не может быть выполнен в линейной постановке. Определение предельных (критических) параметров для отдельных элементов или целых конструкций в линейной постановке недопустим, так как полученные при таком расчёте результаты завышают несущую способность конструкций.
- 5.7 Для особо ответственных многоэлементных конструкций необходимо выполнять проверку живучести, когда один или одновременно несколько элементов предполагаются потерявшими несущую способность. Методика такого расчёта должна быть согласована с заказчиком.
- 5.8 Для расчёта несущей способности стержневых элементов ступенчатого или переменного сечений, работающих на сжатие, а также со сложным характером нагружения необходимо пользоваться методикой, разработанной в ЦНИИПСК им. Мельникова.

6 Устойчивость сооружения в целом и его частей

- 6.1 Обеспечение устойчивого положения сооружения является обязательным требованием при его проектировании. При проверке устойчивости положения в расчётной схеме всё сооружение в целом или его суперэлементы моделируются жёсткими телами.
- 6.2 Должна быть проверена устойчивость при горизонтальном перемещении сооружения, а также при его вращении вокруг вертикальной оси.

Для обеспечения устойчивости сооружения необходима установка пространственных связей, жёсткость которых должна определяться специальными расчётами.

Для поперечника здания должна быть обеспечена его устойчивость в направлении продольной оси сооружения.

Фермы, опёртые в уровне нижнего пояса, должны быть развязаны против поворота вокруг горизонтальной оси, проходящей через точки опоры.

6.3 Проект должен содержать соответствующие указания, необходимые при разработке проекта производства работ.

7 Прочность и устойчивость стержней, пластин и оболочек

7.1 Растяжение с изгибом

- 7.1.1 Ниже определяются требования к проверке элементов в сечениях удалённых от узлов не менее, чем на расстояние равное ½ наибольщего поперечного размера элемента от ближайшей точки соединения с соседним элементом. Напряжённое состояние вблизи узла, где велики краевые эффекты, должно рассчитываться по специальным методикам. Проверка прочности прикрепления элементов в узлах дана в разделе 8.
- 7.1.2 Стержни, пластинки и оболочки, у которых растягивающие (положительные) напряжения в сечении равны или превосходят по абсолютной величине сжимающие (отрицательные) напряжения, следует проверять на статическую прочность, усталостную долговечность и сопротивление хрупкому разрушению, в зависимости от вида нагрузки и условий эксплуатации.
 - 7.1.3 Прочность элемента проверяется по формуле:

$$\sigma_{\rm p} \le R \gamma_{\rm c}$$
 , (7.1)

при центральном растяжении стержня, пластинки или цилиндрической оболочки, растягиваемой вдоль оси условное расчётное напряжение допустимо вычислять по элементарной формуле:

$$\sigma_{\rm p} = N/A_{\rm n} \,\,\,\,(7.2)$$

при растяжении стержневого элемента с изгибом по формуле:

$$\sigma_{p} = \sigma_{max} = \frac{N}{A_{n}} \pm \frac{M_{x}}{J_{xn}} y \pm \frac{M_{y}}{J_{vn}} x, \qquad (7.3)$$

- главные оси рассматриваемого сечения; x, y где

 ${f N}$ - продольное усилие; ${f M}_{{f x}}, {f M}_{{f v}}$ - изгибающие моменты;

A_n - площадь поперечного сечения нетто;

- моменты инерции поперечного сечения нетто.

При объёмном напряжённом состоянии в качестве расчётного напряжения принимается интенсивность напряжений. Для плоского напряжённого состояния, характерного для тонкостенных профилей: уголка, швеллера, двутавра, а также листовых и оболочечных элементов, интенсивность напряжений (с обязательным понижающим коэффициентом) вычисляется по формуле:

$$\sigma_{p} = 0.85\sqrt{\sigma_{x}^{2} - \sigma_{x}\sigma_{y} + \sigma_{y}^{2} + 3\tau_{xy}^{2}}$$

$$(7.4)$$

для такого сечения элемента и для такой точки в сечении, где σ_{p} достигает максимального значения.

В более сложных случаях расчётные напряжения определяются по универсальным или специализированным программам.

В качестве расчётного сопротивления принимается величина

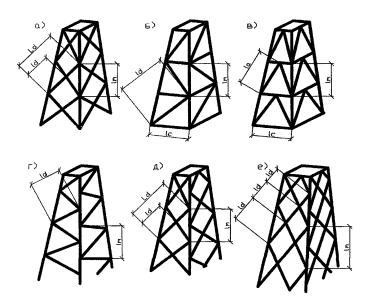
$$R = \max \begin{cases} R_y \\ R_u / \gamma_u \end{cases}$$
 (7.5)

значения расчётных сопротивлений $R_{\rm v}, R_{\rm u}$ принимаются по CTO-004502005.

Коэффициент условий работы γ_c принимается по таблице 7.1.

Коэффициент надёжности для конструкций, рассчитываемых по временному сопротивлению, равен $\gamma_n=1.3$.

Таблица 7.1


таолица /.т		
Элементы стержневь	іх конструкций	Коэффициенты условий работы, γ_c
1		2
1 Сплошные балки и сжатые элем	енты ферм перекрытий под	
залами театров, клубов, киноте	атров, под трибунами, под	
помещениями магазинов, книго	кранилищ и архивов и т. п.	
при весе перекрытий, равном и	ти большем временной на-	
грузки		0,9
2 Колонны общественных зданий	и опор водонапорных ба-	
шен		0,95
3 Сжатые основные элементы (кр	оме опорных) решетки со-	
ставного таврового сечения из	уголков сварных ферм по-	
крытий и перекрытий (например	, стропильных и аналогич-	
ных им ферм) при гибкости λ ≥ 6	50	0,8
4 Сплошные балки при расчетах н	а общую устойчивость при	
$\varphi_b < 1,0$		0,95
5 Затяжки, тяги, оттяжки, подвеск	и, выполненные из прокат-	
ной стали		0,9
6 Элементы стержневых конструк	ций покрытий и перекрыпий:	
а) сжатые (за исключением замы	нутых трубчатых сечений)	
при расчетах на устойчивость		0,95
б) растянутых в сварных констру	кциях	0,95
в) растянутые, сжатые, а также с		
вых конструкциях (кроме ког		
ных болтах) из стали с преде		
(4500 кгс/см ²), несущих статич	ескую нагрузку, при расче-	
тах на прочность		1,05
7 Сплошные составные балки, к		
накладки из стали с пределом то		
кгс/см ²), несущие статическую		
помощью болтовых соединений		
сокопрочных болтах), при расче	гах на прочность	1,1

Окончание таблицы 7.1

1	2
8 Сечения прокатных и сварных элементов, а также накладок	
из стали с пределом текучести до 440 MПа (4500 кгс/см ²) в	
местах стыков, выполненных на болтах (кроме стыков на	
высокопрочных болтах), несущих статическую нагрузку,	
при расчетах на прочность:	
а) сплошных балок и колонн	1,1
б) стержневых конструкций и перекрытий	1,05
9 Сжатые элементы решетки пространственных решетчатых	
конструкций из одиночных равнополочных или неравнопо-	
лочных (прикрепляемых большей полкой) уголков:	
а) прикрепляемые непосредственно к поясам одной полкой	
сварными швами либо двумя болтами и более, поставлен-	}
ленными вдоль уголка:	
раскосы по рисунку 7.1, a , δ	0,9
распорки по рисунку 7.1, б, в	0,9
раскосы по рисунку 7.1 , ϵ , ϵ , δ	0,8
б) прикрепляемые непосредственно к поясам одной полкой,	
одним болтом (кроме указанных в поз. 9, в настоящей	
таблице), а также прикрепляемые через фасонку незави-	
симо от вида соединения	0,75
в) при сложной перекрестной решетке с одноболтовыми со-	
единениями по рисунку 7.1, е	0,7
10 Сжатые элементы из одиночных уголков, прикрепляемые	
одной полкой (для неравнополочных уголков только мень-	
шей полкой), за исключением: элементов конструкций,	
указанных в поз. 9 настоящей таблицы; раскосов по рисун-	•
ку 7.1, б; плоских ферм из одиночных уголков	0,75
11 Опорные плиты из стали с пределом текучести до 285 МПа	
(2900 кгс/см ²), несущие статическую нагрузку, толщиной,	,
MM;	
а) до 40	1,2
б) свыше 40 до 60	1,15
в) свыше 60 до 80	1,1

Примечания:

- 1 Коэффициенты условий работы $\gamma_c < 1$ при расчете одновременно учитывать не следует.
- 2 Коэффициенты условий работы, приведенные соответственно в поз. 1 и бв; 1 и 7; 1 и 8; 2 и 7; 2 и 8а; 3 и бв, бб, и 8б при расчете следует учитывать одновременно.
- 3 Коэффициенты условий работы, приведенные в поз. 3; 4; 6а; 6в; 7; 8; 9 и 10, а также в поз. 5 и 6б (кроме стыковых сварных соединений), при расчете соединений рассматриваемых элементов учитывать не следует.
 - 4 В остальных случаях следует принимать $\gamma_c = 1$.

а, б, в — с совмещёнными в смежных гранях узлами, Γ , д, e — c несовмещёнными в смежных гранях узлами

Рисунок 7.1 – Схемы пространственных решётчатых конструкций

7.1.4 При относительно большой доле напряжений от продольного усилия по сравнению с изгибными напряжениями допускаются пластические деформации в крайних волокнах. Ограничительные условия и формулу для проверки см. СНиП II-23-81*, п. 5.25*.

7.2 Общая устойчивость сплошностенчатых стержней

- 7.2.1 Проверка устойчивости стержней по изгибной форме может быть выполнена одним из трёх способов.
- 7.2.1.1 Первый способ представлен в СНиП II-23-81*. Проверка устойчивости по этому способу может быть выполнена без использования компьютеров или по формулам запрограммированным в программе SCAD.
- 7.2.1.2 Второй способ позволяет уточнить несущую способность сжато-изогнутых элементов при учете формы сечения и величины начальной погиби или эксцентриситетов приложения сил по концам стержня.

Несущая способность сжатого стержня вычисляется по формуле:

$$N = \tilde{N}_0(\lambda, \tilde{f}) \cdot K_c \cdot K_R \cdot \frac{EJ}{L^2}, \qquad (7.6)$$

где $\tilde{N}_0(\lambda,\tilde{f})$ - базовая безразмерная критическая (максимальная) сила;

λ - расчётная гибкость стержня;

 $\tilde{f} = f/L$ - безразмерная стрелка начальной погиби; K_{a} - коэффициент влияния формы сечения;

К - коэффициент учета прочности материала;

ЕЈ - изгибная жесткость:

L - расчетная длина, принятая с учетом условий защемления

концов стержня.

Базовая безразмерная критическая сила $\tilde{N}_0(\lambda,\tilde{\mathbf{f}})$ рассчитана [1] для стержня прямоугольного сечения с начальной погибью по дуге окружности. Упругопластические свойства материала стержня задаются «унифицированной диаграммой строительных сталей» с расчетным сопротивлением $R_v=206~\mathrm{MHa}~(2100~\mathrm{kr/cm}^2).$

При центральном сжатии стрелка погиби принимается по результатам выполненных натурных измерений, но не менее $\tilde{f}_{min}=5*10^{-4}=1/2000$. При отсутствии измерений стрелка принимается равной $\tilde{f}_0=0,00133=1/750$.

При наличии эксцентриситетов приложения сил на концах стержня ${\bf e}_0$ и ${\bf e}_1$, полученных расчётным путём, их влияние учитываются путём введения эквивалентной стрелки погиби, значение которой вычисляется по формуле:

$$\tilde{\mathbf{f}}_{3} = 0.525 \cdot (\mathbf{e}_{0} + \mathbf{e}_{1}),$$
 (7.7)

если $\tilde{\mathbf{f}}_{_{9}} < \tilde{\mathbf{f}}_{_{0}}$, то принимается $\tilde{\mathbf{f}} = \tilde{\mathbf{f}}_{_{0}}$.

Значения $\tilde{N}_0(\lambda, \tilde{f})$ приведены в таблице 7.2.

Таблица 7.2

λ	$\widetilde{f}_o \cdot 10^4$												
٨	5	10	20	40	80								
20	0,407	0,404	0,4	0,391	0,375								
30	0,868	0,858	0,84	0,804	0,741								
40	1,51	1,48	1,44	1,34	1,18								
50	2,3	2,25	2,14	1,96	1,69								
60	3,23	3,12	2,92	2,61	2,18								
70	4,26	4,06	3,73	3,25	2,65								
80	5,33	5	4,5	3,85	3,09								
90	6,35	5,85	5,18	4,37	3,48								
100	7,23	6,58	5,78	4,84	3,83								
120	8,34	7,6	6,68	5,6	4,44								
140	8,84	7,6	6,68	5,6	4,92								
160	9,1	8,53	7,69	6,6	5,32								
180	9,26	8,75	7,99	6,94	5,64								
200	9,36	8,91	8,21	7,21	5,91								
220	9,43	9,03	8,38	7,42	6,15								
Прим	ечание	– Промеж	уточные з	Примечание – Промежуточные значения рассчиты-									

Примечание – Промежуточные значения рассчитывать при помощи линейной интерполяции. Значения коэффициента K_C для наиболее употребительных сечений приведены в таблице 7.3 .

Таблина 7.3

Форма	Обозначе-	Коэффиц	ент влияния формы сечения
поперечного сечения	ние*	$K_c = const **$	Κ _c (λ)***
Прямоугольное		1	1
Тавровое	‡	□ 0.905 1.07	$c(\lambda - 100)^2 + 0.9$; $c = 5 \cdot 10^{-6}$ $c(\lambda - 100)^2 + 1.1$; $c = -1.25 \cdot 10^{-5}$
Двутавровое	İ	0.984	-
Н-образное	\vdash	0.985	-
Кольцевое	Ċ	0,955	$c(\lambda - 120)^2 + 0.94$; $c = 1.25 \cdot 10^{-5}$

^{*} Показано среднее по длине поперечное сечение; точкой обозначена проекция прямой, соединяющей центры тяжести крайних сечений. Расстояние от этой точки до центра тяжести показанного в таблице сечения соответствует величине стрелки начальной погиби.

** В столбце приведены средние значения K_c с точностью $3 \div 6$ %.

Значение коэффициента К_R вычисляется по формуле:

$$K_{g} = (R_{v}/R_{1})^{n(\lambda)}$$
 (7.8)

Зависимость показателя степени $n(\lambda)$ как функция гибкости задана в таблице 7.4.

Таблина 7.4

λ	0	20	40	60	80	100	120	140	160	≤180
n	1	0.972	0.817	0.767	0.503	0.317	0.183	0.117	0.0667	0.0400

^{***} В столбце приведены уточнённые значения в зависимости от гибкости.

7.2.1.3 Третий способ основан на численном интегрировании дифференциальных уравнений, описывающих процесс деформирования рассматриваемого стержня. Учитываются следующие параметры: нормативная или фактическая начальная погибь стержня, свободное или предварительно напряженное начальное состояние, упругопластическая диаграмма для данной марки стали, поперечное сечение любой сложности, весь диапазон изменения гибкости элементов в строительных конструкциях, плавное или ступенчатое изменение размеров или типа поперечного сечения вдоль оси. Условия защемления концов элемента определяются по специальной методике в зависимости от схемы конструкции. Нагрузки могут иметь произвольный характер: сосредоточенные силы или моменты, распределённые нагрузки, приложенные вдоль оси или имеющие эксцентриситет, следящие нагрузки или нагрузки, изменяющиеся в процессе деформирования заданным образом. Возможно также кинематическое нагружение путём задания перемещений опрелелённых сечений.

Третий способ использовать при неудовлетворительных результатах расчётов при применении первых двух способов.

- 7.2.2 Проверку устойчивости сплошностенчатых тонкостенных стержней открытого профиля, кроме того, следует выполнять по изгибнокругильной форме. При центральном сжатии проверка по изгибнокрутильной форме выполняется так же, как и при изгибной форме при условии применения расчётного сопротивления с понижающим коэффициентом «с», определяемым в соответствии с требованиями СНиП II-23-85*, п. 5.5.
- 7.2.3 При наличии эксцентриситета продольной сжимающей силы, лежащего в плоскости наибольшего момента инерции, снижается устойчивость стержня в плоскости наименьшего момента инерции сечения, что необходимо учитывать введением понижающего коэффициента «с» для расчётного сопротивления, определяемого в соответствии с требованиями СНиП II-23-85*, пп. 5.30, 5.31.

7.3 Устойчивость стенок и поясных листов тонкостенных стержней

Проверку устойчивости тонкостенных пластинчатых элементов двутавров, швеллеров, тавров, гнутых замкнутых и открытых профилей следует проводить в соответствии с требованиями СНиП II-23-85*, гл. 7.

7.4 Прочность и устойчивость сквозных стержней

7.4.1 Сквозные стержни с решёткой, нагруженные продольными и поперечными силами, а также моментами, рассчитываются как конструкции (суперэлементы), а для проверяемых элементов производится проверка их несущей способности и долговечности.

7.4.2 Сквозные стержни на планках работают в условиях близких к продольному центральному сжатию. При таком нагружении планки оказываются нагруженными перерезывающими силами за счёт эксцентриситетов приложенных продольных сил. При этом одна половина планки работает как консольный стержень, её расчётная схема показана на рисунке 7.2, где:

L - длина сквозного стержня;

b - поперечный размер сквозного стержня;

п - число планок в одной грани сквозного стержня;

λ - гибкость сквозного стержня;

 $\varepsilon_{\rm T} = R_{\rm v}/E$ - деформация текучести;

е₀ и е₁ - эксцентриситеты приложения встречных сил на концах сквозного стержня, на рисунке 7.2 эксцентриситеты показаны положительными;

N - сжимающие силы, действующие по одной линии;

 Q - перерезывающая сила, приложенная к среднему сечению планки;

 $\tilde{\mathbf{f}}_{\text{min}} = \mathbf{f}_{\text{min}}/L = 1/750$ - минимальная безразмерная стрелка начальной погиби, при наличии технических условий значение $\tilde{\mathbf{f}}_{\text{min}}$ может быть принято иным.

Рисунок 7.2 - Расчетная схема планки сквозного стержня

7.4.3 Величина перерезывающей силы определяется по формуле:

$$Q = \frac{\mathbf{e_0} + \mathbf{e_1}}{\mathbf{h} \cdot \mathbf{n}} \mathbf{N} \tag{7.9}$$

При e_0 = - e_1 или при неопределённых эксцентриситетах принимается минимальное значение перерезывающей силы:

$$Q = Q_{\min} = \frac{\tilde{f}_{\min} \lambda}{n} N \tag{7.10}$$

В соответствии с принятой расчётной схемой вычисляются геометрические размеры планки как консольного стержня и сварных швов прикрепления планки к поясу (см. п. 8).

7.4.4 Проверка устойчивости сквозного стержня в целом осуществляется следующим образом: рассчитывается несущая способность второй (слабой рис. 7.2, 7.3) ветви стержня в пределах панели N_{π} ,а затем вычисляется несущая способность стержня в целом.

В пределах следующих диапазонов:

$$\varepsilon_{\rm T} = R_{\rm v}/E = [1...5] \cdot 10^{-3}$$

 $\lambda_2 = 20 \div 80$ - гибкость второй (слабой) ветви в пределах панели,

суммарная несущая способность центрально сжатого сквозного стержня определяется по формуле:

$$N_{\Sigma} = \frac{1 + k\beta}{1 + k} \zeta \cdot R_{y} A, \qquad (7.11)$$

где $A = A_1 + A_2$ – суммарная площадь сечения обоих ветвей;

 $k = A_1/A_2$ — отношение площадей поперечных сечений ветвей;

 $\beta = \beta(\lambda)$ — отношение усилий в ветвях в критическом состоянии;

 ζ =0,98-0,03·K — коэффициент снижения расчётного сопротивления, зависящий от вида поперечного сечения ветвей.

На рисунке 7.3 показаны два типа сечений сквозных стержней с тавровым и различными сечениями второй ветви и приведены соответствующие значения коэффициентов k и ζ .

Рисунок 7.3 - Сечения сквозных стержней

Зависимость $\beta(\lambda,k)$ для крайних значений k=1 и k=2 дана в таблице 7.5, для промежуточных значений k и λ величина β определяется при помощи линейной интерполяции.

λ	β(2	l,k)
,	k = 1	k=2
20	0.921	0.927
40	0.857	0.863
60	0.766	0.778
80	0.620	0.653
100	0.402	0.484
120	0.140	0.308
140	-0.0905	0.149
160	-0.271	0.0230

Таблина 7.5

7.5 Устойчивость оболочек

- 7.5.1 Правила проверки устойчивости устанавливаются для осесимметричных оболочек: цилиндрических, конических, сферических, ограниченных сечениями, перпендикулярными их оси, или сечениями, нормальными к поверхности вдоль образующих. Нагрузки на оболочки осесимметричные. В частности для цилиндрической панели рассматривается только равномерная нагрузка, направленная вдоль образующей. Устойчивость иных типов оболочек требует проверки по специальным методикам.
- 7.5.2 Критерии устойчивости оболочек указанных типов основаны на сравнении максимального расчётного напряжения и критического напряжения по формуле:

$$\left|\sigma_{\rm pm}\right| \le \gamma_{\rm c}\sigma_{\rm cr}$$
 (7.12)

Максимальные значения меридионального σ_{1m} и кольцевого σ_{2m} расчётных напряжений определяются из расчёта оболочки на расчётные нагрузки.

Значения коэффициента условий работы γ_c определяются в соответствии с требованиями СНиП 2.09.03 - 85.

Величина критического напряжения в зависимости от вида оболочки и вида нагрузки определяется по следующим формулам:

7.5.2.1 Замкнутая круговая цилиндрическая оболочка, нагруженная равномерной распределённой нагрузкой вдоль образующей ($\sigma_{n^2} = 0$):

$$\sigma_{\text{erl}} = \min \begin{cases} \psi R_y \\ c E t / r \end{cases}, \tag{7.13}$$

где t - толщина оболочки;

г - радиус срединной поверхности;

коэффициент у определяется по формуле (СНиП II-23-85*):

$$\psi = 0.97 - \left(0.00025 + 0.95 \frac{R_y}{E}\right) \cdot \frac{r}{t};$$
 (7.14)

коэффициент «с» находится по следующей таблице:

r/t	100	200	300	400	600	800	1000	1500	2500
С	0.22	0.18	0.16	0.14	0.11	0.09	0.08	0.07	0.06

7.5.2.2 Замкнутая круговая цилиндрическая оболочка, подкреплённая кольцевыми рёбрами по концам при x=0 и x=L, нагруженная равномерным наружным давлением $\left(\sigma_{pl}=0\right)$. Значения критических напряжений определяются по формуле (СНиП II-23-85*):

$$\sigma_{\alpha 2} = \begin{cases} 0.55 \cdot E \cdot (r/L) \cdot (t/r)^{3/2} & \text{при} \quad 0.5 \le L/r \le 10 \\ 0.17 \cdot E \cdot (t/r)^2 & \text{при} \quad 20 \le L/r \end{cases}$$
 (7.15)

L – длина оболочки или расстояние между рёбрами.

Для значений $10 \le L/r \le 20$ применяется линейная интерполяция.

При наличии рёбер следует проверять их устойчивость в плоскости их установки.

7.5.2.3 Коническая оболочка с углом конусности β <60° (рисунок 7.4), нагруженная равномерной распределённой нагрузкой вдоль образующей $(\sigma_{p2}=0)$. Значения критических напряжений определяются по формуле (СНиП 11-23-85*):

$$\sigma_{cri} = \gamma_c \alpha \sigma_{cri}^*, \qquad (7.16)$$

где $\alpha = 0.1 + 0.9 \frac{r_2}{r_1}$;

 σ_{crl}^* - определяется по формулам (7.13), (7.14) с заменой г на r_m ; $r_m = \alpha r_l/\cos\beta$ - приведенный радиус конической оболочки.

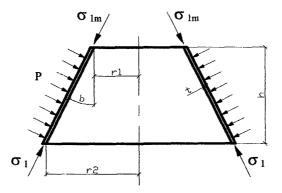


Рисунок 7.4 — Схема конической оболочки вращения

7.5.2.4 Коническая оболочка, нагруженная равномерным внешним давлением р (рисунок 7.4):

условное кольцевое расчётное напряжение следует определять по формуле:

$$\sigma_{2m} = pr_m / t \tag{7.17}$$

 σ_{cr2} - определяется по формуле (7.15a) с заменой г на r_m и L на h; - высота конической оболочки (рисунок 7.4).

7.5.2.5 Сферическая оболочка, нагруженная внешним давлением:

$$\sigma_{cr} = 0.1 \cdot Et/r$$
 npm $r/t \le 750$,

где г - радиус срединной поверхности.

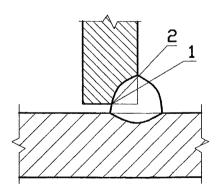
7.5.3 При одновременном действии продольного сжатия и внешнего давления проверка устойчивости для цилиндрических и конических оболочек производится по формуле:

$$\frac{\sigma_1}{\sigma_{cr1}} + \frac{\sigma_2}{\sigma_{cr2}} \le \gamma_c. \tag{7.18}$$

7.5.4 Цилиндрическая панель, опёртая по контуру и имеющая небольшой центральный угол: $b^2/(\pi) \le 20$, где b — длина дуги в кольцевом направлении, нагруженная по торцам равномерной нагрузкой, направленной вдоль образующей, не нуждается в проверке устойчивости, если

$$\frac{b}{t} \le 1.9 \sqrt{\frac{E}{\sigma_1}}$$
 при $\sigma_1 \le 0.8 R_y$ или

$$\frac{b}{t} \le 37 / \sqrt{1 + 500 \frac{R_y}{E}}$$
 при $\sigma_1 = R_y$.


При $0.8R_v < \sigma < R_v$ значения b/t определяются линейной интерполяцией.

8 Соединения

- 8.1 Болтовые соединения. Проверка несущей способности болтовых соединений производится в соответствии с требованиями СТО-0041-2004.
- 8.2 Стыковые сварные соединения выполняются в соответствии с требованиями СТО–0046–2005. Они считаются равнопрочными свариваемым элементам, за исключением ручной сварки без физического контроля, в этом случае вводится понижающий коэффициент, т.е. при назначении расчётного сопротивления принимается $R_{wy} = 0.85 \cdot R_y$. В остальных случаях проверку несущей способности стыкового шва выполнять не требуется.
- 8.3 Соединения с угловыми сварными швами всех типов проверяются на срез (условный) по формуле:

$$\tau_{\text{max}} \le \gamma_{\text{c}} \beta \gamma_{\text{w}} R_{\text{w}}$$
 (8.1)

Проверяются два сечения: по металлу шва (1) и по границе сплавления (2) (рисунок 8.1).

- 1 сечение по металлу шва,
- 2 сечение по металлу границы сплавления

Рисунок 8.1 — Схема расчетных сечений сварного соединения с угловым швом

При проверке по металлу шва принимаются:

$$\beta = \beta_f$$
, $\gamma_w = \gamma_{wf}$, $R_w = R_{wf} = 0.55 \cdot R_{wim} / \gamma_{wm}$

При проверке по границе сплавления принимаются: $\beta = \beta_z$, $\gamma_w = \gamma_{wz}$, $R_w = R_{wz} = 0.45 \cdot R_{un}$

Значения коэффициентов β_f и β_z принимаются по таблице 8.1.

Таблица 8.1

Вид сварки при диаметре	Положение	Коэффи-	Значени	β _F ^β Z				
сварочной проволоки d, мм	шва	циент	3-8	9-12	14-16	18 и более		
	В полочии	$\beta_{\mathbf{f}}$		1,1		0,7		
Автоматическая при	В лодочку	β _Z		1,15		1,0		
d=3-5	Livenymy	p _f _	1,1	0	,9	0,7		
····	Нижнее	β _z	1,15	1.	,05	1,0		
Автоматическая и полу-	В лодочку	$\beta_{\mathbf{f}}$	(0,9 0,8		0,7		
		B	1,05			1,0		
автоматическая при	Нижнее, го-	$\beta_{\mathbf{f}}$	0,9	0,8		0,7		
d = 1,4 - 2	ризонтальное, вертикальное	β_z	1,05		1,0			
Ручная; полуавтоматическая проволокой сплошного	В лодочку, нижнее, гори-	$oldsymbol{eta_f}$		0,7				
сечения при d < 1,4 или порошковой проволокой	зонтальное, вертикальное, потолочное	β_z	1,0					
Примечание – Значения	коэффициентов	з соответст	гвуют нор	мальным	режимам	сварки.		

Значения коэффициентов условий работы шва γ_{wf} и γ_{wz} всегда равны 1, кроме конструкций, возводимых в климатических районах I_1 , I_2 , II_2 и II_3 , для которых $\gamma_{wf}=0.85$ для металла шва с нормативным сопротивлением $R_{wun} \geq 410 M\Pi a$ и $\gamma_{wz}=0.85$ для всех марок стали.

Значения τ_{max} вычисляются по величинам расчётных усилий и моментов и относятся к сечениям, показанным на рисунке 8.1.

8.4 Альтернативный метод расчёта несущей способности сварных соединений с угловыми швами может быть выполнен по таблицам 8.2 и 8.3 [1].

CTO 02494680-0049-2005

Таблица 8.2 — Предельные усилия на сварные соединения с угловыми швами для конструкций 2-4 групп, возводимых в районах с расчетной температурой выше минус 40° C

	Марка	R _{un} ,	Γ	[редель	ные уст	иня, кН	I, на 1 г	юг. см	шва прі	и катете	шва, м	IM
Вид сварки, диаметр электрода, положение шва	сварочной проволоки, тип электрода	свариваемой стали, МПа	4	5	6	7	8	9	10	12	14	16
	Св-08А	360	7,5	9,3	11,2	13	14,9	16,8	18,6	22,4	26,1	29,8
	Св-08ГА	370	7,7	9,6	11,5	13,4	15,3	17,2	19,1	23	26,8	30,6
	CB-001 A	380	7,9	9,8	11,8	13,8	15,7	17,7	19,7	23,6	27,5	31,5
		390	8,1	10,1	12,1	14,1	16,1	18,2	20,2	24,2	28,3	32,3
	Св-09ГА	400	8,3	10,3	12,4	14,5	16,6	18,6	20,7	24,8	29	33,1
Автоматическая, проволокой диа-		св. 400	8,8	11	13,2	15,4	17,6	19,8	22	26,4	30,8	35,2
метром 3-5 мм, в лодочку		440	9,1	11,4	13,7	15,9	18,2	20,5	22,8	27,3	31,9	36,4
метром 5-3 мм, в подочку	Св-10ГА	450	9,3	11,6	14	16,3	18,6	21	23,3	27,9	32,6	37,3
		св. 450	9,5	11,8	14,2	16,6	18,9	21,3	23,6	28,4	33,1	37,8
		470	9,7	12,2	14,6	17	19,5	21,9	24,3	29,2	34,1	38,9
	Св-10НМА	480	9,9	12,4	14,9	17,4	19,9	22,4	24,8	29,8	34,8	39,7
	Св-10Г2	490	10,1	12,7	15,2	17,8	20,3	22,8	25,4	30,4	35,5	40,6
		св. 490	10,6	13,2	15,8	18,5	21,1	23,8	26,4	31,7	36,9	42,2
		360	6,8	8,5	10,2	11,9	13,6	14,6	16,2	19,4	21,1	24,1
Полуавтоматическая, проволокой		370	7	8,7	10,5	12,2	14	15	16,6	20	21,1	24,1
диаметром 1,4-2 мм, нижнее, го-	Св-08Г2С	380	7,2	9	10,8	12,6	14,4	15,4	17,1	20,5	21,1	24,1
ризонтальное, вертикальное		390	7,4	9,2	11,1	12,9	14,7	15,5	17,2	20,6	21,1	24,1
•		св. 390	7,6	9,4	11,3	13,2	15,1	15,5	17,2	20,6	21,1	24,1
Полуавтоматическая, проволокой	Св-08ГС,											
диаметром 1,4 мм и порошковой	ПП-АН8,	340-570	6	7,5	9	10,5	12	13,5	15	18,1	21,1	24,1
проволокой, во всех положениях	ПП-АН3											
	Э42, Э42A	360	5	6,3	7,6	8,8	10,1	11,3	12,6	15,1	17,6	20,2
n	Э46, Э46A	360-390	5,6	7	8,4	9,8	11,2	12,6	14	16,8	19,6	22,4
Ручная, во всех положениях	Э50, Э50A	св. 360	6	7,5	9	10,5	12	13,5	15	18,1	21,1	24,1
	3 60	св. 370	6,7	8,4	10,1	11,8	13,4	15,1	16,8	20,2	23,5	26,9

Таблица 8.3 — Предельные усилия на сварные соединения с угловыми швами для конструкций 2-4 групп, возводимых в районах с расчетной температурой ниже минус 40°C, а также для конструкций 1-й группы, возводимых во всех районах

Down	Марка	Runs	П	редель	ные уси	лия, к	I, на 1 г	юг. См і	шва прі	і катете	шва, м	IM
Вид сварки, диаметр электрода, положение шва	сварочной проволоки, тип электрода	свариваемой стали, МПа	4	5	6	7	8	9	10	12	14	16
		360	6,3	7,9	9,5	11,1	12,7	14,3	15,8	19	22	25,3
	0- 004	370	6,5	8,1	9,8	11,4	13	14,6	16,3	19,5	22,8	26
	Св-08А	380	6,7	8,4	10	11,7	13,4	15	16,7	20,1	23,4	26,7
		св. 380	6,7	8,4	10,1	11,8	13,5	15,1	16,8	20,2	23,6	26,9
		390	6,9	8,6	10,3	12	13,7	15,4	17,2	20,6	24	27,4
		400	7	8,8	10,6	12,3	14,1	15,8	17,6	21,1	24,6	28,2
		430	7,6	9,5	11,3	13,2	15,1	17	18,9	22,7	26,5	30,3
		440	7,7	9,7	11,6	13,5	15,5	17,4	19,4	23,2	27,1	31
Автоматическая, проволокой диа-	Св-08ГА	450	7,9	9,9	11,9	13,9	15,8	17,8	19,8	23,8	27,7	31,7
метром 3-5 мм, в лодочку	CB-001 A	460	8,1	10,1	12,1	14,2	16,2	18,2	20,2	24,3	28,3	32,4
		470	8,3	10,3	12,4	14,5	16,5	18,6	20,7	24,8	28,9	33,1
		480	8,4	10,6	12,7	14,8	16,9	19	21,1	25,3	29,6	33,8
		490	8,6	10,8	12,9	15,1	17,2	19,4	21,6	25,9	30,2	34,5
		св. 490	8,8	11	13,2	15,4	17,6	19,8	22	26,4	30,8	35,2
		510	9	11,2	13,5	15,7	17,9	20,2	22,4	26,9	31,4	35,9
	Св-10НМА	540	9,5	11,9	14,3	16,6	19	21,4	23,8	28,5	33,3	38
	CB-10HMA	570	10	12,5	15	17,6	20,1	22,6	25,1	30,1	35,1	40,1
		590	10,4	13	15,6	18,2	20,8	23,4	26	31,1	36,3	41,5

9 Усталостная долговечность

- 9.1 Стальные конструкции и их элементы (резервуары, сосуды давления, подъемно-транспортные сооружения, высотные сооружения типа башен и мачт, глубоководные основания морских стационарных платформ и др.), подвергающиеся в процессе эксплуатации воздействию повторностатических, вибрационных или другого вида циклических нагрузок, необходимо проверять расчетом на усталость. При этом должен быть рассмотрен весь спектр эксплуатационных нагрузок и их повторяемость за расчетный срок службы элемента конструкции или сооружения в целом.
- 9.2 Приведенная ниже методика расчета усталостной долговечности основана на результатах экспериментальных исследований прочности при циклическом нагружении различных видов соединений элементов стальных строительных конструкций, выполненных в ЦНИИПСК им. Мельникова, а также представленных в технической литературе. Данная методика расчёта не распространяется на металлоконструкции пролётных строений мостов и подкрановых балок.
- 9.3 Расчет усталостной долговечности Р (в годах) элемента конструкции следует производить по формуле:

$$P = 1 / \sum_{i=1}^{\kappa} \frac{n_{s1}^{(i)}}{[N]_i}, \tag{9.1}$$

где $\mathbf{n}_{31}^{(i)}$ - число циклов нагружения элемента конструкции за 1 год при i-том режиме;

 $[N]_i$ - допускаемое число циклов нагружения рассчитываемого элемента при i-том режиме;

к - число режимов эксплуатационного нагружения элемента конструкции, для которого выполняется расчет долговечности.

9.4 Допускаемое число циклов нагружения [N] $_{\rm i}$ в диапазоне климатических температур и чисел циклов $10^2 \div 2 \times 10^8$ следует вычислять по формуле:

$$[N]_{i} = \frac{N_{b}}{n_{N} (1.3\sigma_{\text{max}i}/R_{v} \cdot \gamma_{v})^{m}},$$
(9.2)

где N_b - число циклов нагружения, соответствующее перелому кривой усталости в многоцикловой области; в случае отсутствия дополнительных данных значение параметра N_b принимается равным $N_b = 3.9 \cdot 10^6$;

 n_N - коэффициент запаса по долговечности, значения которого составляют $n_N = 2 \div 10$ и выбираются расчётчиком с учетом степени ответственности сооружения и запасов, принятых при определении эксплуатационных нагрузок;

 σ_{max_1} - наибольшее по абсолютному значению напряжение в рассчитываемом элементе конструкции при і-том режиме нагружения;

 $\gamma_{\rm v}$ - коэффициент учета асимметрии цикла нагружения, вычисляемый по формулам, приведенным в таблице 9.1 (СНиП II-23-81*) в зависимости от знака наибольшего по абсолютному значению напряжения $\sigma_{\rm max1}$ и коэффициента асимметрии напряжений в і-том режиме нагружения

$$\rho_{i} = \frac{\left|\sigma_{min1}\right|}{\left|\sigma_{max1}\right|} ;$$

если наибольшее σ_{max_1} и наименьшее σ_{min_1} по абсолютному значению напряжения в цикле нагружения разного знака, то коэффициент ρ_1 следует принимать со знаком "минус";

Таблица 9.1 – Коэффициент у	_v учета	асимметрии	цикла	нагружения
-----------------------------	--------------------	------------	-------	------------

$\sigma_{ ext{max}}$	Коэффициент асим- метрии напряжений р	Формулы для вычисления коэффициента γ _ν	
	-1≤ρ≤0	$\gamma_{v} = \frac{2.5}{1.5 - \rho}$; (9.3)	
Растяжение	$0 < \rho \le 0.8$	$\gamma_{\rm v} = \frac{2.0}{1.2 - \rho}$; (9.4)	
	0,8<ρ<1	$\gamma_{\rm v} = \frac{1,0}{1,0-\rho};$ (9.5)	
Сжатие	-1≤ρ<1	1 20	

- m показатель наклона левой (m_1) или правой (m_2) ветвей расчетной кривой усталости, значения которого составляют:
- при $1.3\sigma_{max_1}/(R_v\cdot\gamma_v)\!<\!1$ (правая ветвь расчетной кривой усталости) $m_2=15$ (для сварных соединений);
- при $1.3\sigma_{\text{max}_1}/(R_v\cdot\gamma_v)>1$ (левая ветвь расчетной кривой усталости) m_1 по таблице $9.2\,$ в зависимости от материала и вида конструктивного элемента (соединения);
- R_v расчетное сопротивление усталости рассматриваемого элемента конструкции при симметричном цикле нагружения (ρ = -1), значения которого для характерных соединений элементов строительных металлоконструкций приведены в таблице 9.2.

Таблица 9.2 — Характеристики сопротивления усталостному разрущению R_{ν} и m_1 для различных видов соединений элементов строительных металлоконструкций

				m ₁	
№№ п/п	Схема соединения и расположение расчетного сечения	Характеристика соединения	R _v (МПа)	ма- лоуг- леро- дис- тые стали	низ- коле- гиро- ван- ные ста- ли ¹⁾
1	2	3	4	5	6
1 ²⁾		Стыковые сварные соединения элементов одинаковой толіцины и ширины с полным проплавлением корня шва: - необработанный шов - со снятым механическим способом усилением шва	75 105	6,0	4,5
2 ²)	a) 1415	Стыковые сварные соединения элементов разной ширины или толщины с полным проплавлением корня шва: - необработанный шов - со снятым механическим способом усилением шва	60 90	6,0	4,5
3	a) al 25t, al	Нахлесточные сварные соединения с лобовыми угловыми швами: - тип а) - тип б)	45 60	6,0	4,5

Продолжение таблицы 9.2

$\overline{1}$	олжение таолицы 9.2	3	4	5	6
4	a) < a > > > > > > > > > > > > > > > > > >	Тавровые сварные соединения: а) с проплавлением корня шва (при разделке кромок) и плавным переходом углового шва к основному металлу б) при отсутствии разделки кромок; размер катета швов не ниже расчетного	75 45	6,0	4,5
5	a) ai 6) 61 ai 61 ai	Нахлесточные сварные соединения с фланговыми угловыми швами; а) с двойными фланговыми швами б) с фланговыми и лобовыми швами	27	4,5	3,0
6	a) ai ai ai r) ai	Приварка вспомогательных элементов: а) к поверхности несущего элемента конструкции двусторонними фланговыми швами б) к поверхности несущего элемента двусторонними лобовыми швами с плавным переходом к основному металлу в) встык к кромке несущего элемента г) то же, что в), но при механической обработке перехода от фасонки к несущему элементу конструкции	36 75 60	6,0 6,0 6,0	3,0 4,5 4,5

Окончание таблицы 9.2

1	2	3	4	5	6
7	a,	Болтовые соединения, работающие на сдвиг: а) болты класса точности А при парных накладках при односторонних накладках б) болты класса точности В при парных накладках при односторонних накладках	75 60 36 27	5,5	4,5 3,5
8	a, ++++ a	Сдвигоустойчивые соединения на высокопрочных болтах - круглые отверстия стандартных размеров под болты - увеличенные круглые или овальные отверстия под болты при соотношении диаметра отверстия или длины овала к диаметру болта — 1, 5 - овальные отверстия под болты при соотношении длины овала к диаметру болта — 3,0	120 100	6,0	4,5 4,5
9	al →	Штыревые соединения при величине зазора между элементами проушин не более 6 мм и несоосности отверстий не более 1 мм	36	4,0	3,5

Примечания:

1) Для сталей классов прочности C325÷C390

 $^{^{2)}}$ Приведенные параметры R_v и m_1 определены для соединений, не имеющих недопустимых технологических дефектов согласно требованим СНиП 3.03.01-87 и других нормативных документов. При наличии указанных дефектов расчет усталостной долговечности соединений следует выполнять после соответствующей корректировки параметров R_v и m_1 или с использованием зависимостей механики разрушения.

9.5 Если при расчете по формуле (9.2) оказалось, что $[N]_i \ge 2 \cdot 10^8$, то в дальнейших расчетах усталостной долговечности по формуле (9.1) следует принимать $[N]_i = \infty$, т.е. при данном режиме нагружения в рассматриваемом элементе конструкции не происходит накопления усталостных повреждений.

10 Расчет элементов стальных конструкций на прочность с учетом сопротивления хрупкому разрушению

10.1 Центрально и внецентренно растянутые элементы, а также зоны растяжения изгибаемых элементов конструкций, подверженных в процессе эксплуатации, изготовления и монтажа воздействию пониженных температур следует проверять на прочность с учетом сопротивления хрупкому разрушению по формуле

$$\sigma_{\text{max}} \le \beta_{\text{xp}} R_{\text{u}} / \gamma_{\text{u}},$$
 (10.1)

где σ_{max} — наибольшее растягивающее напряжение в расчетном сечении элемента, вычисленное по сечению нетто без учета коэффициента динамичности:

 β_{xp} – коэффициент условий работы элементов конструкций при пониженных температурах,

R_u - расчетное сопротивление по пределу прочности,

- $\gamma_u = 1,3$ коэффициент надежности для элементов конструкций, рассчитываемых по временному сопротивлению.
- 10.2 Коэффициент условия работы β_{xp} элемента при пониженных температурах определяется по формуле:

$$\beta_{xp} = \beta_{xp1} \times \beta_{xp2}, \qquad (10.2)$$

где β_{xp1} – коэффициент, учитывающий хладостойкость применяемой стали и толщину проката;

 β_{xp2} – коэффициент, учитывающий вид и форму соединения.

10.2.1 Значение β_{xp1} определяется по формуле:

$$\beta_{xp1} = \left(\frac{T_0}{T}\right)^{0.35} \cdot \left(\frac{t_0}{t}\right)^{0.15},$$
(103)

где T_0 – температура, определяющая с учетом нормативных требований к ударной вязкости металлопроката строительных сталей по ГОСТ 27772, °C (см. п. 10.2.1.1);

T – температура наиболее холодной пятидневки с обеспеченностью 0,98 по СНи Π 23-01-99, °C;

 $t_0 = 10 \text{ MM};$

t - номинальная толщина элемента соединения, мм.

- 10.2.1.1 Температуры Т_о для малоуглеродистых и низколегированных сталей принимаются в зависимости от температуры испытаний на ударную вязкость (КСU) по ГОСТ 27772:
 - минус $20^{\circ}\text{C} \text{T}_{0} = -10^{\circ}\text{C}$;
 - минус $40^{\circ}\text{C} \text{T}_{0} = -20^{\circ}\text{C}$;
 - MUHVC $70^{\circ}\text{C} \text{T}_{0} = -40^{\circ}\text{C}$:
- 10.2.1.2 Значение β_{xp2} в климатическом диапазоне температур принимается по табл. 10.1.

Таблица 10.1 – Коэффициенты β_{xp2}

Номер схемы элем.	Значение β_{xp2} для сталей классов		
и расчетное сечение*	до С345 вкл.	свыше С345 до С440 вкл.	
1	2	3	
No 1			
- без подреза	1,0	0,95	
- с подрезом и депланацией	0,95	0,92	
№ 3 a)	0,92	0,90	
№ 5 a	0,87	0,85	
№ 5 б	0,92	0,90	
№ 6 a	0,92	0,90	
№ 6 б	0.95	0.92	

^{* -} Номера схем соединений и расположение расчетных сечений показаны в таблице 9.2.

- 10.3 Расчет на прочность по (10.1) распространяется:
- на элементы стальных конструкций, изготавливаемые из листового проката строительных сталей с классом прочности $C \le 440$ МПа, поставляемого с гарантиями по химическому составу, механическим свойствам и ударной вязкости в соответствии с нормативными требованиями;
- на сварные соединения, выполненные в соответствии с общими требованиями к конструктивным формам, технологии изготовления и контроля качества, установленные соответствующими нормативно-техническими документами.
- 10.4 Метод расчета по (10.1) не распространяется на стальные конструкции, подверженные воздействию вибрационных и динамических нагрузок; на конструкции, подверженные коррозионному и межкристаллитному растрескиванию; на элементы конструкций с толщиной сечений более 60 мм, на болтовые и заклепочные соединения, а также на сварные соединения, не подвергаемые дефектоскопическому контролю при изготовлении и в процессе эксплуатации.

Библиография

[1] Металлические конструкции. Справочник проектировщика. (Под ред. В. В. Кузнецова). — М.: изд-во АСВ, 1998.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Номер	Номера разделов, пунктов (подпунктов)				Срок вве-	-
изме-	изменен-	заменен-	аннупи-		дения	Под-
нения	ных	ных	новых	новых рованных		пись
					изменения	****
}						
			:			
						!
						,

OKC 91.080

Ключевые слова: конструкция, элемент, соединение, расчётная схема, устойчивость, долговечность, хрупкое разрушение, сжатие, усилие, момент, напряжение, деформация