ОТРАСЛЕВЫЕ ТИПОВЫЕ КОНСТРУКЦИИ ИЗДЕЛИЯ И УЗЛЫ ЗДАНИИ И СООРУЖЕНИИ

СЕРИЯ 3.503.5-74.52.86 в.н.е

ВРЕМЕННЫЕ ИСКУССТВЕННЫЕ СООРУЖЕНИЯ НА АВТОМОБИЛЬНЫХ ЛЕСОВОЗНЫХ ДОРОГАХ

Выпуск 1

Однопролетные мосты, лотки ,трубы

РАЗРАБОТАНЫ
ПРОЕКТНЫМ ИНСТИТУТОМ ГИПРОЛЕСТРАНС
ГЛАВНЫЙ ИНЖЕНЕР ИНСТИТУТА ЗОРУШУВ. К СЕРБСКИЙ
ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА

ТИВНЬЙ НЕЖЕНЕР ПРОЕКТА

Утверждены и введены в деиствие Минлесвинпроном СССР

протокол от 27.03,86 № 38

ПТРАСЛЕВЫЕ ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЭДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 3.503.5-74.52.86 В.1.2

ВРЕМЕННЫЕ ИСКУССТВЕННЫЕ СООРУЖЕНИЯ НА АВТОМОБИЛЬНЫХ ЛЕСОВОЗНЫХ ДОРОГАХ

> выписк 1 ОДНОПРОЛЕТНЫЕ МОСТЫ, ЛОТКИ, ТРУБЫ

2257/01 4EHA 4-71

	\$7 ₀₁₀ -	Обозначение	Начтенобание	Cmp.
	AR	ДО	Содержание	æ
	A.P.	Лз	Поленительного ваписка	3-9
•	AR	PJ	Росчетный лист	10-11
ž	<i>A</i> ₽	кд-1	Марки тостов на свойной и рато-лежне-	
Donser			Bone anapare Cheuropunauring	18
Ď	F#₽	K,Д -R	живденжел, и живдежела он вотоом индем	
			опораж Споцидоинация.	13
	AR	K4-3	Мосты свойные ДМ-СВ-1,5-3,0-2,5-4,5,	
		~~~~	AM-CB-15÷3,0-4,0-4,5, AM-CB-R,0-5,5(1)-4,5	14
	AR	КД-4	Масты свойные ДМ-СВ-(5+30-85-8,0,	
	$\vdash \rightarrow$		AM-CB-1,5+3,0-4,0-8,0; AM-CB-RO-5,5(1)-8,0	15
	AB	КД-5	Узлы и детали постов на свайных апорож	16
	RR	<u>КД</u> -6	Мосты рогино-лежневые ДМ-Rn-1,5-R,5-R,5-4,5,	
			AM-An-15+25-40-45; AM-An-20-5,5(1)-45	17
	A2	K.Q 7	Посты рапно-лежневые. ДП-Рл-15-25-25-0,0;	
			MM-Rn-15-25-40-80; AM-Rn-20-5,5(1)-80	18
	HR CC	K.A8	Узлы и детали пастов на ратно-легоневых опарах	19
	₽₽	КД-9	Опоры свайные и ратно-лежневые Специаримация	20
	AR.	КД-10	Пролетные строения Специориночия	21
	AR	<u> </u>	Princebale mocmal AM-PIK-RO-40-45,	
		A	ДТ-Рэк-1,5-4,0-4,5	R.R
	R₽	KA-18	PRINCE 6 NO COMO 1 AM-POK-RO-5 5(2) +8,5-4,57;	-
	AR.	tin	Ar-Pak-1,5-5,5(R) ÷ 8,5-4,67	₽3
	1//	KA - 13	PrinceBute mocmoi AM-Part-Ro-4,0-8,0;	96
	AR.	40.4	AM-P	24
	<del> ''^</del>	<i>KQ-14</i>	Procedure macmus AM-PONC-RO-5,5(R)-8,5-8,07;	0.5
	AR		AM-Par-1,5-5,5(R)—8,5-8,07	<i>B5</i>
	<del> "</del>	<i>КД-15</i>	Узлы и детали рэжеевых опор под однаярус-	0.5
	AR	N.Q-16	ные пропетные строения Узлы и детопи ряжевых опор под двэх эмрэс-	₽6
		744 70	ные пролетные строения	87
	A.R	K.A17	Опоры ряжевых постов Специрочнация	R.B
	A₽	KД-18	Пролетные строения без тротчоров ряже-	
			вых постов Специринация	29
	AR	KQ-19	Пролетные страения с тратиарами ряже-	
			вых тостов Спецификация	30
	AR	КД-20	Мосты на лежневых опорож ДМ-ЛЖ-55(1)-190-45	
	$\square$		AM-NH-55(1)-100-80	31
	AR	KA-81	Dropoi severebous rocmob OT-NW-55(1)-10,0-45	
Г	11		011-11716-5,5(1)-190-8,0 Cnegugounagus	
			Compin chan Chedadonnadas	3£
	A.P.	KД-88	Пролетные строения постов на лежневых	
+	_		опораж Спецификация	<i>3</i> 3
	A.P.	K.A-R3	Koneunsie macmai AM- NMC-8,5-KA	34
1	Ħ₽	КД-84	Деревянная пряпочеольная трчба отвер-	
			cmuem 1,5×R .QNT- 1,5×R	35
L	H.P.	<i>К.Д-25</i>	Узлы, разрезы Специдоинация элетентов	
			HQ ΠΡΥΘΎ	36
	<i>A4</i> <i>A4</i>		Содержание	37
		КДН-ТТ	Перенические требования	*

		Продолже	OHUE
Pap- ram	Офозначение	Наимановать	Cmp.
<i>R4</i>	<i>KAH-611-95</i>	Блок прономов БЛ-8,5	37
<i>A</i> 4	KAH-511-40	Блок г. эвомов БЛ-40	38
A4	KAH-611- 55	Блюн провонов БЛ-5,5	•
<i>A4</i>	KAH-BIT-5,5/i	Блан прогонов Бі -5,5-1	
94	KAH-611-5,512	Блон провонов БЛ-5,5-2	•
A3	KAH-617-7,0-1	Блом прогомов БЛ-70-1	39
Rö	<i>ҚДИ-БП-70-</i> ₽	Блом провомов БП-70-2	-
A3	KAH-511-8,5-1	Блон, провомов БЛ-8,5-1	40
A3	КДИ-БП- <del>Q</del> 5-£	Блек провомов БЛ-8,5-8	
<i>R</i> 3	KAH-617-190-1	Блок провонов БП-100-1	41
A3	KAH-5/1-100-2	Блок провонов БЛ-10,0-2	$\vdash$
R3	<i>ҚДН-БР-Қ5-Қ5-4,</i> 5	Блани рапно- лежневых опор БР-25-25-4,5	
	<i>6P-R,5-40-45</i>	U BP-8,5-4,0-4,5	4/2
A3	KAH-6P-45-45-8,0	Блони ратно-лежневых апар БР-25-2,5-2,0	
		4 5P-25-4,0-40	
R3	KAM-6P-15+RO-85-55-45	Блони ратна-лешеневых опор	
		5P-15+ 80-85+ 5,5-4,5	43
Н3	KAH-BP-15-RO-R5-55-80	Блони рамно-лешеневых опор	
		5P-15+R0-R5+55-80	•
P.R	KQ PM-1	Мосты на обойных опорож е дащатым понры-	
		тием 1-45 Ведоность росской татериалов	44
₽₽	KA PM-R	Посты на свайных и рагно-лежневых	
		опоразь с дащатым покрытием Г-4,5	
		Ведопость расхода материалов	45
<i>R</i> ₽	KA PM-3	Мосты на свайных опораж с дощатым	
		локрытиет Г-в. Ведатаеть расхода татериалов	48
₽₽	KA PM-4	Посты на свайных и рачно-лежневых	
		опораж с дащатым покрытием Г-в.	
		Ведомость расхода материалов	47
AR	КД РП-5	Мосты на рязкевых опорож с дощатым покры	
		тиет Г-45 Ведопость расхода натерианов	48
AR	КД РМ-6	Мосты на ряжебых опорож с двидатып покры	
		тием Г-8 Ведопость расосода потериалов	49
A.P.	KA P17-7	Почты на лежневых опораж с дощатым	
		покрытиет Г-4,5 и Г-8 Ведопость	
		расжода патериалов	50
A₽	KA PM-8	Мосты на лежнебых опораж с дощатым	
$\vdash \vdash$		попрытием Г-8 Колейный маст Стык	
⊢⊢		ςδού υ δουμακυ οππ εαδυδκυ ςδού	
	<i>uo</i> -	Ведомость расхода натериалов	51
AR	P-ma DX	Мосты на сбайных опораж с чертым	
$\vdash$		еравийным покрытием Г-4,5 Ведомость	
20		расжода татериалов	5R
<i>RR</i>	KA PM-10	Мосты на свайных и рамно-лежневых	
$\vdash$		опораж с черным врабийным покрытием	
	No.	Г-45 Ведотовть росскода патериалов	53
AR	KA PM-11	Масты на свайных опораж с ч <del>е</del> рным	
$\vdash$		еравийным покрытием Г-в. Ведомость	
		растода татериалов	54

		//podonocenu	
9810- 190-11	Обозначение	Наимено бание	Cmp
AR	KA PM-12	Почты на свайных и рапна-лежновых	<u> </u>
		помова с ченщи врабийным покрытист	
		Г-В. Ведопоеть равжода пат <del>а</del> риалов	55
<i>AR</i>	KD PM -13	Праты на ринневых опораж с черным	
		вравийным покрытием Г-4,5	<u></u>
		Ведотость расхода патериалов	56
A2	KA PM-14	Мосты на ражевых опорож с черным	
		врабийным покрытием Г-в Ведомость	
		расжода татериалов	57
AR	KA PM-15	Мосты на лежневых опораж с черным	
		BOOGUUMEN TORPEIMUEM F-4,5 4 F-8.	
		Ведомочть рочнода материалов	58
RR	KA PM-16	Мосты на лежневых опораж с черным	
		эрабийным покрытием Г-8 Ведотость	
		расжода татериалов Объеты вспото-	
		вательным работ на тост	59
R2	<b>КД РМ-17</b>	Лотки, трубы Ведомость расхода	
	T.	материалов на 1п м. трябы и на 2	
		₀ เลาอธิหล	60

SHU	Норнейчэн	YEV							
	Морнейчин		3.503,5-74.52.86 - <i>40</i>						
Н момпр.	Munob /Ape14	delle							
ATH BO	PANNOS PROPERU	Junto		Стодия	Juem	Sucmob			
Вед инж.	Тродочтова	X		<u></u>					
<i>Инженер</i>	Hukumunanan	de	Содержание	LIVUL	חחתברדחתער				
			•	Jenunapad Jenutapad					
		ı		1 /	CHUHC	haa _			

KonupoBan Houps

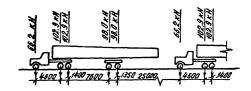
Popmam AR

- 1.1. Миловые канструкции "Временные искусственные сооружения на лесовозных автомобильных дорогеах" разработаны по плану типового проектирования утверженному постановлением Госстрая Nº 2/1-121, paster 5, n. 5.1.2.5.
- 1.2. Проект типовых конструкций разработан в двух выпусках:
  - Выпуск 1. Однопролетные мосты, лотки, трубы.
  - Выпуск 2. Многопролетные мосты .
- 1.3. Пиповые конструкции однопролетных мостов имеют следжащие решения :
  - по длине пролета 2.5, 4,0, 5.5, 7.0, 8,5 и 10,0 м;
  - по габариту проезжей части Г-45, Г-8,0 и с колейной сэдой:
  - по виду опор свайные, рамно-лежневые, лежневые и ряжевые;
  - по высоте маста от 1.5 до 3.0 м
- 1.4. Миловые конструкции лотков и труб представлены открытыми лотками, сооружаемыми в виде местных встречных уклонов продоль-NOSO ADDODUAS TODOSU. YKDERASHHIMU OTUHOHHIM MOULEHUSM US KUMHS на щебеночной подготовке с проливкой цементным раствором. так же деревянными прямочеольными трубами.
- 1.5. Пиповые конструкции многопролетных мостов имеют следующие решения:
  - по длине пролета 25, 4,0, 5,5, 7,0, 8,5 и 10,0 м;
  - по габариту Г-4,5 и Г-8,0 ;
  - по виду промежуточных опор свайные и ряжевые;
  - по виду Береговых опор свайные и рамно-лежневые ;
  - no become puchobeix onop om 2,0 do 6,0 m;
  - no bucome Teperatur anap am 20 da 5,0 m

2 проекта типовых конструкций.

16. Учитывая временный характер разработанных конструкций, 2.2. в начестве основного натериала для деревянных сооружений при- Н-10, гусскичная НГ-30, а также лесовозные автопосьба с жат круеный лес хвойных пород имеющий сстественную коничность, нижелриведенной магрузочной схемой и расчетным давлением на Пименый лес использован в незначитем пом комичестве этолька в ось до 102,9 км. СССЯ от 10 12 84 г. № 205 и письмом Госстроя СССЯ от 15,03.85 г. конструкциях прометных строений в качестве покрытия и несущего настили проезжей части, в конструкциях сопряжений с бересом, а так же для вспановательных обустройств - перил лестниц на сходах с мастов и пр.

> 1.7. Типовые хонструкции предназначены для строительства временных сооружений со сроком службы до 5-ти лет, и могут применяться на леговозных дорогах с большой грххонапряженностью, на которых предусматривается эксплуатация леговозных автопоездов с осевыми нагрузками до 102,9 км. При использовании типовых конструкций как временных, специальные меры защиты древесины от гниения проектом не предусмотрены. Однако, при применении антиселтирующих средств защиты древесины, срок службы дереванных искусственных сооружений проекта в обоснованных случаях может быть увеличен .


1.8. Область применения типовых конструкций деревянных мастов-- по всей территории ссер . При использовании **типовых конструк**ций мостов в районах вечной мерэлоты и сейсмических районах необходимо в дополнение к нормам проектирования учитывать требования CHUN II-7-81 Compoumerocombo o ceuchuneckun pauonan" u Chun II-18-86 "Основания и фундаменты на вечномерэлых ерунтах". Лотки применяются во всех климатических зонах территории СССА. кроме районов вечной мерэлоты, в экономически оправоимных случаях (при наличии местного дешевого камия и при расчетных расхадах воды до 1 м3/с). На обводненных и пылеватых пучинистых гачитах в районах северной климатической зоны применять лотки не рекомендуется. Во всех случаях лотки следует применять при глубине по-Пояснения к конструкции многопролетных мастов даны в выпуске тока не более 30 см, считал от наинизшей точки, и скарости течения потока, не превышающей допустимую для данного типа укрепления.

> Деревянные трубы применяются во всех климатических занах территории СССР (кроме мест образования наледей) только на дорогах CO COOKOM DEUCITOUS DO 5 NETT U TIPU BOICOTTE HUCOITU HE TOLEE 6 M.

### 2. Нормы проектирования

- 2.1. Типовые конструкции разработаны в соответствии со смедующими нормативными документами:
  - 1) Инструкция по проектированию лесозаготовительных предприятий ВСН 01-82, МИНЛЕСБУМПРОМ, 1982 Г. ;
  - 2) Строительные нормы и правила СНиП ТТ-43-75. Мосты и трубы. Правила производства и приемки работ .

За расчетную принята стандартная временная нагрхзка



#### 3. Mamenuanol

- 3.1. Лесоматериалы для дереванных конструкций должны приме-NO TOLY XBOUNDIX NODOO, NO SOLY 8486-66** (NUNOMAMERICAN) U FORT 9463-72* (KRYENDIE MERDMATTERMANDI).
- 3.2. Качество легоматериалов должно удовлетворять требованиям предъявляеным к элементам I и II категории, для которых не долускаются следующие основные пороки:
  - 1) пиломатериалы ениль, червоточина загнившие и табачные счини, пасынки, трещины по плоскостям скалывания в зонах соединении, трещины протяжением более 1/4 длины эленента. сучки более 1 шт. на метр блины элемента, косослои более 10 cm Na 1 Memp BAUHOI SAEMEHITIA ;
  - 2) кочелые лесоматериалы гниль, червоточина, загнившие и табачные сучки, пасынки, трещины по плоскостям скалывания в эрних соединений, трещины протяжением более 1/2 длины элемента сучки с сумной диаметров всех сучков в пределах мутовки более диаметра бревна и сучки более 1/3 диаметра BREBHA, KOCOCADU BONCE 15 CM MA 1 MEMP BAUHOI SNEMEHMA.
- 33. Сечения деревянных элементов конструкций определены исходя из прочностных характеристик древесины сосны. При использовании лесоматериалов других хвойных пород, сечения элементов мостов должны быть откорректированы в соответствии с поправочными коэффициентими к расчетным сопротивлениям сосны, приведенным в мижеследующей таблице. При маличии в сырьевой базе различных хвойных пород леса. для строительства искусственных сооружений предпочтение следует отдавать сосне и лиственнице.

THA	Кормейчук	14/3/1	₹ 7					
	Корнециук			3.503.5 <b>-</b> 74.	, 52.	.86 ~	/13	
Н. контр	Акимов-Перегц	church	1					
Pyr. 20	AKUMOB MEDETU	must				Стадия	AUCM	Aucmos
Bed. UN HE	Трофинова	2.81				P	1	6
<i>Ароберих</i>	Трипутенок	11		Пояснительная запис	ra	ראחם	UNEL	ווססדי
	L_	ı	, ,					

Рабочие чертежи разработаны в соответствии с действующими нармами и правилами.

Главноги инженер проекта ТИКИ И. Н. Я. Корнецух

Порода	Козффициент перехода для расчетных сопроливлен						
дерева	растяжению, извибу, сжатию и сматию вдоль волокон	сжентию и смятию поперек волоком	скалыванию				
EAG	1.0	1.0	1.0				
Лиственница	1,2	1,2	1,0*				
Πυχπια	0,8	0,8	0.8				
*440 ********	конструкций - 0,9		<del>                                     </del>				

- для обычного исполнения и из стали 09 Г 2-6 по ГОСТ 19281-73 для засыпка катаванов производится дренирующим грунтом. северного исполнения.
- 3.5. Митериих для мощения лотков кимень слибовыветриви ющийся горных пород с объемной массой не менее 2,0 т/м3. Цементный раствор - на основе цемента ниэких марок прочности по гост 969-77, а по морозостойкости - в зависимости от климатического района .

#### 4. Особенности конструкции odhondovemhux macmob, vomkob u mayb

- 4.1. Проезжая часть однопролетных ностов ножет быть выполнена в виде двойного дощатого настила (основной вариант), либо дошатово настина с черным гравийным покрытием. Черное вравийное похрытие устранвается так же на однопролетных мостах с ADDODALAHAM YKAOHOM ADDOESSKEU 400MU BOARE 20%.
- 4.2. Пролетные строения расчетной длиной 2,5 и 4,0 м запроектированы с одно ярусными прогонами Пролетные строения длиной 5.5 м — в двух исполнениях — с одноярусными и двухъярусными прогонами; выбор типа пролетного строения в этом случас определяется имеющимся сортаментом лесоматериала и высотой моста. Пролетные строения длиной 7,0 , 8,5 и 10,0 м запросктированы с двухъярусными прогонами.
- 4.3. Сечения свай опор назначены из условия забивки их комлем вверх, а сечения стоек в рамно-лежневых опорах - из условия установки их комлем вниэ. Глубина забивки свай определяется расчетным отказам, но должна быть не менее 4,0 м от поверхности грунта после разныва или от низа торфяного слоя. Для откосных свай заборных стенок глубина, забивки может быть понижена до 3-х метров, рисберм из камня.

- 4.4. В труднопроходиных грунтах забивку свай рекомендуется попизводить е металлическими башмаками, конструкция которых привевена в проекте. Устройство стыков свай допускается только при отсутствии леса требуемой длины. Стыки свай выполняются впритык на металлических накладках и располагаются в грунте елубине не менее 2.0 м от поверхности. Расчетные жаерузки на сваи приведены на расчетнам листе.
- 4.5. Конструкции ряжевых и рамно-лежневых опор разработаны для гочнтов с эсловным сопротивлением 196 к.Па и выше. Конструкции NEXCHEBAIX OFFICE DASDATIONICHAL THE PRINTED C YCHOCHALIN CORDOMUCHENICH 3.4. Метамоцедския (болты срши, штыри скобы, накладки) 98 кПа и выше. Глубина заложения леженей основания рамно-лежпо прочнасти металля не рассчитывались, и поставлены конструк- невых опар в пучинистых ерунтах должена быть на 0.25 м больше тивно, а потому их следует выполнять из челеродистой мартемо- ехубины промерзания, а в непучинистых грунтах не менее 1,5 м. При вской горячека танной стали мирки вст. 3 сп. 3 сп. 3 во ГОСТ 380-71* устройстве рамно-лежневых опор в пучинистых грунтах обратная
  - 4.6. Сопрямение с насыпым мостов на свайных и рамно-лежневых опорах осуществалется заборными стенками, а при ряжевых и лежневых опорах - конусами. Пооезжая часть всех мостов объебиняет ся с пооежией частыю дороги посоедством перехадмых мастиков (щитов и в зависимости от типа оснавания может быть : плавного въсэда).
  - 4.7. На свайных и рамко-лежневых однопролетных мостах устройство тротуаров и перильных ограждений не предусмотрено. Авухсторож ние тротуары шириной по 0,75 м и перильные пераждения запроектированы на мостах полной длиной больше Юм. Ввиду незначительной длины однопролетных мостов, противопожарные площадки на HUX HE COODY HEARD MICH .
  - 48. Для использования на ветках с низкой грузонапряженностью и налын срокон службы в проекте разработана конструкция констново! исполнения пролетново строения. леженевого моста Применение конструкций такого типа должно быть в каждом конкретном случае технически обосновано, т.к. при маличии на дороге колейных ностов существенно снижается скорость движения по ней леговозных автомобилей.
  - мую встречными уклонами і и і г продольного профиля дороги По виду поперечного сечения земаяного полотна ложки могут быть паслоложены в полувыемках или на небольших насыпях.
  - 4.10. Лотки укрепляются одиночным мощением из камня с проливкой цементным каствором М 200.

Аля защиты основания насыпи земляного полотна от размыва на выходах лотков у подножия насыпи предуснатривается устройство

4.М. Конструкция экрепления лотка дана для случаев перепэска воды из киоветов и водоотводных канав через полотно месовозных автомобильных доров. Укрепление выраженных логов с верховый и низовой CITIODON NOMME OCYMECTIBAGETICA DO UNGUBURYQUENOM KONCHIDYKTUB-HOIM DOWNERUAM. MCXODA US MECTINOIX YCHOBKU.

4.12. Деревянные трубы запроектированы промочеснымого сечения 1,5 × 2,0 м . одноочковыми . Конструкция входного и выходного оголовков одинакова.

Минимальная эксыпка над верхам трубы должна быть не менее 0,5 м

#### 5. Μαρκυροδκα οδλοπραλεπικώς мастов и их элементов

5.1. Markungéka odkondokemketk Mocmoé, npukaman & npoekme, escap ит из группы в 5 индексов (для мостов на лежневом основании - в 4 индекса) буквенных и цифровых обозначений, разделенных знаками тире.

Первый буквенный индекс - АМ - входит во все обозначения deperannoix macmot.

Второй буквенный индекс обозничает вид основания моста.

- Ca при свайном основании :
- Рл при рамно лежневом основании ;
- Рж при ряжевом основании ;
- Лж пои лежневом основании.

Претий цифровой индекс абозначает высоту наста в нетрах счития от дня водотока до верхи покрытия по оси моста. Для мостов на леженевых опорах динный индекс в маркировке отсят-

Четвертый цифровой индекс обозначает расчетную длину пролета моста в метрах, с указанием в необходимых случаях вида

Пятый индекс в цифровой залиси обозначает гаварит проезжей чисти мости в метрах. При устройстве на мосту тротуаров к цифровой части индекси добавластся буквенное обозна-

в случие использования моста с колейной содой, вместо циф-4.9. Руско потков имеет тречестьную форму сечения, создавае- рового индекси используется буквенное ибозначение "Кл".

вой индекс добавляется буквенное обозначение "П Претий цифровой индекс обозначает величину габарита проезжей части в метрах При устройстве на мосту тротуаров к цифровой части индекса добавляется буквенное обозначение "Т". В случае использования моста с колейной ездой, вместо цифрового обозначе-

пролетных строений.

- 5.4. Пример обозначения пролетного строения моста -- "ПС-5,5 (1)-4,5" Это означает : пролетное строение расчетной длиной 5,5 м, исполнения 1 (с однодрусными прогонами), габарит проезжей части - 4,5 м
- "ПС-8,5р-8,0 т" Это означает прометное строение расчетной длиной 8,5 м для ряжевого моста, под габарит проезда в.О м. C MPOMYAPAMU

ния габарита используется буквенное - "Кл"

5.2. Пример обозначения деревянного однопролетного моста —

но-лежневых опорах, высотой 2,5 м, расчетным пролетом 4,0 м,

5.3 Маркировка пролетных строений состоит из 3-х индексов буквенных и цифровых обозначений, разбеленных знаками "тире".

Первый буквенный индекс - ПС - входит ва все обозначения

Второй цифровой индекс обозначает расчетную длину пролет-

ного строения в нетрах. Ала пролетных строений расчетным про-

летом 5,5 м, конструкция которых может быть как с одноярусными

(исполнение 2), во второй цифровой индекс добивляется в скобких

обозначение вида исполнения Кроме того. в пролетных стро-

ениях, предназначенных для ряжевых ностов, во второй цифро-

прогонами (исполнение 1), так и с двухъярусными прогонами

- 5.5 Принятая в проекте маркировка свайных, рамно-лежневых и рожевых опор однопролетных мостов состоит из групп в 5 индексов буквенных и цифровых обозначений, и по структуре аналогична обозначениям однопролетных мостов с той разницей, что первый буквенный индекс в обозначении опор - ОП, а третий цифровой индекс означает максимальную расчетную длину пролетного строения, которое может быть установлено на данную опору.
- 56 Пример обозначения опоры моста .ОП-Рж 2.5 8.5 80т Это означает попора ряжевая, для моста высотой 2,5м, под максимальный пролет 8,5 м, при габарите проезда моста 8,0 м c mpomyapamu
- 57 Маркировка лежневых опор состоит из 4-х индексов буквенных и цифровых обозначений и отличается от маркировки остальных видов опор только отсятствием индекси, обозначающего высоту миста, т к для мостов на леженевых опорах высотя является

величиной индивидуальной, регулируемой за счет толицины грунтовой не нарушив положения средних камней. - AN-PI-2,5-4,0-4,5". Это оэмачает: дереванный маст на рам- подсылки под их опоры

> 5.8 Пример обозначения нежиневой опоры мяста - "ВП-Яж - 8.5-КА" Это означает : опора межневая для пр глета, д.5 м под колейную езду.

#### 6. Obique ykasahus no coopyskehuho мостов, лотков и трэб

- в. Г. Пролетное строение тостов собираются без строительного подъема. Применение для выравнивания проеснов различного рода под-KARDOK MEDONYEMUMO
- 62 Срезна свай должена выполняться способами и с точностьм. обеспечивающей плотное, без зазоров, перекрытие их насаджой по всей по всей поверхности предустоточной проектом
- 63 Постановка стяженых болтов, штырей, евшей и т. д. праизводится в заранее просверленные отверстия. Отверстия под болты дляжины быть на 1-2 мм больше диаметра этих балтов : ытверстия под штыри и ерши сверлятся на 2-5 мм меньше их диажетра.
- 6.4. Забивка болтов в монтажные отверстия при их месовпадении эапрещается При величине несовпадения менее половины диаметра отверстия паследние рассверливаются на больший диаметр. При несовпадении отверстия более половины диаметра элементы должны заменять-
- 65 Отверстия для болтов в сжимах, скрепляющих стенки ряжевых опор, должны делаться овальными по высоте, допускающими свободную осадку венцов.
- 6.6 Cmponobka Brokob nou monmance don mena ucknowamo noboeseдение элементов и деформацию конструкций. В необходимых случаях комструкции блоков далжны усиляться на период транспортировки и монтажа путем постановки временных прокладок, риспорок и схватох, обеспечивающих их прочность и геометрическую неизменяемость.
- 6.7. После перемещения и установки блочных элементов конструкций мостов в проектное положение, должна производиться подтяжка и подбивка предусмотренных проектом креплений.
- 6.8. Работы по сооружению лотков открытово типа, как правило, следует производить при положительной тенпературе воздуха. Мощение камнем должно производится обязательно на спланированных и надлежаще уплотненных откосах и проезжей части воризонтильными рядами от рисберны снизу вверх на всю длину укрепляемой поверхности Укладку камней производить тычком с плотностью, достаточной, чтобы ни один из кимней нельзя было извлень вручную,

- SKSL UMICHOLOGOAN BON KEMHURS KIONSUNULS KIONOW UAN 68 нами дереванных труб втримбовывиется слой щебня тохщиной не менее 10 см с предварительным удалением верхнего слоя разжи-

Верх подушки втрамбованного щебня должен соответствовать проектной отметке дна котлована.

6.10. Стальные скрепления элементов деревянных труб должны coombemebobamo eneunturannu

все работы по сооружению мостов, лотков и деревянных труб выполнаются в соответствии с СНи П TU - 43-75 "Мосты и тоховы"

## 7. Ludpabnuveckue pacyembi

7.1. Расчеты для определения гидравлических характеристик однопролетных мастов выполнены в соответствии с учебным поcoquem :

В.А. Большаков. А.А. Курганович. "Гидрологические и гидравлические расчеты малых дороженых сооружении". Киев. "Вища школа" 1983 r. Pessio mamoi parvemob cm. 113 A. 5

7.2. Напоры воды определены по формуле:

$$H = \frac{\psi^2 \cdot 2^{2}}{6_3 \cdot g \sqrt{2m^2}} M;$$

— коэффициент расхода

Y — безразмерный параметр

6, — коэффициент затопления

— эскорение свободного падения

V — скорость потока

7.3. Глубина потока в педностовом русле определена по

R — параметр, принимаемый по таблицам пасобия S sabucumocmu om buða semoeb

Κοπυροβαλ Πλαχοδα

3.503 5 - 74.52.86 - 73

7.4. Расходы воды, протекающие в подмостовом русле определены по формуле:

$$a = mb \sqrt{2g} \cdot \sqrt{H^3} \, 6_3 \, m^3/c$$
;

еде в величина отверстия моста

7.5. Скорость потока в подмастовом русле определена по фармуле:

$$v = \frac{a}{k \cdot 6} m/c$$

7.8 Поскольку исходное значение скорости потока, входящее в формулу для напора H, вначале принимается ориентировочно, вычисление по указанным формулам еидравлических характе— ристик для мостов производится методом последовательных приближений, а именно — характеристики пересчитываются по вновь полученному значению скорости под мостом до тех пор, пока не будет доетиенуто соотношение  $H_n \cong H_{n-1}$ , где n-1093дковый номер приближения.

7.7. При определении гидравлических характеристик для просктирземых мостов по таблице ПЗ л 5 необходима, чтобы полученные скорости не превосходили па величине нормативных размывающих скоростей для грунтов в подностовом русле, указанных в лижеприведенной таблице в противном случае следует предустатривать укрепление русла под мостом, вибирая тип укрепления в зависимости от скорости течения, либо запросктировать мост с большим отверстием.

7.8 Расчетный расход воды для лотков принимается с вероятностью превышения 5% Расчеты для построения гидравлических графиков лотков выполнены в соответствии с "Руководством по гидравлическим расчетам малых искусствен-ных сооружений", Москва, "Транспорт", 1974 г

7.9. Расчеты разнывов за укреплениями лотков производились в соответствии с "Методическими указаниями по обледованию водопропускной способности переходов через талые водотоки с мостани, инеющими укрепленные русла, и трубани, разработанными Всесоюзным научно-исследовательским институтом транспортного строительства в 1970 г.

На асновании этих расчетов баны рекомендации по устроиству каменных врезок (рисверм).

Указанные расчеты в проекте не приводятся.

Расчет характеристик лотка выполнен по схеме незатопленной переливной масыпи.

Ширина зеркала потока в (блина участка перелива в пер.)

$$h = \left(\frac{q_{nep} \cdot n}{\sqrt{L'}}\right)^{3/5}$$
 (Pskoboācmba, VII 28), ete

h— глубина потока в точке перелома продольного профиля, м, которая может выть определена тихже исходя из представленной на листе схемы

$$h = \frac{\ell}{\frac{\ell}{\ell_1} + \frac{\ell}{\ell_2}}, \quad M$$

здесь  $l_1$  и  $l_2$  — встречные продольные уклоны профиля дороги,  $q_{nev}$  — удельный расход, определяемый по фармуле  $q_{nep} = \frac{a}{2}$  , здесь a — расчетный расход воды, м a/сек;

n — коэффициент шероховатости, принимаемый равным 0,02 ( 1 уховодство, таблица  $\underline{F}$ -2),

i'— уклон дна лотка (поперечный уклон проезжей части, принимаемый равным 0,01)

Приравнивия оба выражения для h и выполнив соответствующие преобразования получим выражение для l:

$$\ell = 0,547 \ \mathcal{Q}^{0,375} \cdot \left(\frac{1}{l_I} + \frac{1}{l_2}\right)^{0,625},$$

В соответствии с выведенной формулой ширины зеркала потока  $\ell$  на листе Pk л 2 построен график зависимости  $\ell$  от B, и встречных уклонов  $\ell$ , и  $\ell$ ₂ . Там же имеется график  $\partial$  ло определения глябины потока  $\ell$  латке, построенный исходя из формулы:

$$h = \frac{\ell}{\ell_1 + \ell_2}$$
 , и конструкция мотка.

Расчетния скарость воды впределяется по формиле:

$$v = \frac{a}{\omega}$$
,  $n/cex$ , and  $\omega = \frac{lh}{2}$ ,  $n^2$ 

При сумме встречных продольных жаннов профиля дороги  $i_1+i_2$  привышающей ма масистралях категории II-15%, ма масистралях категории II-15%, ма масистралях категории II-15%, ма масистралях категории II-15% и II-15%, встречные продольные уклоны следует сопря—гать вертикальными кривыми.

В этом случае определение гидравлических характеристик нужна производить в соответствии с формулами § 2 гл. VII "Руковойства по гидравлическим расчетам малых искусственных сооружений, Москва, "Пранспорт", 1974 г.

_	7	
	1	

	ruai	oabra	ческ	DX St	pakm	apucn	nuku		Паду	uua 1
			. ε		g £			Ē	_	
	Наврпальная (фе- тобая) enybund потока no.n	V. H. Le		₹	Глубина патока 6 подмостован Русле П, м	7 C I	803v	Tun anap macma	Gmpaumanenda becoma	Beicoma mocma
	F S g		Ombapcmu macma b.	ğ,±	C 1	me ne dimocri V,		g G	Ĕ₽	2
_	iagnave nobas) e nomoka	Средняя потока	Omean	g E	Sur ama	00 av	Pacxod G	6	Gmpaum bucama	200
¥	Hon	ر م	9 0	Hanop Boder macmam H,	האפער המפשר האפער האפער	CKGBG KG 6 n Dyche	Pa	ځ	ومق	00 00
Beinyak	0,4	0,5	2,26	0,43	0,36	0,77	0,63		0,64	1,32
8		1,0		0,45	0,33	4,44	68,0			1,84
		1,5		0,47	0,29	1,53	1,00			1,36
		2,0		0,48	89,0	1,68	1,06			1,37
		2,5		0,62	0,28	2,46	1,56	77		1,51
	1,0	0,5		4,07	0.93	1,05	2,20	-		1,96
		1,0		1,09	0,88	1,35	2,69	40		1,98
		1,5	e,6 m	1,12	0,83	1,70	3,19	v T		2,01
		0,5	9	1,15	0,77	2,11	3, 67	ğ		2,04
		2,5	ep-	1,17	0,69	8,60	4,05			2,06
	0,9	0,5		2,04	1,92	0.93	4,04	<		2,93
	١.	1,0		2,18	1,87	1,56	6,59	<u> </u>		3,07
		1,5		09,9	1,76	1,99	7,94	0		3,08
		8,0		5'56	1,67	2,42	9,13 9,98	I	ł	3,14
		2,5	276	8,29	1,58	2,79		٤	220	1,38
	0,4	0,5	3,76	0,43	0,36	0,77	1,05	0	0,70	1,40
		1,0		0,45	86,0	1,11	1,38	Q.		1,42
		2,0		0,47	0,89	1,53	1,66			1,43
		2,5		0,48 0,62	0,28	1,68 2,46	1,76 2,59			1,57
	1,0	0,5		1,07	0,93	1,05	3,65			5.05
	<u>'''</u>	1,0	Ε	1,09	0,88	1,35	4,47	כ		2,04
		1,5	= 4,0 m	1,12	0,83	1,70	5,30			2,07
	1	2.0	£0. =	1,15	0,77	2,11	6,09	,		2,10
	İ	2,5	مَ	1,17	0,69	2,60	6,72		1	2,12
	2.0	0,5	1	2,04	1,92	0,93	6,71	-7		2.99
		1.0	1	2,18	1,87	1,56	10.94	3		3,13
		1,5	]	5,20	1,76	1,99	13,18	r		3, 15
		0,9	1	5,26	1,67	2,42	15,16	ر.		3,21
		2,5		2,29	1,58	2,79	16,56	٥	1075	3,24
	0,4	0,5	5,26	0,43	0,36	0,77	1,47	ம	0,76	1,60
		1,0	1	0,45	0,33	1,11	1,94	U	1	1,46
4	1	1,5	1	0.47	0,29	1,53	2,33		1	1,64
<b>9</b>		0,9	┨	0,48	0,88	1,68	2,47	<del> </del>		1,49
E C	<b> </b>	2,5	3	0,62	0,28	2,46	3,63	<b> </b>	1	1,63
<u> </u>	1,0	0,5	5,5	1,07	0,93	1,05	5,13	<del> </del>	ł	2,24
8	l	1,0	9	1,09	0,88	1,35	6,27	ļ	1	2,13
Q Q	1	1,5	1 7	1,12	0,83	2.44	8,55	<del> </del>	1	2,16
ğ	1	2,5	1	1,15	0,77	2,11	9,44	<b> </b>	1	2,10
5	2,0	0,5	1	2,04	1,92	0,93	9,41	<del> </del>	1	305
Nº noda Nodnuce u dama Baam unt.	1	1,0	1	2,18	1,87	<del> </del>	15,36	<b></b>	1	3,91
Z 9HD	1	1,5	1	5,20	1,76	1,99	18,50		1	3,35
કો_	<u> </u>				<u></u>			1		

Гидравлические характеристики Про									VAICEHNE			
Hopmanenda (Bu-moden) kaybung	Cpedium eropoete normond 16,	Ombepomue Moema b, m	Hanap bades nepad mocmom H, m	ğ E	Ckapaame nama- ka 6 nadwaamasam Pyshe 1, m le	8~	Tun anap macma	Chroumenand become	Become mocmo			
2,0	2,0	5,26	2,26	1,67	2,42	21,28		0,76 6.9e	3,27			
	2.5		2, 29	1,58	2,79	23,26			3,30			
.0,4	0,5	3,0	0,43	0,36	0,77	0,84		0,70	1,38			
	1,0		0,45	0,33	4,44	1,10			1,40			
(	1,5		0,47	0,29	1,53	1,38	ļ	l	1,42			
i .	2,0		0,48	0,28	1,68	4,44			1,43			
	2,5		0,62	0,28	2,46	2.07		l	1,57			
1,0	0,5		1,07	0,93	1,05	٤, 93			2,02			
	40	Bp= 4,0m	1,09	0,88	1,35	3,58	ر.		2.04			
	1,5	4,	1,12	0,83	1,70	4 24	ō		2,07			
	0,9	2	1,15	0,77	2,11	4,89	40	l	2,10			
	2,5		4,17	0,69	5'60	5,39	U	4				2,12
2,0	0,5		2.04	1,92	0,93	5,37	¥				2,99	
	<b>1;</b> 0		2,18	1,87	1,56	8,76	ر م		3,13			
	1,5		2,80	1,76	1,99	10,56	a		3, 15			
	2,0		2,26	1,67	2,42	12,14			3, 21			
	2,5		6,29	1,58	2,79	13 27			3,24			
0,4	0,5	4,5	0,43	0,36	0,77	1,25		0,76	1,60			
	1,Q		0,45	0,33	1,11	1,65			1,46			
	1,5		0,47	0.29	1,53	1,99			1,48			
	0,9		0.48	85,0	1,68	2,11			1.49			
	2.5		0.65	0,28	2,46	3,10				1	1.63	
1,0	0,5	٤	1,07	0,93	1,05	4,38				2,08		
	1,0	5,5	4,09	0,88	1,35	5,36	77		2,10			
	1,5	# Q	1,12	0,83	1,70	6,36	ō		2,29			
	0,9	ه	1,15	0.77	2,11	7, 30	<b>B</b>		2,16			
	<b>2</b> ,5		4,47	0,69	2,60	8,06	v		2,34 3,05			
9,0	0,5		2.04	1,92	C 93	8,04	ğ		321			
	1,0		8,18	1,87	1,56	13,12	σ		3,35			
1	1,5		2,20	1,76	1, 89	15, 81	2		3,37			
	50		2,26	1,67	2,42	18,18			3 43			
<b>-</b>	2.5		5'53	1,58	2,79	19.87			3.46			
0,4	0,5	6,0	Q 43	0'36	0,77	1,67		0,98	1,66			
	1,Q		0,45	0,33	1,44	5'50			1, 68			
	1,5		0,47	0,29	1,53	2,65			1.70			
	0,9		0,48	0,28	1,68	2,81			1,74			
<b>-</b>	2,5		0,62	0,28	246	4,14	ר-		1,85			
1,0	0,5		1,07	0,93	1.05	5,84	ote e 6 to 1		2,30			
	1,0	Σ	1,09	0.88	1,35	7,14	¥		2, 32			
	1,5	8p=7,0 m	1,12	68,0	1,70	8,47	σ	ł	2.35			
	0,9	ä	1,15	0,77	2,11	9,74	۵	1	2,38			
L	2,5	Ψ ]	1,17	0,69	2,60	10,75		,1	2,40			

ηБυΊ	agvan	BCKU	e xak	akme			ومعال	gavarce	ייי	:
Нартальная (бы тобая) глубина патака, по, м	Gredining ampoore nomond $\mathcal{V}_{C}$ ,	Ombepamue maama b, m	Hanap bader napad macmom H, m	E &	Croppers name- ra 6 radmocma- bom psche ut, m.k.	Packod bodul	לעה סחסק אסכיקים	Cmpoument Hay become	Высота моста	٤
5,0	0,5		2,04	1,92	0,93	10,73			3,9	27
	1,0	٤	2,18	1,87	1,56	17,49	73		3,4	11
	1,5	7,0	5,20	1,76	1,99	21,08	e &		3,1	<b>43</b>
	2,0	Bp = 7,0m	2,26	1,67	2,42	24,24	8		3, 1	49
	2,5	9	2,29	1,58	2,79	26,49	g Q		3, 8	52
0,4	0,5	8,5	0,43	0,36	0.77	2,09		1,05	1,7	3
<u> </u>	1,0	8,5	0,45	0,33	1,11	2,75		1,05	1,7	5
	1,5		0,47	63,0	1,53	8,32			1,7	7
	2,0		0,48	0,28	1,68	3,52			1.7	8
	2,5		0,62	0,28	2,46	5,18			1.5	32
1,0	0,5		1,07	0,93	1,05	7,80	د-		2,3	7
	1,0	5 3	1,09	0,88	4,35	8,93	õ		2,3	39
	1,5	* 8, 8	1,12	0.83	1,70	10,59	8		2,4	12
	5'0	Bp=	1,15	ס,דד	2,11	12,18	v		2,4	15
	2,5	В	1,17	0,69	2,60	13,44	¥		2,4	17
2,0	0,5		2,04	1,92	60,93	13,40	K		3,3	4
	1,0		2,18	1,87	1,56	21,87	Q.		3,4	8
	1,5		5,20	1,76	1,99	26,35			3.8	50
	0,9		2.26	1,67	2,42	30,30			3.5	i6
	2,5		5'53	1,58	2,79	33.42			3.5	9

в числителе дона строительная высота для одноярусного пролетного строения, в знаменателе-для двухъярусного.

Последовательность подбора отверстия (длины пралетного строения) и высоты моста

4. Задается типот опор тоста.

е. По  $Qm^3/c$ ,  $h_sm$ ,  $V_sm/c$  (указанные характеристики определяются по данным полебых изысканий) определяются отверствие и высота моста, а также другие гидравлические характеристики.

з. всли V > Vвап., то наблюдается разтыв русла, и необходиты тераприятия по укреплению русла, либо-срезка в русле. В последнет случае необходить произвести перерасчет видравлических характеристик.

Ngou -даилакаемая невазинерающая сведная скаросин истака или

Допускаетая средняя скорость определяется по таблице вид (ст. ПЗ, лист 6) в зависитости от глубины потока, грунтов или типа укрепления русла, или в соответствии с:

а) "Метадическими рекомендациями по расчету местного размыва у опор моста", СОЮЗКОРИN, 1981 г.

8), Техническими указаниями по расчету местного размыва у опор мостов, струенаправляющих дамб и траверсов"
ВСН 62-69, Москва, 1970г., Минтрансстрай.

3.503.5-74.52.86 - n3

HOMOKO DAS NECYDHEI	ehaningo, pagi	7 17/6		,,,,	UNUGO	
	разм <b>е</b> р частиц	Глубина потока,т				
Наименование грунтов	ерунтов, тт	0,4	4	8	3	
חשואש ע עא כ שפאגעש חפכ-						
ком,растительная вемля	0,005-0,05	2,0	6.0	0,4	0.4	
Песок мелкий с примесью						
среднево	0,08-0,25	0,3	0,4	0,5	0,6	
RECOK MENKUÙ C BRUHOÙ,						
песок средний с примесью						
крупново	0,25-1	0,5	0,6	7,0	0.7	
Песок крупный с примесью						
гравия, средне-зернис-						
MPH LECOK C SVAHOR	1-2,5	0,6	07	8,0	0,9	
Гравий мелкий с примесью						
среднего	2,5-5	0,8	9,8	1,0	1,1	
Гравий крупный с песком						
и мелким вравием	5-10	0,9	1,0	1,1	1,3	
Галька мелкая с песком						
n sbagnew	10-15	4,4	1,2	1.3	1,5	
Галька средняя	15 - 25	1, 2	4,4	1,6	1, 8	
Галька крупная с при-						
месью грабия	25-40	1,5	1,8	2,1	2,3	
Бульюник мелкии с			<u> </u>			
валькой и вравием	40-75	2,0	2,4	2,7	3,1	
Бультыеник средний с						
εσημκού /	75-100	2,4	8,8	3,2	3,5	
булыненик средний с						
примесью крупного,						
булыненик крупный с						
мелкими примесями	100 - 150	3,0	3,3	3,7	4,1	
бульюеник крупный с		<u> </u>	<u> </u>	<b> </b>		
примесью мелких валу		<u> </u>	<u> </u>			
нов п вачека	150 - 200	3,5	38	4,3	4,6	
			<u> </u>			

Допускаетые неразтывающие средние скорости потока вля влинистых грунтов, Vdon т/с Таблица 3

	LV.	убина	потока,м		
Наименование врунтов или тип укрепления	0,4	1	2	3	
Сяглинки (среднеплотные)	0,7	0,85	0,95	1,1	
Лессовидные врунты (плотные)	0,8	1	1,2	1,3	
Конглотерат, тергель, сланцы	5	2,5	3	3,5	
Пористый известняк, известняковый песчанин	3	3,5	4	4.5	
Доломитовый песчаник,плотный известняк, трамор	4	5	6	6.5	
Граниты, базальты, кварциты	15	18	50	55	
Одерновка плаштя на малосвязном основании	1,7	2	2,3	2,5	
Одерновка платы на малосвязном основании	1	2,2	2.5	2.7	
Одерновка в стенку	2,2	2,5	2,8	3,2	
Грунты, стабилизированные битутом	2,3	27	3	3, 3	
Фашинные тюфяки	2,5	3	3,5	3,8	
Мощение на тху (слой тха не тенее 5ст)	ļ	ļ			
из бультыеника размаром 5см	2	2,5	3	3,5	
Ma me, 20 cm	2,5	3	3,5	4	
mo sice, 25 cm	3	3,5	4	4,5	
Мащение плаштя на слое глины 10 15 ст и		<u> </u>			
covowe (wxx)					
камнем размером 13 14 см	2,3	5.9	3,4	3, 8	
то же, 14 16 cm	2.5	3,0	3,5	4,0	
<u>то же,</u> 16 18 cm	2,8	33	3,8	4,3	
Мащение на щебне (слай щебня не тенее 10ст)					
из рваного камня размером 15 см	2,5	3	3, 8	4	
mo mes, 20cm	3	3, 5	4	4.5	
<u>то же, 25 см</u>	3.5	4	4,5	5	
<u> Мотенле с иоддавом илта п sвядени ивлкоиом</u>					
на тедне (слой тедня не менее 10см)					
катнет размерот 20 ст	3,5	4,5	5	5,8	
mo once, 25 cm	4	4,5	5,5	5, 5	
mo »ee, 30 cm	4	5	6	6	
Кладка из обыкновенного кирпича на цемен-					
шном растроре	1,6	1,9	2,2	2,4	
бутовая кладка из средних пород	5,5	6,6	77	8,3	
Кладка из клинкера	6,6	7,7	8,8	10	
Облицовка из бетона и железабетона	6,6	8	8,2	10	
Бетанные моналитные потки с владкой паверхностью	13	16	19	50	
Деребянные лотки при надеженом основании					
и шелении вдаль волокон	10	12	14	16	

ogs Bodruce a domethy

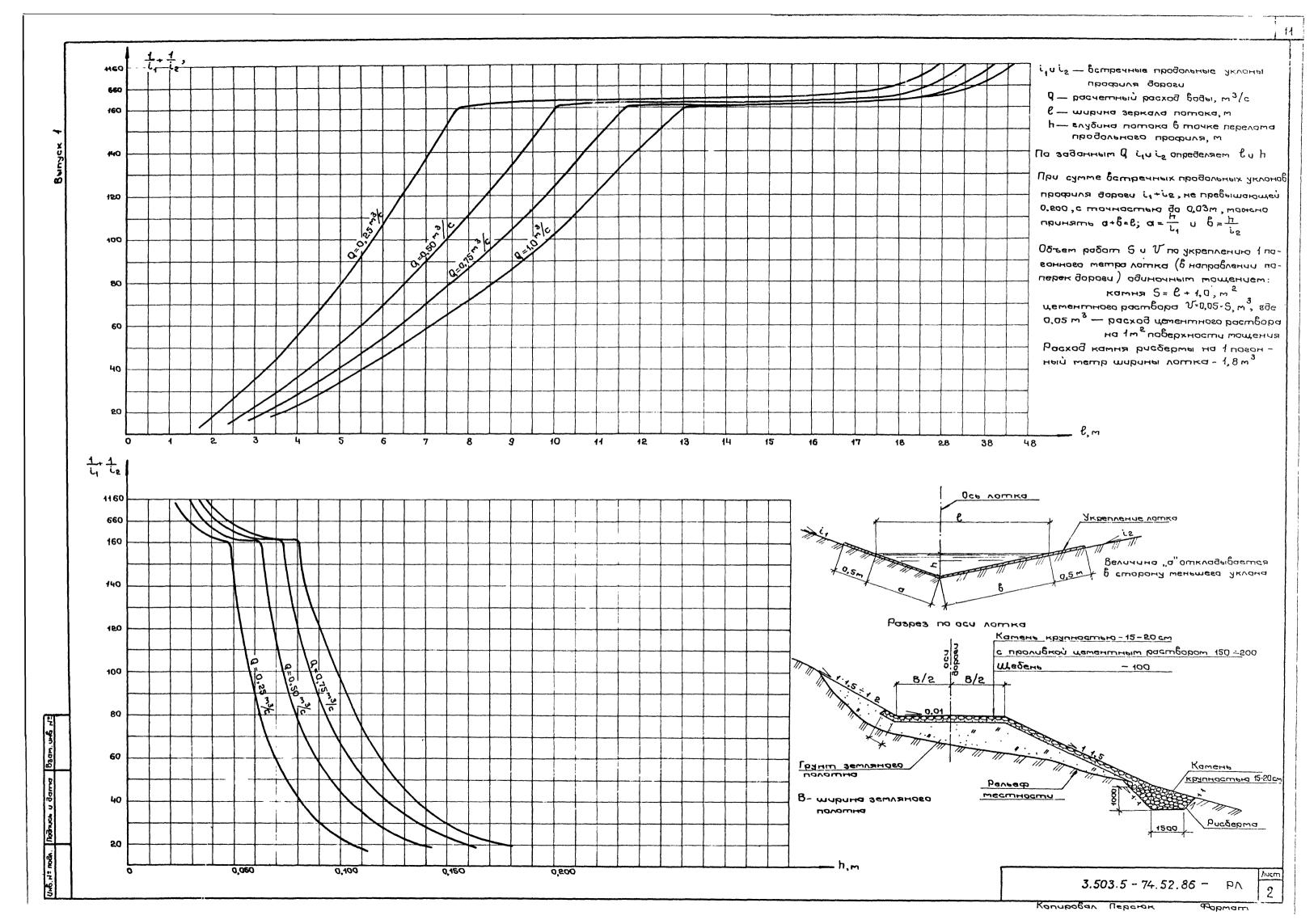
3 503 5-74 52.86- ПЗ

$\alpha$
~/

	T	۵		T	0 C H C	обные			mepuci		
		ğ		Bucoma	Расчетный	Ombepamue	DHUNG REHAD		ная высат		/Ha anooc,cm
	Cxema mocma	<u>c</u>	_Б екошендатил по иблиснению	Hacking H,	пролет вр,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ι Γ-	u,5	8-7	
		12		<u></u>	M	м	٨	покрытич	град пакрытии при черном	покрышла про оот отом	sbap uoxbeiten
	x &				2,5	5,26	5, 5	61, 5 58, 5	<u>59,5</u> 56 5	<u>63,5</u> 60,5	<u>59,5</u> 56,5
-	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		_	1,5	4,0	3,76	7,0	68,5 64 5	<u>66,5</u> 62,5	<u>70,5</u> 66,5	<u>66</u> 5 62, 5
Y			Ha nosax, nepenyckax, b		2,5	5,26	S, 5	61,5 58,5	59,5 56,5	63,5 60,5	59 <u>5</u> 56, 5
77			понивменных местах и на ручьях,	2,0	4,0	3, 76	7,0	68,5 64,5	66,5 62.5	70,5 66,5	66,5 62,5
8		,,	еде по враншовым деловиям возможена		5,5(1)	5,26		74,0 69 5	72,0 67 5	76,0 71,5	72,0 67 5
	***************************************	BOUTE	<del>ε</del> σδυβκα <u>σ</u> βαύ,	2,5	2,5	2,26	5,5	69 5 61.5 58,5	59 5 56, 5	63,5 60,5	59,5 56,5
		U		3,0	4,0	3,76	7,0	68,5 64,5	<u>66,5</u> 62,5	70,5 66,5	<u>66,5</u> 62,5
	* 2	ğ	В пониженных местах, на перепусках, и	1,5	2,5	5'52	5, 5	61,5 58 5	59.5 56.5	63,5 60,5	59.5 56.5
	,	e P	периодически депствующих родошоках		4,0	3,76	7,0	68,5 64 S	66.5 62.5	70,5 66,5	66,5 68,5
	=   ·  i. i   i   i   i   i   i   i   i   i	¥	(npu ameymembuu pasmeiba pyena), na		2,\$	2,26	5,5	61, 5 58, 5 68 5 64 5	59,5 56 S	63 5 60 5	59,5 56 <i>5</i>
1		Į Š	щебенистых, валачно- врабичных и плот-	2,0	4,0	3,76	70	64 5	<u>66, 5</u> 62 S	70,5 66 5	<u>66,5</u> 62.5
		ģ	ных песчаных врунтах, еде невозможена		5,5(1)	5,26	8, 5	<u>74,0</u> 69 5	72 0 67 5	76 Q 71 S 63 S 60 S	72,0 67 5
	!i   i!	٤	3000 pka cpan		2,5	5, <i>56</i>	5,5	<u>61 5</u> 58.5	59 5 56 5 66 5 62 5	<u>63 5</u> 60 \$	56 5 66 5 68 5
	1 +- ep	à		5,5	4,0	3 76	7.0	<u>68,5</u> 64,5	<u>66 5</u>	_70 5 66 \$	<u>66 5</u>
		e 0 e 1 e	платных песчаных грунтах основания	4,4-4,5	<b>5</b> ,6(1)		8,5	74,0 69,5	78,0 67,5	<u>76,0</u> 71 5	72,0 67 5
	<b>.</b> 2	H 76	Thomas had and a spanner ochodans		5,5 (2)		8,5	92 <u>5</u> 89 5	90 <u>5</u> 87 <b>6</b>	94.5 91,5	90 5 87 5
	*	U <		1,5-1,8	7,0		10,0	99,5 96 5	97 5 94 <b>5</b>	<u>101 5</u> 98 5	<b>9</b> 7,5 <b>9</b> 4 5
				1,5-1,0	8,5		11,5	106,5 103 5	104,5 101,5	108.5	104 S 101,5
					10,0		13,0	113,5 110,5	111,5 108 5	115 S 112,5	<u>111,5</u> 108,5
	*		На периодически депстряющих	1,5	4,0	3,0	11,0	68,5 64,5	66 5 62 5,	70,5 66 5	66,5
	## ## ## ## ## ## ## ## ## ## ## ## ##	. 66 61 6	дславиях п в дсловиях венной шевзлошы нериавоивляшных впавовеоповлящских	5'0				00.5			
2		* C		1,5	5,5(2)	4,5	12,5	<u>92,5</u> 89, 5	<u>90,5</u> 87, 5	94,5 91 5	90,5 87 5
8000				u	7,0	6,0	14,0	99,5 96,5	97 <u>5</u> 94,5	101,5 98,5	97 <u>5</u> 94, <b>5</b>
da Hadr					8,5	7,5	15,5	106 5 103 5	104,5 101,5	108,5 105,5	104,5 101,5
2							······································			L	

**3 503 5-74 5**? 86-ПЗ

	Росчет	Напывноронпе		Сечение К	jnemenind I	0gbagawka	Расчет - ный та-	Росчетный томент	^P สะฯฮาหษณ์ ชร <b>ะ</b> บดีสะสหุนใ	жения» ~	восчетное сопротивле	вергикалы Вшнасит	موساسان معان ۱۹۵۲من
-	нчи пра- лет, т	элементов		ошьяде р ревхнем	расчетное с учетот сбега Ц8%	элемента	мент сап- ративле- з жж, м	แหล่งหาก	момент	useuða,	Hue useudy Ru <u>(krc/cm</u> )	лескад Фрима-	ewmņ gauzeka
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,5	крайний провон		φ 0,25	Ф0°5е		1566-10 ⁻⁶	19673·10 ⁻⁸	17,61 (1,796)	1124,75-10 ⁴ (114,70)		<u>−1</u> €	
5	-J.	средний провон	v ē	240,25	5 d d'se	на 1 верхний	3431·10 ⁻⁶	39846-10 ⁻⁸	47,36 (4,830)	1513,07-10 ⁴ (154,30)		1 610 E	
	4,0	крайний прован	טאמ	φ0, 31	φ 0, 33	кант Высотай 2 см	32.95·10 ⁻⁶	53146-10 ⁻⁸	39,60 (4,038)	1201,24-10 ⁴ (122,50)		<del>1</del> 597 e	
		сведнял прован	6 0 1	200,31	εφ0 <b>,3</b> 3	Uticamad - am	6590-10-6	106292·10 ⁻⁸	101,80 (10,382)	1544,45-10 ⁴ (157,50)		<del>।</del> ५५७ ९	
		крайний провон	Вo	φ 0,36	φ0,385		5325·10 ⁻⁶	10072210 ⁻⁸	66,09 (6,740)	1241,44-10 ⁴ (126,60)		<del>1</del> 8	
	5,5		JOSK TO NO.	20,28	2 <b>0</b> 0,305	Дбухъярусны <del>е</del> :		72713·10 ⁻⁸	66,84 (6,816)	1288,51-10 ⁴ (131,40)		<u>1</u> 359 €	
			POSHO-	2 ¢ 0,36	2 <b>ф</b> 0,385	верхний зьяс-	10650-10 ⁻⁶	201444·10 ⁻⁸	161,41 (16,460)	1516,01 10 ⁴ (154,60)	1568,96-10	<u>1</u> €	1_0
				4 <b>0</b> 0,28	4 <b>ф0,3</b> 05	на 3 канта выса-	10336·10 ⁻⁶	14542670 ⁻⁸	162.91 (16,613)	1575,82:10 (160,70)	(1eo)	<u>−1</u> e	180
	7,0	крайний провон		200,31	2 <b>0</b> 0,34	mou egm;		114598·10 ^{- 8}	98,08 (10,002)	1353,23·10 ⁴ (138,00)		1 818	
		средний провон	v ã	4 <b>0</b> 0,31	4 <b>0</b> 0,34	ниманий ярус- на 1 верхний	14494-10 ^{~C}	229 196 · 10 ^{·8}	229,82 (23,437)	1585,63 10 ⁹ (161,70)		1 252 l	
	8,5	крайний провон	1 0 2	2 <b>0</b> 0,34	5 40'312	8 ст канш высотой	9853-10 ^{- 6}	173164-10 ⁻⁸	135,34 (13, 802)	1372,84-10° (140,00)		<del>1</del> 295 C	
		средний провон	K P	4 ф 0,34	40,375		19705-10 ^{- 6}	346 328-10 ⁻⁸	309,91 (31,604)	1572,88:10 ⁴ (160,40)		<u>ાં 249</u> ૯	
	10,0	крайний провон	× 29	2 <b>ф0,3</b> 7	ድ <b>ቀ</b> 0,41		12950·10 ⁻⁶		178,90 (18,244)	1381,67-10 ⁴ (140,90)		1 289	
	·	средний провон	Ö	4ф0,37	4 ф0,41		25900-10	499381-10 ⁻⁸	400,91 (40,884)	154837 10 ⁴ (157,90)		1 239 l	


	Про	e30+c0	א אס	ems (	u mpe	a D F Luc	100				
Наитенава	Pacyer.	1	л Ги <b>е</b> менша	Обработ-	MOMENTA MOMENTA		Расчетный извибающий	Напря <del>ясс.</del>	Расчетное сопротивно	Относита Бертикальн	
жеменшор нче		ompyge	сдева 0,8% расчетнае	md	Gunognob Nemus Wx M ³	Jx m 4	Mb (Ww) We KHW	No (Kuckus)	Ru(κις/cm²)		ewrin gauticka
Hacuny Hacuny	0,5		3×(0,075×0,18)		506-10 ⁻⁶	1898-10			1372,84·10 ⁴ (140)		<u>1</u> 180 €
иона Поп <del>а</del> ре -	1,0	\$0,20	ф0,21	до пастоян най высаты 0,18	833 · 10 ^{- 6}	7552-10-8	<u>40.59</u> (1,080)	<u>1274.78-10⁴</u> (130)	(160)	1 e	180 E
шрандара Настил	1,0		0,05×0,20		83·10 ⁻⁶	208.10-8	0,63 (0,064)	755,06-10 ⁹ (77)	1372,84-10 ⁴ (140)	1 sss	<u>1</u> €

## Paorcebule onopul

power	<b>5</b>		йсшолапросшя Коэффайтавни	1	опорня	ux Spebe	н Баяса	nog ma	33bvaluamn
ΞE	no nadambe		на сдрпе раст	madabvawa Cenenne av	опорного	Расчетная наврузка в апарнам «УЗХе к Н (т)	EUMINUS E	ные напря - эсенчя	Расчетное сопро- тибление смятию Па (ке/см²) Па (ке/см²) Пам=18+6см+4.2
4,0	14,61 - 10 4 (1, 49)	0,34	0,80	200.32	φ0,24	138,26 -( 14, 10)	655·10 ⁻⁴	210,83·10 ⁴ (21,50)	205,93·10 ⁴
5,5 7,0 3,5	19,61·10 ⁴ (2,00)	0,39	0,72	2 \$ 0,32	ø 0, 26	176.51 ~(18,00)	817.10	215,73·10 ⁴ (22,00)	(21,00)

									par	nH0-/	лежене	Bule	ono	P61								•	
	pover	אםמפוטת,				ue, ue,		ерузка свои кн (т)			Cms	mue	6 00	oubanceu.	XRU	3Neme	воты				Sonut Sonut Sooi	HUR ETG CLD: CMD	H das H das Haro- Haro- Haro-
- 1	اع ق	D I	,		,		2	ALPA SECON	ubacaı	40 C H	асадкой	насаб	3KU 00	chaen	насад	ku ca	emoùkoù	Veac	49 CO	cmoùroù	KENO KENO SET	Pace Pace Rice	e conp e cxe ob, nex b epy fld(kre
	Pacyemn Pp.	8wcama r	пасадкл	cbau	стойк	AEBRHA	караты	Makcuma Ha eoroey Cmonka	CMRTUR	CWAWNE	Pacremmae conparrudna. Na (Krc/cm) R-18+ Ecm-1.8	ы s сывшлы uvamage	La( CW ₅ )	pacheminge canpomubhe- nue, 2) Na (Krc/cm/), R=1.6(18+2cm/)2	ы _б сывшлы иvатаде	напря - женче смятия Па( <u>Кгс)</u>	R-1.6 (8° 6"m+12)	ы _б сызшлг иvомаде	раданая метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие метие	pacyemmoe conpomyone; mue, Na krekn Rs1,6(18+Ecm+12). • 0,9	Make dag epynm 6 c pomno-na onopw na (kre /	Make Hanps 6 chask npu Ux Ha Cokati Eulaam Na (	Pacyemhod muskanue Saone Sone shemento danuvaca fa-130149
		1,5		0,24							,		236,32 10					420 10 ⁴	298,10 10 ¹ (30,40)	336,55.10 4		200	
		5,0	0.50	0,32	U 88	0,30	0.88	124,54 (12,70)	-4	4 173,57 <del>1</del> 0	217,70.10	1	167,68-10 ⁴ (17,10)	358,90 10 4 (36,60)									
	2,5	2,5		0,22	0,	u, <b>u</b>	<b>U</b>	(12,70)	715-10	(17,79)	(22, 20)	498 10	(25,40)	380,47 10 ⁴ (38,80)	380.10 ⁻ 4	325,54 to (33,30)	379,49.10 ⁴ ( 38,79)	447.10	281,43 18 (28,70)	333,40 10 4	17.75.104		1147,30 10 ⁴ (117,00)
		3,0		0.24			-					569 10 4	(22,20) (22,20)	380,47.10 ⁴ (38,8 ⁰ )									
		1,5		0,24								524·10 ⁻⁹	(5.6'80) 583'80'19					420 10 ⁴	330,46 10 ¹ (33,70)	336,35 10 V (34,30)		1037,47 10 Y (105,80)	
	4,0	2,0	0,30	0, 32	0 55	0.30	0 22	138,26 (14,10)	881 10 ⁻⁴	15592 10	210,00.10	739-10 4	195,14 10 (19,90)	358,90.10 ⁴ (36,60)									
		2,5		0,22				( 14,10)		(15,90)	(21,50)	498-10 ⁻⁴	276,53-10 (28,20)	380,47.10 ⁴ (38,80)	380-10 ⁴	362,82·10 ⁴ (37,00)	379, 49 t0 4 (38,70)	447 <b>10⁴</b>	34,83 10 (31,80)	333,40-10 4	(1,88)	739,37 10 4	1147,30·10 (117,00)
		3,0		D, 224		_						569.10	(24,70)	(38,80)								1076,70-104	
	5,5	2.0	0,30	98,0	0,24	0,30	oʻss	147, 09 (15, e0)	988-10 ⁴	(15, 10)	207,89.104	739-10-4	98,08 10 ⁴ (20,20)	358,90 10 ⁴ (36,60)	440·10 4	333,40 10 ⁴ (34,00)	333,40·10 ⁴ (34,00)	50Q-10 ⁻⁴	297,12 10 (30,30)	327,52-104	20,59.10	1110,04.10	1147,30·10 ⁴ (117,00)

Smo voH	Карнейчук Корнейчук Анитов Перети			3. 503.5 - 74	.52.8	6 - 1	عر م		
byk eb	Akumaa-Nepetu,	Auna	,		ใกาสอีบต	VACU	Vnewag		
	Трофитова	NIST.			6	1	2		
Npočep.	Черноб	Zejn.		Расчетный лист	LNUbUUE TLbul				
	· · · · · · · · · · · · · · · · · · ·			Konyod as Deportor	Mapap	am A	.5		



Парна, паз.	Обазначение	Наименование.	Kon.	Приме-
	КД-3	AM-CB-1,5-2,5-4,5		
ЛC		NC - 2,5 - 4,5	1	
on		017-08-15-40-45	R	
	КД-3	AM-CB-2,0-2,5-4,5		
ПC		ПС-R,5-4,5	1	
011		ON- CB- 2,0-5,5- 4,5	R	
		, , , , , , , , , , , , , , , , , , , ,		
	кд-з			 
nc		NC-2,5-4,5	1	
On		On- C8-25-40-45	2	
	<i>КД-3</i>	AM-CB-3,0-2,5-4,5		
ЛC		/IC -25-45	1	
0/7		01-08-30-40-45	æ	
		<u> </u>		
t	қд-з	AM-CB-15-40-45		
ЛC		[70-4,0-4,5	1	
017		ON-CB-15-40-45	2	
		/- /- /-		 
	КД-3	ДМ-СВ-20-40-45		
/IC		11C-40-45	1	
017		ON-CB-20-55-45	2	
	K/1-3	ДМ-СВ-25-40-45		
nc		NC-4,0-4,5	1	
017		ON-CB-R5-40-45	2	
	<i>KД-3</i>	AM-C8-30-40-45		
ЛС	<u></u>	NC - 40- 45	1	
On		ON-CB-3,0-4,0-4,5	2	
<del></del>		30 0,0 3,0 3,0	~	
	КД-3	ДМ-СВ-2,0-5,5(1)-4,5		
ЛС	7,4,0	AC - 55(1) -4,5	1	
On		ON-CB-2,0-5,5-4,5	2	
<del></del> +		0,, 02 0, 70 70		
	N.D-6	ДМ-РЛ-1,5-2,5-4,5	П	
ПС	<u> </u>	NC - 2,5 - 4,5	1	
on on		ON-Pn-1,5-4,0-4,5	2	
	кД- 6	ДМ-РЛ-20-25-45		
ΠC		NC-25-45	1	
On		ON-PN-20-40-45	£	
		, , , , , , , , , , , , , , , , , , , ,		
	W / 1 - 6	ДМ-РЛ-25-25-45		 
nc	7,4 0	11 - R, 5 - 4,5	1	
ОП		ON- Ps - 25-40-4,5	, L	
<del></del>		- 707 2,0 7,0 7,0	- <u>*</u> -	 

Марка, 1юз.	Обозначение	Наименование	Kon.	Magad ed., Kr	Прите
	КД- G	LM-PA-15-40-45			
//C		10 40-45	1		
011		01-15-40-45	R		
	кд-6	411- RJ-80- 0-45	1		
ЛС		170-4,0-4,5	1		
00		ON-PJ-20-40-45	R		
		07 17 75 75	1		
<del></del>	КД-6	AM-PA-25-40-45	1		
/IC		AC-40-45	1		
07		ON-PA-25-40-45	R		
<del>"</del>		0// // 2,0 /,0 /,0	╁╌		
	кд-6	ДГЛ-РЛ-20-5,5(1)-4,5	1		
ΠC		TC- 5,5(1) - 4,5	1		
011		On-P.n-Ro-5,5-4,5	R		
			†		
	КД-4	AM-CB-15-25-80	1		
/IC	· · · · · · · · · · · · · · · · · · ·	/7C-2,5-8,0	1		
DN		ON-CB-1,5-4,0-8,0	R		
			†		
	K.A 4	AM-CB-RO-R5-80	†		
ΛC		17C-25-80	1		
0n		ON-CB-20-5,5-8,0	R		
			1		
	KΩ-4	AM-CB-25-25-80	1		
ПС		/IC - 2,5 - 8,0	1		
on		DN-C8-25-40-40	R		
	gagining ang pamilih ini managati ti daga ang ang ang ang ang ang ang ang ang		1		
	КД-4	<u> </u>	1		
ПС		NC-8,5-8,0	1		
on		On-CB:30-40-80	R		
	K.A-4	AM-CB-15-40-80			
ЛC		170-40-8,0	1		
on		0n-cb-1,5-4,0-8,0	£		
	<i>КД -4</i>	AM-CB-RO-40-80			
η¢		NC-40-80	1		
on		07-08-6,0- 5,5-8,0	P		
	КД-4	AM-CB-R5-40-8,0			
nc		NG - 40- <del>Q</del> 0	1		
on		017-CB-2,5-4,0-8,0	æ		
	КД-4	AM-CB-30-40-80			
ΛC		170-4,0-8,0	1		
On		On-CB-30-4,0-8,0	2		
			1		

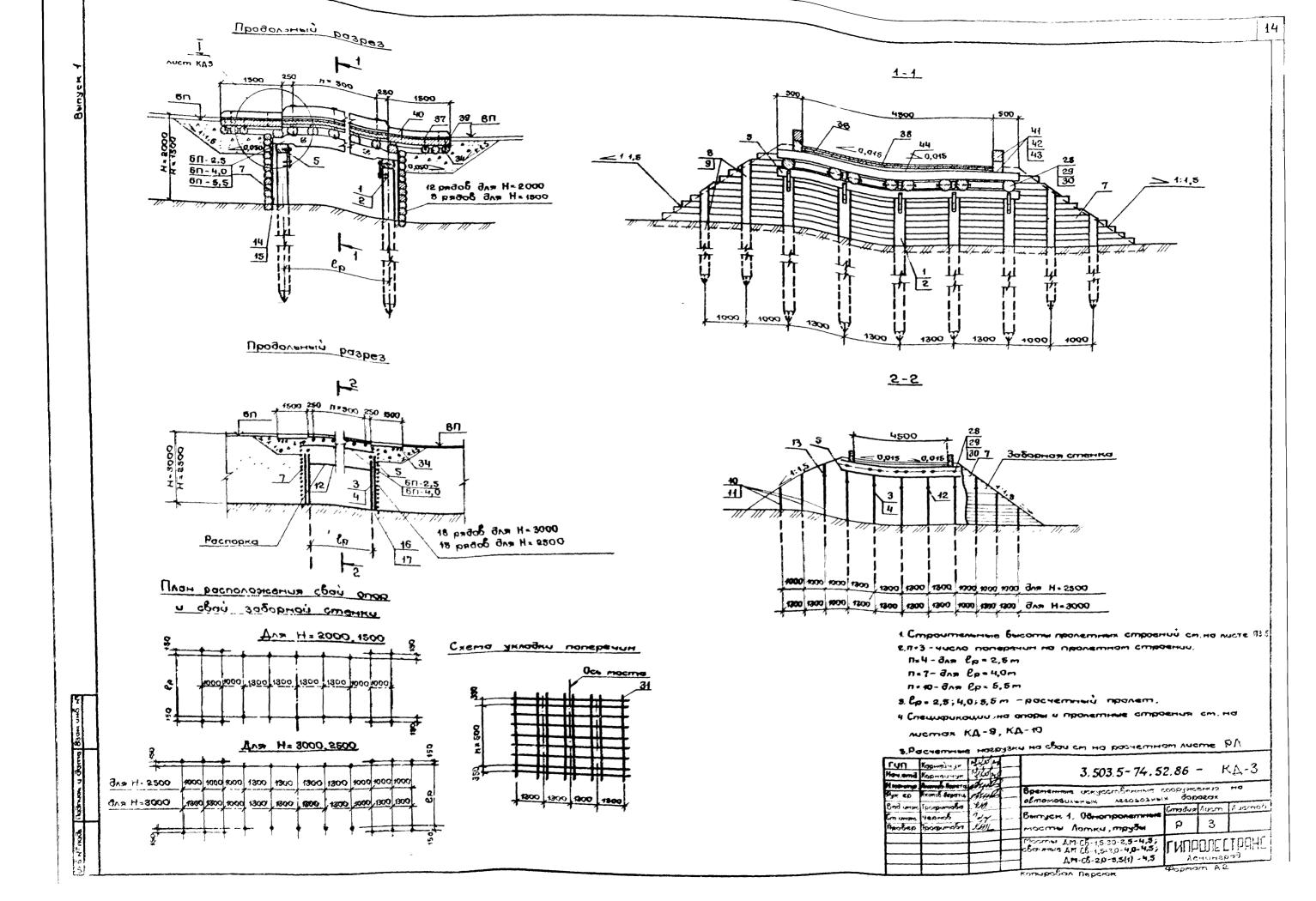
Марка, 1103.	Обозначение	Наитенобание	Kon	Macca ed, nr	Spune vomue
	КД-4	AM-CB-20-5,5(1)8,0			
ПС		NC - 5,5(1) - 90	1		
ON		07-CB-R0-5,5-8,0	2		
	את ז		├		
ЛC	744-7	7C - 25 - 8,0	1		
011		DN-Pn-15-4,0-8,0	R		
	KA-7	AM-RA-20-8,5-80			
ΛC		/IC - 8,5 - 4,0	1		
ОП		On - P.n - 2,0 - 4,0 - 8,0	£		
	<i>Kn-7</i>	AM-PN-R5-8,5-8,0			
ЛС		NC - 8,5-8,0	1		
on		On- Pn-R,5-40-8,0	æ		
	<i>КД-7</i>	ДМ-РЛ-1,5-40-80	<b>-</b> ,-		<del></del>
nc		NC - 40 - 80	1		
DΠ		DN- Pn-1,5-4,0-8,0	æ		
	КД-7	AM-PA-RO-40-80			
ΛC		NC-4,0-8,0	1		
0/7		QN-PN-RO-4,0-8,0	Q		
	K4-7				······································
ΠC		NC-4,0-80	1		
0n		DN-Pn-25-40-8,0	æ		
	νn-7	<u>Дт-Рл-2,0-5,5(1)-8,0</u>			
ЛС		NC-5,5(1)-8,0	1		<del></del>
00		ON-PA-RO-5,5-8,0	Ŗ		

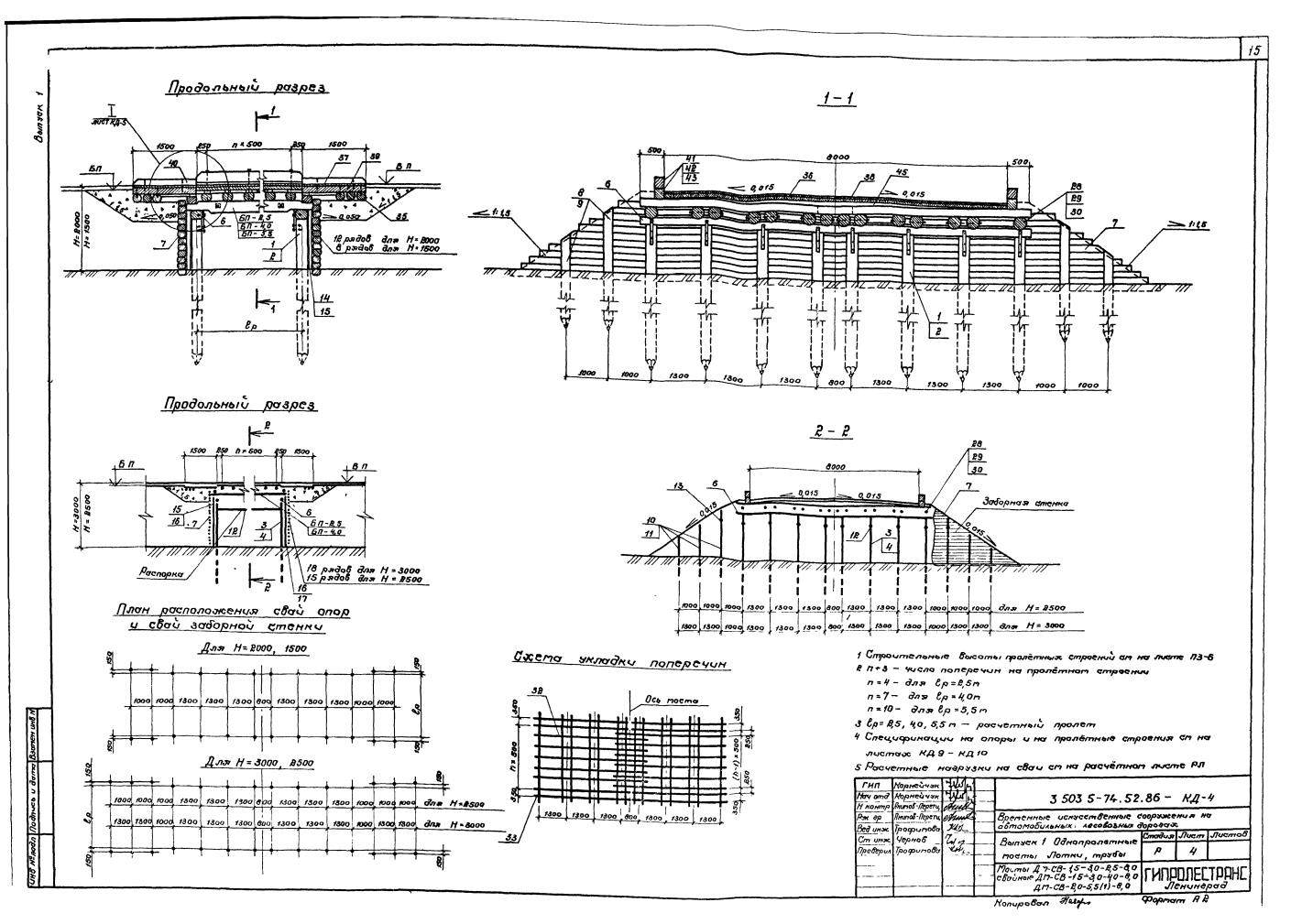
Начота. Н канта	Корнейчэк Морнейчэк Якигов-Перегц	W		3.503.5 - 74.52	2.86~	КД-	1
Рын ер Вед инж,	Линов-Леретц Продостава	SKID!	4		gobosan gobosanas		abmo-
Инженер Проверил	Никитинския Чернов	Tel.	1	Выписк 1. Однопролетные посты. Лотки, трибы	Стодия <b>प्र</b>	Лист 1	Sucmob R3
			-	Марки тостов на свайных и рапни-лежневых опораж Спецификация	M	ONE[	TPAHE

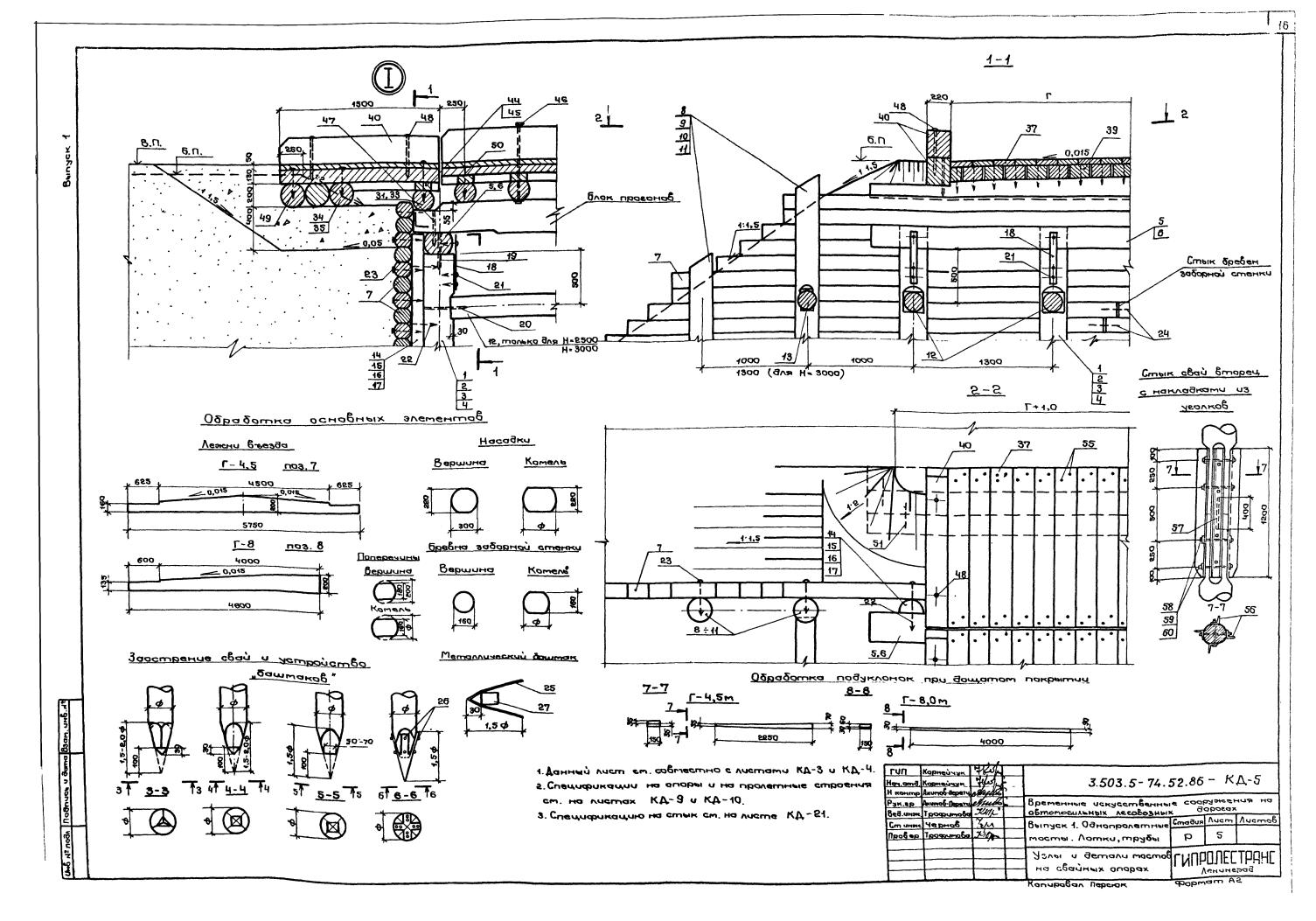
Konupuban

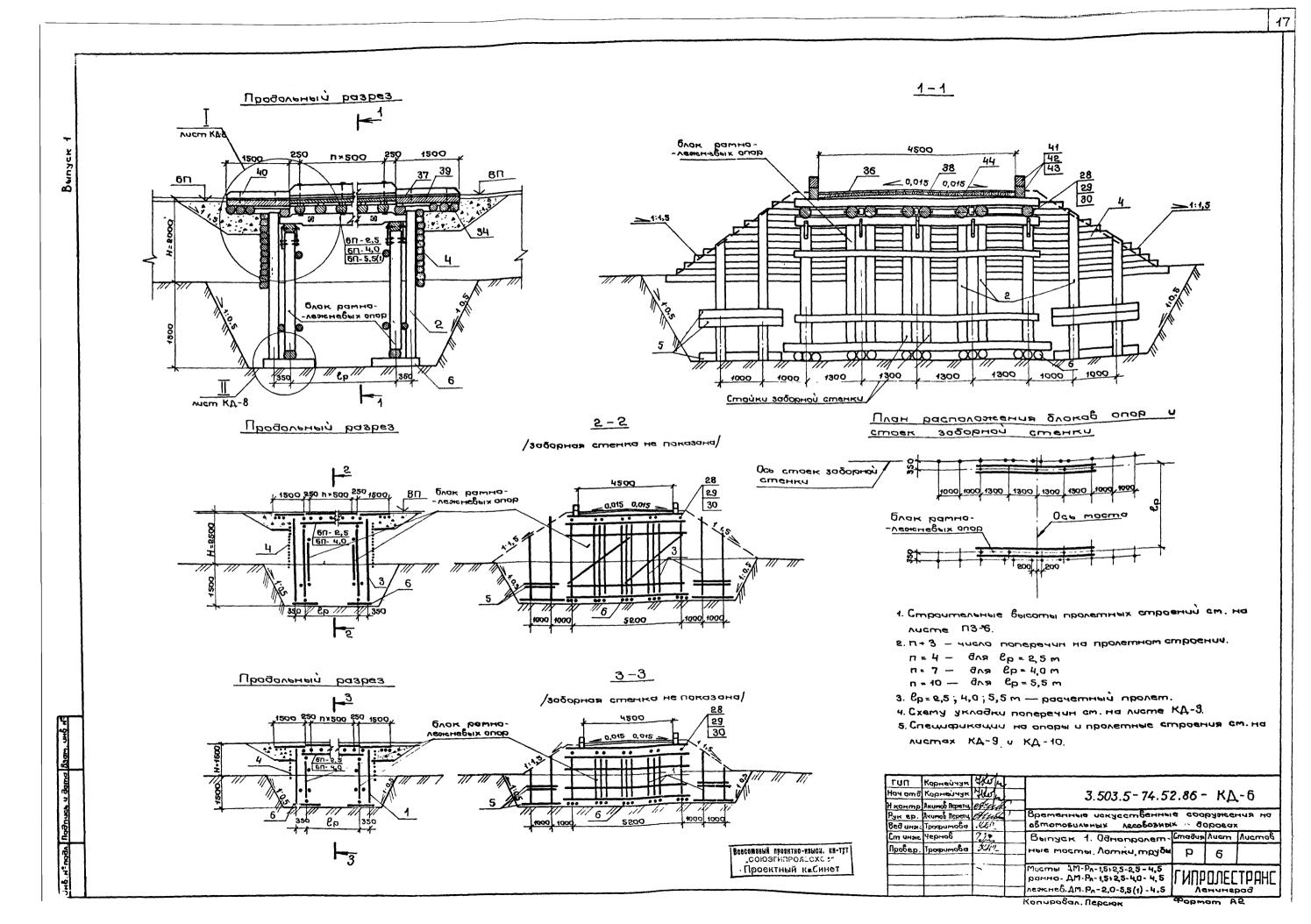
Hopmam AR

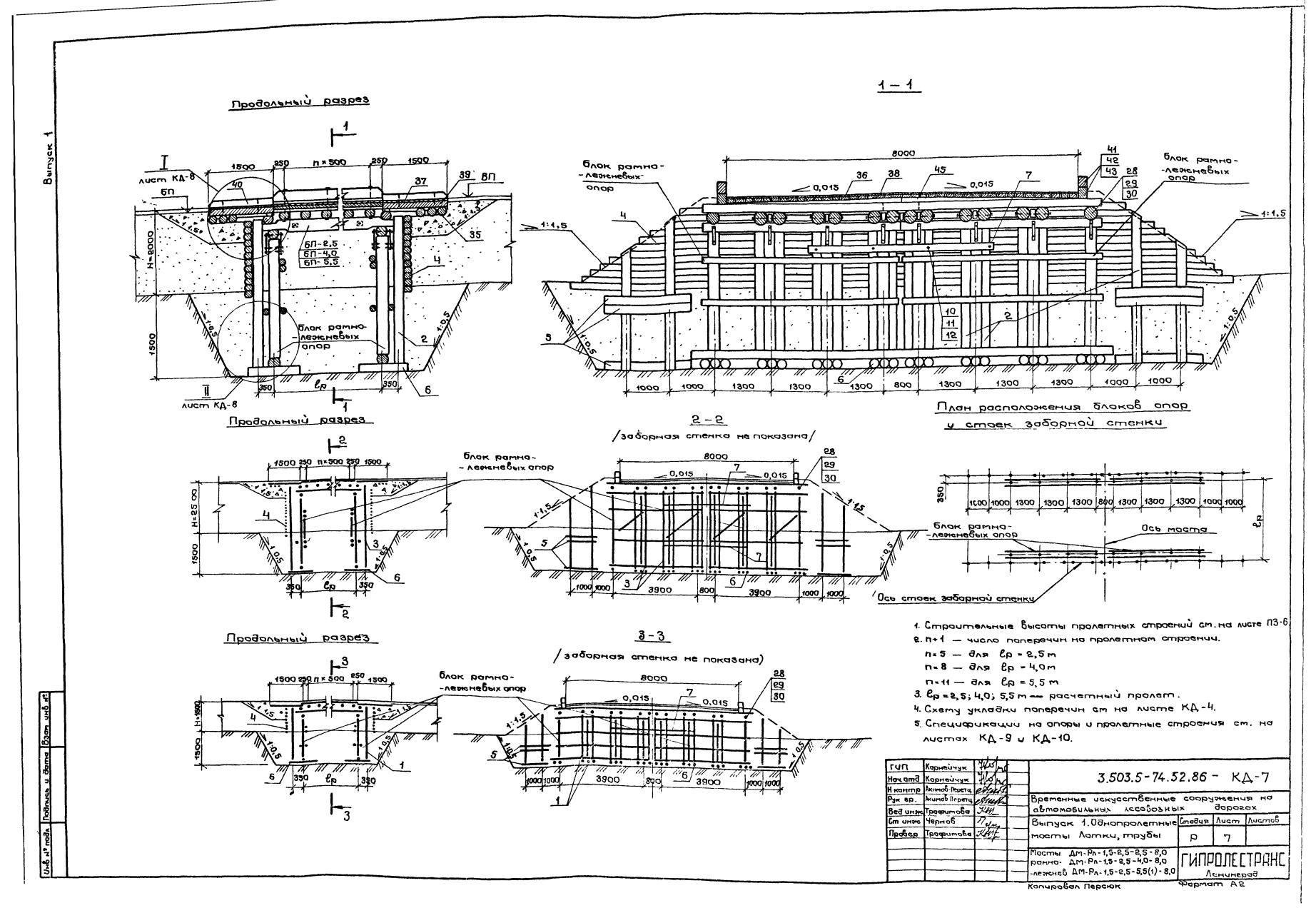
Парка поз.	Обозначение	Наименование	Kon	Моссо 8д. кг	Прим
	KA-11	AM-PUK-15-40-45			
ПС		17C-40p-45	1		
On		On- Pac- 15-40-45	£		
	<i>КД -1</i> ₽	AM-POK-1,5-5,5/R)-4,5			
nc		17C-5,5(2)p-4,5T	1		
On		ON- Parc-15-85-45	Ŗ		
	<i>НД-18</i>		<u> </u>	<b> </b>	<del> </del>
nc		110-70p-45r	1	<b> </b>	
On		017- Pax-15-8,5-4,5	, P		
	N.A 18	ДМ-Рж-1,5-8,5-4,5			
ΠC		NC-8,5p-4,5T	1		
on		ON-Pak-1,5-8,5-4,5	R		
	The state of the s		<u> </u>		
	КД-11	AM-Pax-20-40-45	<u> </u>	ļ	
/IC		17C-4,0p-4,5	1	<b> </b>	<u> </u>
0/1		DN-P3K-20-4,0-4,5	£		
	КД-12	ДМ-Рж-20-5,5(8)-4,5			
ПС		17C - 5,5 (R)p - 4,5T	1		
On		On-Pac-RO-0,5-45	£		
	H = 10	7m 0 m 10 m 115	_		-
-00	/т.Ц - 1#	#17- POXC-RO-7,0-4,5	<del>  ,</del>	<del> </del>	├
ЛС ОЛ		17C-7,0p-4,5T	1 2		<del> </del>
0//		011 1-00 40 0,0 1,0	<del>                                     </del>		
	КД ~ 12	AM-PHC-8,0-8,5-4,5			
<i>I</i> IC .		NC-8,5p-4,5T	1		
ON		ON-Pac-20-35-45	£		ļ
	КД - 13		$\vdash$		-
//C	7,2,70	NC-4,0p-8,0	1	<b>†</b>	$f^{-}$
011		ON-Pxc-1,5-4,0-8,0	ß		
	КД- 14	A STATE OF THE PARTY OF THE PAR		<b> </b>	<u> </u>
ΛC		17C-5,5(2)p-8,07	1	<u> </u>	_
On		017-Parc-1,5-8,5-8,0	₽.		<b> </b>
<del></del>	КД - 14	AM-PUK-15-70-8,0	$\vdash$	<del> </del>	-
ЛС	1,4,7	//C-70p-8,0T	1'_	1	<del>                                     </del>
Q/I		ON-POK-15-85-8,0	2		1
		1			ــــــــــــــــــــــــــــــــــــــ

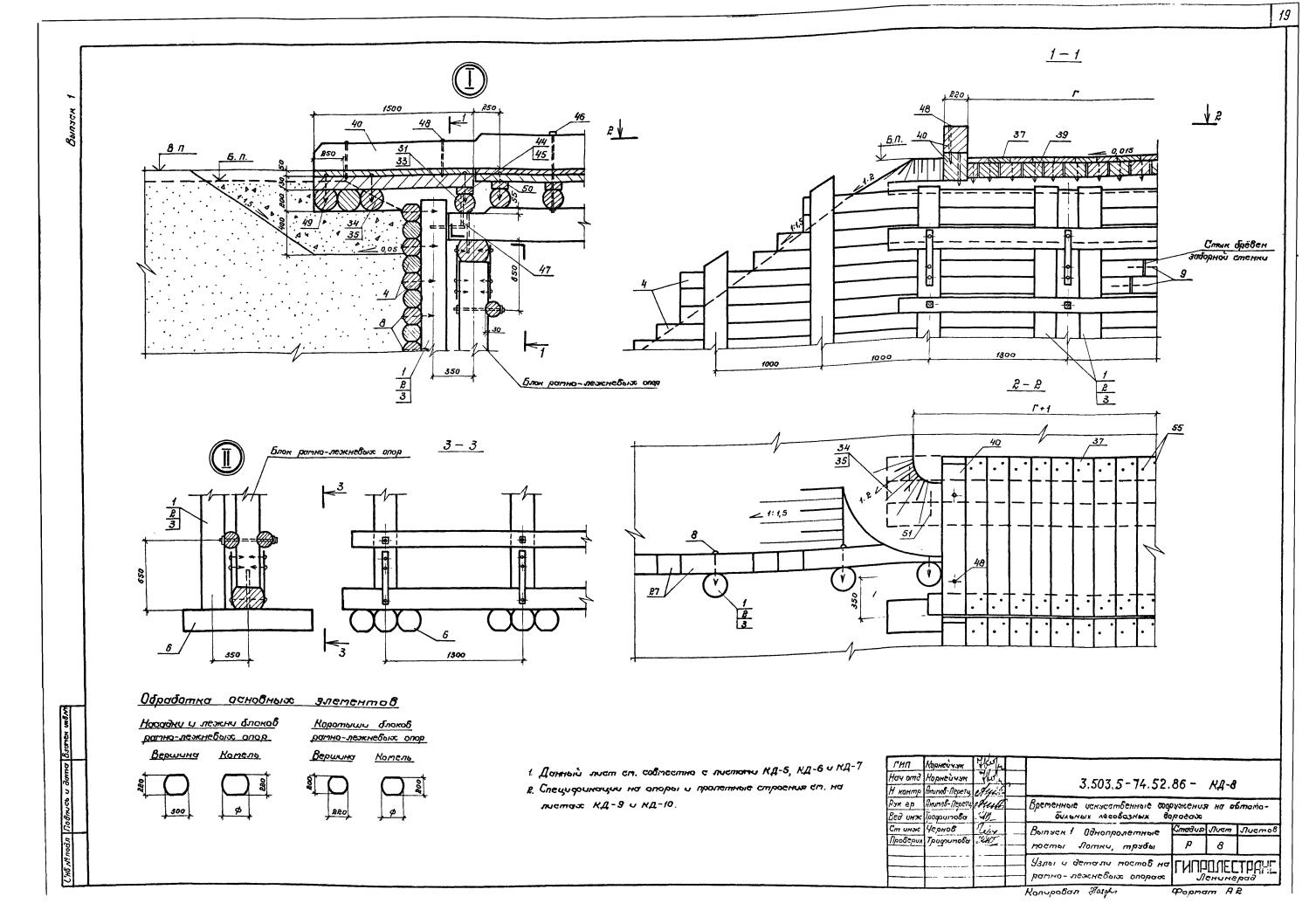

Марка, 108.	Обозначение	Напшенование	Кол.	Macco Ed. Kr	Nound
	КД-15	AM-PAC-15-85-80			
nc		NC - 45p-407	1		
on		DN- Parc-1,5-8,5-8,0	£		
	<i>КД-1</i> 3	ДМ-Рж-80-40-80			
	7,4,-70	17C-40p-80	1		
nc on		ON-Pare-2,0-4,0-8,0	۶		
	<i>КД-1</i> 4	AM-PAK-RO-5,5(R)-80			
пс		NC-5,5(R)p-8,07	1		
<u>on</u>		DN - Pox - 20-85-80	£.		
	КД-14	IM- PJK-RO-70-80			
nc		170-7,0p-4,0T	1		
ОП	-	ON - Porc - 20-65-60	£		
			_		
	<i>КД-14</i>				
ΛC	Attack to the second se	17C-8,5p-8,07	1		
0п		00 - Pak-20- 45-40	P		
	<i>КД- 2</i> 0	<u> 45 - 1000 - 5 5(1) - 45</u>			
ПС		NC-5,5(1) - 4,5	1		
ОП		On- Non-5,5(1)-4,5	£		
	<i>ҢД - 20</i>	·Дм-Лж-5,5(B) - 4,5			
ЛС		NC-5,5 (R) - 4,5	1		
On		DN- JOK-5,5(R) - 4,5	£		
	<b>РД-80</b>	IM-Jyk-70-45			
ЛС		DC - 70 - 45	1		
0n		0П-Лэк - 10,0 - 4,5	£		
	ҚД- 20	ДМ-Лж-8,5-4,5			
ΛC	744- 20	ΠC - 8,5 - 4,5	1		
on		On - N src - 10, 0 - 4, 5	ę		
		7.0			
лс	КД-20		1		
011		011- 10, 0 - 4,5	Į Į		
					~~~


Обозначение	Наименование	Kon	Macca ed Kr	Noune
кД- 20	AM-JOK-55(1)-80			
	NC - 5,5 (5) -Q0	1		
	ON - Nac-5,5(1)-8,0	ي		
кд-20	<u>ДМ-Лж-5,5(2)-80</u>			
	NC - 5,5(R) -8,0	1		
	ON - Лэк - 5,5(R) -8,0	£		
K.A- RO	ДМ-Лж-7,0-8,0			
	NC - 70 - 8,0	1		
	0N - Note - 10, a - 8, a	Ą		
K.A 80	ДМ-Лж-8,5-8,0			
	NC - 8,5 -8,0	1		
	ON- Nox- 10,0 - 8,0	£		
КД- 20	<u>ДМ-Лж-100-8,0</u>			
	170-10,0-8,0	1		
	011-11-240 - 10,0 - 8,0	2		
КД- 20	ДМ- Лж- 8,5-КЛ			
	ПС - 8,5- КЛ	1		
	DN- Nox-8,5 - NN	æ		
	КД-80 КД-80 КД-80	КД-80 ДМ-Лж-55(1)-80 ПС-5,5(1)-8,0 ПЛ-Лж-5,5(1)-8,0 КД-80 ДМ-Лж-5,5(2)-8,0 ПС-5,5(2)-8,0 ПС-5,5(2)-8,0 ПП-Лж-5,5(2)-8,0 ПП-Лж-7,0-8,0 ПП-Лж-7,0-8,0 ПП-Лж-8,5-8,0 ПП-Лж-8,5-8,0 ПП-Лж-10,0-8,0 КД-80 ДМ-Лж-10,0-8,0 КД-80 ДМ-Лж-10,0-8,0 КД-80 ДМ-Лж-10,0-8,0 КД-80 ДМ-Лж-10,0-8,0	KA-RO AM-Noc-55(1)-40 1 NC-5,5(1)-40 2 NA-RO AM-Noc-5,5(1)-40 2 KA-RO AM-Noc-5,5(1)-40 2 NA-RO AM-Noc-5,5(1)-40 2 NA-RO AM-Noc-7,0-40 1 NA-RO AM-Noc-10,0-8,0 2 NA-RO AM-Noc-10,0-8,0 2 NA-RO AM-Noc-10,0-8,0 3 NA-RO	KA-BO AM-Nok-55(1)-40 1 NC-5,5(1)-40 2 CA-BO AM-Nok-5,5(1)-40 2 KA-BO AM-Nok-5,5(1)-40 2 KA-BO AM-Nok-5,5(1)-40 1 NA-BO AM-Nok-5,5(1)-40 1 NA-BO AM-Nok-5,5(1)-40 1 NA-BO AM-Nok-7,0-40 1 NA-BO AM-Nok-7,0-40 1 NA-BO AM-Nok-10,0-8,0 1 NA-BO AM-Nok-10,0-8,0 1 NA-BO AM-Nok-10,0-8,0 2 NA-BO AM-Nok-10,0-8,0 1 NA-BO AM-Nok-10,0-8,0 2 NA-BO AM-Nok-10,0-8,0 2 NA-BO AM-Nok-10,0-8,0 3 NA-BO


I'H N	Kopneiyan	4	7	न				
Нач отд	Корнейчик	777	3/	1	7 507 5-7/	C2 0C	,,,,	•
Н контр	Amunos-Depercy	Att		2	3.503 5-74.	22.00	-кд-	ę
Pyk. ap	Якитов-Персту	otra	46	3	Врепенные исихсатвенные со	оружен	UR HO	
Вед инж	Традочтово	14	1	1	овтомобильных лесовозных	dopo	90'00	
Unoncerce	HUNUMUHENIS		-	4	Выписк 1 Однопролетные	Cmodusi	Sucm	Juamob
Проверия	Тродритава	St.	2	╂	мосты. Лотки, трубы	ρ	B	
					Μαρκυ ποςποδ κα ρεκεθως υ πεκκεδως οπορασς Οποιμορυκοίς μπ	LNU	DUE[TPAHC


Nonuposan Halahi


Popmam AR



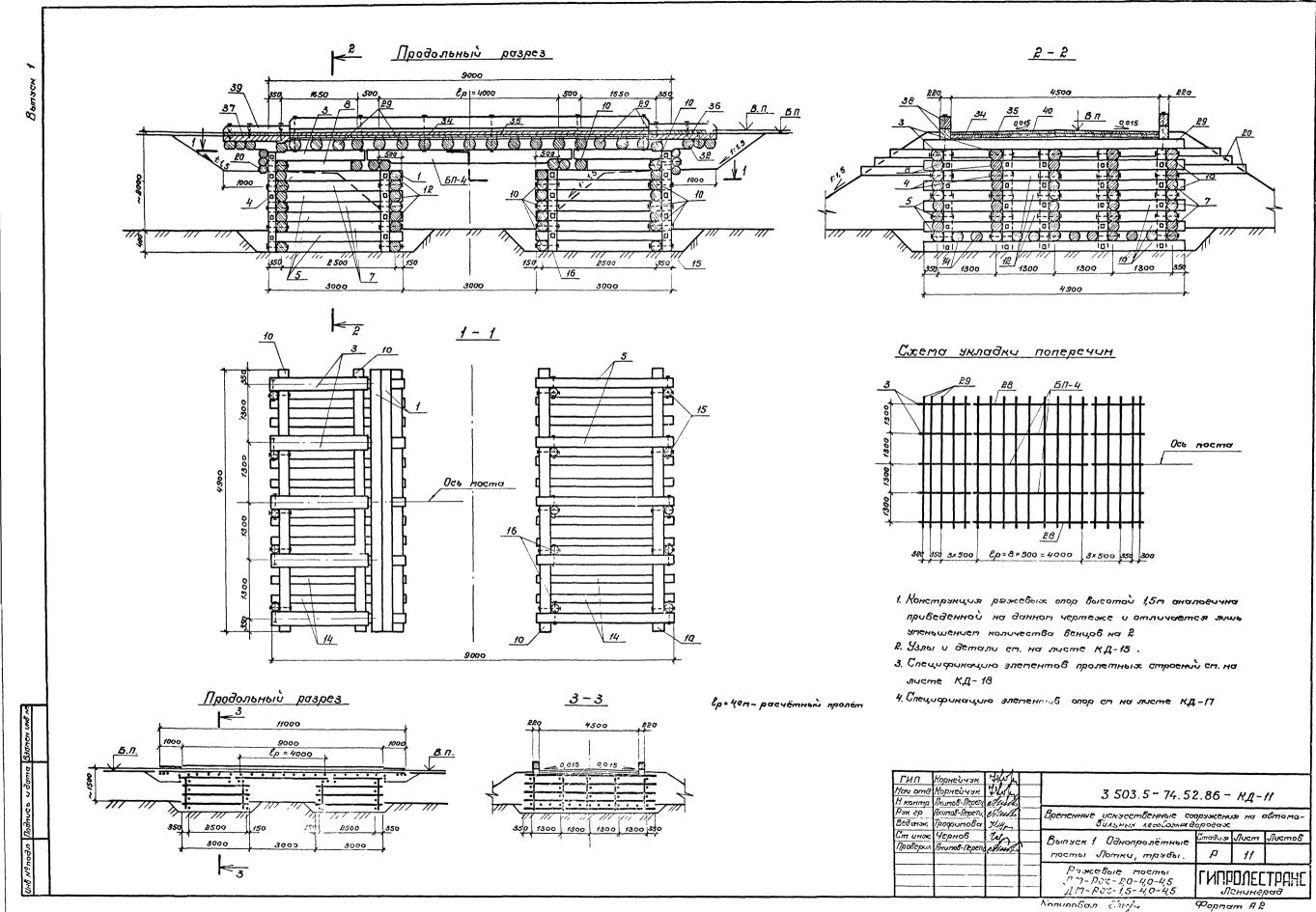
			,,,,,,,,,,,	ратн	о- лежневые оп	ор)/							
_	Pooram	3000	20/	Обозначение	Наименование	1	อภนฯ	r e am	·во 1	10 B	udbi	٧٧,	wm.	Прите-
			Γ		Сфорочные единицы Сторочные единицы									
משעשכא	A3		Γ	КДИБР-15÷80-8,5÷55-4,5	5P-15-85+40-45	2			<u> </u>	<u> </u>	_		_	
)	ЯЗ			KAH 6P-15+R0-25+55-45	5P-20-2,5÷40-4,5		R		_			<u> </u>		
	Я3			КДИБР-1,5+2,0- 2, 5÷5,5-4,5	BP-2,0-5,5(I)-4,5			R	<u> </u>	<u> </u>			_	
	ЯЗ			КДНБР-R5-R5-45;БР-R5-49-45	5P-R5-R5+4,0-4,5	<u> </u>			R					
1	ЯЗ			КДН БР-1,5÷R,0-R,5÷5,5-8,0	5P-15-2, 5+40-8,0			<u> </u>		4	_	_		
	ЛЗ			КДИБР-15+ 8,0-8,5+5,5-8,0	5P-20-25+40-8,0				L_	_	4			ļ
۱	A3			<i>КДИБР - 1,5-2,0-2,5- 5,5</i> -8,0	BP-2,0-5,5(<u>T</u>)-8,0							4		
١	ЯЗ			KAU BP - 2,5-2,5-4,0,5P-2,5-4,040	5P-R5-R5 + 40-80	L				<u> </u>			4	
					Деребянные детали				<u> </u>					
					Лесопатериал крэглый				 					
				,	/OCT 9463- 72*	_		L						
					Стойна заборной стенки					<u> </u>	<u> </u>			
١	54		1		PRRO l = R600	24	_		_	36	_	_	_	0,111 113
	Б4		£		PRBO l = 3100	L	24	₽4	_		36	36	_	0,135m
	54		3		P.R.O & = 3600	_	_	_	24	_	_		36	q 159 m³
	Б4		4		Заборная стенка - 4160 т	139	23 R	232	312	211	316	3/6	417	0,025 m3
	Бч		5		PHNED PRRO 8 = 2000	12	12	12	1₽	12	12	12	12	0,084m3
I	Бч		6		Kapameru PRRO E=1200	30	30	30	30	48	48	48	48	0,049n3
١	54		7		Схбатка горизант Ф140 в=4000	_	-	_	_	æ	æ	æ	4	0,073'm3
					Петаллические детали									
- 1					<u> Изделия нестандартные</u>									
-	₽£		8	КД - 21	έρω Φ10 ε=300	140	₽1₽	RIR	266	188	284	₽84	356	0,137mr
ŧ	AR		9	KД- 81	Crosa \$12 6=300	28	48	46	6 2	42	64	64	84	Q 316 Kr
1	A2		10	КД - 81	Болт М16 в=400	_			_	8	8	8	16	0,666 KF
					Изделия стондартные									
	БЧ		11		θαύκα M16 ΓΟς 155.26-70*			_	_	8	8	8	16	0,033Kr
-	Бч		12		Waida 16 FOCT 11371-78*	_	_	_	_	16	16	16	<i>32</i>	Q011KF
					Марна	(0n-Fn-15-40-45) x &	(On-Pn-2,0-4,0-4,5) x B	(On-Pn-20-55(1)-4,5) x &	(On-Pn-8,5-4,0-4,5) xB	(On-Pn-15-40-8) x &	(On-Rn-R,O-4,0-8) x R	(On-Rn-RO-5,5(1)-8) x B	(On-Pn-25-40-8) x B	

	CHON				Cb	σύμωε οπορω									
	Взотен	Popmam	Зоно	1/03	Обозначение	Наименование	K	MUYE	cmb	o 40	ı 2 m	יאקטי	u, u	ירוו	Noume- 4anue
Ī	Di	7				Деревянные детал	<u>u</u>								
l	v dama		П			Jeronamepuan kasen	ناه								
						[OCT 9463-7₽ *									
١	Nagnicas	T		1		CB051 \$ 840 8= 6000	10	_	_		16	_	_	_	Q 330n ³
		十		۾		\$ 320 C=6500		10	_	—	_	16	_	_	0,640m³
	N°noda	T	T	3		\$ 220 C = 7000		-	10	-	-	_	16		9340m3
	3 24	十	T	4		\$ 240 C = 7500		_		10			_	16	0,430m³

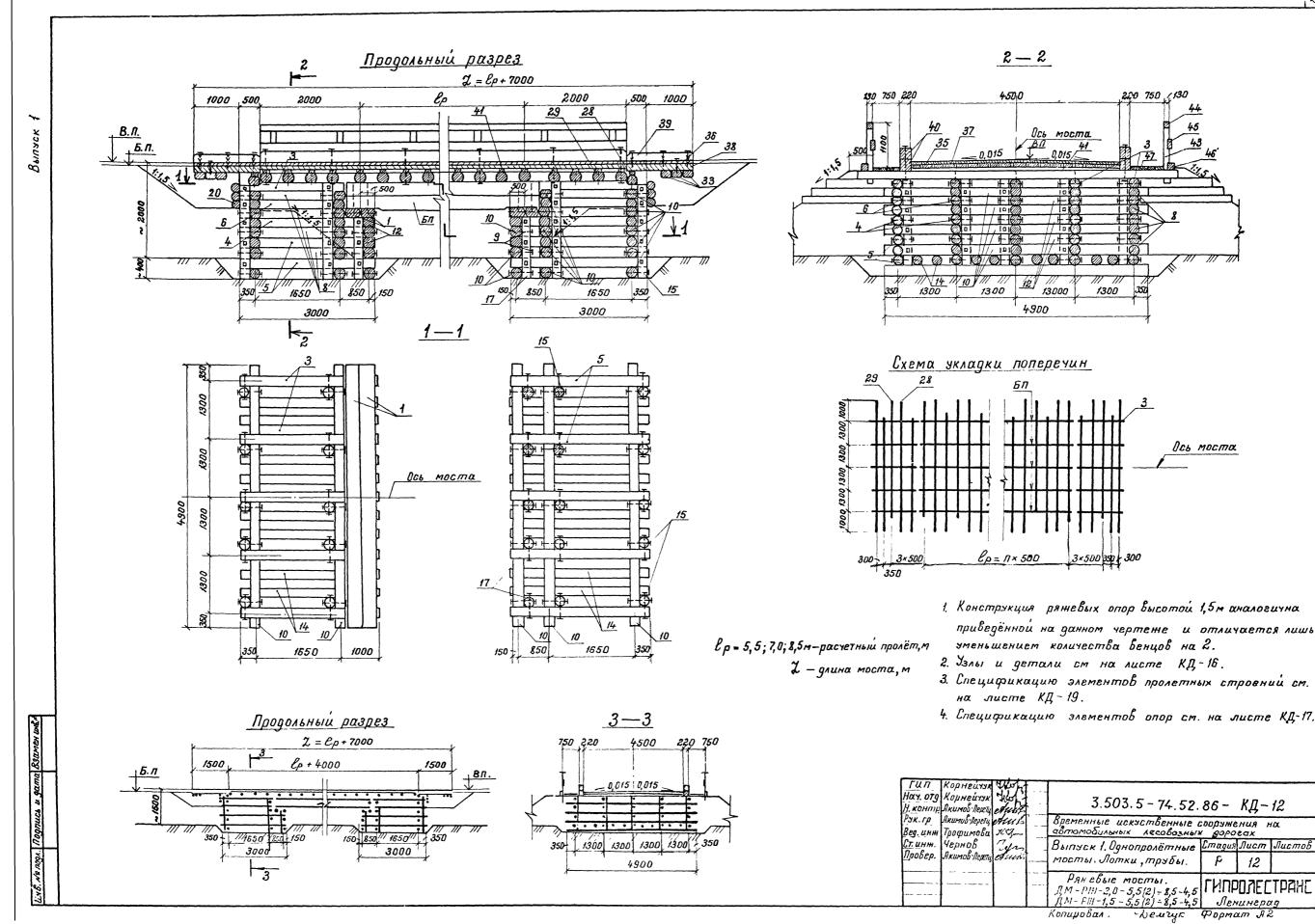
				γ									15
Popmon	3040	/lo3.	Обозначение	Наименобание	٨	lonu	48 0/	ონი	на ,	s wak	טאָנ,	יחש	PANNE-
Бч		5		Насадка Ф 300 l= 6000	2	£	R	2	<u> -</u>	_	_	-	Q520m3
64	T	6		\$300 C=4700				_	4	4	4	4	0,400m3
54		7		Заборная стенка Ф160, п	139	232	318	400	211	3/6	417	526	0,0250
T	T			Свая заборной стенки									
54	7	8		₱ RRQ	8		_	_	8	_	_	-	0,200m 3
54	T	9		PRRO l = 5000	_	8	_	_	_	8	_	-	0,230m3
54	1	10		PRRO l=5500	-	_	1R	_	-	_	12	-	0, 250m3
54	1	11		₱££0 €=6000	-	_	_	12	_	_	_	12	0,280m3
54	11	12		Распорна Ф200 втах=3800			5	5			8	8	0139 m3
54	1.	3		Ф.200 етах = 4100			2	æ			P	æ	0,151 m3
T	T			Прокладка - пластина									
54	1	4		4260/2 l=1100	10	-	-	-	16	_	-	_	0,032n3
54	1	5		P260/2 l=1800	_	10	1	_	_	16	-	_	0,055m3
54	1	6		P260/2 l=2250	_	_	10	_	_	_	16	_	0069m3
Бy	+	7		PR60/R C=2700	_	_	-	10	_	_	-	16	0083m3
7	\dagger	+		Петаллические изделия									
十	+	_		Изделия нестандартные									
\dagger	+	_		Накладка - Ст палосовая									
54	10	<u>_</u>		6×50 l=500 [OCT 103-76	10	10	10	10	16	16	16	16	1.180 Kr
PR PR	1/3		КД - 21	Windows \$20 l=350	10	10	10	10	16	16	16	16	0,865×r
AR.	B		<u> </u>	Штырь Ф20 l=400	70		14	14		-	20	20	0,988 xr
+	1				20	20		30	48	48	48		
AR Oo	2		<u>KA-21</u>	Epw \$10 l= 150	30	30	30 30		32	48	48	48 64	0,077 Kr
AR .	+-	2.2		Epw 410 8=250	20	30		40					0,117 Kr
AR	+-	3	K.A &1	Epw \$10 l=300	116	188	254	320	164	₽60	344	428	0,137Kr
92	L ²	24	K.A 21	CKOGO \$12 C=300	20	46	<i>6₽</i>	80	42	64	84	106	0,316xr
4	4		· · · · · · · · · · · · · · · · · · ·	Трехгранный баштак									
54	-t-	5		Ст полосовая 60×8 l=360 ГОСТ 103-76	30	30	30	30	48	48	48	48	1,357Kr
92	_	96	KД - R1	Epu \$12 8=100	60	50	60	60	96	96	96	96	0,087 Kr
9.2	#	97	КД-5	BKNOD61W 442 8=70	10	10	10	10	16	16	16	16	0,76/m
4	\downarrow			Четырежгранный баштак									
54		5		Ст полосовая 60×8 С=360	40	40	40	40	64	64	64	64	1,357 Kr
9.E	+	6	КД-21	Ėpw \$1₽ €=100	80	80	80	80	128	128	128	128	0,087 mr
9.E	₽	7	КД-5	Вклидыш Ф42 8=70	10	10	10	10	16	16	16	16	0,761~
					4,5/k	32/54	Syxè	3) x k	3×6	80)×	d×(o	dx fo	1
					-04	-(1)5	70	7-07	0-6,0	5/1)-	6-0	8	
				101									
				onda	-1,5-	000	25.	30-	15,	R.O.5	4-S'a	30-4	
				Мария	01-CB-1,5-40-451xB	On-CB-RO-\$5(1)-4,5)xB	OP-CB-R5-4,0-4,5)×A	OP-CB-30-40-4,5) x &	01-CB-15-40-8,0)×B	On-CB-R.O-5,5(1)-8,0)xR	ON-CB: R.5-40-80)×R	(On-CB-30-40-40) xB	

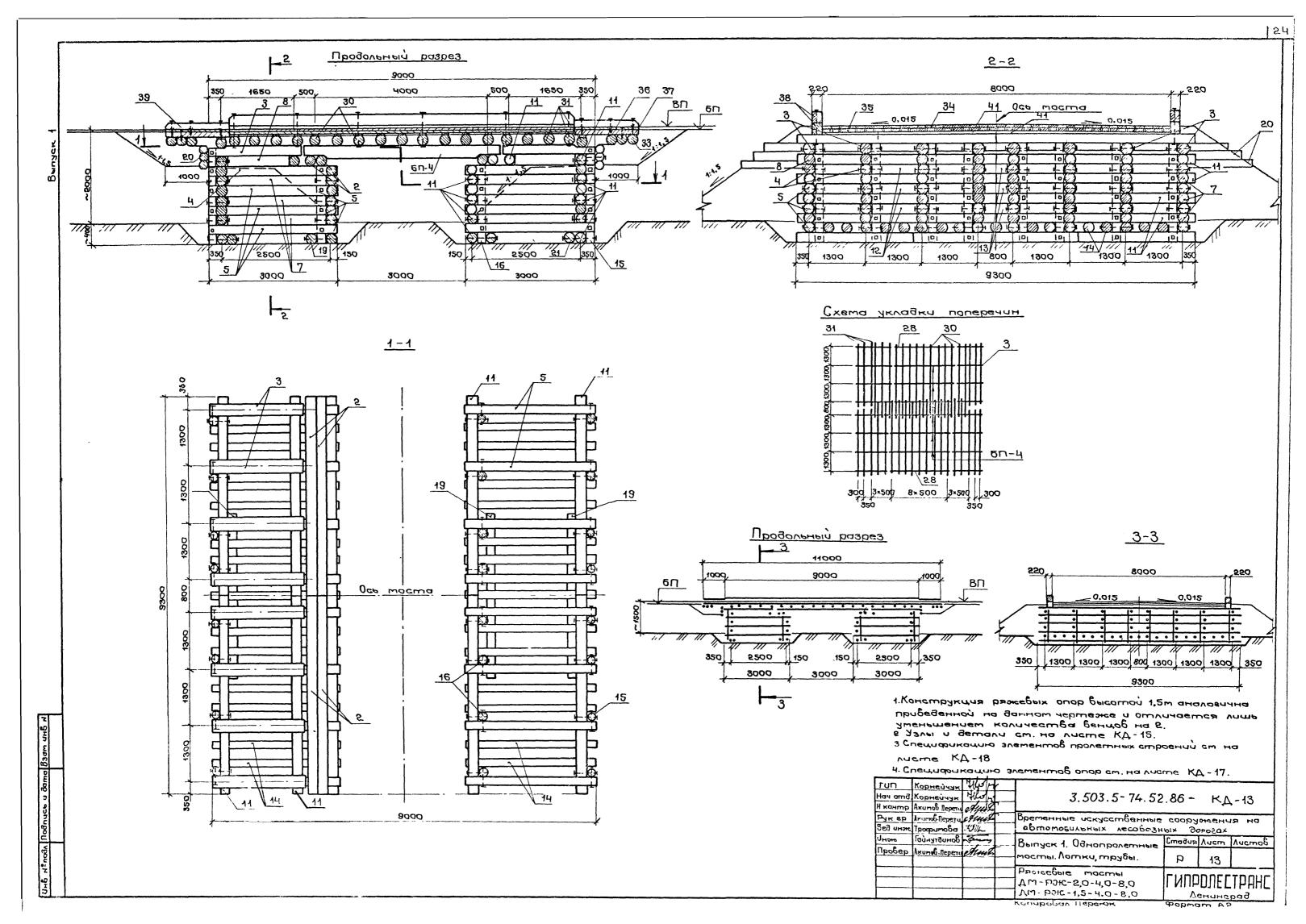
Нач отд Н контр	Корнейчэн Корнейчэк Якипов-Перегц	will.	, -	3.503.5 - 74.52	86-	<i>КД</i> -	9
Рэк. ер Вед инж.	Ікипов-Переги Тро фина ва	equia		Временные искусственные сог	43345490 30900	UN KO	<i>დ</i> ალი-
	4ернов	Cepen		Выписк 1' Однопролетные	Стадия	Sucm	Aucmob
Проверия	Традочтава	zer_		посты. Лотки, требы	P	9	
				Опоры авайные и ратно- межновые Спецификация		ביים!	Lease

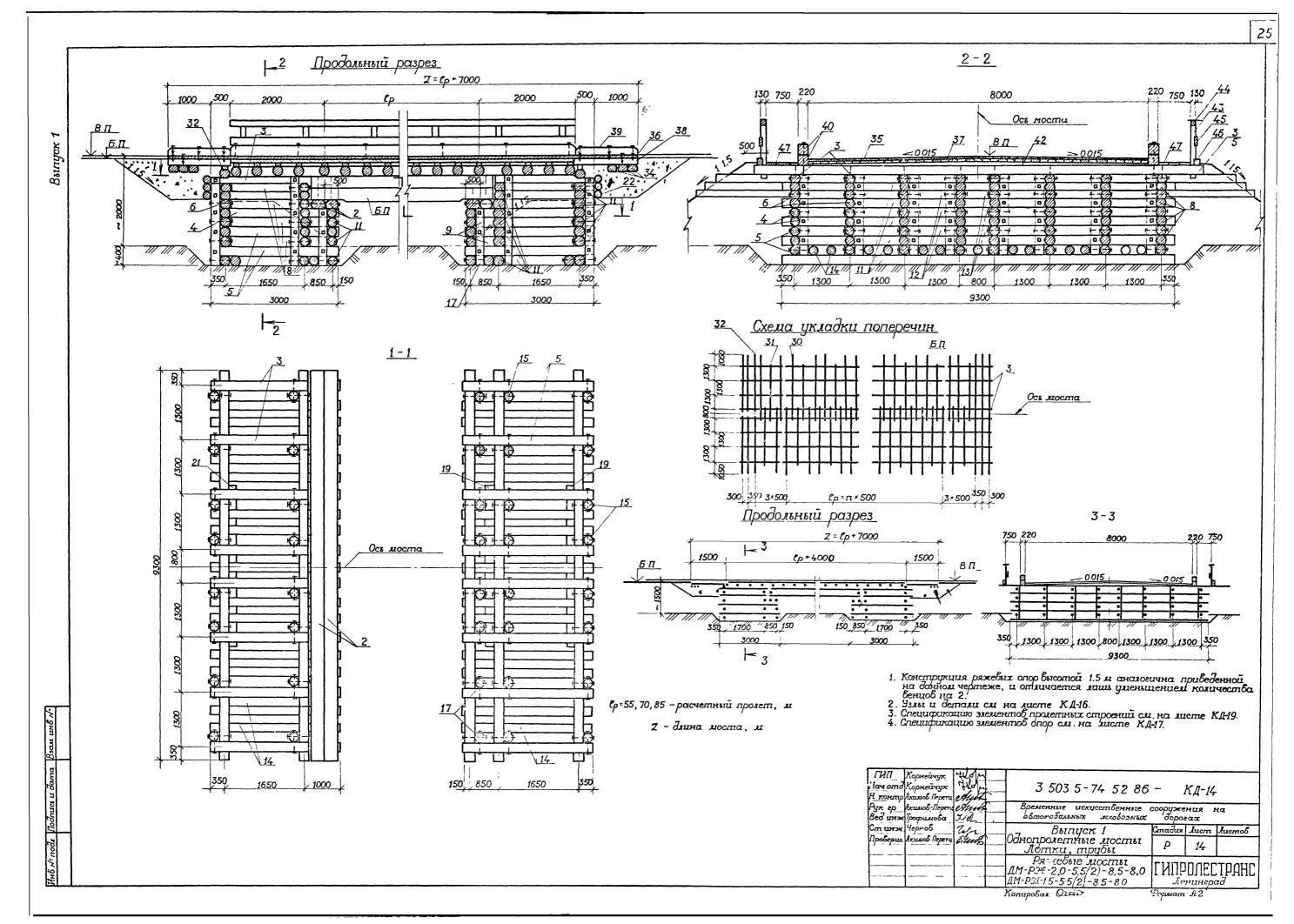
L	_		Пролё	тные строения							
Roman	3040	103	Обозначение	Напшенование	Kos	w460	mba	на на	ma	RKY	ланпе Прпие-
	I			Сборочные единицы				Γ			
L	L			Блоки прогонов							
94	1	$oldsymbol{\perp}$	КДИБЛ- 2,5	6N- 2,5	3	-	-	6	-	-	
74	4	1_	КДН 6П - 4,0	517 - 4,0		3	_	_	6	-	
<i>R4</i>	4	\perp	КД <i>Н-БП-5,5</i>	<i>5∩- 5,5</i>	-	-	3	_	-	6	
L	ļ	1		Деревянные детали							
L	1	1		Лесопатериал круглый							
L	\downarrow	1_		『OCT 9463 - 7₽*							
5%	4	26		Прогон Ф250 l=3000	2	_	_	2	-	-	0, 170m3
59	+	25)	Прогон ФЗ10 С = 4500	_	2	-	_	£	-	0,400 m
5	4	30		Прогон 4360 8=6000	_	_	₽	_	-	æ	0,740 m ³
L	L	\bot		Поперечина Ф 200							
6	4	3/		l = 5750	7	10	13	-	-	-	O, EEO m³
L	L	1		Поперечина ф 200							
5	1	3,8		l= 5000	_	-	-	7	13	19	0,190 m ³
L				Поперечина Ф 200							
5	1	33		l = 4600	-	-	-	8	8	8	0,174113
8	4	34	/	Лежень ФРРО 8=5750	6	6	6	_	-	-	0,260n3
5	4	3.	;	Лежень Ф. 200 l = 4600	_	_	_	12	12	怹	0, 200 n3
L				Лесопатериал пиленый						-	
L				[OCT 8486-66**							
				Вержний настил проезжей							
5	vT	36		части – доска 50×200, т	57.5	92,0	126 5	100	160	RRO	0,010m ³
Γ	T	T		Вержний настил пережод-	<u> </u>	Ė	, ·	┢	-	-	7
	T	\top		HOEO 1700 MUND - BOCKE 50×	_	 		\vdash	-		
5	4	3	1	× 200, m	69	69	69	120	120	120	0,010m3
r	T	\top		Нижений настил проезжей		-	100		1,20	/20	3,0.0
5	y	30)			0,0	496.5	100	150	920	0,014m
T	†	\top		Нижний настил пережод-	0,0		440	,00	700	E EU	0,01474
t	†	+		ново постина - брус 130×		-			-	-	
5	,	3			-	-	-				3
F	7	+	' <u>'</u>	× 180, m	69	69	69	120	120	120	0,023~3
+	+	+		Упор покрытия-брые ягох	<u> </u>		_	_	<u> </u>	-	
Б	4	4		×250 l = 1500	8	8-	8	8	8	8	0,082m³
F	+	+		Колесоотбай-брус RRO×							
[5	4	4		×250 €≈2500	4	_	_	4	_		0, 138 m³
	1	4		Колесоотбой-брас 220х						Ŀ	
E	14	4	9	×850 &= 4000		4	_	_	4		0, E20 m³
	1	\perp		Колесоотбой-брус RROx							
_6	14	4.	3	× 250 l = 5500	-	_	4	_	_	4	0,303 m
				ğ	54.	54-	346	80	00		
				Nopra	75-25-45	0K-40-45	1G-5,511-45	116-25-40	nc-40-8,0	7.C-5,5/1)-B	

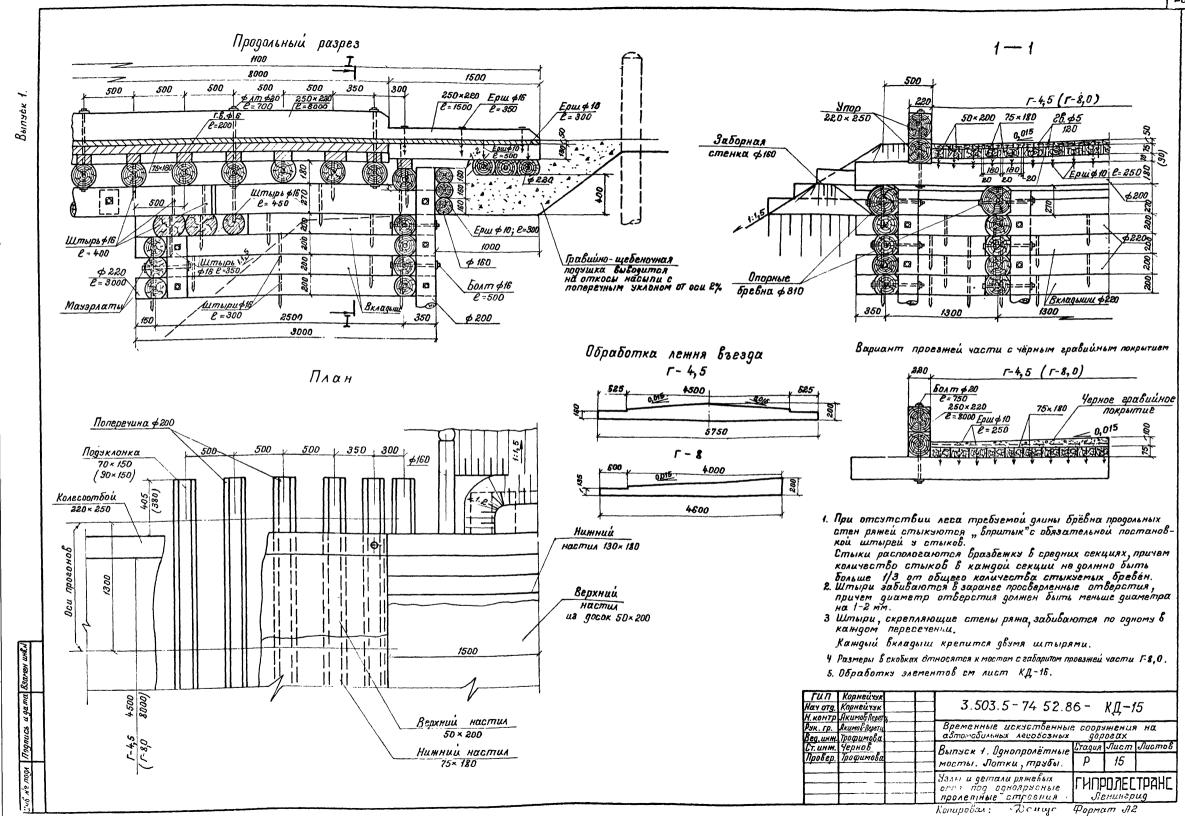

Продолжение

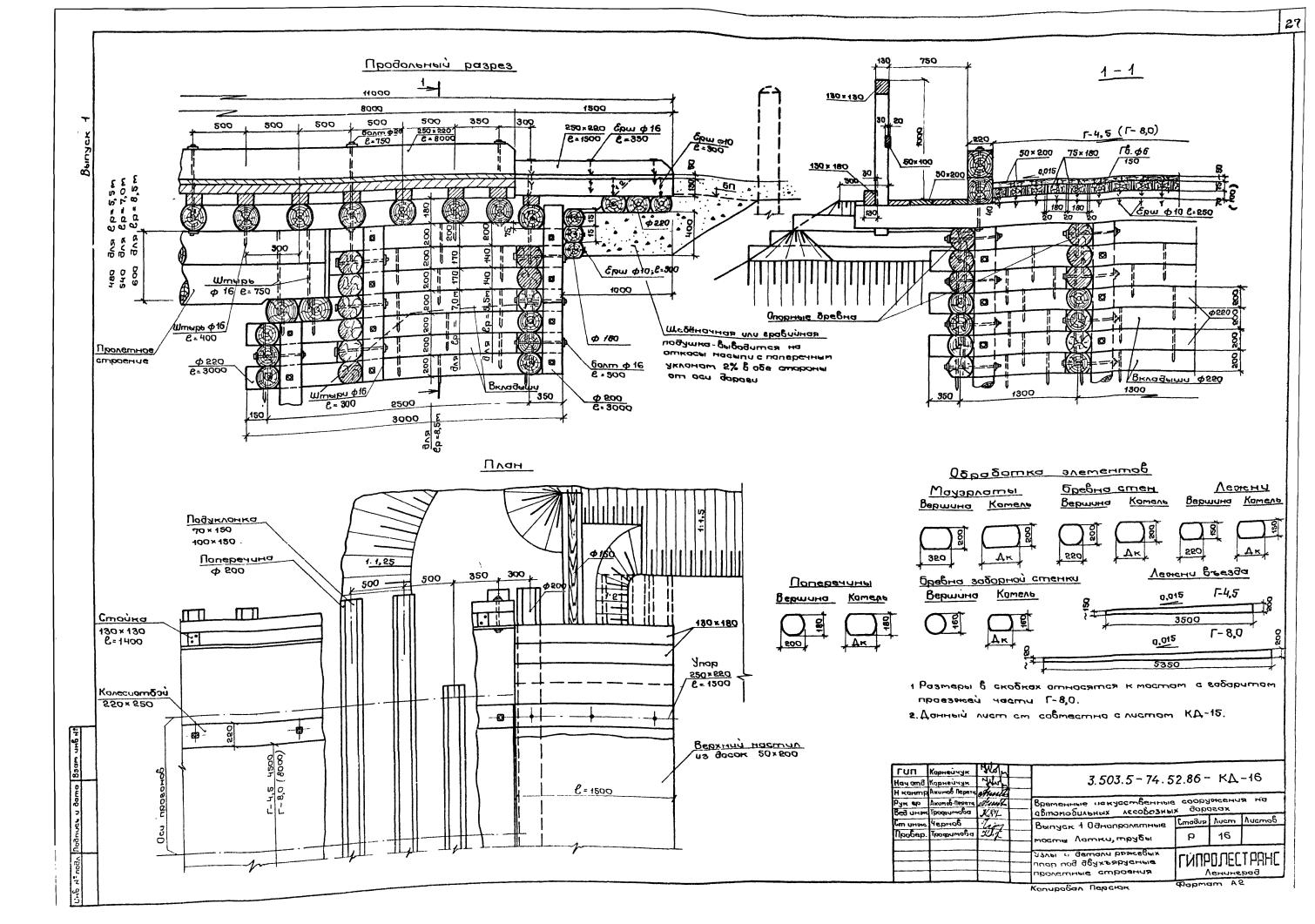
DO THOT	3040	No3.	Обозначенис	Наитенобание	Ko	ภบฯ	ecmi	во н	ימ ש	abua	Припе-
2				Подунланка- доска 70×150							
ЯZ	┪	44	КД-5	l= 2250	14	20	26	_	_	_	0,024 m3
-	Т			Подуклюнка-брэс 90×150					L		
A2		45	K4-5	l = 4000	=	_	_	15	21	27	0,060 13
		$\vdash \vdash$		Металлические изделия		-	-	-	\vdash	-	
Н		\vdash		<u> Изделия нестондариные</u>							
ЯΩ	Н	46	КД - #1	Болт M20 €=750	δ	8	10	6	8	10	1,920Kr
AR		47	K.A - 21	Штырь Ф16 l = 400	45	60	75	91	121	151	0,632 Kr
R₽		48	КД - 21	Ëρω \$16 l = 350	£О	20	20	20	20	£О	0,427Kr
A.P.		49	КД- £1	\$10 l=300	138	138	138	240	240	240	0,137Kr
AR		50	КД ~ ₽1	\$10 l = 250	8 6	138	190	150	240	330	0,117kr
Æ		51	K.A 21	CMOGO \$12 l = 250	_	1	_	6	6	6	0,272 Kr
				Пздсиля стандартные							
Бч		5 2		дайни MRO ГОСТ 155R6-70	6	8	10	6	8	10	Q063 Kr
54·		58		<i></i>	12	16	20	12	16	RO	0,011 Kr
				「6038 FOCT 4028-63 [★]							
<i>5</i> 4		54		N 6 × 200	4₽	60	78	60	84	108	0,044Kr
Б4		55		N5 × 120	190	<i>242</i>	₽94	360	420	510	0,018 KF
									_		
H		-								\vdash	
		L L _		o with	TR-2,5-4,5	7.40-42	11.5511-45	115-25-40	14-40-80	NC-5,5(1)-40	


	жүйэндоХ							
Нач.отд	Корней ч эк	AND	1		3.503.5-74.5	2.86-	. КД-	· 10
Н контр	Акинов-Перети	one	Z	•				
Pyk. ep.	Якитов-Перети	chu.	A		Временные псиясственные			
Вед инж	Тродоитова	XU	乙		автомобильных лесовозны		११०३००	
Ст. инж	Чернов	Tela	,		Выписк 1 Однопролетные	Стадия	Slucm	Jucmob
<i>Προδ</i> ερυ∧	Трофитова	Key			масты Латки, трубы	P	10	
		,			Пролетные строения. Спецификация	ГИПР	OUE[TPAHC


Monupoban dalaga


90pmam AR




Фopmam A &

Popmar	Зона	Das	0бозначение	Наим е новани е	Κo	74	ecm	රිං	на	2 ma	PKU,	wm.	данпе- Црпше-
8	3	Н		Метоплоизделия									
_	H	\vdash		Изделия нестондортные									
	Н	21	KA-21	Wmeipe \$16 C=350	50	50	50	50	32	32	36	32	0,553 Kr
A2	Н	22	KA-21	Штырь ф16 C= 450	30	30	_	_	48	48	_	_	0,790 Kr
A2		23	KA - 2f	Wmsips \$16 8=300	462	344	626	434	752	556	1046	760	0.474 Kr
3 A	Н	24	KA-61	Epw \$40 8=300	90	30	30	30	48	48	48	48	0,137Kr
A2	Н	25	KΔ-61	50nm \$16 8=500	180	140	260	S 00	288	224	416	320	0.960 Kr
	П			Избелия стандартные									
				Гайки ГОСТ 15526-70*									
54		26		M 16	180	140	260	500	889	224	416	320	0,033 Kr
54		27		Шочбы ГОСТ 11371-78 [*]									
				16	360	280	520	400	576	448	886	640	0,011 Kr
							E	Ε			E	Ε	

									L
Марка	ON-PXK-2,0-4,0-4,5	s'h-o'h-s'i-жa-u0	ი⊓- PXK-2,0-8,5-ൻ,5 m	ОП- РЖ-1,5-8,5- ⁴ ,5 m	018-0,4-0,9-3,9	01-PXK-1,5-4,0-8,0	00-PX-2,0-85-80m	011-PXK-1,5-8,5-8,0m	

Sop mon	SOHO	Ros	Обозначенив	Наименавание	Κα	ヘリリ	ecn	80	HQ (2 mak)KU,	мm	Прим
٦				Деревянные детали									
7			* ** *********************************	Vecowamebrav крлячег ,									
٦	П			FOCT 9463-72*									
				Мауэрлаты									
54		1		\$20 E=4900	4	4	4	4	1	-	-	-	0,470
54		2		φ 320	_	_	_	_	8	8	8	8	0,445
		<u> </u>	reacht is form an agus ann an air an the case on agus and a case a case it distributed by the fill of the fill of the second	Опорные бревна									
54		3		\$310 C = 2200	10	10	10	10	16	16	16	16	0,193
				Продольные стены									
54		4	er auf ten er sen segar en en geste de de mange une person en en man en en man men de man de la film de de la m	φ260 C=3000	10	10	10	10	ŧ	16	16	16	0,185
54		5		φ220 l=3000	30	20	8	10	48	32	32	16	0,180
54		6		\$200 l=2200	-	-	10	10	-	-	16	16	0,093
				Вкладыши продольных									
-			And the second of the second o	crnen									
54		7		\$220 C=2250	30	50	_	_	48	32	_	_	0,09
54	┢╌	8		φ 220 l=1400	10	10	40	30	16	16	64	48	0,0\$
61	1-	9		φ 220		_	20	10	-	<u> </u>	35	16	0,025
	\vdash	1 1		Поперечные стены	1						-		0,000
54	\vdash	10		φ 220 C = 4900	20	16	56	50	_	_	_	=	0,820
64	╁╴	11		φ220 l=4650	1_	_	_	_	40	32	50	1.0	0.20
3	-			Вкладыши поперечных	t^-				.,	30	VE	70	0,200
-	-	╂┼┼		стен	T		-			-	-		
54	-			\$220 C=1050	48	32	64	40	72	48	96	60	0,04
-	†	15		φ 220 C= 550	<u> </u>				-		-	-	 -
54	1	13	A STATE OF THE STA	TION 820 8=3000	16	16	16	16	15	8 8	16		0,021
64	\ -	14			1.0		"	10		20	-	20	0,130
F	╀	╂╌╂		φ 200 ε = 2000	10	-	60	-	15	-	-		
<u>p</u> ,	+-	15				 	=0		16	├	32	<u> </u>	0,069
6,	1_	16		φ 200 C=1600	10	 		50	16	16	_	32	0,05
6,	4	17		φ 200 C = 1200	┼═	10	10	=	=	16	16	_	0,04
<u>6</u> ,	4	18		φ200 C=800	丰	 =	-	10	=	<u> -</u>	=	16	0,02
5	4.	19		φ220 C=3800	1=	=	_	二	4	4	4	4	0,170
	1	11		бревна заборной стенк	+	ļ		_	_	_		_	00'se
50	4	50		φ 160, m	57	45	57	45	78	66	78	66	0,025
					_	_							
							F	E			E	E	
					3,	5,5	00-PX-2,0-8,5-4,5m	01-PXK-1,5-8,5-4,5m	8,0	8,0	011- PXK-2,0-8,5-8,0m	-8,0m	1
					01-PX-8,0-4,0-4,5	ON-PX-1,5-4,0-4,5	5-1	5,5	01-PXK-2,0-4,0-	0	5.5	8,5	
				D	1 7	17	8,-	5-8	7-0	- PXK-1,5-4,0	9-6	80	1
				ν 2 2 2	2,0	1.5	-2,0	1	S.	17	a'	On-PXK-1,5-	
				} >	1 ×	X	X	X 2	X	X	X	X	
1					Ľ	Ĺ	c	Ľ	15	1	1 -	1	
١				<u> </u>	0	0	0	0	Ō	6	0	lō	1

Bas ray	Карнейчук Карнейчук	1		3 503.5 - 74.5	2.86	- K,	Δ-17					
Pyk sp	Акинов Перети Акинов Перети	edur		Временные искусственные сооружения на авторовах								
	Троеринова Чернов	Lyn				Nucm	Листов					
Spopes	Tpoqumoba	- KON	├	мосты Лотки, трубы	Р	17						
				Сисапариката Оперы рамеерых мостов	LNUDDUEC 10th							

Кипировал Персык

gapmam Ag

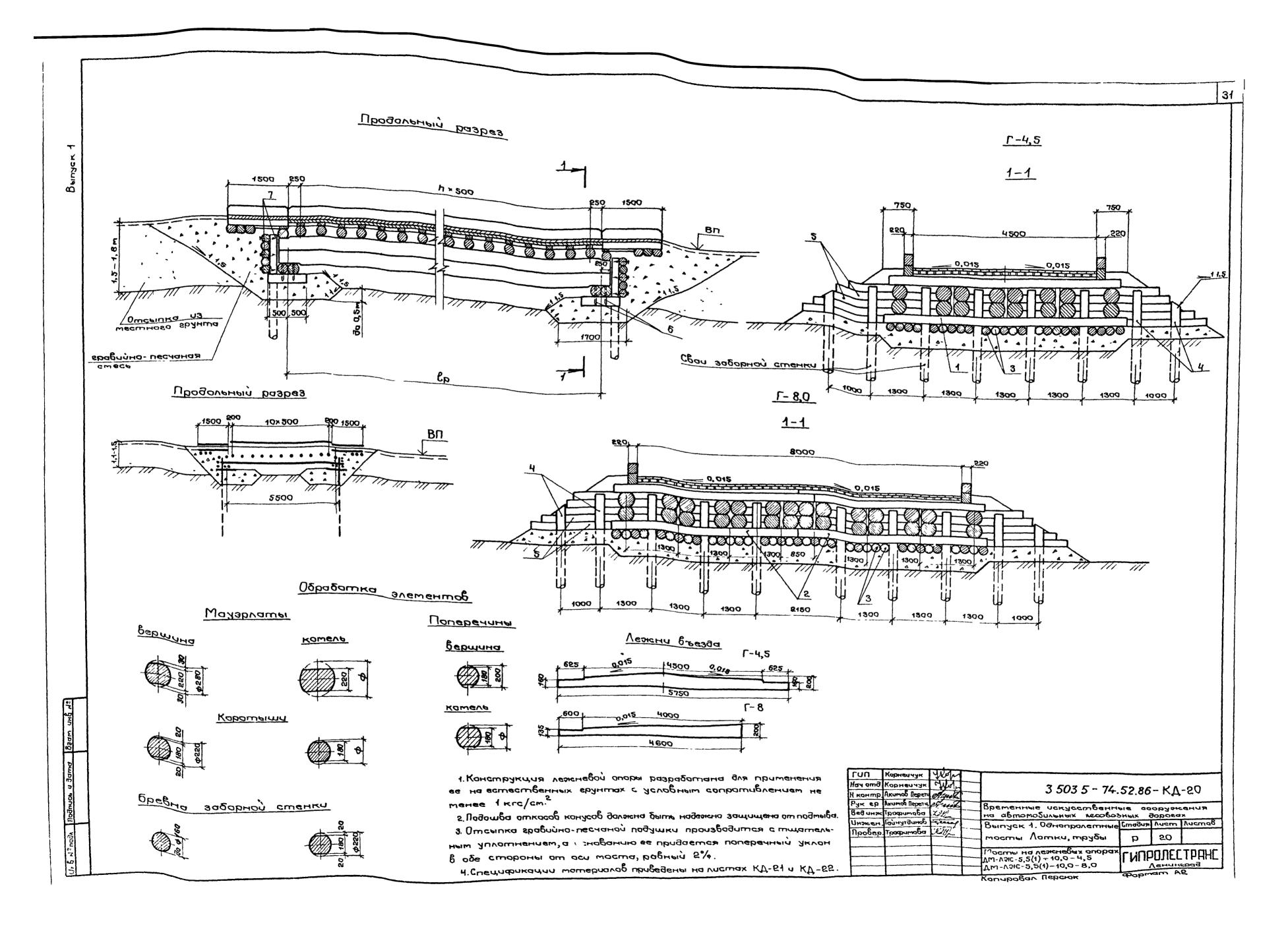
ŤÌ	0	05	Наименование	Kan		нанле Прпше
0 0 PHO	<u>8</u>	Обозначение				
1			Сборочные единицы Блоки просонов		 	
\perp				<u>-</u>	6	
1	1	кди-6П-4,0	 	P	-	
				├	-	
				-	-	
				-	9	0,400
2	88			├	-	0,220
5	29		noneperonal parts of the		-	0,190
3	30					0,174
3	31				12	
3	32		Лежни въездо ф220,8-5750	6	=-	0,260
3	33		\$250,6.4600	_	12	0, 200
+			Лесоматериал пиленый		L	
T	1		FOCT 8486 -66**			
+	\top		Верхний настил проез-			
十	\top		жей части- доска			
12	<u>, </u>		50×200, m	184	320	0,010~
+	~-		Нижений настил проез-			
+	<u>.</u>			184	350	0,014
+	-	-				
+						
+				69	120	0,010
3	36					
4				60	190	0.0236
3	37			00	120	0,040
\perp	_ _		Колесодтбой - дряс			
3	88		£20 × 250, M	32	32	0,055
						0,082
3	39		mus-5pyc 220×250, 8=1500	8	8	0,082
			Подяклонки-доска			
4	10	КД-5	70×150, C=2250	38	_	0,0241
-			Подяклонка-доска		!	[
- 1						0,060
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 28 29 30 31 32 33 34 35 35 36 37 38 39 39	28 29 30 31 32 33 33 34 35 36	Аеревянные датали Ласататериал круглый ГОСТ 9463 - 72* 28 Проганы ф310, € = 4500 Датеречины ф200, € 5750 Ф 200, € 5000 Ф 200, € 5000 Датеречины ф200, € 5750 Датеречины ф200, € 5000 Датеречины ф200, € 5750 Датеречины настил проез Датеречины настил переходно Датеречины настил настил переходно Датеречины настил настил переходно Датеречины настил	Деревянные датали Лесататериал круглый ГОСТ 9463 - 72 ** 28 Проганы ф310, € -4500 2 Поперечины ф200, € - 5750 19 ф 200, € - 4600 — Деревяний ф200, € - 5750 19 ф 200, € - 4600 — Деревяний ф200, € - 5750 19 Деревяний ф200, € - 4600 — Деревяний	Деревянные детали Лесататериан кругный ГОСТ 9463 - 72 ** 18 Прованы ф 340, € - 4500 € 2 29 Поперечины ф200, € - 5750 19 — ф 200, € - 4500 — 12 Лесататериан ф200, € - 5750 6 — ф 200, € - 4600 — 12 Лесататериан пильный ГОСТ 8486 - 66** Верхний настил проез - жей части - доска 34 Берхний настил проез - жей части - доска 35 жей части - доска 36 Берхний настил переход - насе тастика - даска 36 Берхний настил переход - насе тастика - даска 37 верхний настил переход - насе тастика - даска 38 берхний настил переход - насе тастика - даска 37 берхний настил переход - насе тастика - даска 38 берхний настил переход - насе тастика - даска 39 Колесодтбой - брус 39 Колесодтбой - брус 39 Мор дарожного покры - тия-брус 220×250, € -1500 8 8 Подукланки - даска

PUMPSHADDOGA

NG - 4,0p- 8,0 NG- 4,0p-4,5 Марка

Poperar	3она	No3.		0003начение	Наименование	•		лан пе Црлме
			10		Металланделия			
					<u> Изделия нестандартные</u>			
SA		42		KA-81	50nm M20, 6=750	12	12	1,920k
A2		43		KA- 21	Wmwp. φ16, C= 400	105	211	0,632 K
24		44		KA-21	Epwu \$16, C= 350	20	20	0,4278
9 A		45		KT - 61	φ10, E= 300	138	240	0,137 K
Ae		46		KA - 61	\$10, e= 250	276	480	0,117 KI
A2		47		КД - 21	Croso \$12, C = 250	_	6	0,272 K
					Uзделия стандартные			
					Гайки ГОСТ 15526-70*			
54		48			meo	12	12	0,063 K
1					Μούδω ΓΟ CT 11371-78			
54		49			50	24	24	0,017kr
1	7				160384 LOCT 4058-63			
54	1	50			K6×600	114	156	0,044ki
54		54			K5×120	380	660	0,018Kr

гип Корнейчик Нои от В Корнейчук УМ Нои от В Корнейчук УМ Но Контр Акинов Вергир разме Вединов Вединов ИМ Но Корнев Чернов Туроритова ИМ Провер Трофитова ИМ Но Провер Трофит 3 503 5-74.52.86 - KA-18 временные псклественные сооблассила на Bompuk Aucm Aucmob Выпуск 1 Однопролетные 18 масты Латки, трубы. Пролегиные строения без тов Спецификация Копировал Перскох CNUCAUNDA PDG3HNH9V

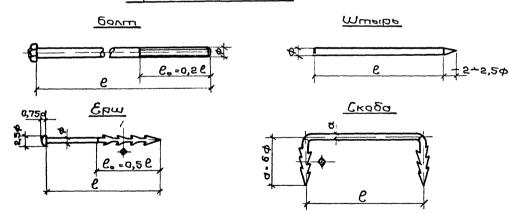

SA mpmqo9

Popuar	Зана	Поз	0бознач е ни е	Наименование	Ke	νυν	ecm	во н	a mo	באפו	ланле Црпме
٢			and a property of the contract	Сборочные единицы							
	1		and the second s	блаки проганов							
A-1 A-1	4	1		50-5,5-1	5	_	1_	5	 	 	
A-4	1	2		60-5,5-2	3	_	1_	6	_	1_	
A3	1	3		617-7,0-1	1_	2	1_		2	-	
A 3		4		517-7,0-2	1_	3	<u> </u>	_	6	1=	
A3	1	5		6N-8,5-1			2		<u> </u>	5	
A3	_	6		6⊓-8,5-2	1=	_	3		<u> </u>	6	
				Деревянные детали	1	1	Ť	†	†	 	
	\vdash			увсошашернай крявини	T^-	\vdash	\vdash	\vdash	\vdash	\vdash	
\vdash				LOCT 3463-15*	†	 	 	 	<u> </u>	1	
\vdash	\vdash				+-	-	-	 	-	╁─	
-	+-			Поперечины Ф 200 С = 7200	+-	t_	1	╂	 	\vdash	0,209~
54	†	28			8	9	10	干	\vdash	十一	
64	1	29		φ 500 6 = 6200	14	16	18	1=	-	-	0,260
64		30		φ200 θ=5750	+=	=	-	21	62	 	3,000
5	1-	31		φ 200 ε= 5350	-	=	<u> </u>	12.	12	1	0,210
54	1	32		Φ200 €=5000	<u> </u>	=	_	12	14	16	0,190 m
-	1			Ленски въезда	ļ			<u> </u>	ļ	<u> </u>	
54	4_	33		Ø 220 C = 3500	12	12	12	_	=	<u> </u> =	0,154
54	4	34		\$20 C = 5350	_		_	12	12	12	0,240
				Vecawamebnav илиеней	<u> </u>	ļ	L		<u> </u>	<u> </u>	
_	1	<u> </u>		ract 8486-66**	ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
-	╀-			Верхний настил пра-	ļ			_	<u> </u>	_	
-	\vdash			езневи части-даска	ļ	ļ			ļ	ļ	
64	4	35		· ·		253	287	380	440	500	0,010 m
6	+	36		верхнии настил переходна во мастика-даска 50×200, м	-	69	69	400	420		0,010 ~
F	+	-		Ниясний настил праезжей	143	03	03	120	120	120	4,0101
64	1	37			219	253	287	380	եևո	500	0,014 ~
				Нимений настил переход-				1333	1	1000	0,0.11
L	\perp			нава мастика -друс							
5	4	38		130-180, m	105	105	105	163	163	163	0,023,
-	+			Диор дороженого покры-							
5	1	39		тия-брус 220×250,8=1500 Калесоотбой - брус	8	8	8	8	8	8	0,083
5	1	40		550×520' W	38	44	50	38	44	50	0,055r
十	T			Подуклонки - доска	30	77	30	30	77	30	4,4501
A	5	44	КД-5		44	50	56	_			ن ,02 4۰
				Подуклонки-доска							3,-21.
AS	2	42	KA-5	5 90×150, C=4000	_			44	50	56	0,060~
	T	11		Стойки перил- брус	<u> </u>		 	'7	155	33	2,200
5	+	43		130×130, C=1400	14	16	10	14	46	40	0,024~
1	+	 		Паручень перил-брус		10	18	14	100	10	4,424
+	+	1					<u> </u>	 			
F,	4	44		130×130, m	19	55	25	19	55	25	0,017
-	ļ.	- -		Заполнение перил-			<u> </u>				
1	اں	45		docko 50×100, m	13	۲5	25	19	52	25	0,005

npogcvo	HEHUR
7,	

Popular	Зона	Dos	Обозначение	Напшенорание	Ke	רטאי	ecm	160			Приме.
	Г			Упорный брус перил-					Π		
54		46		δργς 130×180, Μ	19	52	25	19	55	25	0,023 m
				Настил тротуаров.							
БЧ		47		доска 5 0×200, м	72	83	94	72	83	94	0,010 m ³
				Метоллоизделия							
				Изделия нестандартн	14						
12		48	KV-51	500mb1 M20, €=750	18	55	24	18	55	24	1,920kr
92		49	18- 4 X	M16, 6=450	14	16	18	14	16	18	0,745 Kr
112		50	KA-54	m16, 8=400	14	16	18	14	16	18	0,666 Kr
<i>A</i> 2	L	51	KA -81	M16, C=300	14	16	18	14	16	18	0,508 Kr
12	L	ક્ટ	KA-54	Wmsipu \$16, 6= 750	50	50	50	35	32	35	1,185Kr
A2		53	KD-51	\$16, C=400	110	125	140	552	255	285	0,632Kr
42		54	KD-51	εριμυ φ16, e= 350	50	50	0.5	50	50	50	0,4271
A2 A2	_	55	KA - 21	φ10, e=300	198	198	198	300	300	300	0,137Kr
A2		56	KA - 21	φ10, e=250	328	380	431	570	eeo	750	0,117 KF
12	L	57	KA - 61	CKOBa \$12, C=250	_	<u> </u>	_	6	6	e	0,272 Kr
L				Изделия стандартны							
L				רמטאט רסכד SSSE-10				<u> </u>			
54		58		M16	74	80	102	98	104	138	0,033kr
64		59		w 50	42	46	60	66	סד	105	0,063 Kr
L				Manga 1001 11371-78	1						
54		60		80	84	35	120	13'c	140	204	0,017kr
64		61		16	148	160	204	196	808	276	0,011 Kr
				r60384 roct 4028-63*							
64		62		K8×250	28	32	36	28	35	36	0,098kr
64		63		K6×500	132	150	168	180	204	558	0,044 Kr
64	1	64		K5×150	136	156	178	136	156	178	0,022Kr
64		65		K5 × 120	431	483	535	750	840	930	0,018 Kr
	•										
					ES	5 m	E	EO	E	8,0 m	
					- 4,5	7,	4,5	0,8 -	8,	8,	
					10	1	1	d (2	'	.	
				DYC	5(2)	аc	5 p	د (ع)	, dC	50	
				Mapha	5.5	7,0	- 8,5	- 5	7,0	8	
				-	200	пG	- JU	DG.	-511	υC	
				L_	<u> </u>						

run	Корнеичик	*Kon					
Бто ноН	Корнэичук	the "	1	3 503 5 - 74 5	2 86 -	· K	N -10
н кантр.	Акимав-Перетц	este of	1			`	•
Pyk ep	Axumob Reperu	Mul	1	שו ה בשל של של האור הוא	, 6000	OYONCEL	DH RUI
Bed unore	Трофитова	162		asmor equiter -		Deax	
Ст пнэн	Чернов	Term		Выпуск 1 Однопролетные	เำตะจินต	Nucri	Aucm >
Провер	Трофитова	7817		тосты Лотки, трубы	P	19	
				mac uc 3. quartii ush imhabamn ah Ut svammeis aubar idasi a	Va-	100E[• •
	da			ronupulan III	CHURMO	arm Au	

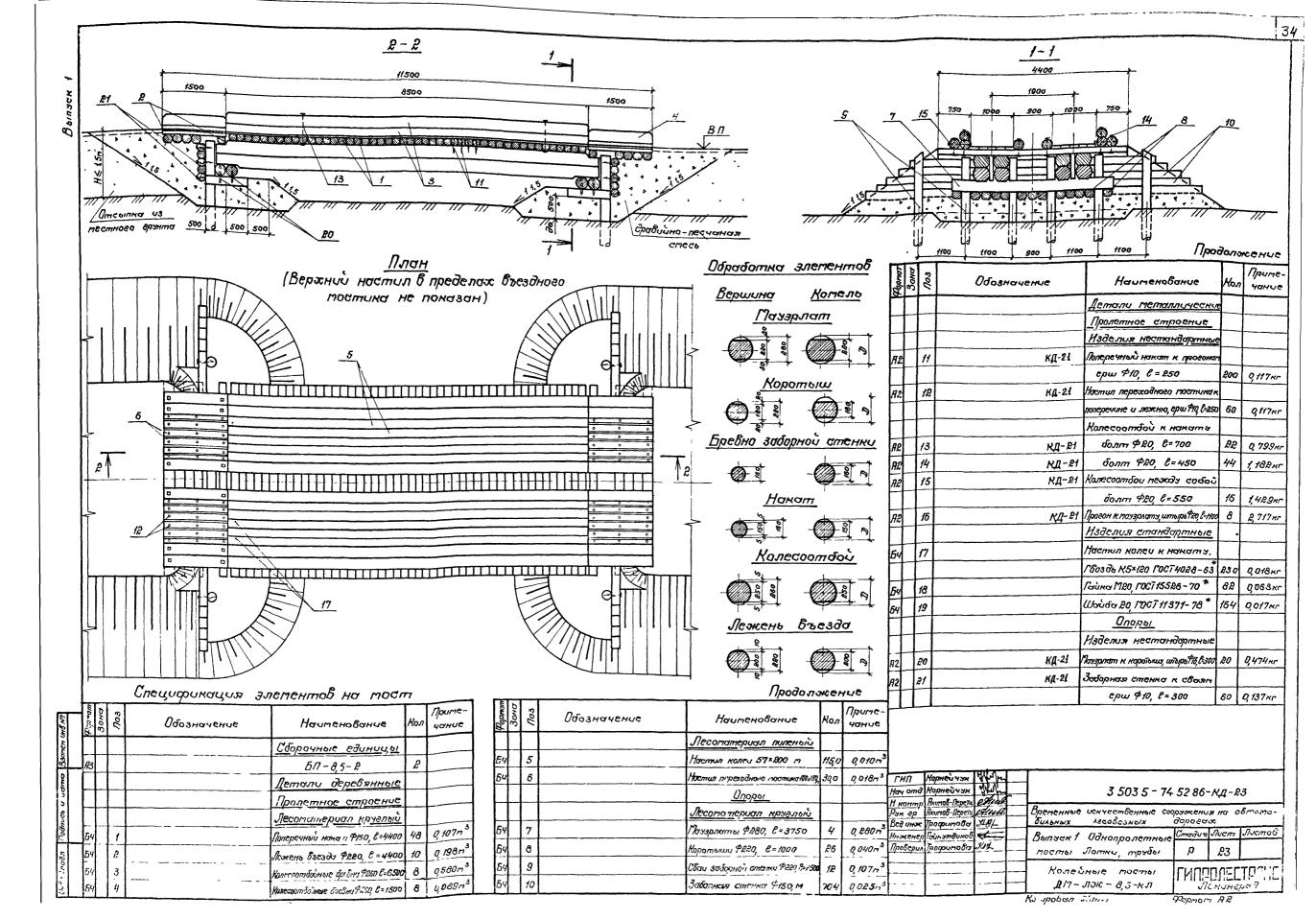

Спецификация строительных изделий на лежневые опоры

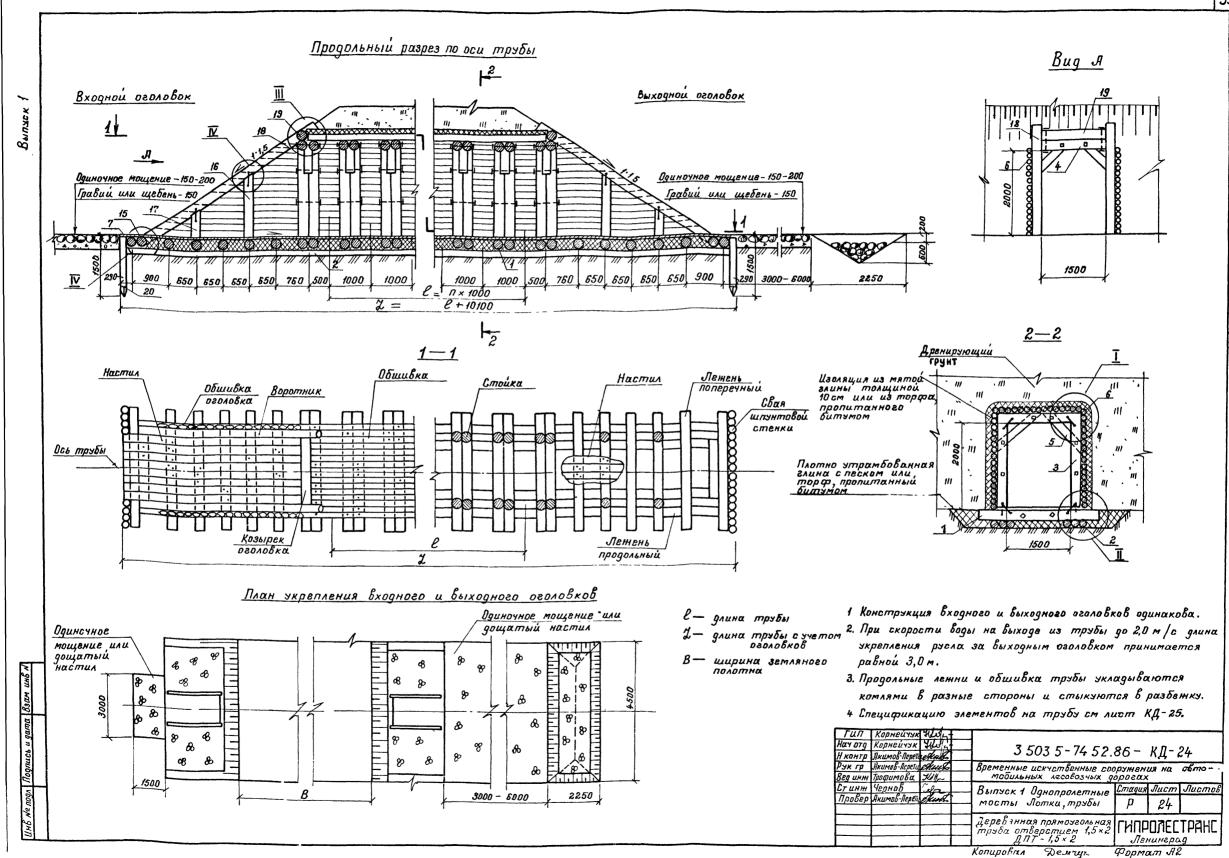
Формат	Зона	Na3	Обозначение	Наименование	Ko	יייי	eam	во но	, m	арк	3	ланле Цвлше-
				Деревянные детали								
				уесомашернах крявией								
				FOCT 9463-72*								
				Мачэрлат								
64		1		\$ 280, C= 6000	4	4	4		_	_	_	0,450m3
64		5		φ 280, C= 4700	_	_	_		8	8	8	0,340m ³
				Каратыш								
64		3		φ220, ε=1000	46	46	46		74	74	74	0,040 m ⁸
				Свая зоборной стенки								
БЧ		4		φ 200, e = 3000	16	16	16		50	50	60	0,107 m ⁵
БЧ		5		бревно заборной стенки								
				φ 200, m	25'5	71,8	86 6	7	13, 2	99, 8	1274	Д,083 m ⁸
				Металлические детали								
	Н	6		Изделия нестандартные	24		24			40		
SA	-			Wmbipb \$ 16, 8 = 300		24		 			40	0,474 Kr
SA		7	1S-4X	ερω φ 10, e= 300	44	eo	72		56	76	96	0,137Kr
					O.	01				2		
				Марка	(On- Ame- 5,5(1)-4,5) x 2	(On-Ame-5,5(2)-4,5)xe	(0⊓-∧34-10,0-4,5)×2		(On- Ame-5,5(1) - 80)x2	(ON- Nac- 5,5(E)-80) K2	(09-10,0-8,0)×2	

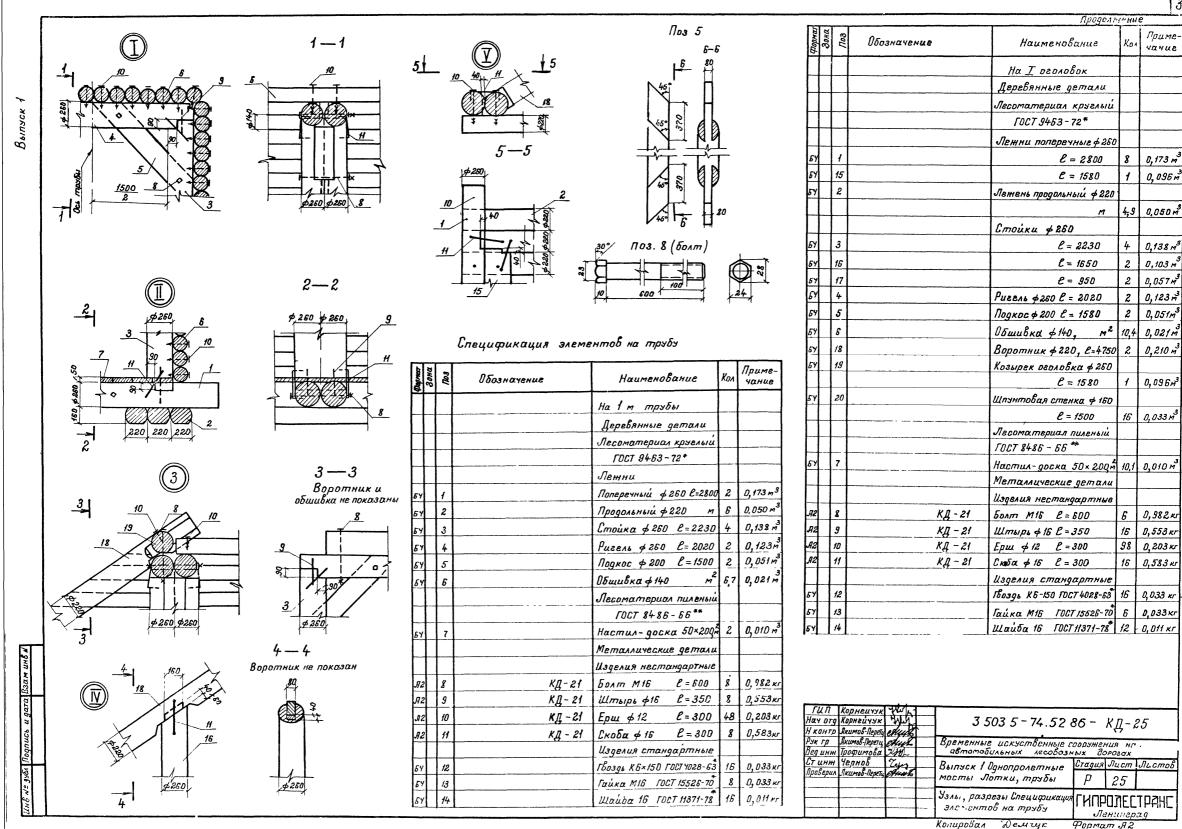
Спецификация страительных изделий на 1 стык свай с увалковыми накладками

Agamon	Зона	กลร	Обозначение	бозначение Наименовоние 1		ланпе Црпше -
				Мешаллические дешали		
				Изделия нестандартные		
64		56		Yeanak 75×75×8, 8=1200		
				FOCT 8509-72*	4	10,824 Kr
A2		57	KA- 21	Wm61p6 \$20, 8=400	1	0,988 Kr
SA		58	KV - 51	50nm M-20, C=300	8	0,811 Kr
\exists				Изделия стандартные		
5 4		59		Taùka M20 FOCT 15526-70*	8	0,063 Kr
БЧ		60		Шайба 20 ГОСТ 11371-78 [®]	16	0,017 Kr

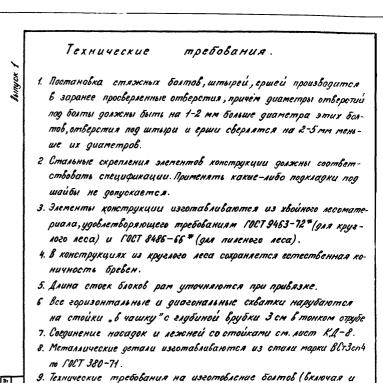
Крепеньне изделия


run	Корнейчик	The	Γ_											
Bono roll	Карнейчук	WW.		3 503 5 - 7/	ED 06	. v	N - D3							
Н кантр.	Акитав Перет	ested		3 503 5 - 74 52.86 - KA-21										
Pyk ep	Акимов Переги,	dut		Временные искусственные сооружения на										
Bed unac.	Трофимова	XXX		абтотовильных лесовозных дорожах										
				Выпуск 1 Однопролетные	Cmadus	Nucm	Nucmob							
Ubogeb	Никитинская	How.	-	масты Латки, трубы	ρ.	21								
	OJEC Stioner	TPRHE												
				Konupaban Dece	بالمدانات	- A 2	2							


	_		_
nage	ΛOt	24CC+	<i>our</i>


	o o	1	100	Обозначение	Наименование Количество на марки									ланле Ubnue -		
냳	۴				Сборочные единицы	1	T	Π	1	T	Γ					
H	+	\dagger	╁		блоки провонов	T	T	1	1	1-					L	
-	+	1	+		6n ~5,5	3	1_	_	1_	1=	6	-	_	_	<u>_</u>	
A	T	\dagger	+		60-5,5-1	†_	2	<u> </u>	1_	1_	-	2	_	_	<u> </u>	
A.	Т	t	+		60-5,5-2	1_	3	_	1_	1_	-	6	_	_	<u> -</u>	
A.	1	t	十		50-7,0-1	1_	1_	2	1=	_	-	-	5	_	<u> -</u>	
A:	1	\dagger	+		6n-7,0-2	† _	1_	3	1=	-	_	-	6	_	_	
A	+	t	十		5n - 8,5 - 1	1_	1_	-	2	-	-	-	_	5	<u></u>	
A:	T	\dagger	十		6N - 8,5 - 2	†=	1_	_	3	_	-	-	_	6	<u> -</u>	
A:	Т	†	十		617-10,0-1	1=	-	1=	-	2	-	_	_	_	5	
A	+	\dagger	十		6N ~ 10,0 - 2	1_	1_	1=	1=	3	_	_	_	_	6	
۲	†	†	+		Деревянные детали	T	T						_	_	_	
r	t	†	\top		Vесомашернах кругину	T	T									
r	†	†	1		FOCT 9463 -72.*	T	T									
6	+	+	1		Провоны ф 360 в= 6000	2	1_	<u> </u>	1_	1-	5	_	_	_	1-	
Б	+	+	2		Поперечины ф200 8=5750	_	13	16	19	22	_	_	_	_	<u> </u>	0,220 m ³
5	T	1	3		φ 200 € = 5000	1	1_			_	19	19	25	31	37	0,190 m ³
9	+	+	4		\$200 C=460	_	1_	T_	_	1_	8	8	8	8	8	0,174 m
۲	Ť	†	十		Ленини въезда	1										
5	†	+	5		\$220 E=5750	6	6	6	6	6	_	_	_	_	_	0,260 m ³
6	T	+	6		\$250 G=460	1-	1_	=	1_	-	12	12	12	12	12.	0,220~
F	\dagger	1	1		Лесотатериал пиленый	1	T		1							
r	\dagger	7	十	Commence of the second of the	LOCT 8486-66**	†	\vdash	I^-	I^-	 	<u> </u>					
	†	+	\dashv		Верхний настил	十一	T	I^-	1	T						
t	\dagger	+	\dashv		***	+	-	\vdash	\vdash	一	\vdash					
1	4	\forall	,		npoesaceù vacmu-	1000	126.5	1610	1055	2200	220	550	280	340	400	0,010 m ³
F	+	1	+		1	1	160,0	1010	1340	2340						
1	+	+	\dashv		Верхний настил пере-	+-	\vdash	 	╫┈	\vdash	一	-	 	\vdash		
-	4	\dashv	8		хадново мастика-	69	69	69	60	69	120	120	150	120	150	0,010m ³
F	7	\dashv	ᡨ		dacka 20×600' w	93	03	43	100	100	-	-		-	<u> </u>	
ŀ	+	\dashv	-		Нижений настил пра-	┼			├-	-	-		\vdash	 	<u> </u>	
1	+	4	-		езжей части-брус	 _		_	_	_	000	220	วรถ	340	ևոր	0.041.53
16	14	4	9		75×180, m	126,	126,5	161,0	195,5	230,0	220	220	200	370	740	0,014 m ³
-	4	4	_		Нижений настил пере	1_								-		
7	4	4			ходново мостика-	_	_					_		-		3
Ē	4		10		δρус 180×180, м	69	69	6 3	69	69	120	120	120	120	150	0,023 m ³
					Марка	nc - 5,5(4) - 4,5	1	NC-7,0-4,5	NG- 8,5 - 4,5	NG-10,0-4,5	NG- 5,5(1)-8,0	NG- 5,5(2)-8,0	NG-7,0-8,0	NG - 8,5-80	- 40,0	

E		<u> </u>		Наименавание Количество на марку							Прите-				
Popping	Зона	Nas	Одазначение	Упор дороженаев покры-		T	Π	Π	Π	T	T				
۲				mus-5pyc 220×250,6 -1600	8	8	8	8	8	8	8	8	8	8	0,082 m ³
54		44		Калесаотбай - брус								_	<u> </u>	_	
				220×250, M	85.0	55'0	28,0	34	40	22,0	22 0	28	34	40	0,055 m
54		12.		Подукланки-брус							_	_	<u> </u>	<u> </u>	<u> </u>
				70×150, e= 2250	56	56	32	38	44	<u></u>	上	上	1=	=	0,0246
54		13		Подуклонки-брус							L	L	<u> </u>	<u> </u>	
				100×150, 6=4000	_	_	_		_	27	27	33	39	45	0.060m
64	Ц	14		Металлические изделия								<u> </u>	_	<u> </u>	
L		_		<u> Изделия нестондартные</u>									<u> </u>		
L		_	кд-21	50mm M20 6 = 750	10	10	14	16	50	10	10	14	16	50	1,920 Kr
AZ		15	кд-21	Штыри ф16 €=750	_	10	10	10	10	_	16	16	16	16	1,185Kr
A2		16	кд-21	ø 16 e= 400	75	65	08	95	410	151	135	165	195	225	0,632 Kr
AZ	-	17	KA-21	Epwu \$16 C= 350	03	50	50	so	50	50	20	50	50	50	0,427kr
A2	\dashv	18	KA-21	Ø 10 E= 300	138	138	138	138	138	240	240	240	240	240	0,137 Kr
AZ	-	19 20	кд 21	\$10 E=250	190	190	242	294	345	330	330	420	510	600	0,117kr
A2	-	21	кд-21	CKOBO 412 6-250		-	-	_	1	6	6	6	6	6	0,272 Kr
-	Н	-		Изделия стандартные											
64	H	55		Taùku M20 FOCT 15526-70	10	10	14	16	20	10	10	14	16	50	0,063Kr
64		23		Wouder 20 FOCT 11371-78*	ည	20	88	32	40	50	60	28	32	40	0,017 Kr
۲	H			Tõosau FOGT 4028-63											
64		24		K 6×200	78	78	96	114	132	108	108	132	156	180	0,044 Kr
64	П	25			294	294	345	397	448	510	510	600	69 0	780	0,018 Kr
۲	Н														
	-			Марка	ПС- 5,5(1) - 4,5	ก๘- ธ,ธ (ឧ) - ५,ธ	∩G-7,0-4,5	nc- 8,5 - 4,5	NG-10,0-4,5	TC- 5,5(1)- 8,0	NG - 5,5(2) -8,0	NG - 7,0 - 8,0	NG-8,5-8,0	NG- 10,0 - 8,0	


Бто ур	<u>Корнепалк</u>	1807 1807	,	3 503 5 - 74.5	2 86 -	ΚД	SS
	Акинов Перетц Акинов Перетц		-	Временные искусствени	ele coo		סא פעא
	Tpoque noba			автомовильных лесовознь	ix got	Deax	
Grn MH246	Чернов	Color		Выпуск 1 Однопролетные	emagna	Mucm	Nuemob
Ubogeb	Tpoquemaba	KUBL	-	масты Латки, трубы	P	55	
				вах спектовпканть рах спектов на истенерых оце- промешные ствоённа		BHUHE	
	<u> </u>	<u> </u>		Копировал Персюк	DODMC	m AR	

КДИ - ДО КДИ - ТТ	Содержание	
	-	33
	Технические требования	33
KAH-671-25	Блок прогонов 611-25	33
KAU-511-40	блок прогонов БП-4.0	34
KAM-611-55	Блок прогонов · 517-55	34
KAU-511-55-1	Блок прогонов БП-55-1	34
KAH-611-5.5-2	Блок прогонов БП-55-2	34
KAH-511-7.0-1	Блок прогонов БП-70-1	35
KAH-811-70-2	блок прогонов 517-7.0-2	35
KAH-611-8.5-1	Блок прогонов БП-8.5-1	36
КДИ-6П-85-2	Блок прогонов 611-85-2	36
KAN-611-100-1	Блок прогонов БП-10.0-1	37
KAH-511-10.0-2	Блок прогонов БП-10 O-2	37
'AH-6P25-25-45uBP-25-484.	Блоки рамно-лежневых опар БР-25-25-45 и	
	5P-25-40-45	38
AH-6P-25-25-804 6P-25-40-W	блоки рамно-лежневых опор	
	5P-25-25-8.0 U 5P-25-40-80	38
	KAM-6N-55 KAM-6N-55-1 KAM-6N-7.0-1 KAM-6N-70-2 KAM-6N-85-1 KAM-6N-85-2 KAM-6N-100-1 KAM-6N-100-2	КДИ-6П-55 Блок прогонов .5П-55 КДИ-6П-55-1 Блок прогонов БП-55-1 КДИ-6П-55-2 Блок прогонов БП-55-2 КДИ-6П-7.0-1 Блок прогонов БП-7.0-1 КДИ-6П-7.0-2 Блок прогонов БП-7.0-2 КДИ-6П-8.5-1 Блок прогонов БП-8.5-1 КДИ-6П-8.5-2 Блок прогонов БП-8.5-2 КДИ-6П-10.0-1 Блок прогонов БП-10.0-1 КДИ-6П-10.0-2 Блок прогонов БП-10.0-2 ГДИ-6П-25-25-45 ГБ-25-45 45 ГБ-25-45-45 ГБ-25-45-45 ГБ-25-45-45 ГБ-25-45-45 ГБ-25-45-45 ГБ-25-45-45-45-45-45-45-45-4

THE Kappedryk State

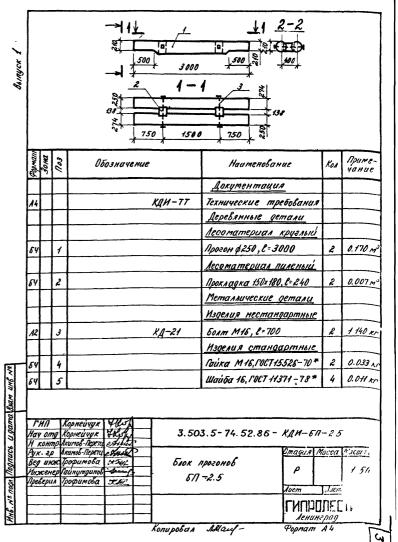
And omy Kappedryk State

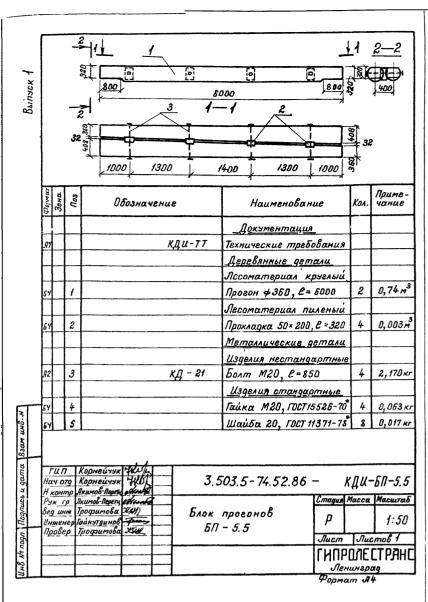
Have omy Kappedryk State

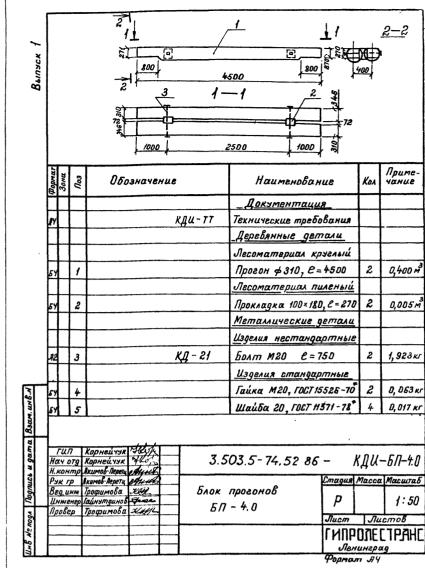
Texhureckue

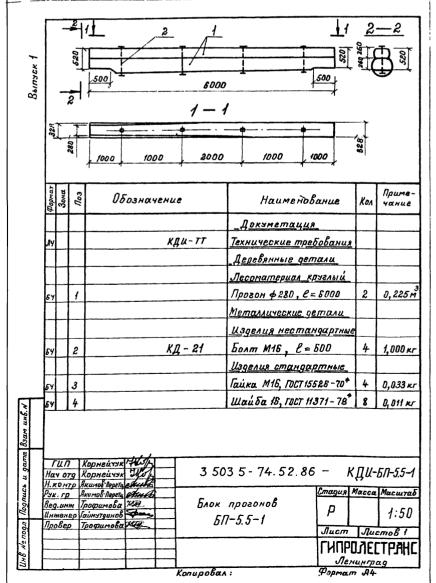
However, Vaingmound State

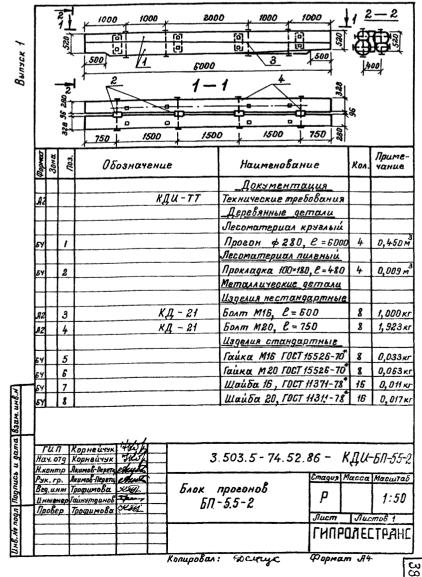
Texhureckue

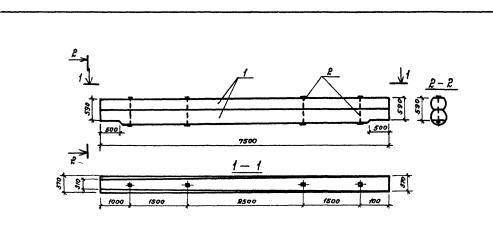

Makepur Tophumoka State

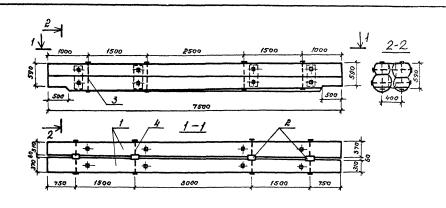

Meddyn Tophumo


TOAMO (2 > 300 MM) - NO FORT 15589 -70 €.


Рормат 14


mam	Обозначение	Наименован ие	Cmp		
13	KAH-5P-15-20-25-55-46	Блоки ратно-лежневых опор			
		6P-15-20-2.5+55-45	39		
A3	K AH 6P-15-20-25+55-00	Блоки рамно-леженевых опор			
_		5P-15+20-25+5.5-4.0	3.9		
	1. 511 — 5.5-1 511 — 610K 5.5 — pacven 1. — 6ug un 2. 517 — 2.5 — 4. 517 — 610K 410 — pacvem 4.5 — eavapu	прогонов чная длина пролета сполнения .0—4.5 памы ч опоры чная длина пролёта	<u> 1</u>		

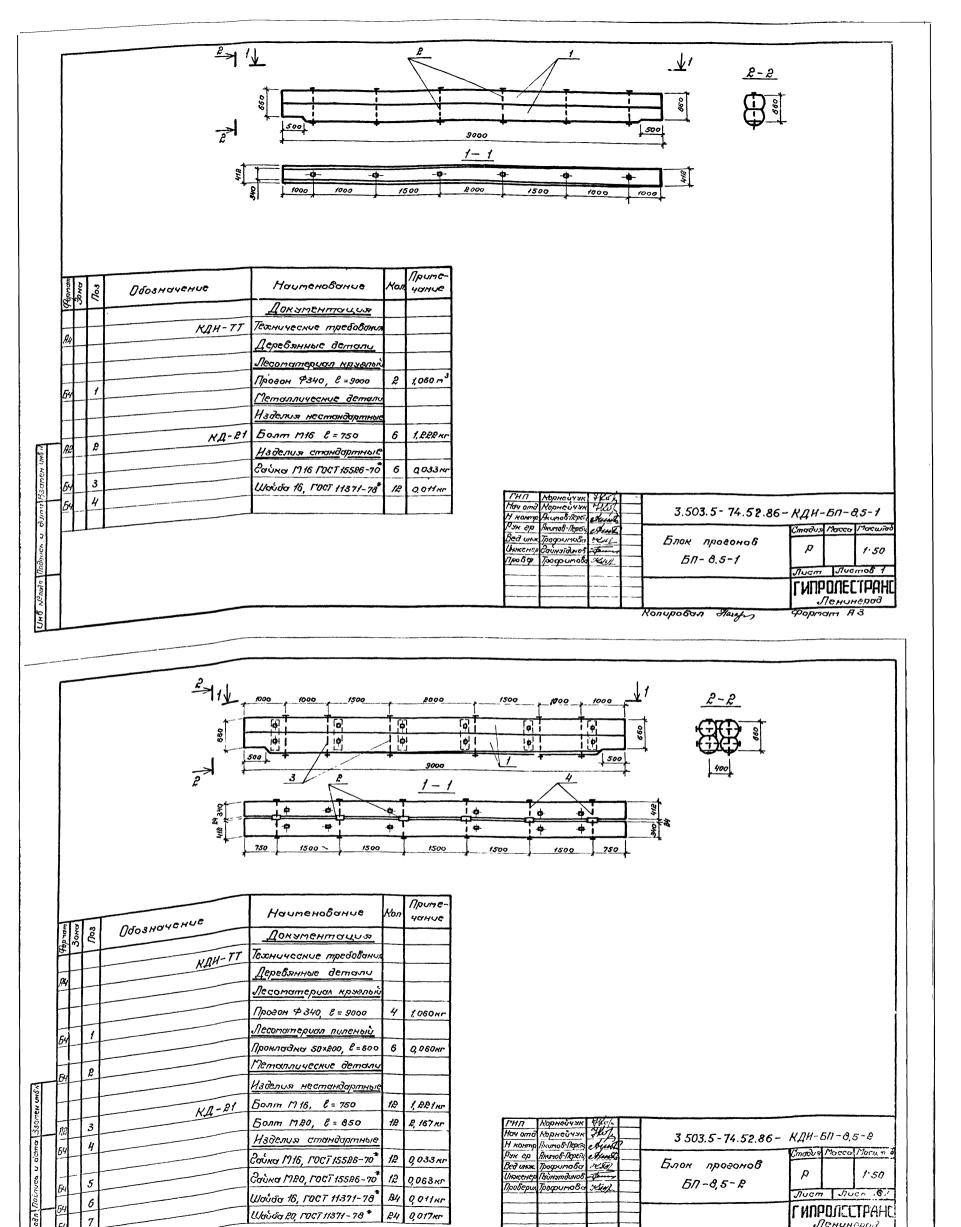




Pop mom	Зоно	Поз	Обозначение	Наименование	Kon.	Припе-
				LONGMEHMOULUS		
14			КДИ-ТТ	Технические требования		
Г				Деребянные детали		
				Лесопатериал кр <u>увлый</u>		
54		1		Прогон \$310, l= 1500	R	0,71013
				Метаплические детали		
				<u>Наделия нестандартные</u>		
AR		æ	K.A 21	Болт M16, l=650	4	1,063mr
				Изделия стандартные		
54	П	3		θούκα M16, ΓΟCT155R6-70°	4	Q 033 Kr
54		4		Waùda 16, FOCT 11371-78	8	Q 011 Kr
Γ						

		<u> </u>	+-	}	ГИПР	ONECTPAH
					Jucm	Jucmob 1
Проверил	Тродоинова	CH SHIP	<u> </u>	67-7,0-1		
	โตนหากสิบหอชิ		4	· '	10	1 50
	Тродоимова			Влак прогонов		
	Ристов-Переги			_	Стойия	Macc a Macuma
	Murioli-Taperu		2	3,303 3 14.32 00	NUM-L)//-/ 0-/
	Корнейчик		4	3,503 5 - 74,52 86 -	MAN_A	50-70-1
	Корнейчин		<u> </u>	1		

Ленинград Фортат ЯЗ

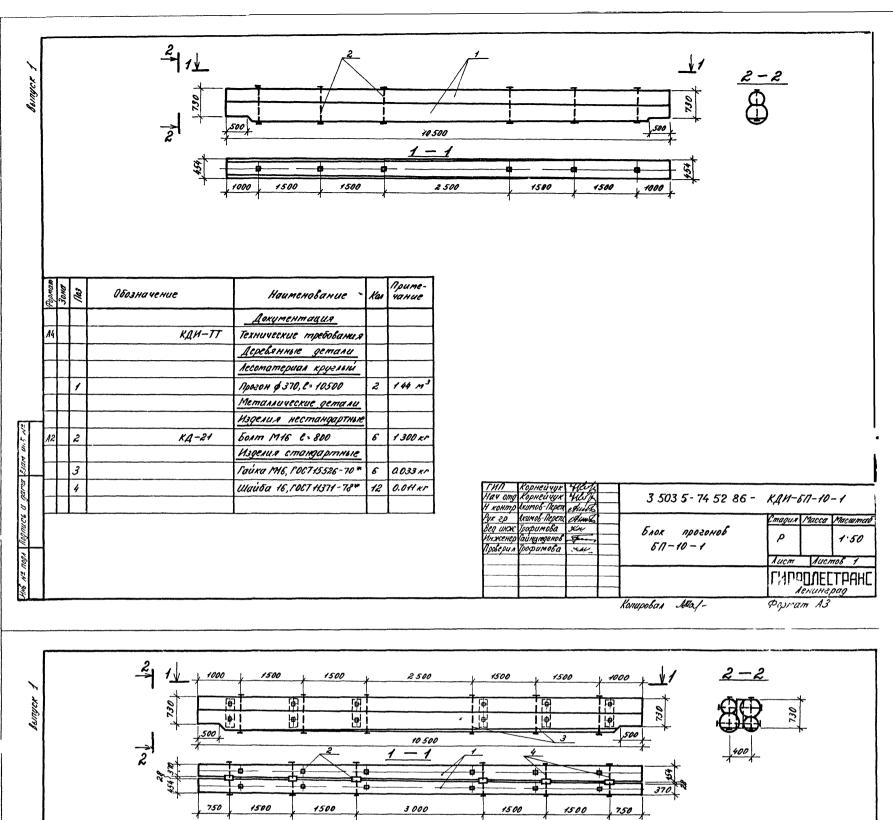

Popnom	Зона	Nos	Обозначение	Начтенование	Кол	Приме-
Γ	Γ			Докупентация		
R4	Γ		<i>КДИ- ТТ</i>	Технические требования		
				Деревянные детали		
				Лекотатериал криглый		
Бч		1		Прогон Ф310, в=7500	4	0,710m3
				Лесотатериоп пиленый		
54		₽		Прокладка 100×180, 8=540	4	0,010m³
				Метоплические детали		
				Изделия нестандартные		
₽₽		5	K.Q 21	50nm M16, C = 650	8	1,063 Kr
AR		4	КД- 21	Eonm M20, €=800	8	R, 045KP
				<u>Изделия стандартные</u>		
54		5		่ ชิชนัพช M16, ГОСТ 15526-70°	8	0,033 Kr
БЧ		6		θαύκα MRO, ΓΟCT 155R6-70*	8	Q063Kr
64		7		Waùɗa 16, FOCT 11371-78*	15	0,011 Kr
Б4		8		Woùδα £0, ΓΟς Τ1371−78*	16	0,01705

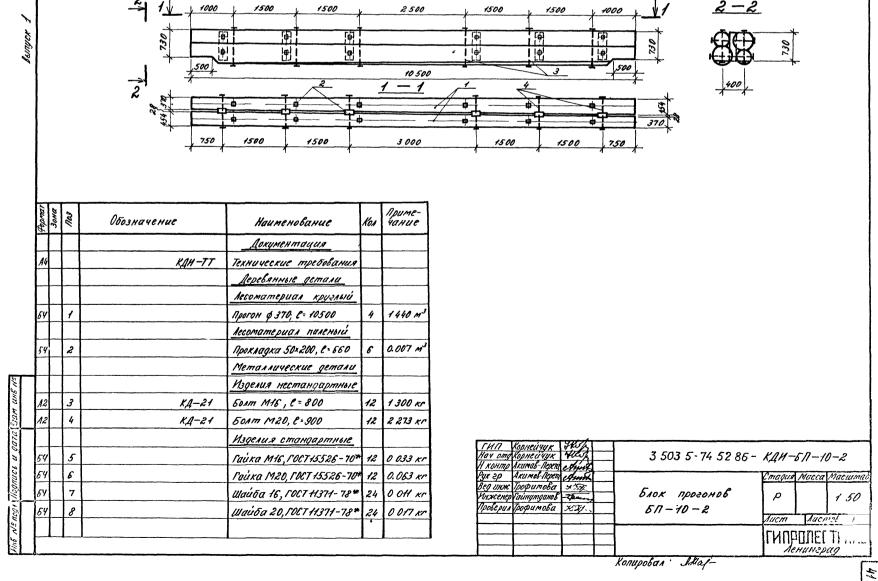
Ноч отд Н комтр	Нормей чэк Мормей чэк Якипов-Перей	the	3 503 5-74.52 86	-КДИ-	5/7- 7,4	7-2
Рык. ер Вед инж Инженер	d financi Tragery Anno se populario de la financia del financia del financia de la financia del la financia de	Hand.	Блок прогонов БП-7,0-2	Стадия Р	Macca	Масштаб 1 50
				1		mos 1 TPAHC

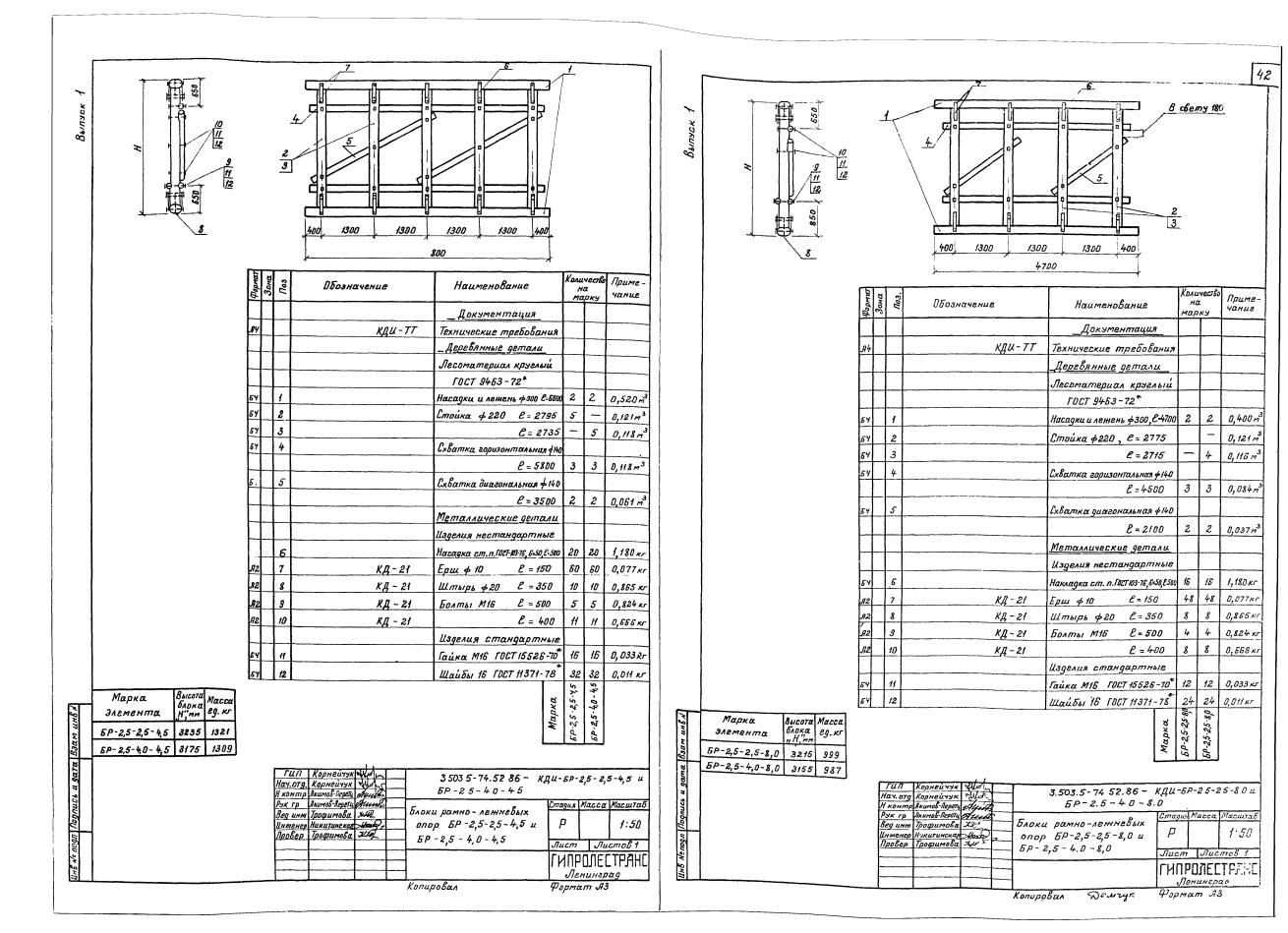
Konupoban Hasely

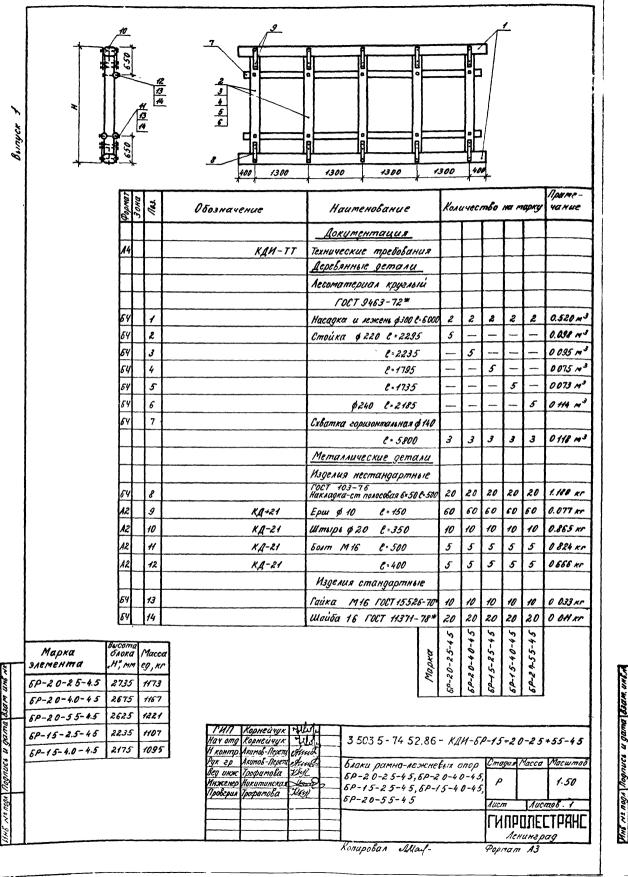
Popmam A3

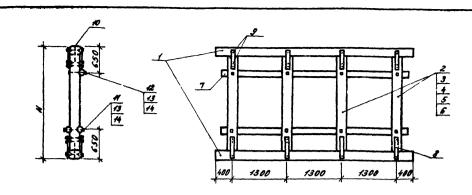
39




8


10


Фортат АЗ


KonupoBan Haufs

Popman	Зона	1/03.	Обозначение	Наименование	Koni	uvec	mbo .	NO M	apraj	Npume- vanue
				<u> Документация</u>						
14			KAH-TT	Технические требования						
				Деревянные детали						
				Лесоматериал круглый						
				FOCT 9463 - 72 *						
64		1		Насадка и лежень \$300 6=4700	2	2	2	2	2	0.400 m
64		2		Стойка ф220 С=2275	4	_	L	<u> </u>	<u> -</u>	0.098 m
64		3		C=2215	_	4	_	_	_	0.093 N
54		4		C=1775		_	4	_	Ŀ	0.075 m3
64		5		l= 1715	_	L	_	4	Ŀ	0 070 m3
64		6		\$240 C=2165	_	L			4	0.114 m
54		7		Схватка горизонтальная						
				\$ 140 C= 4500	3	3	3	3	3	0.084 20
	-			Металлические детали						
				Изделия нестандартные						
54		8		FOCT 103-76 Haknagka-cm nonocoban 6×50 €-500	16	16	16	16	16	1. 180 Kr
12		9	KA-21	Epu \$ 10 C = 150	48	48	48	48	48	0.077 x
12		10	KA-21	Штырь ф20 8:350	8	8	8	8	8	0.865 Kr
12		#	KA-21	501m M 16 €=500	4	4	4	4	4	0.824 Kr
12		12	KA-21	C = 400	4	4	4	4	4	0.666 Kr
				. Изделия стандартные						
64		13		Tauxa M16 FOCT 15526-70*	8	8	8	8	8	0.033 Kr
64	٦	14		Wau6a 16 FOCT 11371-78*	16	16	16	16	16	0.011 Kr
2020				8	2-80	08-0	5-80	08-	2-80	

BUCOTA Macca Mapra 3AEMEHMA eg, Kr 5P-2.0-2.5-80 2715 900 5P-2.0-4.0-8.0 2655 888 6P-2.0-5.5-8.0 2605 942 5P-15-25-80 2215 846 5P-15-4.0-8.0 2155 834

Kopneuyyk Yest Kopneuyyk W.A. Akumob-Nepera essek Hav omg 3.503.5 - 74 52.86 - KAH-5P-15+20-25+55-45 Axumob-Repend edical Н коятр Блоки рамно-леженевых опор Стадия Маска Масштав

Рук гр Акимов-Леови Вед инж Трофитова Инженер Никитинская 6P-20-25-80,6P-20-40-80. X 5P-15-25-80, 5P-15-40-80 Проверил Трофитова 5P-20-55-80 Aucm Aucmob 1

CAUDOVECT DEMO Ленинград

Konupobas May-

Формат АЗ

150

43

		Anefo	есина, м	³(kođ eđ	usm -113)				Cmans,	Kr (H	meu 69 60	- 166)		
		Vecowame-	Necomome-		Пикомата	Метизы		Πþ	окат				cmava	KOVOHOH-
Марка	Марка	ранпа в псиачеза-	хвойных	(denoboù	кал <i>есшре</i> н- Блауы	крапенсные крапенсные	S-2mm	6=6mm	8=8mm	L 75×75×8	массе рауенол р нашя-	HOM	монколие-	квипносовт-
Macma	зувменша	gnge Kblevaw	nabag		Hele	(ဝီငလေ)				<u> </u>		4 mm)	тадая (am 1,9 да 3,9 mm)	
								Koð		T T	am 093100	T	202000	
	<u> </u>	531400	581431	531000	533100	128001	097200	097100	097100	093100	do 128001	097100	097200	0.93100
			1	10cm bi	на	c b a ù	HOX O	uobax		I	1			
	nc- 2,5-4,5	4,46		4,46	5,26	9 0,3								
ДМ-СВ-1,5-2,5-4,5	On-CB-1,5-4,0-4,5	4,83	4,90	9,73		38,0		41,8						
All 60 110 010 150		9,29	4,90	14,19	5,26	128,3	,	11,8			140,1	11,8		
	NC-2,5-4,5	4,46		4,46	5,26	90,3	discountries.							
Ann 68 00 05 05	ОП- CB- 2,0-5,5-4,5	 	8,24	15;62		5 4,8		11, 8						
ДМ-СВ-2,0-2,5-4,5		11,84	8,24	20,08	5 26	145,1		11, 8			156.9	41, 8		
	DC 05-45	4,46		4,46	5,26	90,3								
	ПС- 2,5-4,5 On-св-2,5-4,0-4,5		6,40	16,93		82,7		11, 8						
<u>Д</u> м-С8-2,5-2,5-4,5	011-00-6,034,034,0	14,99	6,40	21,39	5,26	173,0		11,8			184,8	11,8		
	50.05.45	4,46		4,46	2,26	90,3								
	NC- 2,5-4,5		7,66	20,53		98,6		11,8						
1M-CB-3,0-2,5-4,5	0n-c8-3,0-4,0-4,5	17,33	7,66	24,99	5,26	188,9		11,8			200,7	11, 8	-	
		 		6,96	6,54	116,7								
	nc-4,0-4,5	6,96	1.00	9,73		38,0		11,8						
ДМ-СВ-1,5-4,0-4,5	0N-CB-1,5-4,0-4,5		4,90	16,69	6,54	154,7		11,8			166,5	11,8		
		11,79	4,90		6,54	116,7								
	ng-4,0-4,5	6,96		6,96		54,8		11,8						
ДМ-СВ-2,0-4,0-4,5	QN-CB-2,0-5,5-4,5		8,६५	15,62	6,54	171,5		11,8			183,3	11.8		
		14,34	8,24	22,58	6,54	116,7								
	NG-4,0-4,5	6,96		6,96		82,7		11,8						
Дм-СВ-2,5-4,0-4,5	On-CB-2,5-4,0-4,5	10,53	6,40	16,93	6,54	199,4		11,8			211,2	11,8		
·		17,49	6,40	23,89										
	ПС-4,0-4,5	6,96		6.96	6,54	116.7		11,8						
	On-C8-3,0-4,0-4,5	12,87	7,66	20,53	6,54	98,6 215,3		11,8		_	227.1	11,8		
1m-cв-3,0-4,0-4,5		19,83	7,66	27,49	L			L			ПП Карнеич	an That is	T	

1		
1	u	
ı	-	

		_	1	(Kod ed	uam - 113)				Cwave,	Kr (K03 6	- meu bs	166)		
Maria			рпоуя' дуа Увсошаше-	Umoso	Пиламате-	Me nusel		Про	kam			Bceeo		
Марка	Марка	вания в пспаляза-	caaù -	(devogon	brave	Usdenus	C a				в нату-	в том	copmomer	
Moama	элемента	kbasvow	повод	<u>дрересине</u>)	н <i>е</i>	(рсаво) креценсные	δ≈ E.mm	6=6mm	6=8mm	<u>∟</u> 75×75×8	массе ральной	тол столи товая (от 4 мм)	тонколис- товая (ат 1,9 да 3,9mm)	нага кряино <i>со</i> р
								Kođ			am 093100			
	!	531400	531431	531000	53100	128001	097200	097100	0 97 100	093100	dn 128001	097100	097200	093100
	ПС~5,5(1) ~4,5	10,34		10,34	7,85	153,0			******					
		7,38	8,24	15,62		54,8		11,8						<u> </u>
ДМ-СВ-2,0-5,5(1)-4,5		17,72	8,24	25,96	7,85	207,8		11,8			219,6	11,8		<u></u>
		·	Joemei	HQ		- лежене	6 61×	ouobax						
						90,3								
	ПС- 2,5-4,5	4,46		4,46	5,26			47,2		-		,		
ΔM-Pn-1,5-2,5-4,5	On-PA-1,5-4,0-4,5	12,16		12,16		70,4 160,7		47,2			207,9	47,2		
		16,62		16,62	5,26									
	∏G-2,5-4,5	4,46		4,46	5,26	90,3								
- 0 5-4.5	ON-PN-2,0-4,0-4,5	15,28		15,28		85,9		47,2			223,4	47,2		
1m-pn-e,0-e,5-4,5		19,74		19,74	5,26	176,2		47,e			220,7	77,2		
	ng- 2,5-4,5	4,46		4,46	5, 26	90,3								ļ
- - 1. 5	0n-pn-e,5-4,0-4,5	18,34		18,34		107,2		47, 2				······································		
<u>Д</u> м-рл-е,5-е,5-4,5		2 2,80		22,80	5, 26	197,5		47,2			244,7	47,2		
	TG-4,0-4,5	6,96		6,96	6,54	116,7								
	On-pn-1,5-4,0-4,5	12,16	-	12,16		70,4		47,2		*******				
Дм-Рл-1,5-4,0-4,5	GIT TILL AND TO	19, 12		19, 12	6,54	187,1	-	47,2			284,3	47,2		
•	ПС-4,0-4,5					116,7								
		6,96		6,96	6,54	85,9		47,2						
1m-pr-2,0-4,0-4,5	ON-PA-2,0-4,0-4.5			15, 28		505'6		47,2			249,8	47,2		
4M-64		22,24		22,24	6,54									
	ПС- 4,0 -4,5	6,96		6,96	6,54	116,7	•	47,2						
	0N-PN-2.5-4,0-4,5	18,34		18,34		107,2					271,1	47,2		
ΔM-Pn-2,5-4,0-4,5		25,30		25,30	6,64	223,9		47,2				7 /, 5		
	nc-5,5(1)-4,5	10,34		10,34	7,85	153,0								
/A 1.5		15,44		15,44	_	85,9		47,2			286,1	47.2		
ΔM-pn-2,0-5,5 (1)-4,5		25,78		25,78	7,85	238, 9		47,2			-30,7	47,2		

Hay and Kopheuyak
Hay and Kopheuyak
H komp Akumo Arptu
Pyk ep Akumo Arptu
Bed unak Tpopumolig X47 3 503 5 - 74.52 86 - KAPM - 2 временные искусственные сооружения на Cmadus Nuem Nuemal Выпуск 1 Однопролетные Провер Чернов мосты Лотки, трубы

Λοπυρούση Περειοκ

		Древ	ecuna, r	n 3 (KOĐ e	(Ell- men B			(Cmare,	кг (ко	meu ba 6	- 166 <i>)</i>				
Марка	Марка	крлеча ранпы р пспачеза- рпаче дуы уесамаше-	парод свай - свай - риалы для Лесомоте.	двереспья) (деvораў Пшага	н ме кал е сшрен Впачм Ппчашаше	Метизы Изделия (бсего)	8=2mm	Про 8=5mm	8=8mm	L75×75×8	массе В нату-	B mam	шовая (оп совшаме понкочие понкочие понкочие	крупно -		
_	SVEWEHING	gude	Hapaa		nens	(gcaso)		<u></u>		<u> </u>	L	4 mm)	1,9 đa 3,9mm	0)		
								K0 0		<u> </u>	om 093100		097200	093100		
		531400	531431	531000	533100	128001	097200	097100	097100	093100	0m 093100 do 128001	097100	1 037200	030,00		
			Mocmbi	на	свайн	61× 01	Jobax	ı		ſ		<u> </u>	T	T		
	ng- 2,5-8,0	7,50		7,50	8,55	153,7							-	-		
AM-CB-1,5-2,5-8,0	0n-c8-1,5-4,0-8,0	7,38	6,88	14,26		57,0		18,9			229,6	18,9	 			
		14,88	6,88	21,76	8,55	210,7		18,9			223,0	18,9		-		
-	NC-2,5-8,0	7,50	-	7,50	8,55	153,7							<u> </u>			
M-CB-2,0-2,5-8,0	On-c8-2,0-5,5-8,0	10,36	12,08	22,44		78,9		18.9								
. 3		17, 86	12,08	29,94	8,55	232,6		18,9			251,5	18,9				
	∏C - 2,5 - 8,0	7,50		7,50	8,55	153,7							<u> </u>			
AM-CB-2,5-2,5-8,0	0n-c8-2,5-4,0-8,0	14,55	8,44	22,99		416,5		18,9								
		22,05	8,44	30,49	8,55	270,2		18,9			289,1	18,9				
	∏C -2,5-8,0	7,50		7,50	8,55	153,7										
AM-CB-3,0-2,5-8,0	0n-c8-0,0-4,0-8,0		10,24	27,80		136,9	-	18,9								
, 1,014,0		25,06	10,24	35,30	8, <i>55</i>	290,6		18,9			309, <i>5</i>	18,9				
	DC-40-80					199,4										
AM-CB-1,5-4,0-8,0	NC-4,0-8,0	11,86		11,86	10.63	57,0		18,9								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0n-CB-1,5-4,0-8,0	7,38	6,88	14,26	10,63	256,4		18,9			275,3	18,9				
		19,24	6,88	26,12		199.4			_							
M-CB-2,0-4,0-8,0	NC-4,0-8,0	11,86		11,86	10,63	78,9		18,9								
	0n-cB-2,0-5,5-8,0	10,36	12,08	22,44		278,3	_	18,9			297,2	18,9				
		55'55	12,08	84,30	10,63	199,4	•									
ΔM-CB-2,5-4,0-8,0	NC-4,0-8,0	11,86		11,86	10,63	116,5		18,9								
- ~,0-4,0-8,0	ON-CB-2,5-4,0~8,0	14,55	8,44	22,99		315,9		18,9			334,8	18,9				
		26,41	8,44	34,85	10,63	199,4			_							
ДМ-СВ-3,0-4,0-8,0	ПG-4,0-8,0	11, 86		11,86	10,63	136,9		18,9								
- 3,0-4,0-8,0	0n-cb-3,0-4,0-8,0	17, 56	10,24	27,80	40.63	336,3		18,9			<i>355</i> ,2	18,9				
		29, 42	10,24	39,66	10,63	L	L	L		<u></u>	ип Корнеичи	x They				
										in -	контр Акитоб Пе	pen con Ex		03 5 - 74 52		
										Pa	ж гр Акитов Пер	engrul	agmomosuke	псклссшвення псклссшвення	dop xi	20
										Π _P	донав чево	Tup	י די	отки,трубы	стовом С	Λu
										-		+-	1			
										F		+	L-9 negoi	vog moewe backag im uokbriungi eganheix audb	All NIP	eu N

		Anel	есина,	M (KOB	ed usm -113)				Cmanb,	Kr (KOĐ eđ. UZN	n - 166/		
		Necomame-	Necomome	T		Метизы		Πα	okamı				cwava	
Марка	Makka	крявующ вания в псиочезо- впаче дия	тарына сбай - хбайных хбайных	Umasa (делавай ны)	венные качесш - шевпауы цпудша -	(всего) Крепененью	8 = 2mm	8=6mm	δ=8mm	レフ5×75×8	массе ральной в нату-	mavema-	ту сорто ту сорто товая (от товая (эт	крупна
wacma	gremening	Bude		<u> </u>	<u> </u>			V - 9						
						128001	097200	K08	097100	093100	am 093100 da 128001	097100	097200	093100
		531400	531431	531000	533100	-				-				
	(4) - 8,0	47,76		17,76	12,80	265,6								
	On- CB-2,0-5,5-8,0	10,36	12,08	१.६,५५		78,9		18,9			363,4	18,9		
дм-СВ -2,0-5,5(1)-8,0	on cB-e,o	28,12	12,08	40,20	12,80	344,5		18,9						
ді і С		L	Moci	ше на	рамно-	Ленснев	eix and	bax		1		Γ		
				7,50	8,55	153,7								
	nc-2,5-8,0	7,50		18,19	_	113,3		75,6						
- 40	On-PA-15-4,0-8,0	18,19		25,69	8,55	267 0		75,6			342,6	75,6		
ΔM-Pn-1,5-2,5-8,0		25,69				153,7								
	nc - e,5 - 8,0	7,50		7,50	8, 55									
	On-PA-2,0-4,0-8,0	22,03		22,03		133.3		75,6			362,6	75,6		
ΔM-Pn-2,0-2,5-8,0	On-Pr	29,53	-	29,53	8,55	287,0		75,6			362,0	13,4		
	. 00	7,50		7,50	8,55	153,7								
	nc-2,5-8,0		_	56'50		166,9		75,6						
ΔM-Pn-2,5-2,5-8,0	On-pn-2,5-4,0-8,0			33,70	8,55	320,6		75,6			396,2	75,6		
ΔM-Pn-2,0		33,70		11,86	10,63	199.4								
	ПС-4,0-8,0	11, 86		18, 19		113,3		75,6						
4.0-8,0	On- PN-1,5-4,0-8,0	18, 19			10.00	312,7		75,6			388,3	75.6		
AM-Pn-1,5-4,0-8,0		30,05		30,05	10,63	199,4				_				
	nc-4,0-8,0	11,86		11,86	10,63			75.6						
- on	011-10-2,0-4,0-8,0	66,03		22,03		133,3		75,6			1			
ДМ- PЛ-2,0-4,0-8,0		33,89		33,89	10,63	332,7		75,6			408,3	75,6		
	пс-4,0-8,0	11, 86	. –	11,86	10,63	199,4								
	On-PA-2,5-4,0-8,0			56, 50		166,9		75,6						
ДМ- PЛ ^{-2,5-4,0-8,0}	U11-1411 410 17 910	38,06	_	38,06	10,63	366, 3		75,6			441,9	75,6		
ДП-РЛ	55/1) 00			17,76	12, 80	265,6								
	TC-5,5(1)-8,0	17,76		22,31	_	133,3		75,6						
ΔM-Pn-e,0-5,5(1)-8,0	On- PN-2,0-5,5-8,0			40,07	12,80	398,9	_	75,6			474,5	75,6		
ΔM-PΛ-2,0		40,07		L		<u> </u>		***************************************		r. Ha	IC Kopneurs Akumobile Akumobile	x West	1	3.5-74

ТИП Корнеитук НИИ 3503,5-745286 - КДРМ-4

Нач атай Карнеитук НИИ 3503,5-745286 - КДРМ-4

Вей инже Трафитова ЖИИ Овтопралетные саоружения на обтомовильных леобозных дорогах

Провер Чернав Т Выпуск 1 Однопралетные Стадия Лист Листов масты Латки, трубы Р Ц

Мосты на сваиных и рамналеминентый покрытием Г-8 веда масты расхода материалов Ленинград

Копировал Персия Формат А2

		A park	ecuna,	m³ (KQđ	ed. usm - 113)	-	-	(Cmane,	Kr (t	cod. ed usm	-166)		
			Vecowawe-		<u> </u>	Memusu		Upo	kam			Bceso		
M	Марка	RNE MODUS	cgan - braver gva	(đenoboù	Unvawame	RUNSBEU					в нату-	в том втом	cobwaw	еншл Акрли ен -
Марка		Banus B	хбойных	dpebecu -		крепенсн	S=2mm	6 = 6 mm	δ≈8mm	L75×75×8	4 -	mavewa-	тонколис-	крупна-
mocma	элемента	gnge Kb?evow	pogon	Hel)	Ganvela	(gcaso) HPIG			,		macce	(om 4 mm)	товая (от 1,9 да 3,9 мм	CORTINGX
								K08.						
		531400	531431	531000	533100	128001	097200	097100	097100	093100	000 128001	097100	097200	093100
	<u> </u>				Macme	на	p အ ၁++c ဧ ဝီ +	א סר	obax					
	пс-4,0p-4,5	8,94		8,94	10,06	174.0								
	0П-Рж-1,5-4,0-4,5	19,74		19,74		344,1			-					
,M-р _{жс-1,5-4,0-4,5}		28,68		28,68	10,06	518,1					518,1			
	ПС- 5,5(2)p-4,5т			15,00	14,03	332,9					, . <u></u>			
		15,00 20,49		20,49		423,9		_						
M-Pare-1,5-5,5(2)-4,5	0n-Pae-1,5-8,5-4,5			35,49	14,03	756,8								
		35,49			15,63	369,5					756,8			
	NC-7,0p-4,5T	19,97		19,97	15,65	423,9		-						
M-Pac-1,5-7,0-4,5	On- Pac-1,5-8,5-4,5			20,49	15,63	793,4								
		40,46		40,46							793,4			
	NC-8,5p-4,5t	26,38		26,38	47,24	451,3								
M_Pote - 1,5-8,5-4,5	0П-рж-1,5-8,5-4,5	20,49		20,49		423,9 875,2								
F-table the sta		46, 87		46, 87	17,24						875,2			
	NC-4,0p-4,5	8,94		8,94	10,06	174,0								
M- pm-2.0-4,0-4,5	On- Porc- 2,0-4,0-4,5	६५,१५		24,14		440,6								
The first of the control of the cont		33,08		33,08	10,06	614,6					614,6			
	ПС- 5 ,5 (2)p-4,51	15,00		15,00	14,03	332,9								
M- Dac-20-5,5(2)-4,5	0П-Рж. 2,0-8,5-4,5	25,67	_	25,67		575,8								
M- bac-20-5,5(2)-4,5		40,67		40,67	14,03	908,7					908,7			
	ПС-7,0p-4,5 т	19,97		19,97	15,63	369, 5			_					
		25,67		25,67		575,8								
<u>\</u> M-рж-2,0-7,0-4,5	Of t- Marc-5'4-0'0 - 20	45,64		45,64	15,63	945,3					945,3			
	650.457	26,38		26,38	17,24	451,3								
	nc-8,5p-4,5T			25,67		575,8								
lm-рж-2,0-8,5-4,6	On-Parc-2,0-8,5-4,5	52,05		52,05	17,24	1927,1		_			1027,1	-		
		0 1									л Корнейчук		2 5.	03 5 - 74 5
										Н ист	ama Корнейчик итр, Акитов Перет	y cours		le nekhewigi
										Bei	сер Дкито Перети В инне Трафитава	14h	на овтомов Выпуск 1 Одн	uabhbix lecce
										HN Pall	денея Ячина Вонав дева	1	мосты уот репуск 1 одн	
													даташеш и шос не на вы	юкрешлей 1-4 неевых опарах
													Br amacmi	p P bacxoga

				3,		T						Q	cwava	
	[Apede	T	m (Kog eg	uam -113)			Про	okam	T		I fi mam 4	чсле па ук	pynnen-
Марка	1	Phavera gva Vecomame-	bnaver gva Vecawawe-	Umaea	Nucomame-	Метизы					в нату-	NOMY !	сортамент	צח
MONKO	Марка	ранла р псиачезо-	хралных срал-	(devagon	калесшрен- bnave	крепечия мынаменев	f=2mm	5=5mm	La 8mm	L75×75×8	, ,	THE RESERVE AND PERSONS ASSESSED.	7	крупно -
Mocma	9A@M@HITIO	крувлат	Bodon	docacana	име калесшоси-	(6000)	G " C				wacce	mogas (am	1,9 30 3,9 mm	
		bude	L	<u> </u>	L	<u></u>		<u> </u>				4 mm)	1.9 do 3,9 mm)]
				r	·			Kod .			om 093100	<u> </u>		T
		531400	591431	531000	533100	128001	097200	097100	097100	093100	do 128001	097100	097200	093100
	NC - 4,0p-8,0	15,22		15,22	16,46	299,7			-,					
Дм-Рж-1,5-4,0-8,0	0n-Px-1,5-4,0-8,0	33,67		38,67		553,0								
		48,89	-	48,89	16,46	852,7		_			852,7			
	NC-5,5(2)p-8,0 т	24,90	_	£4,90	21,34	545,2								
Дм-Рж-1,5-5,5(2)-8,0	0n- Pж-1,5-8,5-80	35,13	_	35,13		709,4								
ДМ-рж-1,5-0,0(г)		60,03		60,03	21,34	1254,6	_	_			1254,6			
	ПС-7,0р - 8,0 т	33,44	_	33,44	23,79	601, 2	_			_				
	0П-Рж-1,5-8,5-8,0	85,13	-	35,13		709,4		_		_				
ДМ-Рж-1,5-7,0-8,0		68,57		68,57	23,79	1310,6					1310,6			
	∩G- 8,5p - 8,0+	44,50	_	44,50	26,21	747,9								
a = 90	0П-Рж-1,5-8,5-8,0	35,13	_	35,13	_	709,4								
ДМ-Рж-1,5-8,5-8,0		79,63		79,63	26,21	1457,3				_	1457,3			
	ЛС- 4,0p-8,0	15,22	_	15.22	16,46	299,7								
	On-Px-20-4,0-8,0	40,77	_	40,77		710,9								
ДМ-Рж-2,0-4,0-8,0		55,99	_	55,99	16,46	1010,6					1010,6			
	NC-5,5(e)p-8,0 T	24, 90		24,90	21,34	545,2								
		43,61	-	43,61		942,4								
AM-Px-2,0-5,5(2)-8,0	0.11.7.	68,51	_	68,51	21,34	1487,6					1487,6			
	NC- 7,0p - 8,01	33,44	_	33.44	23,79	601,2								
	On- Px-2,0-8,5-80		-	43,61		942,4				-				
Δm-p _ж -2,0-7,0-8,0	Olizian and	77,05	_	77,05	23,79	1543,6					1543,6			
	ПС- 8,5р - 8,0т	44,50	_	44,50	26,21	747,9							 	
	00-6-2,0-8,5-8,0	<u> </u>		43,61		942,4				-				ļ
ДМ-Рж-е,0-8,5-8,0	011-12/4	88,11	_	88,11	26,21	1690,3		_	_		1690,3	_		-

FUT Kopnedysk The Havama Kapnedysk The Havama Kapnedysk The Havama Repet Letter Bed unse Tapopurada XIII. 3 503 5-74 52 86- KAPM-6 Временные искусственные сооружения на автомовильных лесовозных доровах Bompuh mpuh kubami Выпуск 1 Однопролетные Чернов Refe р б мосты Лотки, трубы Ma mei Ha bassegeix auabax CNULLILLHT Vennabal Vennabaga

		T		2 /		T			Cwave ,	KE (K	meu be bo			
		Древ	ecuna,	m 4 (K0∂ e	d usm - 113)		Ι———	Пр	okam				CLUAVA	· ·
Марка	Мерка	папоуево- рпаует дуа увесомаше-	риалы для риалы для	(gevopoņ Amasa	Unvowatue-	Memusel U3denua		8=6mm		L75×75×8	ваурнол в нашя-	HOM	шонкоvле- д совшащ члске ца	אוווא
mocma	зубыенша	воде крявиом вонла в	хвайных Бодоп	дререспые)		(рсеед) крепеясные	6=2mm	0.20141141			macce	mogas (om	товая (от 1,9 да 3,9 мм	CODUMON
		0000	<u> </u>	<u></u>	<u> </u>			Kođ						
		53/400	531431	531000	533100	128001	097200	097100	097100	093100	om 093100 8a 128001	097100	097200	093100
			Мосты	на	леоюн е б	gerx ou	obax	<u> </u>						
	NC-5,5(1)-4,5	10, 34		10,34	7, 85	153,0								
AM-1,5	OΠ-Λж-5,5(1)-4,5	7,07		7,07		17,4								
		17,41		17 41	7,85	170.4					170,4			
	NC-5,5(2)-4,5	11,62		11,62	7, 92	213,2								
AM- 1x-5,5(2)-4,5	0П-Лж-5,5(2)-4,5	7,72		7, 72		19,6								
		19,34		19,34	7,92	8,38,9					8,265			_
	NC-7,0-4,5	16,44		16,44	9,23	244,1		*******	*****					
ΔM-1,0-4,5	0Π-Λ _ж -10,0-4,5	8,41		8,41		21,3								
		24,85		24, 85	9, 23	265,4					265,4			
	ПС- 8,5 ~ 4 ,5	22,70		22,70	10,53	320,9				_				
ΔM- N _{ж-} 8,5-4,5	0П- Лж-10,0-4,5	8,41		8,41		21,3								
		31,11		31,11	10,53	342,2					342,2			
	ПС-10,0- 4,5	29, 92		59,92	11,85	354,4								
ДМ-Лж-10,0-4,5	0N-10,0-4,5,	8,41	_	8,41		21,3								
		38,33		<i>38</i> , 33	11,85	375,7					375,7°			
	ПС-5,5(1)- 8,0	17, 76		17,76	12,8	265,6			-					
ΔM-1-5,5(1)-8,0	On- Ax- 5,5(1) - 8,0	10,24		40,24		26.7								
		28,00		28,00	12,80	292,3					292,3			
	UC-2,5(2)-8,0	50'00		50,00	12,95	375,1								
ΔM-Λж-5,5(2)-8,0	On- Nж-5,5(2) - 8,0	41, 11		41,11		29,4		_						
		31,11		31, 11	12,95	404,5					404,5	-		

Bunyan

רטח How orno Kopnessyk War *3 503 5-74 52 86-* КДРМ-7 временные пакусственные сооружения на Трафитава Bedunne Bomouh mound Rubomi Выпуск 1 Однопралетные Провер Чернов масты Латки, трубы pegamacue baexaga wawebaavan belamicum (H'? n L-8 belamicum (H'? n L-8 CNULUTELL BUTHE

Lanupation Repeace

24 mendodo

							the state of the s		Cwave ,	KE (cod ed usm	- 466)		
		Aped	есина,	м ³ (код ес	I. uam118)	-	7		okam ,		1	Beeso	cmava	
Марка	Марка	Panna P Panduer Gva Panduer Gva Panduer Pandue	летомате. Соди - Соди Карана Соди Соди Соди Соди Соди Соди Соди Соди	(Jevogoņ	канасшван- впауы Ппуамаше-	Memiusei RunabeU Kennaganan	S. 2mm	6=6mm		L 75×75×8	масс раченод в нашя-	в том	шарая (ош 4 сормашен 4 псув ца	Крупнасари
mòcma	3VBW6HLIId	gngs kb/svow	Podou	,	ные	(60000)		Koð	<u> </u>		Мосе	4 mm)	1.9 da 3.9 mm	1
			531431	531000	\$33100	128001	J97200	097100	097100	093100	ga 168001	097100	097200	093100
		531400												
	NC-7,0-8,0	28,42	-	28,42	15,10	466,3								
AM-1-7,0-8,0	0,8-0,01-XX-100	12,02		12,02		32,2		_			458.5			
		40,44		40,44	15,10	458,5								
	∏C- 8,5 - 8,Q	39, 36		39, 36	17,21	566,6								
ΔM-Λж - 8,5-8,0	QU-V×-10'0-8'd	12,02		12.02		36,2								
		51,38		51, 38	17, 21	598,8					598,8		 	
	NC - 10,0 - 8,0	51,98	_	51, 98	19, 87	622.3	_				 			
4 4 45.6.0	оп-Лж-1Qp-8,0	12,02		12,02		36,6				-				
ΔM-Ax-10,0-8,0		64,00		64,00	18,37	654,5					654,5			<u> </u>
		Колейны	, MOC	מא ת	лененев	elx one	pax	····						ſ
	ПС-8,5-K∧	20,79		20,79	1,77	267.5								
	0П-Лж-8,5-Kn	5, 20		5,20		17,7								
ΔM-1x-8,5-K1		26,0		26,00	1,77	276,2					275,2			<u></u>
	Cr	пык св	aù c	y con Kol	Beimu	накладн	(awn							
				_		8,3				43,3	51,6			43,3
	T	pexepo	нный і	gammak	₫∧ ₽ 8	agagka .	chaù b	UVOWHPI	e epyni	וארד				
						1,3	-	_	4,1		5,4	4,1		
		Hembipex	гранный	gamwa	8 RAB 2		Boù B	JVawhele	sp3Hm6	1				
						1, 5			5,7		7,2	5,7		
											L			

BEILYCK

Hay ama	Корнеччук	रीय र स्मार प्र		3 503 5 - 74 5 2.	86 -	KVE	M-8
Н контр	Akumob Nepery	equil	<u></u>	Временные искусственные			
	Акимоб Перетц			автомобильных лесововных		XDSOC	
Bed unac	Tpoqueoba	Ker		ADMIDMODUNGKEIX VECOGOBREIX			10 6
				Bunyck 1 Odnonponemnue	PLUGGRA	Nucm	Vacuog
Провер	Чернав	2/10		масты Латки, трубы	þ	8	
				Macme, на леженебых опорах с dowarnem покрытием, г. 8 колеч вы мост Стык сбач и бошт зни бля забибки сбач 8кбамость расхода материалаб	LNUb	DUE[TPAHC
			L		900000		

Копировал Персюк

doobwall VS

										¥r (kog eg nst	n - 166)			Прочи	
		A 206	ecuna,	m ³ (knd a	∂ usm413)				Cmans ,		Ī		emanu		wawebn	avei
		Necomome.	Vecowawe-			Memushi		Про	okam		в нату-	ному в том	cobwawa.	Returk	OD DO KULUU	Donwa
мосша Марка	зуеменша Марка	Pngs panna p ncuaveso- ncuave gva	риалы, аля свай - свайных родоп родоп	дьереспне) (де <i>черо</i> л Лш <i>оѕо</i>	име калесшрен- bnavm Unvowame-	крабар высокапады (озвод)	6 = 2mm	g=6mm	6=8mm	L 75×75×8	массе раугной	marcmonus mabas (am 4 mm)	товая (от 1,9 до 3.9 Н	HOR HORAGEORM	m ^D S 00 30mi m ² CADR/m ³	HEUGK
			<u></u>		L			Kođ			am 093100	097100	097200	093100	571103	025
		631400	581431	581000	583100	128001	097200	097100	097100	093100	100 120001					
			Moc		<u> </u>	<u> </u>	anobax									
	NC-2,5 -4,5	4,46		4,46	3,93	88,0										
	On-CB-1,5-4,0-4,5	<u> </u>	4, 90	9, 73	_	38,0		11,8			137,8	11,8			24.8 2,1	8
ДМ-СВ-1,5-2,5-4,5	311 00 1,0 1	9,29	4,90	14,19	3,93	126,0		11,8					 			
	ŊC -2,5 - 4,5	4,46		4,46	3,93	88,9					 					
	On-cB-2,0-5,5-4,5		8,24	15,62		54,8		11, 8				11,8			24,8	21
M-CB-2,0-2,5-4,5	011-68-5,0-0,0 10	41,84	8,24	20,08	3,93	142,8		41,8			154,6	11,0				
	nc-2,5-4,5	4,4 è		4,46	3, 93	88,0										
	On- C8-2,5-4,0-4,5	10,53	6,40	16,93		82.7		11,8							24.8 2.1	5.
Дм-св-2,5-2,5-4,5	011-68-8,0-40-30	14,99	6,40	81,39	3,93	170,7		11,8			182,5	11,8			7	
		4,46	-	4,46	3,93	88,0										
	ПС-2.5-4,5		7,66	20,53		98,6		11,8							24,8 2,1	5.
AM-CB-3,0-2,5-4,5	0n-CB-3,0-4,0-4,5	17,33	7,66	24,99	3,93	186,6		11, 8			198,4	11, 8			/ 2,1	-
	1. 5	6,96		6,96	4,78	113,2										
	ПС- 4,0 - 4,5 ОП- СВ-1,5-4,0-4,5		4,90	9,73		38,0		11,8							215/	
ДМ-СВ-1,5-4,0-4,5	on- cB-1,0-4,0 1,9	11,79	4, 90	16,69	4,78	151,2		11,8			163,0	11.8			31,5/2,6	56
		6,96		6, 96	4,78	113,2										
	TC-4,0-4,5	 	8,24	15,62		54,8		11,8								
ДМ-СВ-2,0-4,0-4,5	0U-CB-8'0-9'0-4'0	14,34	8,24	22,58	4,78	168,0	_	11,8			179,8	11,8			31,5 2,6	56
	15.715	6,96	0,0	6,96	4,78	113, 2										
	nc-4,0-4,5		6,40	16,93		82,7		11, 8								
AM-CB-2,5-4,0-4,5	On-c8-6,5-4,0-3,6	17,49	6,40	23,89	4,78	195,9		11,8			207,7	11,8			31,5 2.6	56
		6.96	9,40	6,96	4,78	113.2										
	NG-4,0-4,5	 	7,66	20,53		98,6		11,8								
AM-CB-3,0-4,0-4,5	GII-CO G.	19, 83	7, 66	27,49	4,78	211,8		11,8			553'6	11,8			31,5 2,6	50
										H 1 9	гип Корнеич; ач от Карнеич контр Литов По Эк гр Литов По Зей инне Прафита Пробер Чернов	DETU CHENT	Beneration of the state of the	3 503 5 - 74 искусствен оных месово: Однопрален отки, трубы баиных метрической метрич	UHPIE COODS	orcenus

			Дребес		m³(kog e	d usm -113)		na diay		Cmave ,	кr (i	kog eg	mau i	- 166)			Проч	iue
			Necomarne-	Necomame-		1	Memuse		Про	kam				Bceeo	cmava		warnek	JUDVPI
-	_	Марка	neudvesa- bnavei gva	puanei, dna	(devogon	Пиломата-	USBENUR					6 на	m3-	ноту том	cobmame	ншд Якрупн е н-	Гравий Гравий	пертум в
NY CK	moema Mabka		вания в	мводных хвойных	дрервспия	ные качествен-	(gceed) крепеженые	6= emm	6= 6mm	f=8mm	L75×75×8	bave		шо) въдоп	тонколис товая (ат 1,9 да 3,9 мм	CODUMAN	000 500 20 mm	Ворожены
هٔ	pro-			L	i	L		<u> </u>	K03	L		<u>.L</u>			1,,0 00 0,01 114	4	<u> </u>	
			50,400	531431	581990	533100	100001	007200	097100	097100	093100	om 09	3100	097100	097200	093100	571103	025611
			53 <i>14</i> 00		10,34	5,64	1280Q1 148,3	d: 7200	_		_				33.233			
一		∩c-5,5 (1) - 4,5		8,24	15,62		54.8		11,8		_				<u> </u>			
١,	1m-CB-2,0-5,5(1)-4,5	0N-CB-2,0-5,5-4,5	17,72	8,24	25,96	5,64	203,1		11,8			214	,9	11,8		 	38,3 3,2	320
				ocmei H	a bame	10 ~ A@DICI	<u> </u>	nabax		L	L	1	<u> </u>					<u></u>
		50.05.45	4,46		4,46	3, 93	88,0		T	Γ	_	T			T	1		
		NC- 8,5-4,5	12,16	_	12,16			<u> </u>				 	\dashv			 		
.	LM-Pn-1,5-2,5-4,5	0Π-P _A -1,5-4,0-4,3	16,62		16,62	3,98	70,4		47,2			 	_				24,8	210
			4,46	_	4,46	3, 93	158, 4		47,2			205	,6	47, 2	<u> </u>		/ 2,1	210
		NG- 2,5-4,5			15, 28	3,33	88,0					 			<u> </u>	 		
	ΔM-Pn- 2, 0-2,5-4,5	ON- PA- 2,0-4,0-4,8	19.74		19,74	3,93	85,9		47,2			<u> </u>		45.0		ļ	24,8 2,1	510
					 		173,9	<u> </u>	47,2			221	,1	47,2			≥ E,1	-
		nc- 2,5-4,5	4,46		4,46	3,93	88,0					<u> </u>				 		
	ΔM-Pn-2,5-2,6-4,5	On-PA-8,5-4,0-4,5	18,34		18,34		107,2		47,2			ļ			<u> </u>		20.8	
			22,80		22, 80		195,2		47,2			248	2,4	47, 2			24,8 2,1	210
		nc-4,0-4,5	6,96		6, 96	4,78	113,2					<u> </u>						
١.	Дм-°Рл-1,6-4,0-4,5	ON-Pa-1,5-4,0-4,5	12,16		12,16		70,4		47,2									
			19,12		19, 12	4,78	183,6		47,2			530	,8	47,2			31,5 2.6	560
		DC-4,0-4,5	6,96		6, 96	4,78	113,2											
	ΔM- Pn- e, 0-4,0-4,5	ON-PN-2,0-4,0-4,6	15, 28		15, 28		85,9	_	47,2	_								
'	#1112 PX = 8,0 = 4,0 = 4,5		22,24		११,१५	4,78	199,1		47,2			246	.3	47,2			31,5	260
H		ПС-4,0-4,5	6,96		6,96	4.78	113,2	-	_									
	ДМ-Рл-2,5-4,0-4,5	00- PA-2,5-4,0-4,5	18,34		18,34	_	107,2		47,2	_								
	ДI-1- МУ-8'2-4'0-4'2	011-111	25,30		25, 30	4,78	220,4		47,2			267	,6	47,2			31,5 2.6	260
\dashv		DC = 5 5 (1) - 4,5	10,34		10,34	5, 64	148,3											
	ДМ-Рл-2,0-5,5(1)-4,5	00-00-2,0-5,5-4,5	15,44		15,44		85,9		47,2				$\neg \uparrow$			 		
	ДМ-РЛ-2,0-5,5(1)-4,5	OII-14A	25,78		25,78	5,64	234,2	_	47,2			281,	4	47,2			38,3 3,2	380
十							***************************************	L	· · · · · · · · · · · · · · · · · · ·	<u></u>		רטח א	орнейчак	1 Holys	Т.			M - 4D
											Į!	К конто (А	штор Цере	eligiol	L		2 86-KAP	сения на
												Pyk ep A Bedumanc T		XIO-	abmomosu	теных vecoge	DSOGO XIGHE	new Vnewag
Ш												Ubageb r	Іерноб	1/47	· 1	откатьлеть Однапьолеть		10
											-			1"	1	_	·	DECT PRH
						·								-	Lackbeimnem	инериалов черным гравичн черным гравичн черным грамио-ле	``` ∧ен	HUHSOOD
												ل			Konupaban		dobwau	AZ

***************************************			Apeb	есина,	m³ (Kad e	(811- men B				Cmare,	KF (K	meu ba Bo	- 166)			Проч	ue
			увериация- Увериация-	Лесомате- риалы бля	Umata	Пиломать	Метизы			okam			Boeso	cwava		мотериа	VP!
Mab	Ka	Марка	ncuovego -	cbaù -	(devogon	bravel	N3gevna		_			в нату-	6 mam	a cobwaw	еншл Ікрлинен-	lbagnn,	битут
mag		элемента	виде кругот вания в	Dadou XOONHEIX	дребесины)	ренн е калесш -	(всего)	8= 2mm	6=6mm	6=8mm	∠75×75×8		movemovne-		крупносорт.	me/cnax/m3	Варожень
									K09			<u> </u>					,
			531400	531431	531000	533100	128001	097200	097100	097100	093100	om 093100 do 128001	097100	097200	093100	571103	052611
				Moem	ы на	cbair	161× 0	xpqon				<u> </u>					
		nc-2,5-8,0	7,50		7,50	6,09	481,5	_		_	_						
		on-c8-1,5-4,0-8,0	7,38	6,88	14,26	_	57,0	_	18.9	_	_						
AM-CB-	1,5-2,5-8,0	Off ed its its	14,88	6,88	21,76	6,09	208,5		18,9		_	227,4	18,9			44,0 3,1	310
		nc-e,5~8,0	7,50		7,50	6,09	151,5				_						
		07-68-2,0-5,5-8,0	10.36	12,08	22,44		78,9	_	18,9	_							
¥M-CB-€	2,0-2,5-8,0	U1-C0-2,4-4,0 0,-	17,86	80,91	29,94	6,09	230,4	_	18,9	_	_	249,3	18,9			44,0 3,1	310
		50.05.80	7,50		7,50	6,09	151,5	_									
	_	On-CB-2,5-4,0-8,0	14,55	8,44	55,99	_	116,5		18,9	_							
AM-CB-	2,5-2, 5-8 ,0	Olf-GO die ije	85'02	8,44	30,49	6,09	268,0		18,9			286,9	18,9			44,0 3,1	310
		ПС-2,5-8,0	7,50		7, 50	6,09	151,5										
	- 07 00	0n-cB-3,0-4,0-8,0	17, 56	10,24	27, 80		136,9	_	18,9	_							
ΔM-CB-8	3,0-2,5-8,0		25,06	10,24	35,30	6,09	288,4	_	18,9			307,3	18,9			44,0 3,1	310
		ПС-4,0-8,0	11,86		41,86	7,37	196,4										
	45 40-80	On-CB-1,5-4,0-8,0	7,38	6.88	14,26		57,0		18,9	-	_						
₩-cs-	1,5-4,0-8,0		19,24	6,88	26,12	7,37	253,4		18,9			272,3	18,9			560 3.9	390
		∏G-4,0-8,0	41,86		11, 86	7,37	196,4										
	00.40-80	on- CB-2,0-5,5-8,0	10,36	12,08	22,44		78,9		18,9								
TW-CR-	2,0-4,0-8,0		22,22	12,08	34,30	7,37	275,3		18,9			294,2	18,9			56,0 3,9	390
		NC-4,0-8,0	11,86		11,86	7,37	196,4										
Im CR-S	2,5-4,0-8,0	On-CB-2,5-4,0-8,0	14,55	8,44	22 99		116,5		18,9								
YM-CO.	4,0 11,0		26,41	8,44	34,85	7,37	312,9		18,9			331,8	18,9			56,0 3,9	390
		nc-4,0-8,0	11,86		11,86	7,37	196,4										
1 m CB-	3,0-4,0-8,0	On-CB-3,0-4,0-8,0	17,56	10,24	27,80		136,9		18,9								
Δi-i-cb			29,42	10, 24	39,66	7,37	333,3		18,9			352,2	18,9			56,0 3,9	390
											Ha	IN OLLIG Kabhenan		3 50	3 5 - 74.52	86 - KI	LPM-11
											Ps	IK EP AKUMOB REP	ery establish	Временные	искисственны ных лесовозн	е соарлжен	CH RV
												ed unac Tpaquumo		Bunyck 10	дноприлетны	е Стадия Лис	am Auemo
											P	робер Черноб	24	Macmel Na		D 4	
											- L			тосты на со черным грас	gamoe už ganeim ilokbe ganeix allabas	"= LNUbou	EETPRH

		Дреб	всина,	m³ (koð c	:a. usm -113)				Cmare,	кг (к	meu ba bo	- 166 <i>)</i>			Проч	16
		Vecowame-				Memusu		Пр	okam			Bceso	cwava		mamepu	ロンタ
Маbка	Марка	UCHON630-	cean. bnavergva	(gevogan Nuraso	bnave Unvowatue	RUASSEU	<i>(</i> *		C 0		в нату~	в там В там	CODMOMO	ншя Акряпнен-	Γροδυύ Φρακιμυν	дашяна рашян
wocma	элемента	ganna g	хвофых Бодрп Бодрп	<u> дрераспне</u>)	н а е кочествен-	(расеа) Краивскине	6 = 2mm	0 ≈ 0 mm	ò≖8mm	L 75×75×8	массе Баленод	талстолис товая (от 4 мм)	навая (ат 13 до 3,9 mm)	ная крупнасарт	m ² GNOR/m ³	Ворожень
								Код								
		53 1400	581431	531000	533100	128001	097200	097100	097100	093100	am 093100 da 128001	097100	097200	093100	571103	025611
	NC-5,5 (1) - 8,0	17. 76		17,76	8,72	261, 2										
ДМ-СВ-2,0-5,5(1)-8,0	On-c8-2,0-5,5-8,0	10,36	18,08	22,44		78,9		18,9								
		28, 12	12,08	40,20	8,72	340,1		18,9			359.0	18,9			68.0 4,8	480
			Macme	и на р	awno - Ve	женевых	onopa	<								
	NC-2,5-8,0	7,50		7,50	6,09	151,5										
ΔM-Pn~1.5-2.5-8.0	On-Pn-1,5-4,0-8,0	18,19		18,19		113,3	*******	75,6								
		25,69		25,69	6,09	264,8		75,6			340,4	75,6			44.0 3.1	310
	∏Ç- 2,5~ 8,0	7,50		7, 50	6,09	151,5										
M-Pn-2,0-2,5-8,0	0n-p ₁ -2,0-4,0-8,0	22,03		£2,03		133, 3		75,6				· · · · · · · · · · · · · · · · · · ·				
24. 1 1 1 1 1 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3		29,53		29, 53	6,09	284,8		75,6			360,4	75,6			44,0 3,1	310
	ng- 2,5- 8,0	7,50		7, 50	6,09	151,5										
AM-Pn-2,5-2,5-80	07-PA-2,5-4.0-8.0	56,50		26,20		166,9		75,6								
A,1 1- Ch - 4,3 - 2,5 - 8,0		33,70		83,70	6,09	318, ų		75,6			394,0	75,6		_	44,0 3,1	310
	NG- 4,0- 8,0	11,86		11, 86	7,37	196,4										
AM-Pn-1,5-4,0-8,0	ΩΠ-P _{Λ-1} ,5-4,0-8,0	18,19		18,19		113,3		75,6								
діт ти 1,5 4,6-6,6		30,05		30,05	7,37	309,7		75,6			385,3	75,6			560 3,9	390
	∏G-4, 0~8, 0	11,86		11, 86	7,37	196,4										
AM-Pn-2,0-4,0-8,0	0n-Pn-2,0-4,0-8,0	82,03		22,03		133,3		75,6					***************************************			
411-11/ 2,0-4,0-8,0		33,89		33, 89	7,37	329,7		75,6			405,3	75 ,6			56.0 3.9	390
	NC-4,0-8,0	11,86		11,86	7,37	196,4										
Am-Pn-e,5-4,0-8,0	ON-PA-2,5-4,0-8,0	26,20		26, 20		166,9		75,6								
Д/		38,06		38,06	7.37	363,3		75,6			438,9	75,6			56,0 3,9	390
	NG-5,5(1)-8,0	17,76		17,76	8,72	261 ,2										
ΔM-Pn-2,Q-5,5(1)-8,Q	On- Pa-2,0-5,5-8,0	22,31		22,31		133.3		75,6								
Δ[1-1-X-2,0-0,0(1) 0,0		40,07		40.07	8,72	394,5	_	75,6			470,1	75,6			68,0 4,8	480
											ип Карнелля	K WIST	3 503	5-74 52 86		PM-12
										1-	контр Акимов Пер Зкер Акимов Пер	MIT OF STATE		искисственн		
											отифон Трофитов	So the	автомови.	APHOIX AECOE	CODE XIGHEO	sax Vacuo
										П	робер Чернов	Report	macmei Ne	omku, mpybol	p	15
													Macmai Ha c	гор в расхода покрытичен опорах с черн опорах с черн опорах и рам	L-8 LNUDO	

		Δρεδ	ec una,	m 3 (Kod s	kð usm -113)				Cmare,	Kr (men <u>e</u> g nam	- 166)			Проч	146
		Vecowawe-	Vecomawe-			N -							cmanu		Mameb	
Марка	Марка	neudverd braver gva	ಕೊಡ್ಡು ಕ್ರಾ ಕ್ರಾಗ್ನೆ ಕ್ರಾಗ್ನೆ	(denoboù	braver Unvowalue-	Memusus Usdenus					в нату-	8 mom	чиске па	еншя Акраинен-	Morriela	
wocima	элемента	воде крлечош вочна в	парад хфойных	древеспие)	нета каласшрен-	(рсево) крвисжение	5=2mm	&=6mm	8 ≈ 8 mm	∟75×75×8	массе Бауенол			крупносорт		нефтэнс битут
			<u> </u>			<u> </u>	<u> </u>	Koð		L		1		İ	m GNON/m3	ะเบลี่หน่น,
		531400	531431	581000	583100	128001	097200	097100	097100	093100	om 093100 do 128001	097100	097200	093100	571103	025611
	-	1 007.00		omei Correc	· · · · · · · · · · · · · · · · · · ·	a orc eg eix	·		401.100							
	ПС-4,0p-4,5	8,94		8, 94	7,11	167,3	_	_								
	0n-p _{m-4} ,5-4,0-4,5			19,74		344,1										
ДM-Рж-1,5-4,0-4,5	UI 1-PЖ-1,5-4,0-4,5	19,74		28,68	7,11	544,4					544,4	_	_		49,5 4,1	440
	()	28,68														
	∏G-5,5(2)p-4,5 т	15,00		15,00	10,65	325,1		_								
ΔM-P _{ж-1,5-5,5} (2)-4,5	ОП-Рж-1,5-8,5-4,5			20,49	40,65	423,9 749.0					749,0				56,3	460
		35,49		35, 49	 						7 13,0				7,0	
	MG-7,0p-4,5 t	19,97		19, 97	11,83	360,7										
ДМ-Рж-1,5-7,0-4,5	0n-p _ж -1,5-8,5-4,5	20,49		20,49		423, 9					784,6				63,0 5,2	520
		40.46		40,46	11.83	784,6					784,6				7 5,2	
	ПС-8,5р-4,5т	26,38		86.38	13,01	441,3										
ΔM-P _ж -1,5-8,5-4,5	ОП-Рж-1,5-8,5-4,5	20,49		20,49		423,9									69.8	
дитержено он не		46,87		46.87	13,01	865,2					865,2				69,8 5,7	570
	NC-4,0p-4,5	8,94		8.94	7,11	167,3										
Δ Μ- ρ _ж - 2,0-4,0 -4,5	On-pm-2,0-4,0-4,5			24,14		440,6									105	
Д, и г. рж. е, о е е, о е е, о		33,08		33,08	7,11	607. 9					607 9				49,5	410
	NC-5,5(e)p-4,5+	15,00		15,00	10,65	325,1										· · · · · · · · · · · · · · · · · · ·
				.25,67		575,8									-66.3	
ДМ-Рж-2,0-5,5(2)-4,5	0U-b*K-s'0-0'0-4'0	40,67		40,67	10,65	900,9					900,9		*********		56,3	460
				19, 97	11,83	360,7										
	ПС-7,0р - 4,5 т	19, 97	<u>. </u>	25,67		575,8										
ДМ-Рж-2,0-7,0-4,5	0n-Px-2,0-8,5-4,5			45,64	11,83	936,5					936,5				63.0 5.2	520
		45,64		26,38	13,01	441,3										
	∏G-8,5p-4,5 ₹	26, 38		25,67		575,8										
ΔM-p _ж -2,0-8,5-4,5	0П-Рж-2 р-8,5 -4,5	1		52,05	13,01	1017,1					1017,1	111/			69.8	<i>5</i> 70
		52,05	L							-	ал аша қарнейлағ ПП Қарнепля	, नात	7 507	C 7/ C0	96_ KA	LPM-13
										þ	KOHMP AKUMOB BE	peru £	Временьые	5-74 52	THE COORNINGS	SHUB HG
											омидроски Бэ	Ba July	asmorosu	rphpix vecob	COLD KINKE	cm Nacmag
										[робер Чернов	Teps	Moenne No	шка , шъяды Эднопроvешны	10 13	
										ļ-		T	Mormel Ha R	редотасть радлинеть, пок ражевых опора	TINOUI I	ונכוויההאנ

57

Market M								, 		Cmars	, Kr (код ед из	m -166)			Про	
Magning Pragrice			Древ	есина,	m3 (K08	ed.usm -113)							Bceso	cmava		momep	
Sar Sar			крдепош ванпы в псиопезо- впомы дия	хвайных свай- риалы для	(denoboù	kanecu- bnavei	Изделия крепеж-	6=2mm			L 75×75×8	ральной	makemakua	товая (от	сортная крупна –	COD S BO SOMM	Hamadogo I
Sample Sample				L		I			V-3								_
Amp Part 15-40-80 15-22			531400	531431	53 1000	533100	128001	097200		0.97400	093100		097100	097200	093100	571103	025644
Δη-P.κ-1,5-4,0-8,0		NG-4,0p-8,0	15,22		15,22	10,89	293,1										
Martin Martin	ДМ-Рж-1,5-4,0-8,0	On-Pж-1,5-4,0-8,0	33,67	_	33,67												
			48,89	_	48,89	10,89	846,1					846.1			-	88.0 6.2	650
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NG-5,5(2)p-8,0+	24,90	-	24,90	14,96	5373					0.0,1					
16-7,0p-8,0τ 33,44 33,44 33,44 16,59 591,9 170,0 190,	ДМ-Рж-1,5-5,5(e)-8,0	On-Pж-1,5-8,5-8,0	35,13		35,13		709 4										
Am-Par-1,5-8,5-8,0			60,03		60,03	14,96	1246.7					1246,7				100.0 7.0	700
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NG-7,0p-8,0+	33,44	_	83,44	16,59	591,9										
	ДМ-Рж-1,5-7,0-8,0	0∏-P _{ж-1} ,5-8,5-8,0	35,13	_	35,13												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			68,57	-	68,57	16,59						1801.3		<u></u>		112.0 7.8	780
		∏C-8,5p-8,0⊤	44,50		44,50	18,19											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ДМ-Рж-1,5-8,5-8,0	On-Pж-1,5-8,5-8,0	35,13	_	35.13												
			79,63	_		18,19						1662 3				124,0 87	870
		7,8-qD,4-27	15,22	_	15,22	10,89						14473					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Дм-рж-2,0-4,0-8,0	ОД-рж- г ,у-4,д-8,0	40,77	_		_											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			55,99	_	55,99		1004.0					1004.0				88,0 6,2	620
		NC-5,5(2)p-8,0T	24,90		24,90	14,96						100 1,0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ДM-Pж-2,0-5,5(2)-8,0	0n-P*-2.0-8.5-8.0	43,61	_	43,61												
ΛΜ-Ρж-2,0-8,5-8,0 133,44 — 33,44 46,59 591,9 —			68,51		68,51	14,96						14797				100,0 7,0	700
ΔΜ-Ρж-2,0-8,5-8,0 U3,61 — U3,61 — 942 U — — U534.3 — U12,0/7,8 780 ΔΜ-Ρж-2,0-8,5-8,0 U1,50 — U4,50 U3,61 — U		NG-7,0p-8,0 T	33,44		33,44	16,59						, , , , ,					
Λη-Ρж-2,0-8,5-8,0 ΠC-8,5ρ-8,0τ μμ,50 μμ,50 18,19 γ3γ.9 16,59 153μ.3	Дм-рж-2,0-7,0-8,0	On-Pж-2,0-8,5-8,0	43,61														
ПС-8,5p-8,0т 44,50 — 44,50 18,49 737 9 — 100.00			77,05			16,59						1534 3				112,0 7,8	7 80
Дм-Рж-2,0-8,5-8,0 ОП-Рж-2,0-8,5-8,0 ЧЗ,61 — ЧЗ 61 — 942 Ч — — — — — — — — — — — — — — — — — —		NG-8,5p-8,0T	44,50			18,19						.50.,0					
88,11 - 88,11 18,19 1680,3 - 124,0 8,7 870	0,8-2,8-0,8-mq-mA	ON-P*-2,0-8.5-8,0	43,61														
			88,11		88,11	18,19	1		1			'680.3				124,0 8,7	870

3 503 5-74 52 86- KAPM-14 Нач отд Корнеичук H. Kommp Akimob Reperu (1968)
Pyr ap Akimob Reperu (1966) временные искусственные сооружения на выпологильных лесовозных дорогах Вед инж Трофитова domany unany knema Выпуск 1 Однопролетные Черноб Пробер масты Латки, трубы Мосты на режевых апорах с чены и грабичным покрыти-ем Г-8 бедомость расхода тате ученый порах Капировал Персык Venansbag LNUbOUECIDHHC

Dabuam 45

		Apele	CUNG	m 3 (Kod e	7 usm -113)				Cwave ,	Kr (Ke	meu ba B				мат <i>а</i> ь Цвол	
		Necomame-				Метизы		Про	kam			Bceeo	HEVE DO AL	יפאחאפא-	Γροβυύ	5umym
мост а	эvеменша <i>Ма</i> рка	Page Ranna g neuovego- bnavei gva	риалы, для свай - хвайных поара	драраспня) (дачород (шого	нев калестран- блауеі Ппуощаще-	(десео) крепенсные	f= 8mm	δ=6mm	6=8mm	£75×75×8	массе Бауеноп g нашя-	HOMY	сортаман танколис- тобая (от 1,9 да 3,9 мм)	крупносорт	w cvox/" 3	кг жидки дарожн нефшя
					<u></u>	<u> </u>		Koð							T	Τ
		531400	531431	531000	533100	128001	002720	097100	097100	093100	am 093190 an 128001	097100	097200	093100	571103	0256
			Maci	L	леженевь	ix onopa	×	L							т	T
	NG- 5,5(1) - 4,5	10,34		10,34	5,64	148,3										<u> </u>
ДМ-Лж-5,5(1)-4,5	0n- A - 5,5(1)-4,5	7,07	_	7.07		17,4								and the same of th	20.0	
2,1 /// 0,0(1)	GIV 177K 5,0(1) 4,0	17,41	_	17,41	5,64	165,7		_			165,7				38,3 3.2	320
	NC-5,5(2)-4,5	11,62	_	11,62	5, 71	208,5										
ΔM-Λж-5,5(2)-4,5	0Π-Λж-5,5(2)-4,5	7,72	_	7,72		19,6									38,3	
		19, 34	_	19,34	5,71	228,1					228,1				36,5 3,2	320
W	ПС-7,0-4,5	16,44		16,44	6,62	238,5										
ΔM-Λж-7,0-4,5	0n-10,0-4,5	8,41		8,41		21,3						-			45,0 3.7	370
		24,85		24,85	6,62	259,8					259,8				3,7	370
	ΠC-8,5-4,5	22,70	_	22,70	7, 49	314,1										
ДМ-Лж-8,5-4,5	0n-1 xc-10,0-4,5	8,41		8,41		21 3									51,8 4,3	430
		31,11	_	31,11	7,49	335,4					335,4				7,0	100
	ПС-10,0-4,5	29, 92	_	29,92	8,38	346,4										
ΔM-Λж-10,0-4,5	0Π-Λж-10,0-4,5	, 8,41		8,41		21,3									58,5 4,8	4 80
		38,33		38, 33	8,38	367,7					367,7					
	ΠC-5,5(1)-8,0	17,76		17,76	8,72	261,2		_								
ΔM-Λж-5,5(1)-8,0	0Π-Λж-5,5(1)-8,0	10, 24		10, 24		26,7		_			287, 9				68,0 4,8	480
• •		28,00	_	28,00	8,72	287,9					207,3					
	nc-5,5(2)-8,0	20,00		20,00	8,87	3 66, <i>5</i>										
ΔM-Λж-5,5(2)-8,0	0Π-Λж-5,5(2)-8,0	44,44		11, 11		29,4					395,9				68,0 4,8	480
·		31,11		31,11	8,87	395,9					030,0		<u></u>			

FUTI Kopheùnyk Thom Han amd Kopheunyk Thum H Kanmp Akumob Teperu etter Pyk ep Akumob Teperu etter Bed unne Tpagpumaga Thum 3 503 5 - 74 52 86 - KAPM - 15 Временные искусственные сооружения на Вотоил мот Листов Выпуск 1. Однопролетные Провер Чернов 15 мосты Лотки, трубы Mochel Mohama, Marana c Managax c marana packaga mamepuanag Nehuhapag Ag

_			Ass	BCUHO,	т ³ (код ед	3 usm - 113)				Cmane,	Kr (1	koð eð usm	- 166)			татериа Прочие	
			Vecowarue-	Nacomome-			Memu361		Про	okam			Beeco	HUC/S DO N	крупнен-	Lbagon gamam	
Denyak 1	Марка	Марка	pnge gamna g ncuaveso- ncuaveso-	иород хролиных срал — Бпаvеі дуы	(деловой дравасины)	неів качесшрен bnavei Unvowame-	(gceso) Kbausochele (gceso)	6= 2mm]=6mm	6=8mm	L75×75×8		MODA GITTIO	тонколис- товая (от	крупносорт	mmos of 5 more	nonskadog
1									Koð			r	,				
			531400	531431	531000	533100	128001	097200	097100	097100	093100	go 158001	097100	097200	Q93100	571103	025611
\vdash		∏Ç- 7,0~ 8,0	28.42	- 037.13	28,42	10,20	420,7									<u> </u>	
		QΠ-Λж-1Q,Q-8,Q	12,02		12,02		35,2									90.0	500
	ΔM-Λ _ж -7,0-8,0		40,44	_	40,44	10,20	452,9					452,9				80,0 5,6	560
-		∩C-8,5 - 8,0	39, 36		39,36	11,50	560,1										
	ΔM-Λж-8,5-8,0	0η-Λ _ж -10,0-8,0	12,02		12,02		32,2									92.0	
	ДП-1/ж-0,0-0,0		51,38	_	51,38	11.50	592,3					592,3				92.0 6.4	640
		nc-10,0-8,0	51,98		51,98	12,83	614,5										
	ΔM-Λж-10,0-8,0	0/8-0,0-8,0	12,02		12,02		32,2									104,0	
			64,00		64,00	12,83	646.7					646,7				7,3	730

Объемы вспомогательных работ на мост

Высата запалнение ряжевых разработка катлованов под опор вренирующим рамно-лежневые опоры при запажения опор 1,5m, m						свайных и рамно-меженевых опорах (м²) при высате							жевых апар кондеов на-	и д раже - пи д раже -			
	H, m	ер.4,0m	€p = 5,5 - 8,5~	60 = 2.5m	8p=4,0m	ep=5,5 m	h=a,75m	h=1,00m	h = 1,25m	h=1,50 m	h=1,75 m	h = 2,00m	h=2,25m	h=2,50m	m ³	feix anap, m	δъe3∂αx, m³
	1.5	25	55				14		23	2.8	35	37	44	J O	14	21	
, ,	2,0	33	63	95	125	15 0		18							18	53	14
4,5	2,5																
	3,0	-		_													
	1,5	52	45												14	21	
	2,0	67	58	125	160	190	14	18	23	28	35	37	41	45	18	59	50
0,8	2,5	_															
1	3,0																

		T-2-						
Нач отд	Корнеичук	THE THE		3 503 5 - 74,52	86-	кДрг	7-16	
Pyn ep	укишор Перет Литор Перет Трофитово	chil		Временные искусственны автоповильных	9 <i>000</i>		פא פעו	
				Выпуск 1 Однопролетные	Cwagaa	Nucm	Domoun	
Пробер	Чернов	ipe		мосты Латки, трубы	Р	16		
				Pricme Ha in schebelt anopat c supremi ceablushem natellimem, 18-66-7; isone pochola momenu anu; cele l'enamezament sels po um 4 macm	CNULTE VEHALE AND VEHA			
		-		L	(5)		()	

Konupovan Nepchak

SA mongot

	Дре	весина,	mª (Kog Eg	23M - 113)	Сталь, . (код ед изм - 156										
	Seconame-	Лесомате-		Пиломатте- риалы	Метизы	Прокат				Всего стали					
Марка элемента	риалы для использо- вания в круглот биде	Лесомате- риалы для свай хвойных пород	Итого (деловой) древесины)		Цэделця Крепенные (всего)	8= 2 mm	S= 5 MM	8 = 8 mm	£ 75 × 75×8	В нату- ральной массе	В том ч сорп тольтолис- товая (от 4 мм)	исле по укр паменту тон колис- товая (от 19 90 39 мм)	эпненному крупносорп ная		
		•	<u> </u>												
	531400	531431	531000	533100	128001	097200	K 0 9	097100	093 100	0m 093100 90 128 001	097100	097200	093100		
		_			нα	1	М	трубы							
ДЛТ - 1,5×2	1, 69		1,69	0,02	27, 8					27,8					
				-											
					нα	2	оголовка								
ДЛО	8,22		8,22	0,020	89, 6					89, 6					
			,												
					-										
									l						

rui	Корнецчук	SKU	_				
Hay Frg	Корнецчук	THE		3 503 5 - 74 52	86 ~	KND	M_17
H KHTP	Акимов Перетц	exil	Ľ	<u></u>			
PYNTP	Якимов перетц	etual	·	временные искуственны автомобильных лесовоз	e coop	DYHEH	US HO
RELUHH	Трофимова.	XXIL		автомобильных лесовоз	ных 'д	OSOGO	ıx .
7				Выпъск! Однопролетные	Conagus	Sucm	Листов
posep	Чернов	lefs		мосты Лотки, трубы	p	17	
7				Лотки, трубы Ведомость расхода Лесомостериалов на 1n м точбы на 2 оголовка	LNUb	OJEC	TUSHE
				Knaus			