УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации – Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

29 октября 2000 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Метод фотометрического измерения концентраций трифторметансульфокислоты в атмосферном воздухе

Методические указания МУК 4.1.996—00

1. Общие положения и область применения

Настоящие методические указания устанавливают методику проведения фотометрического количественного химического анализа проб атмосферного воздуха для определения в них содержания трифторметансульфокислоты в диапазоне концентраций от 0,04 до 0.6 мг/м³.

Методические указания разработаны в соответствии с требованиями ГОСТа P8.563—96 «Методики выполнения измерений».

Методические указания предназначены для применения в лабораториях предприятий, организаций и учреждений, осуществляющих контроль за загрязнением окружающей среды и аккредитованных в установленном порядке на право проведения таких исследований.

2. Характеристика вещества

Эмпирическая формула – CF₃SO₃H Молекулярная масса – 150,08 Регистрационный номер по CAS № 1493—13—6

Издание официальное

Настоящие методические указания не могут быть полностью или частично воспроизведены, тиражированы и распространены без разрешения Департамента госсанэпиднадзора Минздрава России

Физико-химические свойства

Трифторметансульфокислота – бесцветная жидкость с резким запахом. Температура кипения – 162—164 °C, плотность – 1,7 г/см³. Растворима в воде и органических полярных растворителях.

Токсикологическая характеристика

Трифторметансульфокислота раздражающе действует на кожу, глаза.

Ориентировочно безопасный уровень воздействия (ОБУВ) – 0.05 мг/м³.

3. Погрешность измерения

Методика обеспечивает выполнение измерений трифторметансульфокислоты в атмосферном воздухе с погрешностью, не превышающей ± 17 %, при доверительной вероятности 0,95.

4. Метод измерений

Измерение массовой концентрации трифторметансульфокислоты выполняют методом фотоэлектроколориметрии.

Метод определения основан на взаимодействии трифторметансульфокислоты с метиловым фиолетовым с образованием комплекса, окрашенного в голубой цвет.

Измерение проводят при длине волны 590 нм.

Концентрирование трифторметансульфокислоты из воздуха осуществляют в дистиллированную воду.

Нижний предел измерения трифторметансульфокислоты в анализируемом объеме пробы – 1,0 мкг.

Нижний предел измерения концентрации трифторметансульфокислоты в атмосферном воздухе -0.04 мг/м³.

Определению не мешают трифторметансульфофторид, фтористый водород и ангидрид трифторметансульфокислоты при концентрациях его в атмосферном воздухе до 1,6 ПДК.

5. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

5.1. Средства измерений

Фотоэлектроколориметр КФК-2МП или любой другой, имеющий спектральный

диапазон 315-980 нм, предел измерения	
оптической плотности от 0 до 2	ΓΟCT 12083—78
Барометр-анероид БАММ-1, диапазон	
измерения 84—106 кПа	TY 25—04—1618—72
Весы аналитические 2 класса точности,	
цена деления ± 0,75 мг	ΓΟCT 24104—80E
Меры массы Г-2—210 2 класса точности	ΓΟCT 7328—82E
Секундомер 2 класса точности,	
цена деления секундной шкалы 0,2 с	ТУ 25—1894.003—90
Термометр лабораторный, цена деления 1 °C	ГОСТ 28498—90
Электроаспиратор, модель 822,	
погрешность ± 10 %	ТУ 25—11—1414—78
Колбы мерные, 2—50—2; 2—100—2	ΓΟCT 1770—74E
Пипетки мерные, вместимостью 1 и 5 см ³ ,	
2 класса точности	ΓOCT 29169—91

5.2. Вспомогательные устройства

Дистиллятор Сушильный шкаф Поглотительные приборы Рихтера	ТУ 61—1—721—79 ГОСТ 13474—79
5.3. Реактивы	

Трифторметансульфокислота, х. ч.	ТУ 2431—002—
	07623046—96
Метиловый фиолетовый, ч. д. а	ТУ 6—09—945—76
Вода дистиллированная	ГОСТ 6709—72
Спирт амиловый, ч.	ТУ 6—09—3467—79
Толуол, ч. д. а.	ΓΟCT 5789—78

6. Требования безопасности

При выполнении измерений концентраций трифторметансульфокислоты в атмосферном воздухе соблюдают следующие требования:

- 6.1. Правила техники безопасности при работе с химическими реактивами по ГОСТам 12.0.003—74 и 12.1.005—88.
- 6.2. Электробезопасность при работе с электроустановками по ГОСТу 12.1.019—79 и инструкции по эксплуатации прибора.
- 6.3. Общие требования пожаро- и взрывобезопасности по ГОСТу 12.1.004—91.
- 6.4. Все виды работ с реактивами проводят только в вытяжном шкафу при работающей вентиляции.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим и средним специальным образованием, прошедших соответствующую подготовку и имеющих навыки работы на фотоэлектроколориметре.

8. Условия измерений

При выполнении измерений соблюдают следующие условия:

- 8.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84—106 кПа и влажности воздуха не более 80 %.
- 8.2. Выполнение измерений на фотоэлектроколориметре проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, построение градуировочного графика, подготовка прибора, отбор проб.

9 1. Приготовление растворов

Для приготовления *основного стандартного раствора* 50 мг трифторметансульфокислоты вносят в колбу, вместимостью 50 см³, доводят до метки дистиллированной водой и тщательно перемешивают. Срек хранения – 1 мес.

Рабочий раствор трифторметансульфокислоты для градуировки $(C=10 \text{ мкг/см}^3): 1 \text{ см}^3$ исходного раствора помещают в мерыую колбу, вместимостью 100 см^3 , доводят объем до метки дистиллированной водой и тщательно перемешивают. Срок хранения – 1 неде-

Метиловый фиолетовый 0,05 %-ный раствор: 50 мг мети 10вого фиолетового растворяют в мерной колбе, вместимостью 100 см³, в дистиллированной воде.

Смесь толуола и амилового спирта 5 : 1: в плоскодонную колбу приливают 200 см³ толуола, 40 см³ амилового спирта и тщательно перемешивают.

9.2. Подготовка прибора

Подготовку фотоэлектроколориметра к работе проводят в соответствии с руководством по его эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость оптической плотности раствора от массы трифторметансульфокислоты, устанавливают по 5 сериям растворов для градуировки. Каждая серия состоит из 7 растворов. Растворы готовят в пробирках, вместимостью 10 см³, в соответствии с табл. 1.

Таблица 1 Растворы для установления градуировочной характеристики при определении трифторметансульфокислоты

Номер раствора для градуи- ровки	1	2	3	4	5	6	7
Объем рабочего раствора (C = 10 мкг/см ³), см ³	0	0,1	0,2	0,4	0,6	1,0	1,5
Объем дистиллированной воды, см ³	3,0	2,9	2,8	2,6	2,4	2,0	1,5
Содержание трифторметан- сульфокислоты, мкг	0	1	2	4	6	10	15

Во все пробирки прибавляют по 0,1 см³ раствора метилового фиолетового и тщательно перемешивают. Раствор из пробирки переливают в делительные воронки, прибавляют по 2 см³ смеси растворителей (толуоламиловый спирт), воронки закрывают пробкой и энергично встряхивают в течение 2 мин. После расслоения слоев водный слой удаляют и замеряют оптическую плотность экстракта в кюветах с расстоянием между рабочими гранями 3 мм при длине волны 590 нм по отношению к контрольному раствору.

Градуировочную характеристику устанавливают на средних значениях оптической плотности, вычисленных из результатов измерений 5 серий растворов для градуировки и строят градуировочный график: на ось ординат наносят значения оптических плотностей градуировочных растворов, на ось абсцисс — соответствующие им величины содержания трифторметансульфокислоты в градуировочном растворе (мкг). Проверку градуировочной характеристики проводят 1 раз в квартал и при смене партии реактивов.

9.4. Отбор проб

Отбор проб проводят согласно ГОСТу 17.2.3.01—86. Воздух со скоростью 4 дм³/мин аспирируют через два последовательно соединенных поглотительных прибора Рихтера, содержащих 5 см³ воды в каждом, в течение 10 мин. После отбора пробы концы поглотитель-

ных сосудов фиксируют стеклянными заглушками. Срок хранения пробы – не более 1 суток.

10. Выполнение измерений

После отбора пробы из каждого поглотительного прибора на анализ в пробирки отбирают по 3 см³ раствора пробы, которые обрабатывают в соответствии с п. 9.3 и анализируют раздельно по отношению к холостой пробе.

Содержание трифторметансульфокислоты (мкг) в пробе находят с помощью градуировочной характеристики, суммируя результаты анализов из первого и второго поглотительных приборов.

11. Вычисление результатов измерений

Концентрацию (С) трифторметансульфокислоты в воздухе (мг/м³) вычисляют по формуле:

$$C = \frac{m \cdot V}{V_1 \cdot V_0}$$
, где

m – суммарное содержание трифторметансульфокислоты, найденное по градуировочной характеристике, мкг;

V – общий объем раствора пробы, см³;

 V_1 – объем пробы, отобранной на анализ, см³;

 V_0 – объем пробы воздуха, приведенный к нормальным условиям, дм 3 .

$$V_0 = \frac{V_t \cdot 273 \cdot P}{(273 + t) \cdot 760}$$
, где

 V_{i} – объем пробы воздуха, дм³;

P – атмосферное давление при отборе проб воздуха, мм рт. ст.; t – температура воздуха в местах отбора проб, °C.

12. Оформление результатов

Результат количественного анализа представляют в виде:

$$C \pm \Delta$$
, мг/м³, $P = 0.95$, где

 Δ – характеристика погрешности; значение Δ = 0,17 X.

13. Контроль погрешности методики

Таблица 2

Значения характеристики погрешности, норматива оперативного контроля погрешности и норматива оперативного контроля воспроизводимости

Диапазон	Наименование метрологической характеристики				
определяемых концентраций трифторметан- сульфокислоты, мг/м ³	Характеристика по- грешности, мг/м ³ (P = 0,95)	Норматив оперативного контроля погрешности, K , мг/м 3 ($P = 0.90$, $m = 3$)	Норматив оперативного контроля воспроизводимости, <i>D</i> , мг/м ³ (<i>P</i> = 0,95, <i>m</i> = 2)		
от 0,04—0,6	0,17 X	0,143 X	0,077 X		

Метрологические характеристики приведены в виде зависимости от массовой концентрации определяемого компонента (X) в мг/м^3 в пробе.

13.1. Оперативный контроль воспроизводимости

Оперативный контроль воспроизводимости проводят с использованием рабочих проб, отобранных и проанализированных разными операторами в точном соответствии с прописью методики, т. е. получают два результата анализа, выполненных разными операторами с использованием разных наборов мерной посуды и реактивов. Два средних результата анализа не должны отличаться друг от друга на величину допускаемых расхождений между результатами анализа:

$$\left|\overline{C}_1 - \overline{C}_2 \right| \le D$$
 , где $\; \overline{C} = \frac{C_1 + C_2}{2} \;$

 C_1 и C_2 – результат параллельных определений одного оператора, мг/м³;

 \overline{C}_1 и \overline{C}_2 – средние результаты определений, выполненные разными операторами, мг/м³;

D – норматив оперативного контроля воспроизводимости, мг/м².

Норматив D рассчитывают по формуле:

$$D = 2,77\sigma (\Delta)^{\circ}$$
, где

 $\sigma (\Delta)^{\circ}$ – показатель воспроизводимости (характеристика случайной составляющей погрешности), мг/м³.

Разница в результатах анализа не должна превышать допустимого значения D, указанного в таблице 2.

При превышении норматива воспроизводимости выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

13.2. Оперативный контроль погрешности

Оперативный контроль точности проводят с использованием аттестованной смеси и он состоит в сравнении результата контрольной процедуры $K\kappa$, равного разности между контрольным измерением трифторметансульфокислоты в аттестованной смеси (\overline{X}) и его аттестованным значением (C), с нормативом ВОК точности K (см. табл. 2).

Точность контрольного измерения (\overline{X}), а также точность результатов анализа рабочих проб признают удовлетворительными, если выполняется условие

$$K\kappa = (\overline{X} - C) \le K$$
, где

K – норматив оперативного контроля погрешности, равный $0.143~{\rm X}.$

14. Нормы затрат времени на анализ

Для проведения серии анализов из 3 проб требуется 1 час.