МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ

PMΓ 77— 2005

Государственная система обеспечения единства измерений

ИНТЕГРАЛЬНЫЕ ХАРАКТЕРИСТИКИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ В ОХРАНЕ ТРУДА

Методика выполнения измерений

Издание официальное

Москва Стандартинформ 2005

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены»

Сведения о рекомендациях

- 1 РАЗРАБОТАНЫ Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП ВНИИОФИ)
 - 2 ВНЕСЕНЫ Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТЫ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол по переписке № 19, от 1 февраля 2005 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Армстандарт
Беларусь	BY	Госстандарт Республики Беларусь
Грузия	GE	Грузстандарт
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Федеральное агентство по техническому регулированию и метрологии
Таджикистан	TJ	Таджикстандарт
Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узстандарт
Украина	UA UA	Госпотребстандарт Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 23 марта 2005 г. № 61-ст рекомендации по межгосударственной стандартизации РМГ 77—2005 введены в действие непосредственно в качестве рекомендаций по метрологии Российской Федерации с 1 сентября 2005 г.

5 ВВЕДЕНЫ ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящих рекомендаций, изменениях и поправках к ним, а также тексты изменений и поправок публикуются в информационном указателе «Национальные стандарты»

© Стандартинформ, 2005

В Российской Федерации настоящие рекомендации не могут быть полностью или частично воспроизведены, тиражированы и распространены в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Государственная система обеспечения единства измерений

ИНТЕГРАЛЬНЫЕ ХАРАКТЕРИСТИКИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ В ОХРАНЕ ТРУДА

Методика выполнения измерений

State system for ensuring the uniformity of measurements. Integral characteristics of ultraviolet radiation in trade safety.

Methods for measurements

Дата введения — 2005—09—01

1 Область применения

Настоящие рекомендации распространяются на методику выполнения измерений интегральных по спектру характеристик источников ультрафиолетового излучения (далее — УФ облучатели), применяемых на производстве, а также оценки эритемного и опасного воздействия УФ излучения. В качестве средств измерений интегральных характеристик источников УФ излучения в охране труда используются радиометры, спектрорадиометры, дозиметры (далее — приборы), обеспечивающие измерение энергетической освещенности (ЭО) и энергетической экспозиции (ЭЭ) в диапазонах длин волн УФ-А (0,315—0,400 мкм), УФ-В (0,280—0,315 мкм), УФ-С (0,20—0,28 мкм), в диапазонах ЭО соответственно от 0,1 до 200 Вт/м², от 0,01 до 20 Вт/м², от 0,01 до 20 Вт/м², от 0,01 до 20 Дж/м², от 0,01 до 20 Дж/м².

2 Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.195—89 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости, спектральной плотности силы излучения и спектральной плотности энергетической освещенности в диапазоне длин волн 0,25÷25,00 мкм; силы излучения и энергетической освещенности в диапазоне длин волн 0.2÷25.0 мкм

ГОСТ 8.197—2005 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости в диапазоне длин волн от 0,04 до 0,25 мкм

ГОСТ 8.207—76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8.552—2001 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений потока излучения и энергетической освещенности в диапазоне длин волн от 0,03 до 0,40 мкм

ГОСТ 427—75 Линейки измерительные металлические. Технические условия

ГОСТ 9411—91 Стекло оптическое цветное. Технические условия

ГОСТ 15130—86 Стекло кварцевое оптическое. Технические условия

Примечание — При пользовании настоящими рекомендациями целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящими рекомендациями следует руководствоваться замененым (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяют в части, не затрагивающей эту ссылку.

3 Требования к погрешности измерений

Границы относительной погрешности результата измерений интегральных характеристик УФ излучения по данной методике для непрерывного и импульсного излучения составляют ± 10 %.

4 Средства измерений и вспомогательные устройства

При выполнении измерений применяют следующие средства измерений и вспомогательные устройства:

а) Многоканальный радиометр «Аргус», включающий в себя радиометры УФ-А «Аргус-04», УФ-В «Аргус-05», УФ-С «Аргус-06» или другие многоканальные УФ радиометры (спектрорадиометры), со следующими характеристиками:

- диапазон длин волн, мкм	,2—0,4
- диапазон измерений энергетической освещенности, Вт/м ² : УФ-А (0,315—0,400 мкм)	,01—20,0
- основная относительная погрешность, %	,0;
 набор образцов цветных стекол толщиной 3 мм, ГОСТ 9411; в) кварцевый нейтральный ослабитель КУ-1, τ = 0,1 	
- кварцевое оптическое стекло, ГОСТ 15130; г) измерительную линейку, ГОСТ 427:	
- основная относительная погрешность, %	

Пр е средства измерений должны быть поверены органом Государственной метрологической службы.

5 Метод измерений

Метод измерений интегральных характеристик УФ излучения основан на прямых измерениях при преобразовании потока излучения в электрический сигнал радиометра при выполнении условий спектральной и угловой коррекции чувствительности фотопреобразователя.

6 Требования безопасности

Измерения характеристик УФ излучения могут проводить операторы, прошедшие инструктаж по безопасности труда при работе с УФ облучателями в соответствии с санитарными нормами и правилами, действующими в государствах — участниках Содружества независимых государств.

7 Требования к квалификации операторов

К выполнению измерений допускают лиц, изучивших инструкции по эксплуатации основных и вспомогательных средств измерений, требования настоящей методики, а также прошедших инструктаж по безопасности труда при эксплуатации УФ облучателя.

8 Условия измерений

При выполнении измерений соблюдают следующие условия: - относительная влажность воздуха при температуре 20 °C, не более 80 %

9 Подготовка к проведению измерений

При подготовке к проведению измерений необходимо выполнить следующие работы:

- 9.1 Включить и подготовить к работе прибор и УФ облучатель в соответствии с их инструкциями по эксплуатации.
- 9.2 Проверить состояние оптики прибора. На поверхности оптических деталей не допускаются царапины, помутнения и пятна.

10 Порядок проведения измерений

- 10.1 Для измерения ЭО УФ излучения выполняют следующие операции:
- 10.1.1 Устанавливают измерительный блок прибора в рабочую точку облучаемой поверхности и ориентируют его параллельно облучаемой поверхности.
- 10.1.2 Определяют угловые размеры УФ облучателя в градусах горизонтальный угол ϕ и вертикальный угол ψ по формулам:

$$\varphi = \arctan(L/R); \tag{1}$$

$$\psi = \arctan(H/R), \tag{2}$$

где L — длина УФ облучателя, мм;

H— ширина УФ облучателя, мм;

R — расстояние от измерительного блока прибора до центра медицинского облучателя, мм.

Например, для лампы ДБ-30 (L = 800 мм, H = 25 мм) R должно быть 1000 мм.

- 10.1.3 Включают и прогревают в течение 10 мин УФ облучатель.
- 10.1.4 Юстируют измерительный блок прибора по углу в горизонтальной и вертикальной плоскостях для достижения максимального отсчета.
- 10.1.5 Регистрируют показания каналов прибора, соответствующие интегральной ЭО $E_{i\,({\rm A})},\,E_{i\,({\rm B})},\,E_{i\,({\rm C})}$ в ваттах на квадратный метр УФ облучателя в диапазонах соответственно УФ-А, УФ-В и УФ-С. Если сигналы превышают верхнее значение диапазона измерений прибора, необходимо установить на измерительный блок нейтральный кварцевый ослабитель.
- 10.1.6 Для оценки погрешности измерений ЭО, обусловленной влиянием потока инфракрасного излучения, при измерении характеристик тепловых излучателей по ГОСТ 8.195, устанавливают на измерительный блок прибора светофильтр типа ЖС-16 или используют ИК радиометр. Показания прибора не должны превышать 5 % значений ЭО, полученных по 10.1.5. В случае, если показания превышают 5 %, то прибор не может быть использован для измерений ЭО УФ излучения.
- 10.1.7 Устанавливают поочередно на измерительный блок прибора светофильтр типа БС-8 для диапазона УФ-А, светофильтр типа ЖС-11 для диапазона УФ-В, светофильтр типа ЖС-12 для диапазона УФ-С и регистрируют сигналы каналов прибора, соответствующие интегральной ЭО $E_{j\,\mathrm{(A)}}$, $E_{j\,\mathrm{(C)}}$ в ваттах на квадратный метр УФ облучателя в диапазонах соответственно УФ-А, УФ-В и УФ-С по ГОСТ 8.552.
- 10.1.8 По результатам измерений угловых размеров УФ облучателя выбирают относительный коэффициент угловой коррекции $K(\varphi, \psi)$, приведенный в паспорте прибора. В случае, если в паспорте прибора отсутствует $K(\varphi, \psi)$, необходимо обратиться к разработчику прибора.
- 10.1.9 Значения ЭО УФ облучателя E_{A} , E_{B} , E_{C} в диапазонах УФ-А, УФ-В и УФ-С соответственно рассчитывают по формулам:

$$E_{\mathbf{A}} = (E_{i (\mathbf{A})} - E_{j (\mathbf{A})}) \ K(\varphi, \psi) / K \tau_{\mathbf{A}}; \tag{3}$$

$$E_{\rm B} = (E_{i\,({\rm B})} - E_{j\,({\rm B})}) \ K(\varphi, \psi)/K \tau_{\rm B};$$
 (4)

$$E_{\rm C} = (E_{i\,({\rm C})} - E_{j\,({\rm C})}) \ K(\varphi, \psi) / K \tau_{\rm C},$$
 (5)

где $K\tau_{\mathsf{A}},\,K\tau_{\mathsf{B}}$ и $K\tau_{\mathsf{C}}$ — интегральные коэффициенты пропускания кварцевого нейтрального ослабителя в диапазонах соответственно УФ-А, УФ-В и УФ-С, указанные в паспорте на ослабитель.

10.1.10 Для оценки среднего квадратического отклонения (СКО) результатов измерений повторяют операции 10.1.4—10.1.9 пять раз.

10.2 Энергетическую экспозицию УФ излучения $Q_{\rm C}$ в джоулях на квадратный метр определяют интегрированием ЭО по времени t по ГОСТ 8.197 в пределах длительности экспонирования T по формуле

$$Q_{\rm C} = 10^{-6} \int_{\lambda_2}^{\lambda_1} \int_{0}^{T} E(\lambda, t) dt d\lambda, \tag{6}$$

где λ — длина волны, мкм;

 $\lambda_{1} - \lambda_{2}$ — границы рабочего спектрального диапазона.

- 10.3 Для определения эритемной и опасной эффективной освещенности (гигиенической оценки) $E_{
 m eff}$ выполняют следующие операции:
- 10.3.1 Регистрируют показания каналов прибора, как указано в 10.1.5 и 10.1.7, и определяют спектральную плотность энергетической освещенности (СПЭО) $E(\lambda)$ в ваттах на кубический метр по формуле

$$E(\lambda) = [i(\lambda) - j(\lambda)]K(\varphi, \psi)/K\tau, \tag{7}$$

где λ — длина волны, мкм;

 $K(\varphi, \psi)$ — по 10.1.8;

 $K\tau$ — по 10.1.9.

10.3.2 Значения опасной $E_{\rm eff(TLV)}$ и эритемной $E_{\rm eff(ER)}$ эффективной освещенности рассчитывают интегрированием СПЭО $E(\lambda)$ с учетом табулированных спектральных коэффициентов относительной опасной и эритемной эффективности УФ излучения $K_{\rm eff(TLV)}(\lambda)$ и $K_{\rm eff(ER)}(\lambda)$ по формулам:

$$E_{\text{eff(TLV)}} = 10^{-6} \int_{0.2}^{0.4} E(\lambda) K_{\text{eff (TLV)}}(\lambda) d\lambda ; \qquad (8)$$

$$E_{\text{eff(ER)}} = 10^{-6} \int_{0.2}^{0.4} E(\lambda) K_{\text{eff (ER)}}(\lambda) d\lambda .$$
 (9)

Табулированные значения $K_{\mathrm{eff}(\mathsf{TLV})}\left(\lambda\right)$ и $K_{\mathrm{eff}(\mathsf{ER})}\left(\lambda\right)$ приведены в приложении А.

10.4 Импульсные УФ облучатели характеризуются средней энергетической освещенностью, которую измеряют, как указано в 10.1.5—10.1.9. Среднюю ЭО импульсного периодического излучения $E_{\rm cp}$ в ваттах на квадратный метр за период T определяют интегрированием СПЭО E (λ , t) по длинам волн и по времени t по формуле

$$E_{\rm cp} = 10^{-6} \ T^{-1} \int_{0.2}^{0.28} \int_{0}^{T} E(\lambda, t) dt \, d\lambda \,. \tag{10}$$

11 Контроль погрешности результатов измерений

Оценку погрешности результатов измерений проводят по ГОСТ 8.207 в последовательности:

11.1 Оценивают в соответствии с 10.1.10 СКО результатов измерений ЭО и ЭЭ — $S_{\rm o}$, %, по формуле

$$S_{o} = \frac{\left[\sum_{i=1}^{n} (\overline{E} - E_{i})^{2}\right]^{1/2}}{\overline{E} [n(n-1)]^{1/2}}.$$
(11)

где E_i — результат независимого измерения;

 \overline{E} — среднее арифметическое значение результатов пяти измерений (n = 5).

11.2 Границы относительной неисключенной систематической погрешности результатов измерений Θ_0 , %, определяют при доверительной вероятности P = 0,95 по формуле

$$\Theta_0 = 1,1 \ (\Theta_1^2 + \Theta_2^2 + \Theta_3^2 + \Theta_4^2)^{1/2},$$
 (12)

- где Θ_1 относительная погрешность рабочего средства измерений (из свидетельства о поверке); значение Θ_1 не должно превышать 8 %;
 - Θ_2 относительная погрешность определения интегральной ЭО ультрафиолетового излучения в диапазонах соответственно УФ-А, УФ-В и УФ-С; значение Θ_2 не должно превышать 3 %;
 - Θ_3 погрешность определения коэффициента угловой коррекции; значение Θ_3 не должно превышать 2 %;
 - Θ_4 погрешность определения пропускания кварцевого ослабителя; значение Θ_4 не должно превышать 2 %.
- 11.3 Границы основной относительной погрешности $\Delta_{\rm o}$ результатов измерений рассчитывают по формуле

$$\Delta_0 = (\Theta_0^2 / 3 + S_0^2)^{1/2}. \tag{13}$$

12 Оформление результатов измерений

- 12.1 Результаты измерений оформляют по форме, принятой на предприятии, проводившем измерения.
 - 12.2 Запись о результатах измерений должна содержать:
 - дату проведения измерений;
 - тип и номер средства измерений (прибора):
 - цель проведения измерений;
 - геометрические размеры УФ облучателя;
 - расстояние от центра УФ облучателя до прибора;
 - угловые размеры УФ облучателя;
 - значения ЭО, значения эффективной опасной и эритемной освещенности;
 - границы относительной неисключенной систематической погрешности результатов измерений;
 - границы основной относительной погрешности результатов измерений;
 - фамилию и подпись оператора.

Приложение А (обязательное)

Значения спектрального коэффициента относительной опасной и эритемной эффективности УФ излучения

Таблица А.1

Длина волны, нм	Коэффициент $K_{ m eff(TLV)}$ (λ), учитывающий опасное воздействие УФ излучения по критерию TLV	Коэффициент $K_{\rm eff(ER)}$ (λ), учитывающий эритемное воздействие УФ излучения	Длина волны, нм	Коэффициент $K_{\mathrm{eff}(\mathrm{TLV})}$ (λ), учитывающий опасное воздействие УФ излучения по критерию TLV	Коэффициент $K_{\rm eff(ER)}$ (λ), учитывающий эритемное воздействие УФ излучения
200	0,030	1,000	250	0,430	1,000
205	0,051	1,000	255	0,520	1,000
210	0,075	1,000	260	0,650	1,000
215	0,095	1,000	265	0,810	1,000
220	0,120	1,000	270	1,000	1,000
225	0,150	1,000	275	0,960	1,000
230	0,190	1,000	280	0,880	1,000
235	0,240	1,000	285	0,770	1,000
240	0,300	1,000	290	0,640	1,000
245	0,360	1,000	295	0,540	1,000

PMΓ 77—2005

Окончание таблицы А.1

Длина волны, нм	Коэффициент $K_{\mathrm{eff}(TLV)}$ (λ), учитывающий опасное воздействие УФ излучения по критерию TLV	Коэффициент $K_{\mathrm{eff}(\mathrm{ER})}$ (λ), учитывающий эритемное воздействие УФ излучения	Длина волны, нм	Коэффициент $K_{\rm eff(TLV)}$ (λ), учитывающий опасное воздействие УФ излучения по критерию TLV	Коэффициент $K_{\mathrm{eff}(\mathrm{ER})}$ (λ), учитывающий эритемное воздействие УФ излучения
300	0,300	0,830	335	0,000	0,004
305	0,060	0,330	340	0,000	0,003
310	0,015	0,110	345	0,000	0,0025
315	0,003	0,018	350	0,000	0,002
320	0,001	0,010	355	0,000	0,0017
325	0,000	0,007	360	0.000	0.0014
330	0,000	0,005		,	2,3011

УДК 543.52.535.214.535.241:535.8:006.354

OKC 17.020

T84.10

Ключевые слова: энергетическая освещенность, спектральная чувствительность, средства измерений, ультрафиолетовое излучение, радиометр, спектрорадиометр, бактерицидные УФ облучатели

Рекомендации по межгосударственной стандартизации

Государственная система обеспечения единства измерений

ИНТЕГРАЛЬНЫЕ ХАРАКТЕРИСТИКИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ В ОХРАНЕ ТРУДА

Методика выполнения измерений

PMC 77-2005

БЗ 9-2002/16

Редактор Л.В. Афанасенко Технический редактор О.Н. Власова Корректор М.И. Першина Компьютерная верстка Л.А. Круговой

Сдано в набор 15.04.2005. Подписано в печать 03.05.2005. Формат 60×84¹/₈. Бумага офсетная. Гарнитура Arial. Печать офсетная. Усл. печ. л. 0,93. Уч.-изд. л. 0,75. Тираж 266 экз. Зак. 259. Изд. № 3324/4. С 1000.