ПРАВИТЕЛЬСТВО МОСКВЫ

КОМПЛЕКС АРХИТЕКТУРЫ, СТРОИТЕЛЬСТВА, РАЗВИТИЯ И РЕКОНСТРУКЦИИ ГОРОДА ГУП «НИИМосстрой»

ТЕХНИЧЕСКИЕ РЕКОМЕНДАЦИИ

по производству земляных работ в дорожном строительстве, при устройстве подземных инженерных сетей, при обратной засыпке котлованов, траншей, пазух

TP 145-03

Москва - 2004

ПРАВИТЕЛЬСТВО МОСКВЫ

КОМПЛЕКС АРХИТЕКТУРЫ, СТРОИТЕЛЬСТВА, РАЗВИТИЯ И РЕКОНСТРУКЦИИ ГОРОДА ГУП «НИИМосстрой»

ТЕХНИЧЕСКИЕ РЕКОМЕНДАЦИИ

по производству земляных работ в дорожном строительстве, при устройстве подземных инженерных сетей, при обратной засыпке котлованов, траншей, пазух

TP 145-03

«Технические рекомендации по производству земляных работ в дорожном строительстве при обратной засыпке котлованов, траншей, пазух разработаны кандидатами технических наук Л.В.Городецкий, Р.И.Бега, ведущим инженером В.Ф.Деминым, (лаборатория дорожного строительства ГУП «НИИМосстрой»), Л.И.Зинченко (ООО «Оптим инжиниринг»).

В Технических рекомендациях обобщен опыт строительных организаций г.Москвы

Технические рекомендации согласованы с ОАО «Инждорстрой», ОАО «Гордорстрой», ООО «ТОЗА».

Комплекс архитектуры, строительства, развития	Технические рекомендации по производству земляных работ в дорожном строительстве, при устройстве подземных инженерных сетей, при обратной засыпке котлованов, траншей, пазух	впервые
	To The Desire of	

1. ОБШИЕ ПОЛОЖЕНИЯ

Технические рекомендации распространяются на производство земляных работ при строительстве магистральных и внутриквартальных дорог, при устройстве подземных инженерных сетей в г. Москве, а также на работы при обратной засыпке котлованов, траншей, пазух и др.

Технические рекомендации распространяются также на работы по уплотнению грунта после восстановительного ремонта подземных инженерных сетей в зоне проезжей части дороги.

Технические рекомендации предназначены для практического руководства при выполнении земляных работ с использованием современных средств механизации отечественного производства.

Утверждены: Начальник Управления научно— технической политики в строительной отрасли	Дата введения в действие
А.Н.Дмитриев	
 «З» декабря 2003 г.	«1» марта 2004 г.

2. ТРЕБОВАНИЯ К ПРИМЕНЯЕМЫМ ГРУНТАМ

2.1 УСТРОЙСТВО НАСЫПЕЙ ЗЕМЛЯНОГО ПОЛОТНА ДОРОГ

- 2.1.1. Грунты, применяемые для возведения насыпей, должны обеспечивать прочность и устойчивость земляного полотна дорожной одежды.
- 2.1.2. Для возведения насыпей должны применяться грунты, состояние которых под влиянием природных факторов практически не изменяется или изменяется незначительно и не влияет на прочность и устойчивость земляного полотна. К ним следует отнести применяемые в г.Москве песчаные грунты, за исключением мелких недренирующих и пылеватых песков, (табл.2.1.) и супеси легкие крупные (табл.2.2.).
- 2.1.3. Глинистые грунты допускается применять для отсыпки нижней части насыпи. Они подразделяются на виды и разновидности с учетом их зернового состава и пластичности (см. табл.2.2.). В случае расхождения вида грунта, устанавливаемого по содержанию песчаных частиц и по числу пластичности, следует принимать наименование грунта, соответствующее числу пластичности.
- 2.1.4. Верхнюю часть земляного полотна на 1,2 м от поверхности цементобетонного покрытия и на 1,0 м от поверхности асфальтобетонного покрытия следует сооружать из непучинистых или слабопучинистых грунтов (песчаные и легкие супесчаные грунты).

При отсутствии таких грунтов необходимо производить укрепление верхнего слоя грунта земляного полотна или устраивать морозозащитные слои.

2.1.5. При возведении насыпей из неоднородных грунтов отсыпка должна производиться послойно в следующем порядке. менее дренирующие грунты укладываются в нижнюю часть насыпи, более дренирующие – в верхние слои. В отдельных случаях для защиты насыпи от воздействия

Таблица 2.1.

Вид грунта	Содержание частиц в % от общей массы сухого грунта		
Песок гравелистый	Масса частиц крупнее 2 мм составляет более 25%		
Песок крупный	Масса частиц крупнее 0,5 мм составляет более 50%		
Песок средней крупности	Масса частиц крупнее 0,25 мм составляет более 50%		
Песок мелкий	Масса частиц крупнее 0,1 мм составляет более 75%		
Песок пылеватый	Масса частиц крупнее 0,1 мм составляет менее 75%		

Таблица 2.2.

Вид грунта Разновидности грунтов		Содержание песчаных частиц размерами от 2 до 0,5 мм в % по массе	Число пластич- ности Wn	
	Легкая крупная	>50 ^{x)}	1< W _n <7	
C	Легкая	>50		
Супесь	Пылеватая	20-50		
	Тяжелая пылеватая	<20	}	
	Легкий	>50	7< W _a <12	
C	Легкий пылеватый	<40		
Суглинок Тяжелый		ый >50		
	Тяжелый пылеватый	<40		
Глина	Песчанистая	40	1< W _n <7	
Пылеватая		Меньше, чем пылеватых разм. 0,005-0,005мм	17< W _n <27	
	Жирная	Не нормируется	W _n >27	

^{х)} Для супесей легких крупных учитывается содержание частиц размером 2-0,25 мм.

грунтовых вод в нижней её части устраиваются отдельные слои из хорошо дренирующих грунтов или укладываются водонепроницаемые материалы.

- 2.1.6. Влажность песчаных и глинистых грунтов, укладываемых в насыпь и подлежащих уплотнению, должна быть оптимальной (W_o) или близкой к ней. Если естественная влажность применяемых глинистых грунтов окажется ниже $0.9W_o$ и песков менее 4% необходимо производить увлажнение их до получения оптимальной влажности.
- 2.1.7. Максимальная допустимая влажность грунтов (W_{np}), применяемых для устройства насыпи, при которой будет обеспечена требуемая плотность, может быть определена по формуле:

$$W_{mp} = K_v W_o$$
,

где K_y – коэффициент «переувлажнения» принимаемый по табл.2.3.;

W_o – оптимальная влажность в % для данного грунта.

Таблица 2.3

Разновидность грунтов	Коэффициент «переувлажнения»
Пески пылеватые, супеси легкие крупные	1,35
Супеси легкие и пылеватые	1,25
Супеси тяжелые пылеватые, суглинки легкие и лег-	1,15
кие пылеватые	
Суглинки тяжелые и тяжелые пылеватые	1,05

- 2.1.8. Для устройства насыпей могут быть применены также отходы промышленных предприятий (шлаки, горелые формовочные земли, золо-шлаковые смеси). Слои насыпи, в которые могут укладываться отходы, зависят от их состава, местных условий и определяются проектом.
 - 2.2. Обратная засыпка траншей и котлованов.
- 2.2.1. Обратные засыпки выполняются из глинистых, песчаных и крупнообломочных грунтов. Могут применяться отходы промышленности (шлаки, золы, щебень).

Грунты обратных засыпок условно подразделяются на связные (содержание глинистых частиц более 12%), малосвязные (4-11%) и несвязные (менее 3%).

- 2.2.2. Выбор вида грунта для засыпки траншей производится в зависимости от расположения траншей на городской территории:
- засыпка траншей в пределах проезжей части дорог с усовершенствованными покрытиями капитального типа должна выполняться из песчаных или крупнообломочных грунтов;
- засыпка траншей, расположенных вне проезжей части (на газонах, скверах), производится грунтами, вынутыми из траншей, или другими местными грунтами(связными или малосвязными), не содержащими древесных остатков и гниющих включений.

При наличии указанных грунтов на месте строительства следует отдавать предпочтение песчаным, гравийным и щебеночным грунтам.

- 2.2.3. Оценка строительных свойств грунтов производится по их основным физико-механическим характеристикам, указанным в табл. 2.4.
- 2.2.4 Местные суглинистые грунты труднее поддаются уплотнению по сравнению с песчаными и крупнообломочными грунтами, но после уплотнения при оптимальной влажности обладают одинаковой величиной морозных деформаций с окружающим грунтом и достаточной несущей способностью.
- 2.2.5. Применение для обратных засыпок пылеватых грунтов нежелательно, так как вследствие плохой уплотняемости они имеют низкую плотность и при промерзании склонны к пучению.
 - 2.2.6. Песчаные и глинистые грунты с повышенным содержанием органических веществ (более 3-5%) и водорастворимых солей (более 0,3% по массе) нельзя использовать для устройства обратных засыпок.

Основные характеристики	Грунты			
Основные характеристики	крупнообломочные	песчаные	глинистые	
Плотность (объемная масса) скелета	+	+	+	
Пластичность	•	•	+	
Зерновой состав	+	+	+	
Содержание водорастворимых солей	+	+	+	
Содержание органических веществ	+	+	+	
Естественная влажность	-	+	+	
Коэффициент фильтрации	+	+	+	

Примечания:

- В таблице знак «плюс» обозначает необходимость иметь соответственную характеристику, знак «минус» -- характеристика не требуется.
- К крупнообломочным грунтам относятся несцементированные грунты, содержащие более 50% по массе частиц размером более 2 мм.
- 3. Объемная масса крупнообломочных и песчаных грунтов определяется при рыхлом и плотном состоянии.
 - 3. МАШИНЫ И МЕХАНИЗМЫ ДЛЯ ПРОИЗВОДСТВА ЗЕМЛЯНЫХ РАБОТ В ДОРОЖНОМ СТРОИТЕЛЬСТВЕ, ПРИ УСТРОЙСТВЕ ПОДЗЕМНЫХ ИНЖЕНЕРНЫХ СЕТЕЙ, ПРИ ОБРАТНОЙ ЗАСЫПКЕ КОТЛОВАНОВ, ТРАНШЕЙ, ПАЗУХ
- 3.1. Основные типы выпускаемых отечественной промышленностью машин для выполнения земляных работ и рекомендуемых для применения в Московском строительстве приведены в приложениях 5-13.
- 3.2 Освоение строительного объекта начинается с вертикальной планировки территории, которая заключается в улучшении существующего рельефа; создании спланированной поверхности, отвечающей требованиям

благоустройства; обеспечении по улицам и дорогам продольных уклонов, допустимых для движущегося транспорта; отводе поверхностного стока и прокладке подземных сетей без излишнего их заглубления.

- 3.3. Вертикальную планировку можно производить экскаваторами, в т.ч. одноковшовыми экскаваторами с гидромолотами, бульдозерами и бульдозерами-рыхлителями, автогрейдерами, скреперами. Средства механизации выбирают в зависимости от времени года, типа земляного полотна, его вертикальных отметок, способа производства работ, дальности перемещения грунта, сосредоточенности земляных масс и свойств грунта: плотности, влажности и степени применения.
- 3.4. Группы основных видов грунтов по трудности их разработки представлены в таблице 3.1.
- 3.5. Для разработки выемок и возведения насыпей при незначительных объемах работ (до 20 тыс.м³) целесообразно применять одноковшовые экскаваторы с вместимостью ковша до 0.5 м^3 ; при больших объемах (свыше 20 тыс.м^3) с вместимостью ковша 1.0 м^3 и более.

Бульдозеры применяются на участках производства работ с неглубокими выемками (до 1,0 м) и насыпями (до 1,2 м), а также для перемещения грунта в насыпь на расстояние до 100 м.

Бульдозеры с рыхлительным оборудованием применяются для рыхления и перемещения мерзлых грунтов и трещиноватых горных пород при температурах до $-40^{\circ}-60^{\circ}$ C.

Автогрейдеры используются для землеройно-профилировочных работ, планировки откосов, выемок и насыпей, устройства корыта дороги и боковых канав.

Скреперы могут использоваться при возведении насыпей высотой более 1 м и при разработке выемок глубиной до 2,0 м. В условиях московского строительства скреперы находят ограниченное применение.

3.6. Для рытья траншей, в т.ч. в мерзлых грунтах, при устройстве подземных инженерных сетей применяют экскаваторы траншейные цепные и роторные, в стесненных условиях применяют одноковшовые экскаваторы с различной вместимостью ковша в зависимости от ширины и глубины транцеи.

Таблица 3.1.

	Плотность	Экскав	аторами	Скрепе-	Бульдо- зерами	Грейде-
Грунт	грунта, т/м ³	одноков- шовыми	многоков- щовыми	рами		рами
Растительный	1,2	I	I	I	I	I
Растительный с корнями	1,2	I	и	11	n	-
Растительный с щебнем	1,4	I	11	n	II	-
Песок	1,6	I	II	n	п	u
Супесок	1,65	1	II	П	п	ш
Строительный мусор	1,8	п	-	-	п	_
Суглинок	1,7	1	1	I	I	I
Сулинок со щебнем	1,95	m	-	-	н	- !
Глина юрская	1,8	II	п	II	II	и
Глина ломовая	2,15	IV	-	-	m	-
Мел плотный	1,9	V	-	-	-	-
Скальные породы		VI	-			-

<u>Примечание.</u> Таблица 3.1. приведена из Справочника строителя— Земляные работы. М. Стройиздат, 1984 г., с.21.

4. МАШИНЫ И МЕХАНИЗМЫ ДЛЯ УПЛОТНЕНИЯ ГРУНТА

4.1. ЗЕМЛЯНОЕ ПОЛОТНО ДОРОГИ.

- 4.1.1. Долговечность дорожных одежд во многом зависит от равномерной и достаточной степени уплотнения грунта земляного полотна, в том числе обратной засыпки траншей и котлованов, проходящих под проезжей частью.
- 4.1.2. Выбор механизма для уплотнения грунта земляного полотна зависит от вида и влажности грунта, объема работ, толщины отсыпаемого слоя.
- 4.1.3. Уплотнение грунта земляного полотна дорог может осуществляться укаткой, трамбованием, вибрированием.

Рекомендуемые катки, гидромолоты, виброуплотнители приведены в приложениях 11, 7,12 соответственно

- 4.2. ОБРАТНАЯ ЗАСЫПКА ТРАНШЕЙ И КОТЛОВАНОВ.
- 4.2.1. Уплотнение грунта обратных засыпок должно производиться послойно.

Для послойного уплотнения грунта обратных засыпок следует применять виброплиты, навесное оборудование к одноковшовым экскаваторам, в т.ч. гидромолоты оснащенные трамбующими плитами в качестве рабочего инструмента, катки.

- 4.2.2. Выбор механизма зависит от типа грунта, габаритов котлованов, пазух, траншей, технической характеристики механизма.
- 4.2.3. Виброплиты применяют для уплотнения несвязных и малосвязных грунтов, в стесненных условиях. Верхняя часть пазух, котлованов и траншей, отсыпанная связными и несвязными грунтами, может уплотняться также соответствующими катками, гидромолотами.

4.2.4. Толщина отсыпаемых слоев грунта и процесс уплотнения должны соответствовать типу грунта и техническим возможностям применяемого механизма.

5. ОСНОВНЫЕ ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ СТРОИТЕЛЬСТВА ЗЕМЛЯНОГО ПОЛОТНА

- 5.1. ОБЩИЕ ПОЛОЖЕНИЯ.
- 5.1.1. При сооружении земляного полотна магистральных и внутриквартальных дорог следует руководствоваться требованиями главы СНиП III-40 «Правила производства и приемки работ».
- 5.1.2. В состав технологического процесса сооружения земляного полотна входят следующие этапы работ:
 - расчистка площади строительства;
 - перенос линий связи, электропередач и трубопроводов;
 - снос зданий и сооружений в зоне работ и перенос их;
 - снятие и складирование плодородного слоя почвы;
 - прокладка подземных сетей, попадающих в зону строительства дорог;
 - плотность грунта при обратной засыпке траншей должна быть не ниже требуемого для земляного полотна на соответствующей глубине;
 - выравнивание оснований под насыпи и их уплотнение;
 - разработка выемок и возведение насыпей с послойным разравниванием и уплотнением грунта до установленных пределов.
- 5.1.3. Выбор способа производства и средств механизации земляных работ должен производиться на основе результатов технико-экономического сопоставления различных вариантов.

- 5.1.4. При использовании одноковшовых экскаваторов при устройстве выемок и возведении насыпей разработка должна начинаться, как правило, с пониженных мест рельефа. В период строительства необходимо обеспечить отвод поверхностных вод из зоны производства работ.
- 5.1.5. Отсыпка грунта в насыпь производится слоями от краев к середине. Для обеспечения требуемого уплотнения краев насыпи ширина отсыпки увеличивается на 0,3-0,5 м с каждой стороны.
- 5.1.6. Бульдозеры применяются, как правило, в комплексе с другими механизмами при устройстве насыпи для разравнивания грунта, планировки и перемещения его на небольшие (до 100 м) расстояния.
- 5.1.7. Самоходные автогрейдеры, оборудованные системами «Профиль 30-2» и др. целесообразно использовать в первую очередь для профилирования и окончательной отделки дорожного земляного полотна перед уплотнением.
- 5.1.8. При отрицательных температурах возведение насыпей допускается при наличии необходимого количества уплотняющих средств, обеспечивающих быстрое уплотнение отсыпанного грунта до требуемого значения плотности.
- 5.1.9. Насыпи, как правило, должны возводиться только из талого грунта с обязательным уплотнением до наступления смерзания насыпанного грунта. Ввиду трудностей выдерживать это требование в течение всего зимнего периода допускается отсыпка высоких (более 1,5 м) насыпей из смеси талого и мерзлого грунтов (таблица 5.1., 5.2.)

Насыпи высотой менее 1,5 м должны возводиться из талых грунтов при влажности близкой к оптимальной.

5.1.10. Содержание мерзлого грунта в насыпи допускается до 20% с размером комьев не более 15 см.

Таблица 5.1.

Условия применения грунтов в насыпях, возводимых в зимнее время

Вид грунта	Условия применения	Допускаемая высота насыпи, м
Скальный крупнообломоч- ный, крупный и средней крупности песок	Применяют без ограниче- ний	Без ограничений
Глинистый	Допускается с влажностью не более 1,1 от оптимальной	В зависимости от климата района суровый — 2,5 холодный — 3,5 умеренный — 4,5 теплый — не ограничивают
Мелкий и пылеватый, не водонасыщенные пески	Допускается при влажно- сти не более 1,2-1,3 от оп- тимальной	То же
Жирные глины, меловые, тальковые и трепелевые грунты, а также грунты с высокой влажностью	Применять запрещается	

Таблица 5.2. Рекомендуемая высота насыпи при производстве работ в зимнее время

Средняя температура воздуха за период производства работ по отсыпке насыпей,	- 5	-10	-15	-20
град			L	
Рекомендуемая высота насыпи, м	не ограничена	4,5	3,5	2,5

- 5.1.11. Отсыпку насыпи следует производить слоями с уклоном 2-3% на всю ширину с обеспечением стока воды с поверхности земляного полотна (в случае, если строительство основания дороги будет осуществляться весной) и возможности механизированной очистки от снега.
- 5.1 12. Отсыпаемый грунт сразу же разравнивается бульдозером или автогрейдером толщиной слоя, не превышающим возможности уплотняю-

щих машин. Не допускается скопление комьев мерзлого грунта при отсыпке насыпей.

- 5.2. УПЛОТНЕНИЕ ЗЕМЛЯНОГО ПОЛОТНА.
- 5.2.1. Коэффициент уплотнения грунтов земляного полотна следует назначать по таблице 5.2.1.

Таблица 5.2.1.

Вид земляного	Часть земляного	Глубина расположе-	Коэффициент уп-
полотна	полотна	ния слоя от поверх-	лотнения грунта,
		ности покрытия	не менее
Насыпи	Верхняя	до 1,5	1,00-0,98
	Нижняя	1,5-6,0	0,98
	неподтапливаемая	более 6,0	0,95-0,98
	Нижняя	1,5-6,0	0,95-0,98
	подтапливаемая	более 6,0	0,98
Выемка и места с нулевыми отмет-	В слое сезонного промерзания	до 1,2	1,00-0,98
ками	Ниже слоя сезонного промерзания	до 1,2	0,95

- 5.2.2. Каждый слой отсыпаемого грунта следует разравнивать, соблюдая проектный уклон. Перед уплотнением поверхность отсыпаемого слоя грунта должна быть спланирована под двухскатный или односкатный поперечный профиль с уклоном 20-40% к бровкам земляного полотна.
- 5.2.3. Толщина слоя отсыпки должна назначаться исходя из обеспечения однородной плотности грунта по глубине слоя с учетом технических параметров применяемых уплотняющих машин и уточняться по результатам пробного уплотнения.
- 5.2.4. Уплотнение грунтов производится при влажности, близкой к оптимальной ($W_{\text{опт}}$). При отклонениях естественной влажности грунта от допустимых значений её следует увлажнять или подсушивать. Уплотнение тяжелых суглинков и глин следует производить при их влажности не более $1,05~W_{\text{опт}}$.

- 5.2.5. Применение грунтов различных видов в одном слое насыпи не допускается.
- 5.2.6. Предварительное уплотнение грунтов земляного полотна производится землеройно-транспортными механизмами и транспортными средствами, движение которых организуется по послойно отсыпаемому грунту равномерно по всей ширине земляного полотна.
- 5.2.7. Уплотнение грунтов укаткой производят катками на пневматических шинах, комбинированными кулачковыми и с гладкими вальцами. Катки выбирают в зависимости от вида грунта и толщины слоя отсыпки в соответствии с табл. 5.2.2.

Таблица 5.2.2. Катки для уплотнения грунта при устройстве земляного полотна дорог

Модель, тип, марка	Основные конструктив- ные особенности	Масса, т	Глубина уплотнения (в плотном теле), м		
			связный грунт	несвязный грунт	
1	2	3	4	5	
ДУ-65,	Самоходные пневмоко-	10-14	0,25	0,30	
ДУ-100	лесные				
ДУ-97	Самоходные комбиниро-				
ДУ-64	ванные с вибрационным	8-10	0,30	0,50	
ДУ-99	вальцем		<u> </u>		
ДУ-74-1	Самоходные с вибраци-	9,5-13,5	0,40	0,60	
ДУ-85-1	онными кулачковыми				
	вальцами				
ДУ-96	Самоходные двухваль-	Окончательное уплотнение дорожных			
(ДУ-47Б	цовые вибрационные с	оснований и покрытий			
	гладкими вальцами				

Примечание. Технические характеристики катков приведены в приложении 11.

5.2.8. Самоходные катки с гладкими вальцами рационально использовать при окончательном уплотнении поверхностного слоя связных и малосвязных грунтов. Применение таких катков на свежеуложенной насыпи малоэффективно.

- 5.2.9. Кулачковые катки применяются для уплотнения непереувлажненных связных и малосвязных грунтов. При одинаковом с гладкими вальцами катками весе кулачковые катки дают почти вдвое большую глубину уплотнения.
- 5.2.10. Уплотнение грунта трамбованием производят гидромолотами на экскаваторах.
- 5.2.11. Вибрационные катки и виброплиты целесообразно применять для уплотнения только несвязных грунтов. Они уплотняют грунт за меньшее количество проходов по сравнению со статическими катками с гладкими вальцами и на пневматических шинах.
- 5.2.12. Длина участков отсыпаемых насыпей в зимнее время и уплотняющие средства должны быть выбраны так, чтобы окончательное уплотнение грунта в насыпи заканчивалось не позднее 3 часов при температуре воздуха до -10° C и не позднее 2 часов при температуре до -20° C, после выемки грунта в резерве или грунтовом карьере (таблица 5.2.3.)

Таблица 5.2.3. Время уплотнения грунта в насыпи в зависимости от температуры возлуха

Температура наружного воздуха,	-5	-10	-20	-30
в град.				
Время начала смерзания грунта	90-120	60-990	40-60	20-30

- 5.3. ТЕХНОЛОГИЯ УПЛОТНЕНИЯ ГРУНТА ПОСЛЕ ВОССТАНОВИТЕЛЬНОГО РЕМОНТА ПОДЗЕМНЫХ ИНЖЕНЕРНЫХ СЕТЕЙ В ЗОНЕ ПРОЕЗЖЕЙ ЧАСТИ ДОРОГИ
- 5.3.1. Восстановительный ремонт осуществляется после разрытия на проезжей части, связанного с ремонтом, прокладкой и перекладкой подземных сооружений, а также разрушений, вызванных стихийными или другими явлениями. Работы по восстановительному ремонту могут выполняться с учетом последующего переустройства, поэтому восстановитель-

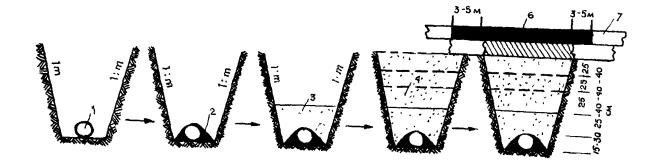
ный ремонт делится на первичный (временный), повторный (окончательный).

- 5.3.2. Временный восстановительный ремонт ограничивается коротким сроком его проведения и его окончательного осуществления. В Москве ежегодно проводится большое количество разрытий участков проезжей части улиц, и качественное их восстановление необходимо.
- 5.3.3. Зона работ связанная с разрытием и восстановлением проезжей части дороги, должна быть ограждена.

Вид ограждений, их оснащенность в ночное время, установка знаков регулирования движения городского транспорта в каждом конкретном случае определяется ГИБДД г. Москвы.

- 5.3.4. Обратная засыпка траншей производится после укатки трубопроводов, проведения испытаний их с оформлением акта и получения разрешения на проведение обратной засыпки. Засыпка траншеи должна производиться с принятием мер против повреждения трубопроводов и их изоляции от сбрасываемого песка, а также против смещения трубопроводов с оси и включает в себя следующие этапы:
 - засыпка и уплотнение грунта в приямках под стыковые соединения;
 - подбивка пазух между трубой и дном траншеи;
- засыпка, разравнивание и уплотнение песка в пазухе между трубой и стенками траншеи;
 - засыпка, разравнивание и уплотнение защитного слоя и верхних слоев.
- 5.3.5. Подбивка пазух между трубой и дном траншеи производится ручными трамбовками. Пазухи между трубой и стенками траншеи засыпаются послойно экскаваторами, бульдозерами, погрузчиками, толщина слоя должна быть не более 25 см, уплотнение производится равномерно с двух сторон виброплитами. При уплотнении песка над коммуникациями толщина защитного слоя должна быть не менее 25 см для металлических и желе-

зобетонных труб и не менее 40 см для керамических, асбоцементных и пластмассовых труб. Защитный слой над коммуникациями также уплотняется виброплитами. Дальнейшая засыпка песка производится экскаваторами, бульдозерами, погрузчиками послойно с толщиной слоя до 30 см и уплотняется самоходными катками массой 1,5-10 т.


5.3.6. Уплотненное песчаное оснований в летнее время обильно заливается водой, и после впитывания воды в песок и удаления излишней воды по продольному уклону траншеи производится дополнительное уплотнение самоходными катками по 4-6 проходов по одному следу. Такая технология засыпки и уплотнения песка позволяет получить коэффициент уплотнения грунта в траншее в пределах 0,98-1,0. По уплотненному песчаному основанию в пределах разрытия устраивается дорожное основание, по которому укладывается покрытие из асфальтового бетона. В зимнее время года верхний слой толщиной 10-15 см песчаного основания устраивается и горячего песка. На рис.5.3.1. представлена схема работ по восстановлению дорожной конструкции.

5.3.7. На магистральных улицах общегородского и районного значения траншеи засыпаются песком и уплотняются согласно пунктам 5.3 4., 5.3.5., 5.3.6. настоящих рекомендаций. Верхний же слой засыпаемой траншеи на глубину 30-40 см должен выполняться из щебеночных смесей заводского изготовления, состав которых представлен в табл. 5.3.1.

Таблица 5.3.1.

Тип смеси	Содержание в смеси частиц (% массы), проходящих через сито с размером отверстий, мм							
	70	40	20	10	5	0,63	не менее 0,05	
Крупнозернистая I	80-100	40-50	20-30	15-25	12-20	5-10	0-3	
То же II	85-100	60-70	40-50	30-40	20-30	5-15	0-5	
Среднезернистая II	-	85-100	40-50	20-30	15-25	7-10	1-5	
То же II	-	-	85-100	60-70	40-50	15-20	2-5	

Щебеночная смесь уплотняется самоходными катками до коэффициента уплотнения 1,0.
— 19 —

1 Укладка труб и проверка стыковых соединений Проведение испытаний трубопроводов Акт на проведение обратной засыпки

2 Уплотнение песка немеханизированными инструментами 3 Уплотнение песка ручными инструментами, виброплитами массой до 50 кг 4 Послойное уплотнение песка оптимальной влажности виброплитами массой до 100 кг и выше

5 Восстановление дорожного основания 6 Восстановление покрытия дороги 7 Существующая дорога

Рис. 5.3.1. Последовательность работ по восстановлению дорожной конструкции

5.3.8. Восстановление дорожной конструкции следует производить из таких же материалов, из каких была дорожная конструкция до разрытия.

6. ПРОИЗВОДСТВО ЗЕМЛЯНЫХ РАБОТ ПРИ УСТРОЙСТВЕ ПОДЗЕМНЫХ ИНЖЕНЕРНЫХ СЕТЕЙ

- 6.1. Прокладка и переустройство подземных сооружений должны выполняться до начала работ по строительству дорог, проведения благоустройства и озеленения территории.
- 6.2. Различают траншеи и котлованы с вертикальными стенками (с креплением или без него и с откосами для раздельной и совмещенной прокладки трубопроводов на одном или разных уровнях, в коллекторах. Размеры траншей зависят от диаметров прокладываемых труб и методов их укладки, размеров коллекторов, вида и влажности грунта, глубины прокладки и регламентируются соответствующими главами СНиП и данными проекта.
- 6.3. При раздельной прокладке с целью предотвращения повреждения уложенных сетей, а также уменьшения объема земляных работ, в первую очередь, следует прокладывать сети более глубокого заложения.
- 6.4. Рытье траншей большой протяженности производят главным образом траншейными цепными или роторными экскаваторами, а котлованов и траншей при незначительном объеме работ одноковшовыми, с вместимостью ковша от 0.25 до 1.60 м³.
- 6.5. При рытье траншей с откосами крутизна последних в грунтах естественной влажности и при отсутствии грунтовых вод назначается в соответствии с данными табл. 6.1.

Таблица 6..1.

Грунты	Крутизна откосов при глубине выемок, м						
	до	3	более 3				
	угол между направлением откоса и горизонта, град	отношение вы- соты откоса к его заложению (крутизна отко- са)	угол между на- правлением от- коса и горизон- та, град	отношение вы- соты откоса к его заложению (крутизна отко- са)			
Насыпной грунт, песок, гравий	39	1 1,25	34	1 1,5			
Супеси	56	1 0,67	45	1 1			
Суглинки	56	1 0,67	53	1 0,75			
Глины	63	1 0,5	56	1 0,67			

6.6. При рытье траншей без откосов крепление вертикальных стенок котлованов и траншей глубиной до 3 м производят в соответствии с требованиями табл 6.2.

Таблица 6.2.

Грунтовые условия	Виды креплений		
Грунты нормальной влажности за исключением сыпучих	Горизонтальное крепление с зазорами через одну доску		
Грунты повышенной влажности и сыпучие	Сплошное вертикальное и горизонтальное крепление		
Грунты всех видов при сильном притоке грунтовых вод	Шпунтовое ограждение в пределах горизонта грунтовых вод с забивкой на глубину не менее 0,75 им в водонепроницаемый грунт		

- 6.7. При глубине свыше 3 м вид крепления, конструкция и размеры элементов креплений должны определяться расчетом и осуществляться по индивидуальным проектам с учетом грунтовых условий.
- 6 8. При установке креплений траншей и котлованов необходимо выпускать верхние доски креплений над верхними бровками не менее чем на 15 см.

- 6.9. Разборку креплений следует производить снизу по мере обратной засыпки грунта. Количество одновременно удаляемых досок по высоте в плотных грунтах не должно превышать трех, а в сыпучих или неустойчивых одной.
- 6.10. Засыпку траншей для подземных коммуникаций грунтом необходимо осуществлять вслед за прокладкой трубопроводов и сетевых устройств, также необходимо принимать меры против сдвига их по оси и против повреждений трубопроводов и их изоляции. Схема уплотнения грунта при обратной засыпке траншей, схема организации работ по засыпке траншей и схема обратной засыпки траншей показаны на рис. 6.1., 6.2., 6.3. соответственно.
- 6.11. Засыпка траншей с уложенными подземными коммуникациями производится в два приема. Сначала засыпаются и подбиваются вручную пазухи и присыпаются трубопроводы на высоту над верхом трубопровода не менее 0,2 м с тщательным послойным ручным трамбованием, виброуплотнение с применением виброплит, а в зимний период времени для труб керамических, асбоцементных и полиэтиленовых 0,5 м. Затем остальная часть траншеи засыпается путем осторожного сбрасывания грунта бульдозерами, экскаваторами, погрузчиками.

Разравнивание грунта в широких траншеях и котлованах при больших объемах работ может производиться автогрейдерами, применяемыми при устройстве земляного полотна дорог, погрузчиками и бульдозерами различного типоразмера.

- 6.12. Послойное уплотнение засыпки трубопроводов выполняется трамбовками различного типа, виброплитами, катками, гидромолотами.
- 6.13. Пазухи между стеной и стенками траншеи засыпаются послойно экскаваторами-планировщиками ЭО-3532A, 43212, 43213, экскаваторами одноковшовыми ЭО-2621B, ЭО-3123, ЭО-4225 и др.; толщина слоя должна

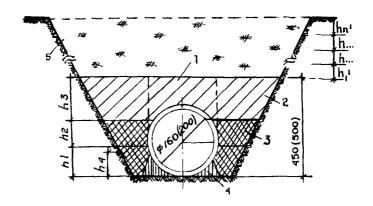


Рис. 6.1. Схема уплотнения грунта при засыпке траншей:

1-зона над трубопроводом, где уплотнение грунта запрещается; 2,3-толщина слоя грунта, уплотненного ручными механизмами; 4-слой грунта, уплотненный ручным немеханизированным инструментом; 5- слои грунта, уплотненные виброплитами, гидромолотами, катками $(h^1 - h^1)$ принимается до 0,25 м); $h_{1/2}$ 3. толщина уплотняемого слоя, уплотнение производить одновременно с двух сторон.

Примечание. Ручной немеханизированный инструмент - лотапка, совок, деревянные трамбовки; ручные механизмы - виброплиты массой до 100 кг

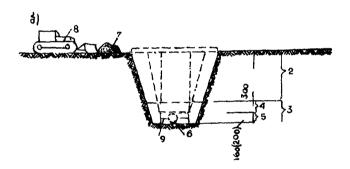


Рис. 6.2. Схема организации работ по засыпке траншей:

а) экскаватором-планировщиком; б) бульдозером;

1-экскаватор-планировщик; 2-обратная засыпка грунта бульдозером; 3-обратная засыпка грунта экскаватором-планировщиком; 4-разравнивание грунта экскаватором-планировщиком; 5-разравнивание грунта вручную; 6-поливинилхлоридная труба; 7-грунт для обратной засыпки; 8-бульдозер; 9-канализационный колодец.

Расстояние от линии откоса траншеи до начала отвала грунта по бровке траншеи должно быть не менее $0.7\,\mathrm{m}$ при глубине траншеи до $3\,\mathrm{m}$ и не менее $1.0\,\mathrm{m}$ при глубине траншеи более $3\,\mathrm{m}$

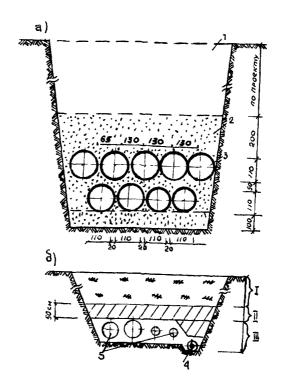


Рис. 6.3. Схема обратной засыпки траншей:

а) телефонная канализация; б) бесканальная тепловая сеть 1-слои грунта, уплотняемые виброплитами массой 100-200 кг; 2- слои грунта, засыпаемые и уплотняемые вручную; 3-пластмассовые трубы; 4- дренажная труба (трубофильтр и др.); 5-трубопроводы; 1-слои грунта, уплотняемые виброплитами массой до 100 кг; II-слои грунта, уплотняемые виброплитами массой до 50 кг; III-слои грунта, засыпаемые и уплотняемые вручную

быть не более 0,25 м. Уплотнение производится равномерно с двух сторон виброплитами массой до 100 кг (табл.8.1.).

- 6.14. При уплотнении грунта над коммуникациями толщина защитного слоя должна быть не менее 0,25 м для металлических и железобетонных труб и не менее 0,4 м для керамических, асбоцементных и пластмассовых труб. Защитный слой над коммуникациями уплотняется виброплитами.
- 6.15. При прокладке кабельных линий траншей должны иметь снизу подсыпку, а сверху засыпку слоем мелкой земли, не содержащей камней, строительного мусора. Толщина слоя песка для подсыпки и толщина слоя засыпки должна быть не менее 0,1 м.
- 6.16. При засыпке трубопроводов, проложенных в траншеях с уклоном более 20°, необходимо принять меры против сползания грунта и размыва его ливневыми водами. Способ укрепления должен быть указан в проекте производства работ.
- 6.17. При прокладке труб из полиэтилена выравнивается дно траншеи, а в скальных грунтах необходимо устраивать подушку из рыхлого грунта толщиной не менее 0,1 м без включения камней, щебня и др.
- 6.18. Засыпку трубопроводов из полиэтилена необходимо производить в самое холодное время суток лишь после их предварительного испытания на плотность.
- 6.19. Дальнейшая засыпка грунта над уложенными трубопроводами производится экскаваторами, экскаваторами-планировщиками, бульдозерами, погрузчиками послойно с толщиной слоя 0,7 м для песка, 0,6 м для супеси и суглинков, 0,5 м для глины. Послойное уплотнение грунта производится гидромолотами, виброплитами, катками.
- 6.20. Вариант обратной засыпки траншеи грунтом при помощи бульдозера представлен на рис. 6.4. Из рисунка видно, что плошадь отвала, из которого забирают грунт, разбивается на отдельные, последовательно раз-

рабатываемые участки. Бульдозер подходит к краю отвала с его торца под некоторым углом, забирает грунт на участке 1 и после перемещения его в траншею проходит к следующему участку II. Грунт с участков II, IV, VI перемещают в траншею поперечными проходами бульдозера, а с участков I, III, V, VII – косыми. Такой способ работ сокращает длину проходов груженого бульдозера и улучшает условия набора грунта.

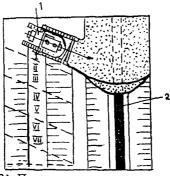


Рис. 6.4. Вариант обратной засыпки траншен грунтом при помощи больдозера: 1-бульдозер; 2-трубопровод

- 6.21. При прохождении трассы вдоль строений, заборов, зеленых насаждений засыпка траншей производится вручную с послойным трамбованием засыпки через 0,2 м.
- 6.22. Траншеи и котлованы на участках пересечения с существующими или проектируемыми дорогами должны засыпаться на всю глубину песком и уплотняться до $K_{\text{упл.}} 0.98-1.0$.
- 6.23. Уплотнение верхних слоев на 1,0-1,2 м от поверхности производится катками разного типа массой 1,5-10 т (ДУ-57М, ДУ-47Б, ДУ-64, ДУ-99 и др.).
- 6.24. В местах пересечения траншей с действующими подземными коммуникациями (трубопроводами, кабелями и др.), проходящими в пределах глубины траншей, проектом должны быть предусмотрены устройства, обеспечивающие неизменяемость положения и сохранность коммуникаций на период производства работ и эксплуатации. Если такие устройст-

ва не предусмотрены, обратная засыпка траншей должна производиться в следующем порядке: подсыпка под действующие коммуникации выполняется песком по всему поперечному сечению траншеи на высоту до половины диаметра трубопровода (кабеля) или его защитной оболочки, а кругизна откосов подсыпки должна быть 1:1.

- 6.25. Выполненные работы по уплотнению грунта предъявить авторскому и техническому надзорам и составить акт на скрытые работы.
- 6.26. Засыпку и уплотнение котлованов, траншей, пазух, над которыми должны сооружаться рельсовые пути для установки башенных кранов, следует производить аналогично устройству основания из насыпного грунта.
- 6.27. Насыпной грунт земляного полотна следует укладывать слоями с обязательным послойным уплотнением. Толщина слоев определяется применяемыми машинами и механизмами для уплотнения грунта.
- 6.28. Плотность (объемный вес скелета) грунта земляного полотна в Γ/M^3 должна соответствовать требованиям ГОСТ Р. 51248-99 и должна быть не менее для: мелких и пылевидных песков 1,7; супесей 1,65; суглинков 1,6; глины 1,5
- 6.29. При устройстве рельсовых путей с деревянными полушпалами плотность грунта должна проверяться через каждые 12,5 м, а при устройстве путей с железобетонными балками – под каждой балкой.
- 6.30. Результаты проверки необходимо заносить в акт сдачи рельсового пути в эксплуатацию.
- 6.31. Рекомендуемые машины и оборудование для обратной засыпки котлованов, траншей, пазух, уплотнения грунта приведены в приложениях 5,8,9,10.

Потребность в машинах определяется проектом производства работ в зависимости от конструктивных решений сооружений объемов работ и продолжительности их выполнения.

- 6.32. При отрицательной температуре воздуха уплотнение грунта обратной засыпки в траншеях должно осуществляться до достижения коэффициента уплотнения 0,98.
- 6.33. Время уплотнения грунта в зависимости от температуры воздуха указано в табл. 5.2.3.
- 6.34. Для послойного уплотнения обратных засыпок рекомендуются следующие способы:

для несвязных грунтов - вибрирование и вибротрамбование;

для малосвязных грунтов – укатка, трамбование, вибротрамбование, вибрирование:

для связных грунтов — укатка, трамбование, вибротрамбование и комбинированный.

6.35. Уплотнение грунта в стесненных условиях при засыпке мест извлечений элементов ишунтовых ограждений следует производить с применением специальных уплотняющих средств статического, виброударного или ударного действия, позволяющих получить на всю глубину коэффициент уплотнения не менее 0,98.

В этом случае для уплотнения грунта могут рекомендоваться гидромолоты на одноковшовых экскаваторах.

6.36. Процесс уплотнения засыпаемого грунта в местах разборки элементов шпунтовых соединений следует осуществлять установками, оснащенными приборами, контролирующими степень послойного его уплотнения.

7. ТЕХНОЛОГИЯ УПЛОТНЕНИЯ ГРУНТА ПРИ ОБРАТНОЙ ЗАСЫПКЕ КОТЛОВАНОВ

- 7.1. Разрешение на обратную засыпку грунтом котлованов дается комиссией, состоящей из производителя работ, заказчика и автора проекта, одновременно с составлением акта на скрытые работы.
- 7.2. Требуемая плотность грунта при засыпке котлованов назначается проектом на основании данных исследования грунта методом стандартного уплотнения, при котором устанавливается его оптимальная влажность и максимальная плотность, которая должна быть не менее 0,95.
- 7.3. Для определения основных свойств грунта необходимо руководствоваться техническим заключением Мосгоргеотреста об инженерногеологических условиях участка строительства.
- 7.4. Уплотнение грунта следует производить, когда его естественная влажность является оптимальной. В таблице 7.1. приводятся оптимальные влажности грунтов и допустимые отклонения влажности (коэффициент «переувлажнения»).

Таблица 7.1.

Наименование грунта	Оптимальная влажность, %	Коэффициент «переувлажнения»
Пески пылеватые, супеси легкие крупные	8-12	1,35
Супеси легкие и пылеватые	9-15	1,25
Супеси тяжелые пылеватые, суглинки лег- кие и легкие пылеватые	12-17	1,15
Суглинки тяжелые и тяжелые пылеватые	16-23	1,05

Определять естественную влажность грунтов следует по ГОСТ 5180-84.

7.5. При недостаточной влажности связных грунтов (содержание глинистых частиц более 12%) их следует увлажнять в местах разработки, а увлажнять несвязные грунты (содержание глинистых частиц менее 3%)

можно и в отсыпаемом слое. При избыточной влажности грунта следует производить его подсушивание.

- 7.6. Засыпку грунта или песка под основание полов по дну готового котлована подземной части здания осуществляют стреловыми кранами, оборудованными грейферами, с разравниванием грунта по дну котлована и уплотнением трамбовками, виброплитами.
- 7.7. Машины и механизмы для уплотнения грунтов следует выбирать с учетом свойств и состояния уплотняемого грунта (влажности, однородности, грунулометрического состава), требуемой степени уплотнения, объемов работ и темпов их выполнения. Расстановка машин для обратной засыпки котлованов производится в соответствии с проектом производства работ по строительству конкретного здания.
- 7.8. Обратная засыпка котлованов производится стреловыми кранами, оборудованными грейферами, экскаваторами типа ЭО 2621В-3, ЭО-3123, ЭО-4225 и др. послойно.
- 7.9. Уплотнение засыпаемого грунта в котлованах производится гидромолотами типа ГПМ-120, ГПМ-150, ГПМ-300, СП-62, СП-71, виброплитами ДУ-90, ОУ-80 и др. катками. На рис. 7.1. представлена схема засыпки грунта под полы в подвале здания.
- 7.10. Средняя толщина отсыпаемого слоя грунта при применении гидромолотов должна быть: для песка 70 см; супеси и суглинков 50 см; глины 40 см; при применении виброплит 25 см.
- 7.11. Для достижения плотности уплотняемого слоя грунта до K=0,95 время уплотнения по одному следу гидромолотами должна быть 15 секунд При применении виброплит число проходов должно быть 3-4. Каждый последующий проход уплотняющей машины должен перекрывать след предыдущей на 10-20 см. Время уплотнения и число проходов уточняется в процессе работы.

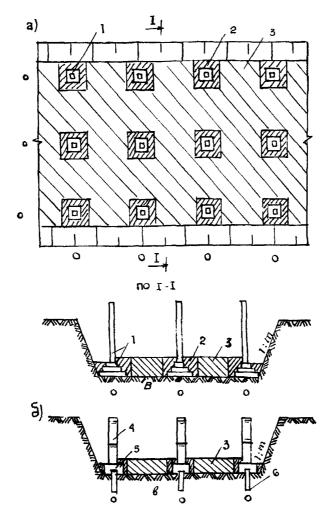


Рис. 7.1. Схема засыпки грунта под полы в подвале здания:

- а) сборные фундаменты; б) свайные фундаменты
- 1-сборный фундамент с установленной колонной; 2-зона уплотнения грунта виброуплотнителями массой до 100 кг (ВУ-800, ВУ-1500, ОУ-60); 3- зона уплотнения грунта виброплитами массой свыше 100 кг (ОУ-80, ОУ-90); катками (ДУ-95-2); ДУ-54М; ДУ-72); 4- стена здания; 5-железобетонный ростверк; 6-забитая свая.
 - В принимать по табл. 3.1.

7.12. Выполненные работы по уплотнению грунта предъявить авторскому и техническому надзорам и составить акт на скрытые работы.

8. ТЕХНОЛОГИЯ УПЛОТНЕНИЯ ГРУНТА ПРИ ОБРАТНОЙ ЗАСЫПКЕ ПАЗУХ

- 8.1. До начала обратной засыпки грунтом пазух должны быть закончены следующие работы: монтаж конструкций подземной части зданий; уборка строительного мусора; гидроизоляция; дренаж.
- 8.2. Требуемая плотность песчаного грунта при засыпке пазух должна быть не менее K=0.98.
- 8.3. Засыпка пазух производится послойно экскаваторами, экскаваторами-планировщиками, бульдозерами, погрузчиками. При этом толщина слоя для песка должна быть не более 70 см; для супеси и суглинка 60 см; для глины 50 см.
- Уплотнение засыпаемого грунта в пазухах осуществляется гидромолотами, виброплитами, катками.
- 8.5. Грунт уплотняют, начиная с зон возле конструкций здания, а затем двигаются в направлении к краю откоса, при этом каждый последующий проход трамбующей машины должен перекрывать след предыдущей на 10-20 см (рис. 8.1.).
- 8.6. При работе по уплотнению грунта вблизи конструкций возводимого здания, мест ввода коммуникаций и других труднодоступных мест должна применяться виброуплотнители ВУ-800, ВУ-1500, ОУ-60. При этом толщина отсыпаемого слоя должна быть не более 25 см и количество проходов не менее 4
- 8.7. Отметки верхнего слоя уплотняемого грунта должны строго соответствовать проекту.

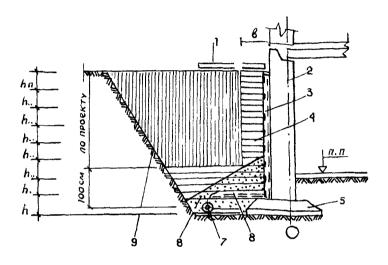


Рис. 8.1. Схема обратной засыпки пазухи котлована:

1-отмостка; 2- стена здания; 3-вертикально установленная керамзитобетонная плита; 4-зона уплотнения грунта вручную; 5-фундаментная плита; 6-горизонтально уложенная керамзитобетонная плита; 7-дренажная труба; 8-граница засыпки дренажа песком; 9-слои грунта, уплотняемые виброплитами массой свыше 100 кг; п.п. -пол подвала; h₁ - hn - толщина отсыпаемого слоя грунта принимается до 0,25 м.

- 8 8 Выполненные работы предъявить авторскому и техническому надзору и составить акт на скрытые работы
- 8 9 Рекомендуемые машины и механизмы для уплотнения грунта при обратной засыпке котлованов и пазух в стесненных местах указаны в табл 8 1

Таблица 8 1

Тип и марка	Масса уп-	Соотног	пение мас	с строител	ьных конс	трукций (М) и уп-	
уплотняющих	лотняющих		лотняющи	х машин и	и механизи	иов (m), кг		
машин и	машин и	M·	< m	M <	5m	M < 10m		
механизмов	механиз-	Максим	альное рас	стояние о	г уплотнян	ощих маш	ин и ме-	
	мов (m), кг				онструкци			
•				грунта	h _o см			
		ь	ho	h _o	b	h _o		
Гидромолоты								
(навесные на								
экскаваторы)								
ГПМ-120	275	25	50	20	40	20	30	
Г ПМ-150	345	25	50	20	40	20	30	
ГПМ-300	1033	50	70	30	70	20	60	
СП-71А	750	50	70	30	70	20	60	
CII-71	750		,,,					
Виброплиты								
(виброуплот- нители)								
ВУ-800	45	0	20	0	20	0	15	
ОУ-60	80	10	25	10	25	10	20	
BY-1500		}			_			
	100	10	25	5	25	5	20	
ОУ-80	110	10	25	5	20	5	20	
ДУ-90	270	20	25	15	20	15	20	
Катки								
ДУ-95-2	1150	50	-	20				
ДУ-54М	1500	50	70	30	70	20	60	
ДУ-72	3	60	90	40	90	20	80	

9. КОНТРОЛЬ КАЧЕСТВА ПРОИЗВОДСТВА РАБОТ

9 1 СХЕМА ОПЕРАЦИОННОГО КОНТРОЛЯ КАЧЕСТВА

No No	Контролируемые	Методы, вре-	Кто контро-	Документация, по которой
n/n	производствен-	мя контроля,	лирует ис-	осуществляется контроль
	ные операции	объем выбор-	пользуемый	Нормативные требования
		ки	инструмент	Что проверяется
1	2	3	4	5
		A Bxoz	ной контроль	
1	Песок	Сплошной во	Прораб (мас-	Паспорта на песок ГОСТ
		время прием-	тер) строи-	8736-93* Фильтрация песка –
		ки в полном	тельная лабо-	коэффициент фильтрации
		объеме	ратория	должен быть не менее 3
				м/сутки
		Б Операционн	ый контроль кач	
1	Устройство зем-	Сплошной во	Прораб (мас-	Указания по производству
	ляного полотна	время и после	тер) Нивелир,	земляных работ в дорожном
	(корыта) дороги	окончания ра-	рулетка, метр	строительстве ВСН 52-96
	а) продольные и	боты В пол-		Соответствие уклонов проек-
	поперечные ук-	ном объеме		ту – допускается отклонение
	лоны	_		±0,5%
	б) уплотнение	Сплошной во	Прораб (мас-	ВСН 52-96 Соответствие ка-
		время и после	тер) 3-метро-	чества уплотнения проекту –
		окончания ра-	вая рейка	коэффициент уплотнения
		бот Выбо-	Строительная	должен быть не менее 0,98
		рочный через 10 м	лаборатория	Лабораторные испытания
	в) ровность	Сплошной во	Прораб (мас-	ВСН 52-96 Соответствие
		время работы	тер) 3-метро-	ровности поверхности проек-
			вая рейка	ту, допускается просвет под
				3-метровой рейкой 1 см Со-
				ставляется акт по приемке
				земляного полотна
2	Устройство пес-	Сплошной во	Прораб (мас-	СНиП 3 06 03-85 «Автомо-
	чаного подсти-	время и после	тер) 3-метро-	бильные дороги» Фильтра-
	лающего слоя	окончания ра-	вая рейка	ция песка должна быть не
		бот Выбо-	Строительная	менее 3 м/сутки Уплотнение
ĺ		рочный через	лаборатория	песка – коэффициент уплот-
		20 м		нения должен быть не менее
				0,98 Толщина слоя песка –
				допускается отклонение ±1
				см Ровность поверхности -
İ				просвет под 3-метровой рей-
				кой не более 1 см Составля-
				ется акт по приемке песчано-
				го подстилающего слоя

9.2. СООРУЖЕНИЕ ЗЕМЛЯНОГО ПОЛОТНА.

- 9.2.1. Перед началом работ необходимо проверить восстановление трассы на местности и завершение работ по подготовке основания под насыпь (расчистка территории от леса, кустарника, пней, камней, засыпка ям, замена слабого грунта и т.п.).
- 9.2.2. Текущий контроль за сооружением земляного полотна, включая и контроль уплотнения, должен выполняться контрольными постами лаборатории строительной организации. Контрольный пост следит за послойной отсыпкой грунта по всей ширине насыпи, систематическим выравниванием каждого слоя грунта перед уплотнением, оптимальной толщиной уплотняемого слоя, влажностью грунта при его уплотнении, режимом работы уплотняющих машин и определяет послойную плотность грунтов.
- 9.2.3. Послойная плотность грунтов в насыпи и естественном основании должна определяться объемно-весовым методом.
- 9.2.4. Качество уплотнения крупнообломочных грунтов следует оценивать методом пробного нагружения поверхности уплотненной насыпи грузовым автомобилем со спаренными шинами с нагрузкой на ось не менее 10 т или тяжелым гладковальцовым катком массой не менее 10 т. При этом насыпь считается уплотненной до требуемой плотности, если осадка её поверхности не превышает 3 мм при проходе автомобиля и 5 мм при проходе гладковальцового катка. Этот метод следует применять, когда грунт включает обломки размером 100-120 мм.
- 9,2.5. Строительная лаборатория должна проводить контрольное обследование боковых или сосредоточенных резервов и выемок, контрольное определение плотности грунта, устанавливать рациональный режим работы уплотняющих машин, определять коэффициент относительного уплотне-

ния, состав и физико-механические свойства грунтов резервов и выемок В случае непригодности грунта для укладки в насыпь необходимо составлять акт за подписями представителей строительной организации и заказчика.

9.2.6. Плотность грунта насыпи необходимо определять в процессе возведения земляного полотна. Количество образцов для определения плотности грунта назначают в зависимости от ширины уплотняемого слоя и высоты насыпи.

Все данные о степени уплотнения грунтов, толщине слоев и технологии производства работ, полученные в процессе систематического контроля, следует заносить в журнал контроля уплотнения насыпей.

- 9.2.7. Перед кратковременным перерывом в работе по возведению земляного полотна (1-2 суток) надлежит проверить выравнивание поверхности и плотность грунта незаконченной насыпи.
- 9.2.8. Необходимо следить за тем, чтобы возобновление весной работ при досыпке насыпей, возведенных из глинистых грунтов и промерзших в зимнее время, допускалось только после оттаивания грунтов и просыхания их до оптимальной влажности.
- 9.2.9. Производство земляных работ в зимних условиях должно находиться под постоянным контролем руководящего технического персонала и лабораторий строительных организаций.

В задачи полевого контроля в условиях зимних работ входит:

- предварительное до начала работ, обследование грунтов в намеченных к разработке и выемке резервах;
- уточнение режима работы уплотняющих машин (толщина слоя и количество проходов);
- повседневный контроль за качеством уплотнения, влажностью грунта, а также за количественным содержанием мерзлых комьев и их размерами.

- 9.2.10. Качество уплотнения в условиях зимних работ необходимо проверять определением плотности грунта в насыпи, осуществляемым методом лунок, методом парафинирования или методом выбуривания керна для мерзлых грунтов, а также методом режущего кольца для незамерзших или оттаянных грунтов.
- 9 2.11 Контрольные посты, организованные для повседневного контроля за сооружением земляного полотна (п.9 1 2), должны следить за соблюдением производства работ в зимних условиях и заносить в журнал следующие сведения:
 - пункты разработки грунта;
 - основные характеристики грунтов по данным лабораторных испытаний;
 - способ разработки и транспортирования грунта;
 - метод разравнивания и уплотнения грунта;
 - толщина отсыпаемых слоев,
 - процентное содержание мерзлого грунта и средняя крупность мерзлых комьев,
 - степень уплотнения,
 - температура и сила ветра во время производства работ;
 - время перерыва в работе,
 - часы снегопада;
 - методы удаления снега и льда с насыпи,
 - попикетные отметки части насыпи, возведенной за смену
- 9 2.12 При наступлении всеобщего потепления необходимо установить тщательное наблюдение за разработанными зимой выемками и возведенными насыпями, появляющиеся деформации немедленно ликвидировать

Весной после оттаивания мерзлого грунта на всю глубину промерзания, необходимо проверить качество всех возводимых зимой насыпей и разработанных выемок Необходимо также проверить отсутствие оползней, сплывов и т п

Возобновление работ допускается только на основании составленного акта

9 3 ЗАСЫПКА ТРАНІЦЕЙ И КОТЛОВАНОВ

- 9 3 1 При засыпке траншей и котлованов осуществляется текущий (производственный) и инспекторский контроль Текущий контроль производит исполнитель работ, инспекторский заказчик в ходе выполнения и приемки законченных работ
- 9 3 2 При текущем контроле проверяется соблюдение заданной технологии выполнения обратной засыпки, в том числе требуемой плотности грунта
- 9 3 3 Текущий контроль выполняется трестовскими лабораториями, контрольными постами, организованными на объекте, инспекторский контроль лабораторией НИИМосстроя

В процессе выполнения работы должна производится проверка вида применяемого грунта и правильность его отсыпки, степени плотности и влажности и равномерности уплотнения грунта

- 9 3 4 Вид применяемых грунтов устанавливается путем определения гранулометрического состава и числа пластичности
- 9 3 5 Контроль степени плотности и влажности грунта производится посредством испытания образцов грунта Эта проверка производится по отсыпанным слоям на глубинах 0,3, 0,5, 0,9, 1,2, 1,5 м от верха шурфа Места шурфов намечаются в траншеях по оси траншеи через каждые 50 м, в пазухах котлованов по периметру фундаментов через каждые 50 м,

но не менее одного по торцам здания, в основаниях под полы – на 100 м^2 один шурф

- 9 3 6 Степень плотности грунта контролируется путем сопоставления плотности образца, взятого без нарушения структуры из насыпи или траншеи, с оптимальной плотностью данного грунта, полученной методом стандартного уплотнения Степень плотности грунта определяется коэффициентом уплотнения «К» Методики определения коэффициентом уплотнения «К» (метод стандартного уплотнения СоюзДорНИИ, метод режущих колец, плотномеры конструкции МГП «Кондор») представлены в приложениях 1;2,3,4
- 9 3 7 При совместной работе нескольких строительных организаций на строительном объекте контроль за качеством уплотнения грунта возлагается на генерального подрядчика и технический надзор заказчика
- 9 3 8 С целью качественного уплотнения песка в траншеях, попадающих в зону проезжей части дороги, центральная дорожная лаборатория Объединения административно-технических инспекций г Москвы или лаборатория дорожного строительства НИИМосстроя определяют коэффициент уплотнения песка и дают разрешение на работы по восстановлению дорожной конструкции

10 ПРИЕМКА РАБОТ ПО СООРУЖЕНИЮ ЗЕМЛЯНОГО ПОЛОТНА И ЗАСЫПКЕ ТРАНШЕЙ И КОТЛОВАНОВ

- 10 1 В процессе сооружения земляного полотна помимо повседневного технического надзора за качеством работ необходима промежуточная приемка работ на следующих стадиях
- после снятия мохового, дернового или торфяного слоя, корчевки пней, устройства уступов на косогорах, замены ненадежных грунтов в ос-

новании, выравнивания и уплотнения площадей естественных оснований насыпей;

- качество уплотнения засыпки коммуникаций;
- после устройства земляного полотна и водоотвода перед началом укрепительных работ;
 - после окончания укрепительных работ.
- 10.2. Промежуточная приемка имеет целью. установить качество и объем выполненных работ, соответствие их утвержденному проекту, рабочим чертежам и техническим правилам производства работ. При промежуточной приемке скрытых работ определяют возможность производства последующих работ.
- 10.3. При промежуточной приемке земляного полотна подлежат проверке осмотром, контрольными параметрами, лабораторными испытаниями и по данным актов приемки скрытых работ:
- полнота и качество выполненных работ по расчистке полосы отвода (корчевка и срезка пней, засыпка и т.д.);
- качество грунтов, уложенных в насыпь (их соответствие проекту, требованиям нормативных документов по сооружению земляного полотна), правильность расположения отдельных слоев и степень уплотнения грунта (в том числе, в насыпях, возведенных в зимний период);
 - работы по замене грунтов в основаниях насыпей и выемок;
- продольный, поперечный профиль и положение в плане земляного полотна;
 - условия водоотвода;
 - укрепительные работы на откосах насыпей и выемок.
- 10.4. Все скрытые работы по сооружению земляного полотна и отдельных его элементов подлежат обязательному освидетельствованию и приемке с участием представителя заказчика.

До составления актов о приемке скрытых работ запрещается приступать к последующим работам

10.5. Промежуточную приемку выполненных работ должна проводить комиссия в составе:

представителя технического надзора;

главного инженера строительного управления, выполняющего работы;

производителя работ, а также лиц, непосредственно руководящих работами.

В сложных случаях к работе комиссии следует привлекать специалистов-экспертов.

- 10.6. Промежуточную приемку работ осуществляют по мере их готовности. Организация, ведущая работы, обязана предъявить приемочной комиссии:
- технический проект (или рабочие чертежи) принимаемого сооружения:
- акты на скрытые работы, а также акты геодезической разбивки основных осей сооружения и установки реперов, данные о гидрогеологических и грунтовых условиях;
- лабораторные журналы и акты испытаний грунтов земляного полотна;
 - журналы производства работ, технического и авторского надзора.
- 10 7. Положение земляного полотна в плане следует проверять, измеряя отдельные углы поворота и прямые между ними, а также производить контрольную проверку разбивки кривых. Продольный профиль земляного полотна следует проверять нивелированием на всех пикетах и переломах проектных уклонов. При этом необходимо проверять отметки оси дороги и обеих бровок.

Ширину земляного полотна следует проверять не менее чем в трех местах на каждые 50 м дороги

- 10 8 В процессе приемки готового земляного полотна качество уложенного грунта и степень его уплотнения необходимо проверять по данным лабораторных испытаний
- 10 9 Отбор проб для контроля плотности грунта должен производиться в шахматном порядке через каждые 50 м отсыпаемого слоя на оси дороги и в 1,5-2,0 м от бровки земляного полотна (ширина отсыпаемого слоя до 20 м), а также в промежутках между ними (ширина отсыпаемого слоя более 20 м)
- 10 10 Сдачу-приемку земляных работ оформаяют актом, который должен содержать
- перечень технической документации, на основании которой были произведены земляные работы,
- данные о проверке правильности выполнения земляных работ, о несущей способности грунтовых оснований (результаты контрольных наблюдений, нивелировок и т п),
- данные о топографических, гидрогеологических и грунтовых условиях, при наличии которых были выполнены земляные работы (уровень грунтовых вод, наличие оползневых явлений и т д),
- перечень, объемы и характеристику с указанием качества выполненных работ как по проекту, так и тех, которые не были предусмотрены проектом, и ведомость отступлений от проекта
- 10 11 Приемка работ с недоделками и дефектами, препятствующими эксплуатации земляного сооружения, запрещается
- 10.12 Оценку качества выполненных работ при приемке земляного полотна следует давать в зависимости от качества его уплотнения и соответствия геометрических размеров земляного полотна Отклонения от про-

ектных размеров и требований не должны превышать установленных допусков, приведенных в табл. 10.1.

Таблица 10.1.

Контролируемые параметры	Величина лопускаемых отклонений	Норядок контроля	Метод контроля
2	3	4	5
Высотные отметки про- дольного профиля	±5 cм	На каждые 100 м	Техническое нивелирование.
Сужение земляного по- лотна между осью дороги и бровкой	- 10 cv	Замеры не менее, чем в трех поперечниках на каждые 50 м	Рулетка.
Увеличение кругизны от- косов	± 10 %	Вамеры не менее, чем в трех поперечниках на каждые 50 м	Шаблон или геоле- зические инструмен- ты.
Толщина слоя растительного грунта	± 20 °,0	Замеры через 50	Стальной метр
Толщина слоя укрепления огкосов и обочин земля- ного полотна	± 10 ° o	Замеры через 50	Стальной метр
Уменьшение от требуемо- го коэффициента уплот- нения по абсолютной ве- личине (не более, чем у 10% образцов)	- 0,04	Отоор проб	Аабораторные испы- тания
Разнипа между значения- ми коэффициента уплот- нения по длине попереч- ного сечения слоя земля- ного полотна	0,02	Отбор проб	.\абораторные испытания

- 10.13. При приемке и оценке качества работ по засыпке траншей и котлованов также, как и при сооружении земляного полотна, производится промежуточный и приемочный контроль качества выполнения работ.
- 10.14. Выполнение комплекса работ по обратным засыпкам контролируется в соответствии со схемами операционного контроля качества выполнения работ, являющимися неотъемлемой частью проекта производства работ.

- 10.15. Дефекты, обнаруженные при операционном контроле. должны быть устранены исполнителями до начала выполнения последующих операций.
- 10.16, При промежуточной приемке проверяется качество грунта. применяемого для обратной засыпки, его влажность и степень уплотнения отлельных слоев.
- 10.17. После завершения работ по укладке и уплотнению грунта обратных засыпок осуществляется приемка выполненных работ. В процессе приемочного контроля проверяется соответствие фактических параметров обратных засыпок проектным.

11. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 11.1. При производстве работ необходимо соблюдать требования «Безопасность труда в строительстве» СНиП 12-03-2001, СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты», СНиП 3.06.03-85 «Автомобильные дороги».
- 11.2. К работам допускаются лица, достигшие 18 лет, прошедшие медицинское освидетельствование, специальное обучение, вводный инструктаж и инструктаж на рабочем месте по технике безопасности.
- 11.3. Лица, допускаемые к управлению ручными электрическими машинами, должны иметь II квалификационную группу по технике безопасности.
- 11.4. Все применяемые машины, приспособления должны иметь паспорта и инвентарные номера, по которым они записываются в специальные журналы учета и периодического осмотра. К управлению, строительными машинами и к работе с приспособлениями допускаются специально обученные рабочие и обслуживающий персонал.

- 11.5. При производстве работ пользоваться только исправным оборудованием и приспособлениями.
- 11.6. За соблюдение правил техники безопасности при строительстве несет ответственность главный инженер строительного подразделения и производитель работ
- 11.7. Места работ на улицах, проездах, во дворах, а также в местах, где происходит движение людей или транспорта, должны быть ограждены защитными ограждениями. На ограждении необходимо устанавливать предупредительные надписи и знаки, а в ночное время место производства работ должно быть освещено (таблица 11.1.).

Таблица 11.1. Нормы освещенности строительных площадок, участков работ и рабочих мест

Участок работы	Наименьшая	Плоскость,	Уровень поверхности,
	освещенность,	в которой	на которой
	лк	нормируется	нормируется
		освещенность	освещенность
Земляные работы, выпол-	10	Вертикальная со	По всей высоте забоя
няемые землеройными и	Í	стороны машини-	и по всей высоте вы-
другими механизмами	1	ста	грузки
	5	Горизонтальная	-
Устройство траншей для	10	Горизонтальная	На уровне дна тран-
коммуникаций			шей
	10	Вертикальная	То же
Планировочные работы,	10	В плоскости об-	На уровнях обрабаты-
производимые бульдозе-		рабатываемых	ваемых площадок
рами, катками и др		площадок	

<u>Примечание.</u> Коэффициент запаса для прожекторов с зампами накаливания принимается 1,5, а с газоразрядными источниками света 1,7. Коэффициент запаса для светильников с зампами накаливания принимается 1,3, , а с газоразрядными источниками света 1,7.

11.8. Производство земляных работ в зоне действующих подземных коммуникаций следует осуществлять под непосредственным руководством прораба или мастера, а в охранной зоне кабелей, находящихся под напря-

жением, или действующего газопровода, кроме того, под наблюдением работников электро- или газового хозяйства.

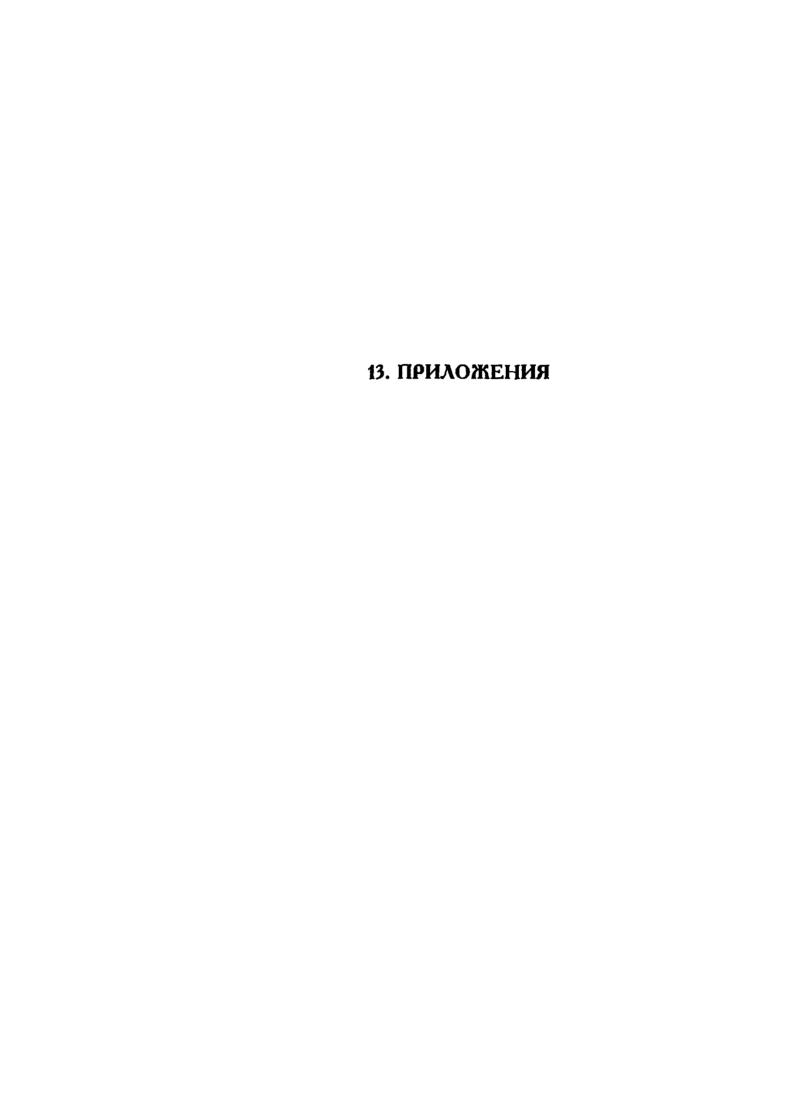
- 11.9. Не допускать присутствия людей, а также производства других работ в зоне действия грузоподъемных, землеройных и транспортных машин
- 11.10. Односторонняя засыпка пазух у свежевыложенных подпорных стенок и фундаментов допускается после осуществления мероприятий, обеспечивающих устойчивость конструкции при принятых условиях, способах и порядке засыпки.

При разгрузке грунта располагать автомобиль-самосвал не ближе, чем на расстоянии 1 м от бровки траншеи, пазухи.

- 11.11. Систематически контролировать состояние откосов траншей, а при появлении трещин принимать меры против обрушения грунта.
 - 11.12. Систематически проверять качество уплотнения грунтов.

Вблизи конструкций все работы выполнять только в светлое время суток.

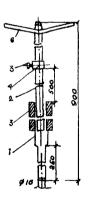
- 11.13. Спуск рабочих в котлован (траншею) и их подъем должен осуществляться по лестницам, установленным за границей опасной зоны для прохода людей при работе машин.
- 11.14. Участки строительства должны быть оборудованы специальными помещениями для отдыха, принятия пищи и обогрева в зимнее время рабочих.
- 11.15. Для обогрева рабочих устанавливаются перерывы продолжительностью 10 мин при температуре от -20 до -30°C и полное прекрашение работ при температуре ниже -30°C.

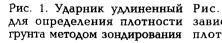

12. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

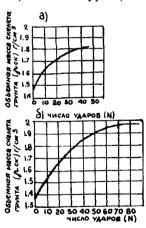
- 12.1. Необходимо осуществлять мероприятия и работы по охране окружающей природной среды согласно «Правилам организации производства и подготовки земляных и строительных работ в г.Москве» (Постановление Правительства Москвы № 207 от 17 марта 1998 г.).
- 12.2. Запрещается применение для производства земляных работ оборудования, являющегося источником выделения вредных веществ в атмосферный воздух и повышенных уровней шума и вибрации.
- 12.3. Все участки территории, где производятся земляные работы в траншеях, котлованах, пазухах должны быть ограждены согласно стройгенплану или схеме работ.
- 12.4. На строительной площадке должны быть размещены бытовые и подсобные помещения для рабочих и ИТР в соответствии с нормативными требованиями. Следует оборудовать места для складирования материалов, конструкций, изделий и инвентаря, а также для установки строительной техники.
- 12.5. В зоне производства строительных работ должна быть произведена срезка и складирование растительного слоя грунта в специальные отведенные места, сохраняемые деревья должны быть ограждены.
- 12.6. Производственные и бытовые стоки, образующиеся на строительной площадке, должны очищаться и обезвреживаться в порядке, предусмотренном проектом организации строительства и проектом производства работ.
- 12.7. После отсыпки земляного полотна дорог, прокладки подземных инженерных сетей, засыпки грунтом траншей, котлованов, пазух и последующего его уплотнения до требуемой плотности, поверхность земли

должна соответствовать отметкам, указанным в проекте производства работ.

- 12.8. Вся территория, на которой производились работы по уплотнению грунта в траншеях, котлованах и пазухах, должна быть озеленена.
- 12.9. Для засева газона следует применять смеси трав, в частности, смесь гребенника обыкновенного, мятлика лугового, рабграса английского и красной овсянницы.
- 12.10. Для озеленения объекта значительное внимание должно уделяться выбору вида растений для зеленых насаждений. При этом следует учитывать климатические, почвенные и гидрологические условия района посадки, а также особенности его планировки и застройки. В условиях г. Москвы чаще всего следует применять деревья с густой кроной: липы, березы, клены, тополя, лиственницы, а также плодовые деревья: яблони, вишни, груши, из кустарниковых пород следует использовать акацию, жасмин, сирень и др.
- 12.11. На улицах, проездах и тротуарах, имеющих усовершенствованное дорожное покрытие, траншеи и котлованы разрабатываются скреперами и засыпаются послойно песком.


Эти работы выполняются в присутствии представителей технического надзора эксплуатационных организаций, дорожных служб и авторского надзора проектных организаций.




Определение плотности грунтов методом зондирования с помощью удлиненного ударника

- 1. Метод зондирования может применяться при определении плотности песчаного и супесчаного грунтов в полевых условиях.
- 2. Метод основан на сопротивлении грунта погружению в него стандартного штампа круглого сечения диаметром 16 мм. вдавливают с помощью ударов гири с высоты 300 мм.
- 3. Степень плотности грунта определяется в интервале оптимальной влажности или близкой к ней.
- 4. Ударник (рис. 1) состоит из стержня с концевым штырем (штампом) длиной 250 мм (1), направляющего стержня длиной 900 мм (2), гири массой 2,5 кг (3), ограничительного кольца (4), винта (5) и рукояти (6).
- 5. Испытание грунта производится следующим образом. На выровненную поверхность грунта вертикально устанавливают ударник. Затем поднимают гирю до ограничительного кольца и свободно ее сбрасывыают. Так повторяют столько ударов, сколько потребуется для погружения ударника на глубину 250 мм. При этом подсчитывают общее число ударов.

По тарировочному графику (рис.2) для данного вида грунта находят точку, соответствующую полученному числу ударов при полном заглублении концевого штыря удлиненного ударника. Из этой точки проводят вертикальную линию до пересечения с кривой, после чего на вертикальной оси находят объемную массу скелета грунта (плотность грунта).

Тарировочные 2. графики для определения плотности зависимости числа ударов от степени грунта методом зондирования плотности грунтов в пределах их оптимальной влажности:

а) для песчаных грунтов; б) для супесчаных грунтов

– 53 –

Контроль за уплотнением насыпи методом режущих колец

Основной контроль за уплотнением насыпи в процессе производства работ производится путем сравнения объемного веса скелета грунта, отобранного из насыпи (λ_{cc}), с оптимальной плотностью (λ_{cc}).

Отбор проб и определение объемного веса скелета грунта в насыпи производится при помощи грунтоотборника (рис.1), состоящего из нижней части с режущим кольцом и ударника.

При отборе пробы грунта на его зачищенную поверхность ставят грунтоотборник в собранном виде и ударником забивают его в грунт Затем крышку и промежуточное кольцо нижней части отборника снимают, режущее кольцо окапывают, острожно вынимают вместе с грунтом, грунт срезают ножом вровень с нижними и верхними краями кольца. Кольцо с грунтом взвешивают с точностью до одного грамма и объемный вес влажного грунта в насыпи определяют по формуле:

$$\lambda_{BA} = \frac{G_2 - G_1}{V}$$

где G: - масса кольца, г;

G₂ - масса кольца с грунтом, г

V - обжим кольца, см³.

Это испытание производится трехкратно.

Также трехкратно определяют влажность испытываемого образца грунта путем высушивания навески в 15-20 г, взятой из каждого кольца с грунтом, до постоянной массы.

Объемный вес скелета групта насыпи определяют по формуле:

$$\lambda_{cK} = \frac{\lambda_{BA}}{1 + W_{BA}}$$

где W_{вл} - весовая влажность грунта в долях единицы.

Полученный объемный вес скелета в насыпи сопоставляют с оптимальной плотностью этого же грунта. Коэффициент K, характеризующий степень уплотнения грунта в насыпи, определяют по формуле:

$$K = \frac{\lambda_{\text{CK}}}{\lambda_{\text{CK} \text{ off}}}$$
a)
$$\frac{97/6}{6}$$

$$\frac{9}{6}$$

Рис. 1. Грунтоотборник: а) нижняя часть грунтоотборника;

б) режущее кольцо (отдельно);

в) ударник с подвижным грузом

Динамический плотномер «Кондор» универсальный для определения качества уплотнения грунта

- 1. Универсальный динамический плотномер ДПУ «Кондор» предназначен для оперативного контроля качества уплотнения грунта при строительстве автомобильных дорог, аэродромов и других инженерных сооружений.
- 2. Плотномер ДПУ применим в случае песчаных, супесчаных и суглинистых грунтов, содержащих не более 25% твердых частиц крупнее 2 мм.
- 3. При использовании настоящего плотномера для эксперсс контроля качества дорожно строительных работ требуется, в соответствии со СНиП 2.06.03-85, не менее 10% всех измерений проводить стандартными методами, в частности для грунтов весовым способом с отбором проб кольцами (ГОСТ 5180-84).

Технические данные плотномера

Масса прибора в упаковке, кг	5
Масса груза, кг	2,5
Высота падения груза, мм	300
Параметр заостренного стержия:	
1 (MM)	300
α, град	60
Глубина контролируемого слоя грунта,мм	100 - 300
Пределы измерения плотности	(0.84-1.02)Ky
Погрешность измерения плотности	+0,01 Ky

Конструкция и подготовка к работе

Основу прибора ДПУ для контроля плотности грунта (рис.1) составляет рабочая часть, в которую входят направляющая штанга (1) с рукоятью (2), перемещающийся по штанге груз (3) и наковальня (4), по которой наносятся удары падающего груза (3).

При контроле плотности грунта в наковальню (4) вместо ограничителя завинчивается стержень с коническим наконечником (5).

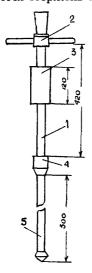


Рис.1. Прибор ДПУ для контроля плотности грунта

Контроль плотности грунта

- 1. Плотномер собирается согласно схеме (рис.1), когда в наковальню завинчивается стержень с коническим наконечником.
- 2. Устанавливается вид применяемого грунта на основании определения гранулометрического состава (ГОСТ 12536—79°) для несвязного грунта, а в случае связного грунта дополнительно и числа пластичности (ГОСТ 5180—84).
- 3. На контролируемом объекте разравнивается площадка размером не менее 30х30 см, посредине которой проводится первая пенетрация. Пенетрометр устанавливается строго вертикально к поверхности грунта, и ударами гири стержень загоняется в грунт на глубину 10 или 20 см в зависимости от толщины отсыпанного слоя грунта. Затем стержень забивается уже с определением числа ударов на глубину 20 или 30 см. Для получения усредненного значения плотности пенетрация повторяется еще в двух—трех местах на расстоянии не менее 10—15 см от первоначального места зондирования.
- 4. Коэффициент уплотнения несвязных грунтов определяется по графику 1 по среднестатистическому из 3—4 определений, а для связных грунтов по графику 2. В последнем случае, при возможном изменении влажности от оптимального значения, необходимо установит естественную влажность грунта путем высушивания образца в температурном шкафу (термостате) для получения более точных значений плотности. Влажность при этом

должна выражаться в относительных величинах ($\frac{W}{W}$),

где $W_{\circ}-$ оптимальная влажность грунта, определенная по методу стандартного уплотнения СоюзДорНИИ.

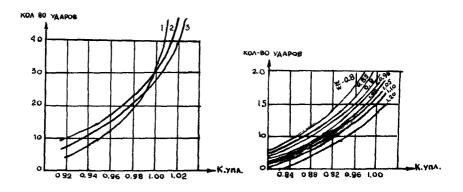


График 1. Определение коэффициента уплотнения несвязных грунтов: Песок средней крупности и крупный (1), песок пылеватый (2)

— 56—

График 2. Определение коэффициента уплотнения супесей

Статический плотномер конструкции МГП «Кондор» для определения качества уплотнения грунта СПГ-1

1. Назначение

Статический плотномер СПГ-1 предназначен для оперативного контроля качества уплотнения грунгов земляного полотна и дополнительных слоев оснований автомобильных дорог, аэродромов и прочих земляных сооружений.

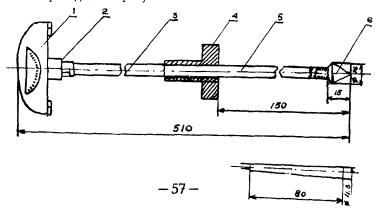
Плотномер допускается к применению на любых грунтах, содержащих не более 15% твердых включений крупностью свыше 2 мм.

При использовании плотномера для текущего и приемочного контроля плотности грунта не менее 10% измерений от общего количества необходимо проводить стандартным весовым методом с отбором проб грунта кольцами по ГОСТ 5182—78.

2. Технические условия

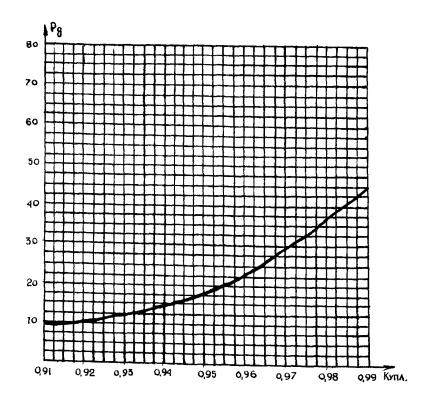
Тип прибора— пенетрометр статического действия с силоизмерительным устройством в виде плоскопараллельного динамометра ДК (50, 100, 150) с ценой деления 1-2 daN.

Общая масса пенетрометра в сборе — 0,55 кг Габаритные размеры, мм: длина 510 (580), ширина — 140 Параметры рабочих наконечников, мм


высота

конусс	1	
•	с углом входа	60°
	диаметр основания	16
	высота конуса	15
усеченн	юго конуса:	
-	диаметр подошвы	10

Пределы измерения плотности от 0,9 до 1,0 δ_{max} Погрешность измерений $\pm 0,01$ K_y


3. Конструкция и подготовка к работе

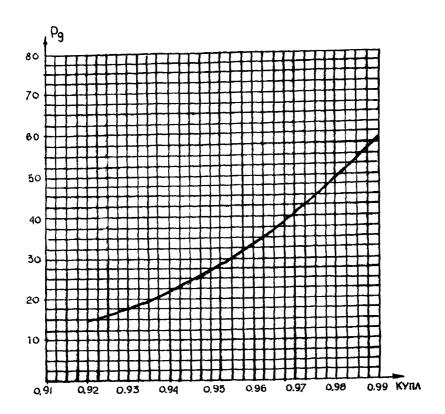
Плотномер СПГ-1 состоит из силоизмерительного устройства (1) с крепежной гайкой (2), в которую завинчивается переходный стержень (3) с ограничительной муфтой (4); рабочего стержня (5) и двух сменных наконечников — конуса (6) и усеченного конуса (7). Запасная шайба (8) служит ограничителем для усеченного конуса (7). Перед началом работы элементы плотномера прочно свинчиваются в соответствии с приведенным рисунком.

График усредненного коэффициента уплотнения песка крупного

(Work OT 5 AO 9%; λmax OT 1,84 AO 1,89 Γ/CM³)

ПРИМЕЧАНИЕ:

Область применения: Сооружение земляного полотна дополнительных слоев 2,5 до 3,5 дорожных одежд


Характеристика материала: Масса частиц крупнее 0,5 мм более 50% Устройство Модуль крупности Мърсв.

полный остаток на сите 0,63,% по массе, от 45 до 75 Нормативный документ ГОСТ 25100 — 95 табл.2 Руководство по сооружению земляного полотна приложение 2 табл.1 ГОСТ 8736-93 табл.1

График усредненного коэффициента уплотнения песка средней крупности

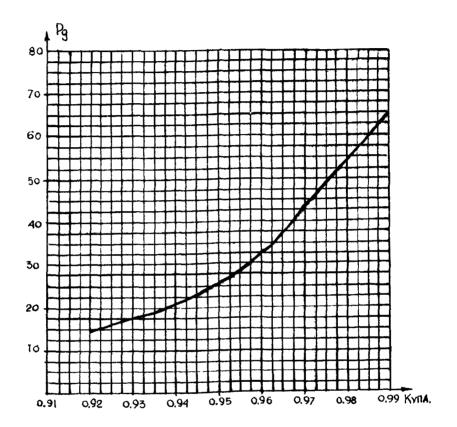
(масса частиц крупнее 0,25 мм более 50%)

(W_{ont} ot 7 do 10%; λ_{max} ot 1,74 do 1,87 r/cm³)

ПРИМЕЧАНИЕ:

Область применения: Сооружение земляного полотна У с т р о й с т в о

У с т р о й с т в о дополнительных слоев дорожных одежд Характеристика материала: Масса частиц крупнее 0,25 мм более 50% Модуль крупности $M_{\kappa\rho}$ св. 2 до 2,5

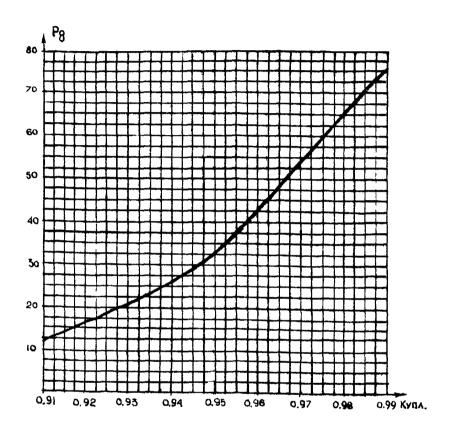

полный остаток на сите 0.63.% по массе, от 30 до 45

Нормативный документ ГОСТ 25100-95 Руководство по

горужению земляного полотна, приложение 2 табл.1 ГОСТ 8736-93* табл.1

График усредненного коэффициента уплотнения песка пылеватого

(W_{ont} ot 12 do 15%; λ_{max} ot 1,65 do 1,84 r/cm^3)


ПРИМЕЧАНИЕ: Область применения: Сооружение земляного полотна

Характеристика материала: Масса частиц крупнее 0,1 мм менее 75%

Нормативный документ ГОСТ 25100—95 Руководство по сооружению земляного полотна, приложение 2 табл.1

График усредненного коэффициента уплотнения песка мелкого

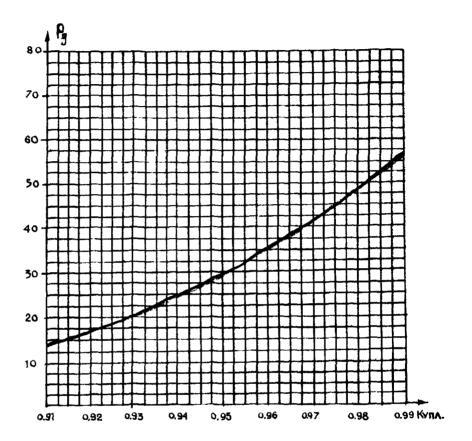
(W_{out} OT 10 AO 12%; λ_{max} OT 1,72 AO 1,83 Γ/CM^3)

ПРИМЕЧАНИЕ: Область применения:

Сооружение земляного полотна Устройство

дополнительных слоев дополнительных одежд

Характеристика материала: Масса частиц крупнее 0,1 мм более 75%

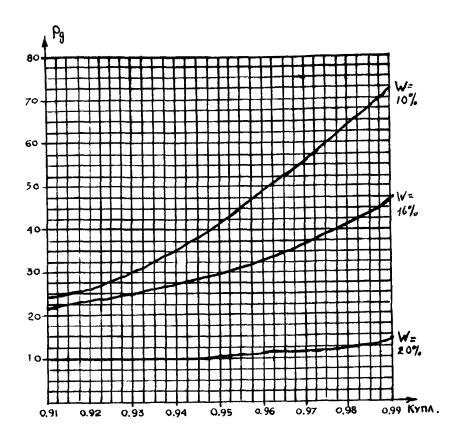

Модуль крупности Мкр св. 1,5 до 2,0

полный остаток на сите 0,63,% по массе, св. 10 до 30 Нормативный документ FOCT 25100 − 95 Руководство сооружению земляного полотна, приложение 2

табл.1 ГОСТ 8736-93

График усредненного коэффициента уплотнения песка для супесей

($1W_P > 7$; W_{out} or 14 do 17,8%; λ_{max} or 1,6 do 1,65 r/cm^3)


ПРИМЕЧАНИЕ: Область применения: Сооружение земляного полотна

Характеристика материала: Содержание песчаных частиц от 2 до 0.05 мм, % по массе для легкой >50%, пылеватой 20-50%, тяжелой пылеватой <20%

Нормативный документ Руководство по сооружению земляного полотна,

График усредненного коэффициента уплотнения суглинка

($W_{ont} = 19 - 20\%$; λ_{max} ot 1,67 at 1,69 Γ/cm^3)

ПРИМЕЧАНИЕ: Область применения: Сооружение земляного полотна

Характеристика материала легкий и тяжелый суглинки: содержание песчаных частиц от 2 до 0,05 мм > 40% по массе 7 <W_{IIA} <17; суглинки легкий и тяжелый пылеватые: содержание песчаных частиц от 2 до 0,05 мм < 40% по массе; 7 <W_{IIA}. < 17

Нормативный документ ГОСТ 25100-95 Руководство по сооружению земляного полотна, приложение 2 табл.2

4. Контроль плотности грунта

- 1. Заранее устанавливается вид грунта на основании определения полного зернового и микроагрегатного состава по ГОСТ 12536—79 для несвязных и числа пластичности по ГОСТ 5180—84 для связных разновидностей грунтов.
 2. В зависимости от установленного вида грунта при сборке плотномера используется конус (чесвязные грунты) или усеченный конус (стамнок) с
- 2. В зависимости от установленного вида грунта при сборке плотномера используется конус (несвязные грунты) или усеченный конус (суглинок) с шайбой, подложенной под его основание при завинчивании в рабочий стержень.
- 3. $\ddot{\text{Н}}$ а месте измерения выбирается площадка размером не менее 20х20 см. Верхний переуплотненный или разрыхленный слой на глубину 3-5 см снимают, а основание зачищают и выравнивают.
- 4. Фиксирующую кнопку расположенную на тыльной части динамометра, сдвигают налево от 0. Рабочий стержень ставят вертикально к измеряемой поверхности и нажимом на рукоять динамометра погружают наконечник в грунт до упора ограничительной муфты (или шайбы при усеченном конусе) в поверхность грунта, после чего плотномер извлекается из грунта, а показание на шкале динамометра записывается в журнал. Пенетрацию повторяют на каждом месте 3-5 раз, при этом расстояние между точками измерения должно составлять не менее 12-15 см. За расчетную величину усилия принимается их среднеарифметическое значение (P_g) . Перед каждым последующим замером показание стрелки сбрасывается перемещением фиксирующей кнопки на 0.
- 5. По полученному значению силы пенетрации (Рд) по графику соответствующего вида грунта определяется достигнутый коэффициент уплотнения для несвязных и слабосвязных разновидностей по графикам 1-5, а для суглинка по графику 6.
- В последующем случае для установления Ку необходимо определить влажность грунта высушиванием навески в термошкафу по ГОСТ 5180—84.
- 6. В случае, когда наконечник плотномера упирается при измерении в какое либо препятствие, что хорошо чувствуется при нажиме на рукоять, пенетрометр извлекается из грунта, и зондирование повторяется на новом месте.

Если наблюдается резкое расхождение между значениями коэффициента уплотнения, полученными плотномером СПГ-1 и весовым методом (кольцами), следует провести дополнительную тарировку прибора на данном виде грунта с составлением нового графика зависимости Ку от Рд.

5. Программа тарировки пенетрометра

- 1. Отбирается проба грунта массой $15-20~\rm kr$. Определяется вид грунта, оптимальная влажность и максимальная плотность методом стандартного уплотнения (ГОСТ 22733-77).
- 2. Тарировку проводят при оптимальной влажности грунта в формах диаметром 20 см и высотой 30 см по 3-4 точкам. Плотность достигается уплотнением грунта под прессом в три слоя до степеней 0,9; 0,95; 0,98 и $1.00\delta_{\text{max}}$

В каждом случае делается 4-5 проходов пенетрометром и вычисляется среднее значение Рд. По окончании работ строится график зависимости Ку от Рд. Полученный график применяется при контроле качества уплотнения данного вида групта в сооружении.

Рекомендуемые экскаваторы одноковшовые универсальные для разработки выемок и возведения насыпей

Γ	Модель,				Кра	ткая технич	еская хаг	актерист	ика	· · · · · · · · · · · · · · · · · · ·	Предприятие-изготовитель
	основные конструктивные особенности	вместимость основного ковша обратной	мощность двигателя, кВт (л.с.)	давление в гидросистеме, МП3	скорость передвижения, км/ч	наибольшая глубина копания обратной лопатой, м	наибольший радиус копания, м	нанбольшая высога выгрузки м	сменное рабочее оборудование	масса, т	
	1	2	3	4	5	6	7	8	9	10	11
	 ЭО-2621 В-3 на базе трактора ЮМ36КЛ (ЮМ3-6КМ) (Борэкс- 2629) 	0,25	45,6 (62)	14	19	4,2	5,3	3,5	Прямая и обратная лопаты, грейфер, крюк, вилы, гидромолот, бульдозер и др.	6.1	ОАО «Сарэкс» г.Саранск, Мордовия, Россия; Бородянский экск. 3-д, Бородянка, Киевск. обл., Украина
	2 ЭО-2626 экскаватор- погрузчик на б/тр. МТЗ- 82Л (ЭО-2626А-со смс- щением оси копания на 1м) (О-2627)	0,83 погрузочный ковш у 0,25	42,8(58) насосный стан 58,7 (80)-дв	20	8,33 раб при погруз- чике 33,4	4,15	5,3	3,2	Обратная и прямая лопаты, погрузочный ковш, грейфер, гидромолот крюк, и др.	7,4	ОАО «Сарэкс» г.Саранск, Мордовия, Россия
	3 ЭО-3123 полноповорот- ный, гидравлический на гуссничном ходу тракторного типа	0,83	51,5(70) насосной установки 57(77,5) двигателя	28	2,8	4,95	7,93	6,16	Обратная и прямая ло- паты, погрузочный или профильный ковши, грейфер, гидромолот крюк, и др.	13,5	ОАО «Тверской экскаваторный з-д, г Тверь, Россия
	90-3323А полноповоротный гидравлический на пневмоходу	0,63	51,7(70) насосной установки 57(77,5) двига теля	28	19,4	4,95	7,94	6,15	Обратная и прямая ло- паты, профильный и погрузочный ковши, зуб- рыхлитель	14	ОАО «Тверской экскаваторный з-д, г Тверь, Россия
	БК-18 (ЕТ-20) одноков- шовый на пневмоходу (на гусеничном ходу)	1,0	77	28	22 (2,34)	5,8	9,2	2,1	Обратная лопата	61 (18)	ОАО «Тверской экскаваторный з-д, г Тверь, Россия

Γ	1	2	3	4	5	6	7	8	9	10	11
6	ЭО-4225 полноповорот-	1	95,6	28	2,5	6	9,4	5	Обратная и прямая ло-	26,5	ЗАО «Ковровский
	ный гидравлический на	1	(130) 125	1	1,7-3,6	6	9,3	5,15	паты, грейфер, рыхли-	26,45	экскаваторный з-д,
1	удлиненном гусеничном		(170)				}		тель, гидромолот и др		г Ковров, Россия
	ходу тракторного типа		147				ł	1		26,0	
1	(30-4225A , 30-4226)	1	(200)		1,7-3,6	6,5	10,5	6,8			1
	(опытный образец)						Ĺ		<u> </u>		1
7	ЭО-5126 (полнопово-	1,35	125	28	1,95	6,25	9,6	5,9		30,0	АООТ «Тяжекс»
1	ротный гидравлический	1 1	(170)	!!	3,5						им Коминтерна,
	на гусеничном ходу]		[[}	г Воронеж, Россия
İ	тракторного типа										<u> </u>
8	30-5124 (30-5124-2)	1,25	125 (170)	28	2,2	7,3	10,8	5,9	Обр лопата,	39	То же
	универсальные гидрав-	1,6			(2,4)	6,5	10	5,5	погрузочное и	(37,9)	
	лические на гусеничном	(1,85	j				,		рыхлительное	38,9	
	ходу								оборудование	(37,8)	
9	30-5116,30-5116-1,30-	1,5	103(140)	-	2	8,29	9,2	6,1	Прямая и обратная	36,3	ОАО «Экско» г Кострома,
	516-3 универсальный	прямая	129(175)	- 1		(высота			лопаты, драглайн,	j	Россия
Ì	полноповоротный	лопата		1		копания)			грейфер, кран	}	
]	канатный на гусеничном										
	ходу	Ì		Ì	1				1		
10	30-43212, 30-43213,	0,5	55(75)	28	70	5,8	9,0	5,8	Обратная лопата	20,7	ЗАО «Урал-Кран»
	ЭО-43214 Экскаваторы-			- [ļ				1	ĺ	г Пермь, Россия
	планировщики на базе	: [1	İ					<u> </u>	1	-
]	соответственно КамАЗ-		j	- [}		
	53228	i	ĺ	1						.	
	Урал-4320-1911-3	1	-	- 1		j			į		
1	КамАЗ-43118	1	ļ	1	1	}	Ì				
11	ЕК-270, одноковшовый	0,6-	132(180)	28	0-4	7,7	11,17	7,97	Обратная лопата	26,5	ОАО «Машиностроитель-
	на гусеничном ходу	1,5		ļ					1	,	ная компания» Кран ЭКС
				}			}				г Иваново, м Минеево
12	ЭО-3532 А экскаватор-	0,63	56,6(77)	28	70	4,6	8,3	4,8	Ковши экскалагорный	17,5	Контаусский экскаватор-
	планировщик на шасси	(0,5				1	İ		профильный, планиро-	'	ный завод, Казахстан
	КамАЗ-5531 с телеско-	пла-		1		ſ	ļ		вочный удлинитель,		
	пическим рабочим обо-	ниро	1		ĺ	1	-		рыхлитель, отвал		
	рудованием, угол	воч-	1	- [1				
	поворота раб об в плане	ныи)	1								
	140° вокруг продольной]							ł	
	оси стрелы ±45°	- 1		ł	Ì	1					

Приложение 6

Рекомендуемые экскаваторы непрерывного действия для рытья траншей при устройстве подземных инженерных сетей

	Модель,		·, · · · · · · · · · · · · · · · · · ·	Кра	ткая техн	ническая характерист	ика		Предприятие -
	основные конструктивные	моплюсть размер транцеи, м				рабочие скорости, м/час	производительность	масса, т	изготовитель
1	особенности	двигателя,	глубина	писрина]			1
ŀ		кВт(пс)		по верху	по низу				
ļ	1	2	3	4	55	6	7	8	99
53	1 ЭТЦ-1609, ЭТЦ-1609БД (ЭТЦ-1607) траншейный цепной на базе пневмоко- лесного трактора МТЗ-82	57,4 (78)	1,6 1,4 (1,6)	0,2;0,27, 0,4, 0,14 (0,2, 0,27,0,4)	-	0-800	грунт 1 категории при глубине 1,1м и ширине 0,4м 105 м ³ /ч	6,25	ГП «Дмитровский экскаваторный завод» г Дмитров, Россия
	2 ЭТР-224А траншейный роторный на базе тягача с использованием узлов гусеничного трактора Т-170	125 (170)	2,2	1,75	0,8	рабочая 10-300 м/ч транспортная 4,25 км/ч	600 м ² /ч в грунт 1 категории	31,1	ООО «Радицкий машиностроительный завод» г Брянск, Россия
	3 ЭТР-223А траншейный роторный на тягаче с использованием узлов гусеничного трактора Т-170	125 (170)	2,2	2,4	1,5	рабочая 10-300 м/ч транспортная - 4,25 км/ч	650 м²/ч в гр. 1 кат	33,5	~ ~ -

Гидромолоты к гидравлическим экскаваторам 2-й-5-й размерным группам, используемые для разработки и уплотнения грунтов

	Модель, основные конструктивные особенности	Энергия удара, Дж (кгс.м.)	Частота удара в минуту	Масса ударной части, кг	Масса молота без инструмен- та, м	Длина молота без инстру-мента, м	Толщина уплотняе- мого слоя, мм	Предприятие-изготовитель
	1	2	3	4	5	6	7	8
	1 ГПМ-120, к экскаваторам 2-й размерной группы типа ЭО-2621	1200 (120)	до 240	30	275	1,55	150-200	ОАО «Тверской экскаваторный з-д» г.Тверь; ОАО «Завод Булат» г. Златоуст, Челябинская обл., Россия
3	2 ITIM-150, к экскаваторам 2-й размерной группы типа ЭО-2621	1500 (150)	360	-	345	-	200-250	ОАО «Тверской экскаваторный з-д» г.Тверь; ТОО «Сибгеотехника», СибНИИСтройдормаш г.Красноярск, Россия
	3 ГПМ-300, к экскаваторам 3-й размерной группы	3000 (300)	180-220	163	1033 (940)	2,2	300-350	ОАО «Тверской экскаваторный з-д» г. Тверь; ОАО «Машиностроительная компания КРАНЕКС», г. Иваново, м. Минеево
	4. СП-71 (71A), к экскаваторам 3-й размерной группы	3000 (300)	100-130 (180)	155	750	2,03	250-300	ЗАО «Ковровский экскаваторный завод», г Ковров, Владимирская обл., Россия
	5 СП-62 УХЛ, к экскаваторам 4-й размерной группы (ЭО-4225A)	9000 (900)	130-190	600	2100	2,25	300-400	ЗАО «Ковровский экскаваторный завод», г. Ковров, Владимирская обл., Россия

Приложение 8

Рекомендуемые бульдозеры для производства земляных работ в дорожном строительстве и при устройстве подземных инженерных сетей

Модель,			Kı			характерист	ика		Предприятие -	
основные конструктивные особенности	1			Отва.	ni .			ي ۾	изготовитель	
	мощность двигателя, кВт (л с)	длина,мм	высота, мм	угол поперечного переноса, град	подъем, мм	опускание (заплубление рыхлителя), мм	габаритные размеры, мм	масса (скорость передвижения, км/час),т		
ı	2	3	4	5	6	7	8	9	10	
1 ДЗ-42 бульдозер с неповоротным отвалом на базе гусеничного трактора ДТ-75 Гидропривод ВТЗ ДЗ-42	70(95)	2520	800	0-8	600	50	4650x2710x2300	7,3 эксплуа- тацион- ная	ОАО «Михневский ремонт- но-механический завод» Михнево, Ступинский р-н, Московская обл ОАО «Волгоградский	
		}							тракторный завод» г Волгоград, Россия	
2 ДЗ-42 бульдозер с неповоротным отвалом на базе гусеничного трактора ДТ-75 Гидропривод	70(95)	2060	800	55 угол резания	500	50	4700x2060x2470	3,99	ОАО «Михневский ремонт- но-механический завод» Михнево, Ступинский р-н, Московская обл	
3 Д3-133 бульдозер- погрузчик на базе трактора МТ3-82 Оснащается грунторезной установкой Д3-133 ТУ 4835-033-02241- 1502x95	58,7/80	2100	650	<u>-</u>	2600 высо- та раз- грузки	-	5230x2130x2882	4,67	ОАО «Орелстроймаш», г Орел, Россия	
4 К-30 бульдозер на базе гусеничного трактора ДТ-75H-XC2 с неповоротным отвалом Гидропривод	70/95	2550	800	-	-	-	4980x2580x2650	7,3	- « -	

Продолжение приложения 8

1	2	3	4	5	6	7	8	9	10
5 ДЗ-171 1 бульдозер на базе гусеничного трактора Т-170 с неповоротным отвалом	125	3220	1300	55 угол резания	935	500	5700x3200x3050	17,3	ЗАО «Челябинский завод дорожно-строительных машин им Колющенко, г Челябинск ОАО «Михневский ремонтно-механический завод» Михнево, Ступинский р-н, Московская обл
6 Б 170М 01ЕР-Б 170М 03ЕР бульдозеры-рыхлители на базе гусеничного трактора Т-170М с механической трансмиссией	125 132	3310	1310	55 угол резания	1050	460	7160 – длина 3180 – высота	19,44	ОАО «Челябинский тракторный завод им Колющенко», г Челябинск
7 Б-10 02ЕР – бульдозер-ры- клители на базе гусенич- ного трактора Т-10 03-10 с гидромеханической транс- миссией	132	3310	1310	55 - угол резания	1020	440	6870 – длина 3110 – высота	20,16	- « -
8 ДЗ-126 В-1, ДЗ-126 В-2 – бульдозеры-рыхлители на базе гусеничного трактора ДЭ-250М2	246	4590	1550	нд	нд	1200 – рыхлителя	нд	40,89 41,1	- ((-
9 ДЭТ-250М2БІРІ, ДЭТ-350БІРІ бульдозеры-рыхлители на базе тракторов ДЭТ-250М и ДЭТ-350 с неповоротным полусферическим отвалом	237,4 257,4	4250	1850	55 – угол резания	-	1540 - рыхлителя	9440 – длина 3,21 и 3,9 – высота	41,34 и 44,42	- « - ОАО «Завод Строймаш» г Стерлитамак, Республика Башкортостан, Россия
10 ДУ-94С-1 - бульдозер- рыхлитель на базе гусе- ничного трактора Т-330	283	4730	1750	12 – угол попереч- ного перекоса	нд	700 – рыхлитель	9400 — длина 4600 — высота	53,76	ЗАО «Химэксмаш» г Балаково ГСП, Саратовская обл, ОАО «Промтрактор», г Чебоксары, Чувашская республика Россия

-71-

Рекомендуемые автогрейдеры для производства земляных работ в дорожном строительстве

į	Модель, Краткая техническая характеристика												Предприятие –
		основные конструктивные особенности	мощность. кВт (л с)	длина отвала, мм	высота отвала, мм	утол резания, град	боковой вынос, мм	опускание (подъем), мм	скорость движения, км/ч	габаритные размеры, мм	масса, т	дополнитель ное оборудова- ние	изготовитель
		1	2	3	4	5	6	7	8	9	10	11	12
	1	Д3-201 на базе трактора МТ3-80/82	57,4 (78)	2500	500	30-70	500	100	1,9-35,5 (4-9) назад	7200x2350x 2850	6,3	бульдозер- ный отвал	ООО «Радицкий машино- строительный завод» Брянск, Россия
	2	ΓC-10-01-02	77 (105)	2730	470	30-70	600	300	4,7-70 (5,4,16,0 назад)	8600x2988x 2200	9,5	бульдозер- ный отвал, рыхлитель	ОАО «Брянский Арсенал» г Брянск, Россия
- CL	3	Д3-180А «Профиль 30-2»	99 (135)	4270	740	30-70 (утол срезае- мого откоса 0-90°)	1050	500	4	9975x2500x 3450	13,5	кирковщик, бульдозер- ный отвал	ОАО «Брянский Арсенал» г Брянск, Россия
	4	ДЗ-122A (С-1, -4, -6, -9) профиль 30-8	99	3744	632	30-70 (утол срезае- мого откоса 0-90°)	800	250	6,9-42,1	10150x2500 x3550	14	кирковщик, бульдозер- ный отвал	ОАО «Орловский з-д дорожных машин» г Орел, Россия
	5	Д3-122Б	99 (135)	3744	632	30-70 (угол срезае- мого откоса 90°)	800	350	7,4	10570x2500 x3550	14,6	кирковщик, бульдозер- ный отвал	То же
	6	ДЗ-98В 1 (-3, -5)	132 (180)	4270	740	30-70 (угол срезае- мого откоса 0 90°)	2400	500	4,43-47	10300x3020 x3950	19,5	кирковщик, бульдозер, рыхлитель	ОАО «Челябинский з-д дор маш им Колющенко», г Челябинск, Россия
	7	FC-1801	132 (180)	3740	620	45	700	450	0-42 (0-26, назад)	10500x2600 x3550	17,5	рыҳлитель, бульдозер- ный отвал	ООО «Радицкий машиностроительный завод» г Брянск, Россия
\{	8	A-120	132 (180)	3740	650	-	935	450	7,13,24, 42 (7,25)	10800x2560 x3550	14,2	бульдозер- ный отвал	ОАО «Челябинский з-д дор маш им Колющенко», г Челябинск, Россия

Погрузчики для землеройно-транспортных погрузочно-разгрузочных и других видов работ

M	одель, основные конструктивные особенности	Мощность двигателя, кВт (л с)	Грузоподъ- емность, кг	Вместимость ковша, м ³	Высота разгрузки, м	Скорость движения, км/ч	Масса, т	Габаритные размеры, мм	Предприятие-изготовитель
	1	2	3	4	5	6	7	8	9
1	ПУМ-500, универсальный малогабаритный, может оснащаться гидробуром и др Бортовой поворот	18,4-22	500	0,38	1,9	9	2,77	3400x1560x2260	ГУП ПО «Урал-вагон завод» г Нижний Тагил, Свердловская обл , Россия
2	СММ-750, строительная машина малогабаритная с бортовым поворотом	44	750	0,375	2,2	10	3,25	3300x1680x2200	АООТ «Тяжекс» им Коминтерна г Воронеж, Россия
3	ТО-30, одноковшовый фронтальный, шасси специальное самоходное пневмоколесное	57	2200	11	2,7	35	7,5	6400x2400x3290	ОАО «Погрузчик» г Орел, Россия
4	3TM-213, фронтальный с телескопической стрелой (вылет 3,6 м)	57,4	2500	1,25	2,75-4	35	9,15	-	АОА «ЭКСКО» г Кострома, Россия
5	ТО-25 (ПКЗ), одноковшовый фронтальный на базе трактора T-150K	121	3000	1,5	2,76	36	10	7100x2550x3015	ОАО «Орелстроймаш», г Орел, Россия
6	ПК-2701, ПК-27013, шасси самоходные пневмоколесные, рама шарнирно-сочлененная	77	3300	1,6	2,8	-	-	6670x2480x3150	ОАО «Погрузчик», г Орел, Россия
7	П 4 01 01, одноковшовый фронтальный на базе трактора Т-10 11, оснащен трехзубым рыхлителем	132,4	4000	2	3,065	8,6	18,8	7320x2560x3300	ОАО «Челябинский тракторный завод», г Челябинск, Россия

Приложение 11

Рекомендуемые катки для уплотнения земляного полотна в инженерном и дорожном строительстве

	Модель,			Предприятие –						
	основные конструктивные особенности	масса, т	базовая маплина мощность кВт (л с.)	ширина уплотняемой полосы, мм	линейное давление на грунт, и/см	частота колебаний, гц	ско рость движения, км ⁴ час	число колес, шт	габаритные размеры, мм	изготовитель
	1	2	3	4	5	6	7	8	9	10
1.	ДУ-72 самоходный, вибрационный или статический	3,8	18,4	1140	-	50	0-5,5	2 гладких вальца	3565x1305x2580	ОАО «Стройдормаш» г. Калинин, Россия
2	ДУ-95-2 самоходный, тротуарный вибрационный	1,15	8 (11)	750	-	55	до 2 до 3,6	2 гладких вальца 3 пневмоколеса	2335x895x1540	НПО «Машинострои- тель» г. Брянск Россия
3.	ДУ-54М самоходный ви- брационный 2-х вальцовый	1,5	5,9	890	157-176	58	1,8-6	2 гладких вальца	2800x1100x2200	ОАО ««Стройдормаш» г. Калинин, Россия
4.	ДУ-96 двухвальцовый самоходный вибрационный	7,8	48/46	1500	-	50	0-8 0-12	- « -	4050x1850x3050	ЗАО «Раскат» г.Рыбинск, Россия
5	ДУ-93 самоходный стати- ческий двухвальцовый	8 — без балластв 10 — с балластом (вода)	44,1	1400	-	-	1,89 3,7 6,8	- « -	4900x1750x2900	- « -
6.	ДУ-47Б самоходный вибра- ционный 2-х вальцовый	8,5	44	1400	-	50	2,09; 4,07 - рабочая 7,5 - транспортная	- « -	4790x1800x3250	- « -
7	ДУ-74-1 самоходный ви- брационный с кулачковым вальцем	9,5	57,4	1700	-	33	0-7	2 пневмоколеса	5000x2000x2800	- ((-
8.	ДУ-97 самоходный комбинированный с вибрационным гладким вальцем	7,6	48/46	1500	•	50	0,8 - рабочая 0-12 - транспортная	4	4050x1850x3050	- ((-

Продолжение приложения 11

	1	2	3	4	5	6	7	8	9	10
9	ДУ-97 самоходный комби- нированный с вибрацион- ным гладким вальцем	9,5	57,4	1700	320	40 (25)	0-10	4	3920x2040x3350	ЗАО «Раскат» г Рыбинск, Россия
10	ДУ-99 самоходный комбинированный с вибрационным гладким вальцем	10	73,6/ 72	1700	•	50	0-12	4	3920x2200x3500	- ((-
11	ДУ-65 самоходный пневмоколесный	12	57,4	1700	-	-	0,8 - рабочая 0-16 - транспертная	4+4	4900x2040x3350	- « -
12	ДУ-100 самоходный пневмоколесный	14	73,6/ 72	2000	***	-	0-16	4+4	4800x2200x3500	- « -
13	ДУ-85-1 самоходныи с кулачковым вибрационным вальцем	13,5	130	2000	-	40 (25)	0,10 - рабочая 0-11,5 - транспортная	2	6000x2400x3200	- ((-

Приложение 12

Рекомендуемые виброплиты, виброуплотнители для послойного уплотнения грунта в траншеях и котлованах

	Модель, основные конструктивные особенности		Мощность двигателя, кВт (л.с.)	Размеры плиты, ширина уплотнения, мм	Частота колебаний, Гц	Вынуждающая сила, кН	Максимальная глубина уплотнения, мм	Габаритные размеры, мм	Предприятие-изготовитель
	1	2	3	4	5	6	7	8	9
]	ВУ-800, двигатель бензиновый	45	2,6	450x350	100	-	150-200	-	ОАО «Мотопром» г.Серпухов, М.О.Россия
2	BУ-1500, двигатель Honda GX-160 бензиновый	100	2,9 (4,0)	450	96	15	до 250	•	- « -
3	ОУ-60, двигатель Honda GX- 160 бензиновый	80	4	350x410	90	10	250	1200x350x1090	ОАО «Завод дорожных машин», г.Волгодонск, Ростовской обл., Россия
4	ОУ-80, двигатель Honda G-160 бензиновый	110	4	400x500	90	14	250	1440x400x1230	- « -
5	ДУ-90 двигатель СН-GД дизельный	270	4,4	550	75	22,6	-	1450x780x990	ЗАО «Раскат» г.Рыбинск, Ярославской обл., Россия

Рекомендуемые скреперы для землеройно-транспортных работ в дорожном строительстве

\lceil	Модель,			Предприятие -						
	основные конструктивные особенности		вместимость ковша, м ³	грузоподъ- емность, т	ширина резания, мм	заглубление, мм	толщина отсыпаемого слоя, мм	габаритные размеры, мм	масса, т	изготовитель
	1	2	3	4	5	6	7	8	9	10
1	Д3-172 1 и его модификации на базе гусеничных тракторов тягового класса 10 (Т-170 00-2, Т-170 01-2, Т-170М-00-2, Т-170М 01-2 и их модификации)	128,7 (175)	8,8-11	16,5	2754	170	400	14330x3150x3300	9,76-25,2 с трактором	ООО «Завод дорожных машин им Колющенко» г Челябинск, Россия
2	СП-172, СП-172А прицепные к гусеничным тракторам тягового класса 10 (Т-170 00, Т-170 01, Т-170М-00, Т-170М 01 и их модификации)	128,7 (175)	8,8-11	16,5	2754	170	400			То же
3	ДЗ-172 5 и его модификации, автоматизированные «Копирстабилоплан» на базе гусеничных тракторов тягового класса 10 (Т-170 00-2, Т-170 01-2, Т-170М 01-2 и их модификации)	128,7 (175)	8,8-11	16,5	2754	170	400	14330x3150x3300	25,385	- « -
4	ДЗ-149-5-прицепной к колесному трактору К-701		8	16,5	2580	150	400	9354x3150x2800	9,8	Бердянский з-д дорожных машин ПО «Юждормаш», г Бердянск, Украина
5	ДЗ-87-1А самоходный на базе трактора Т-150К		5	9,8	2430	150	380	10730x2922x2840	12,3	Тго же
6	СО-187 на базе пневмоколесного трактора тигового класса Б («Кировец» К-703М)	11-15	22	3034	220	500				ООО «Завод дорожных машин им Колющенко» г Челябинск, Россия

СОДЕРЖАНИЕ

1. Общие положения
2. Требования к применяемым грунтам
3. Машины и механизмы для производства земляных работ в
дорожном строительстве, при устройстве подземных
инженерных сетей, при обратной засыпке котлованов
траншей, пазух
4. Машины и механизмы для уплотнения грунта
5. Основные технологические требования строительства земляного
полотна
5.1. Общие положения
5.2. Уплотнение земляного полотна
5.3. Технология уплотнения грунта после восстановительного
ремонта подземных инженерных сетей в зоне проезжей
части дороги
6. Производство земляных работ при устройстве подземных
инженерных сетей
7. Технология уплотнения грунта при обратной засыпке котлованов
8. Технология уплотнения грунта при обратной засыпке пазух
9. Контроль качества производства работ
10. Приемка работ по сооружению земляного полотна и засыпке
траншей и котлованов
11. Требования безопасности
12. Охрана окружающей среды
13. Приложения:
Приложение 1. Определение плотности грунтов методом
зондирования с помощью удлиненного ударника
Приложение 2. Контроль за уплотнением насыпи методом режущих
колец
Приложение 3. Динамический плотномер «Кондор» универсальный
для определения качества уплотнения грунта
Приложение 4. Статический плотномер конструкции МГП
«Кондор» для определения качества уплотнения грунта
СПГ-1
Приложение 5. Рекомендуемые экскаваторы одноковшовые
универсальные для разработки выемок и возведения
насыпей
Приложение б. Рекомендуемые экскаваторы непрерывного
действия для рытья траншей при устройстве подземных
инженрингу Сетой

Приложение 7. Гидромолоты к гидравлическим экскаваторам	
2-й - 5-й размерным группам, используемые для	
разработки и уплотнения грунтов	69
Приложение 8. Рекомендуемые бульдозеры для производства	
земляных работ в дорожном строительстве и при	
устройстве подземных инженерных сетей	70
Приложение 9. Рекомендуемые автогрейдеры для производства	
земляных работ в дорожном строительстве	72
Приложение 10. Погрузчики для землеройно-транспортных,	
погрузочно – разгрузочных и других видов работ	73
Приложение 11. Рекомендуемые катки для уплотнения земляного	
полотна в инженерном и дорожном строительстве	74
Приложение 12. Рекомендуемые виброплиты, виброуплотнители	
для послойного уплотнения грунта в траншеях и	
котлованах	76
Приложение 13. Рекомендуемые скреперы для землеройно-	
транспортных работ в дорожном строительстве	77

Зак. 54 Тираж 150

Научно-исследовательский институт московского строительства

НИИМосстрой

Экспертный базовый центр:

осуществляет контроль качества строительно-монтажных и специальных работ, строительных материалов, изделий и конструкций;

готовит материалы для получения и продления лицензий.

Испытательный центр "Мосстройиспытания":

выполняет сертификационные испытания строительных материалов, изделий и конструкций.

Орган сертификации "Мосстройсертификация":

🕶 проводит работы по сертификации.

НИИМосстрой располагает современной лабораторной службой для проведения всех видов испытаний.

Заявки на выполнение работ просим направлять по адресу: 117192, Москва, Винницкая ул., 8 Тел. 147-40-02; факс 147-41-12