Министорото строительства предприятий тяжелой индустрии С С С Р

Проектный и научно-чеследоватольский институр "КРАСНОПРСКИЙ ПРОМСТРОЙНИИПРОЕКТ"

РЕКОМЕЛДАЛИМИ

ПО ИСПЫТАНИЮ ФУНДАМЕНТОВ НА ВЕЧНОМЕРЗЛЫХ
ГРУНТАХ ПРОБНЫМИ НАСТУЗКАМИ

Красноярся, 1974

Министерство строительства предпринтий тяжелой индустрив С С С Р

Проектный и научно-коследовательский ин**ститу**т
"КРАСНОЯРСКИЙ ПРОМСТРОЙНИИПРОЕКТ™

РЕКОМЕНДАЦИИ М ПО ИСПЫТАНИЮ ФУНДАМЕНТОВ НА ВЕЧНОМЕРЗЖЫХ ГРУНТАХ ПРОБНЫМИ НАГРУЗКАМИ

> Красноярск, 1974

YAK 624.139: 624.15

Настоявие Рекомендации дополняют глави СНип II-Б. 6-66 "Основания и фундаменти на вечномералых грунтах. Норми просктирования", II-А. 13-69 "Инженерные изыскания для строительства. Основные положеная", "Пособие по проектированию оснований и фундаментов на вечномералых грунтах" и СН 450-72 "Указания по проектированню оснований и фундаментов на засоленных и сильнованием вечномералых грунтах" практическими методиками опредения нернативных сопротивлений, характеристик деформативных свойсти и коэффициентов условий работы мералых грунтов и под земного явля.

Рекомендации предназначены для проектировщиков, строите лей и инженеров — исследователей.

Отзывы и предложения просьбя направлять по адресу:

660306, Красиопрек, пр. Свободный, 75, институт "Красиоярский прометройнинпроект"

Редакционная коллегия:

Ш.Ф.Акбунатов (отв.редактор), С.И.Гриб, М.С.Михельсон.

BBEZEHME

Методики испытаний, которые бы поэволяли при прогктировании фундаментов учитывать переменные во времени нагрузки и другие факторы, связанные с принципами использования вечномералых грунтов и техноногией ведения строительных работ, не нашли отряжения в тоебованиях Иорм строительного проектирования.

В соответствии с оощими положениями проектирования по предельным состояниям учет переменных во време и факторов должен осуществляться через коэффициенты условий работы. Коэффициенты условий работы вводятся к нермативным сопротивлениям групта или пъда и показывают неточность отражет ил действительных условий работы сооружения в расчетных схемах, принятых при нермировании сопротивлений.

Настоящие Рекомендации направлены на восполнение этого пробела в нормах строительного проектирования. Базируясь на кинстических уравнениях для характеристик доформативных свойств мерзлых грунтов, Рекомендации позволяют по результатам сравнительно простых испытапий переходить к расчетам оснований и фундаментов при ра. личных сочетаниях статических и линамических нагрузок.

Рекомендации состоят из общих ноложений, четырех основных резделов и приложений. Общие положения регламентируют область применения Рекомендаций. Во втором, тротьем и четвертом разденах приводятся методини определения нормативных сопротивнений, характеристик деформативных свойств и колффициянтов условий рамоты мералых грунтов и подземного ивда. Заключительный раздел Рекомендаций содержит требования по измерению осадок, нагрузок и температур грунта во время испытания. В приложении дани классификация кянетических уравнений и правила конструирования интегральных функций, необходичих для расвифровки магериалов испытаний с помощью ЗЕЛ.

Гекомендации резработаны ет. научным сотрудником А.К.Жосинегим в институте "Граснопрский прометройнимпроект".

Применение Рако сендаций будет способствовать более полному метользовании гластических свойств мерэлых грунтов и подасшисте льда ны просклиговании ундаментся и в других случаих использе-

вания мералых грунтов в качестве материала и среды, в которой гозводятся инженерные сооружения.

I. OBUME MONOXEHMA

1.1. Настоящие Рекомендации дополняют главы СНиП II-Б. 6-66, II-А. I3-69, "Пособие" (М., I%9) и СН 450-72 методиками спределения норметивных сопротивлений, характеристик деформативных свойств и коэффициентов условий работы мералых грунтов и подеямного льда.

Рекомендации распространяются на проектирование фундаментов и проверку их эксплуатационной недежности во время строи - тульства и эксплуатации зданий и сооружений.

- 1.2. Применение Рекомендаций позволяет проектирование основении и фундаментов проводить с учетом изменения во времени:
 - а) нагрузок, составляющих расчетное сочетания;
 - б) мерапотной обстановки и температурного режима грунтов;
 - в) положения границ зоны оттаивания-промерзания.
- 1.3. Испытания, предусматриваемые Рекомендациями, проводятся по специальным программам, допускающим определение полного и им
 частичного набора параметров механических свойств мералых груитов в подземного пыда, необходимых для расчетов оснований и фундаментов по предельным состояниям при статических и динамических нагрузках.

Дилтепьность испитаний устанавливается исходя из действительных условий работы фундоментов в нестационарном поло тожне ратур.

2. ОПРЕДЕЛЕНИЕ НОРМАТИВНЫХ ССПРОТЫВЛЕНЫЙ МЕРЭЛЦХ ГРУНТОВ И ПОДЗЕМНОГО ЛЬДА

- 2.1. Норизтивные сопрогивления мерзлых грунтов и подземного для уточнаются для гонкрайных нерапотно-грунтовых довий и для принятой технопоский работ по возведению фундаментов
- 2.2. Величина портандвани сопротивлений устанавливается при средататегральной по то иле дер или грунгов темпаратуры.

определяемой по формуле

$$\theta = \frac{1}{h^2} \sum_{i=1}^{g} \theta_i \, \Delta h \quad , \tag{I}$$

где М- длина внороженной части сваи или заложение подошви штампа илюс не менее:

- 3.0 периметра свач для свай в вечномералы. грунтах при льдистостт $\Lambda_0 \leqslant 0.4$;
- 3,0 нериметра сиважины для свай в сильнольдистых гругтах и подземних льдах;
- 2,0 диаметра -для штампор;
- q число t -ых участнов мощностью Δ / t , на кохорые разделена толща h' при измерении температуры.
- 2.3. Испытания могут проводиться в любое время года с соб-
- а) испытывается не менее трех свай или штампов одинакового типоразмера в идентичных мерэлотно-грунтових условиях и при одина ковых среднеинтегральных темпоратурах в толще мерэлых грунтов;
- б) пробные нагрузки в испитании поддорживаются постоянимыми и принимаются равными несущей способности основания @ (опредсляемой согласно требованиям главы СНиП И-Б. 6-66 и СН 450-72), умноженной на коэффиционты, указанные в таби. I, соответственно для нервог, второй и третьей свай или штампов.

Таблица І

Период года при испытанил Летне-осенний	пробинх нагр л зск коэфјициси т н для назначения							
	0,5	0,7	1,1	(0,6	0,8	1,2)		
ทีพ [.] 4พพ [.] ۶	0,7	1,0	I.4	8,0)	1,0	1,5)		
1 есенний	0,9	1,2	6,1	(0,9	1,2	1,8)		

Примечание. Десь и далее осозначения без окобок относятся к мерзлым грунтам в иластично-мерзлом состоянии, в в сисоках - в твердомерзлом.

⁻ечел и втиуч ваучения последния почения при почения почения почения в почения почения в почения почен

мещения опытных свай и штампов во времени, а при оснащении опытных свай тензометрическими устройствами - сопротивления грунта вдоль боковой поверхности сваи и под нижним торцом;

- г) программа испытаний по определению нормативных сопротивлений мералых грунтов и льда считается выполненной, если среднечитогральная по толюе мералых грунтов температура в конце испытачил изменилась по отношению и начальному номенту не болое, чем на 10 проц
- д) дальнойшее испытание свай проводится в режиме ступанчатозо кагрукания, результаты которого необходини для определения деформативных свойств и коэффициентов условий работы;
- ч) динтельность испытания свай и итампов чазначается по условаю

тро 🤾 — вромя до условной стабилизации осадоч 🕹 - нх свай или штампов;

Курь - попустимая относительнан длительность испытании; - период колобаний температур грунта в тонще мерэлых грунтов, равный 8760 час.

- 2.4. Вреги до условной стабилизации осадок і-их свай или чтампов устанавливаєтся по приращениям относительных деформаций, превышающий 0,01 зе следующие интервалы времени: для пеское-I2(6), супесей-24(I2); суглинков и глин-48(24) час.
- 2.5. Допустимая относительная длительность испытаний определием по формуле

 $K_{gen} = \frac{1}{T} (T' - T'') , \qquad (3)$

где Тит" - начало и исиец испытания, отсчитываемые от моменто премени, когда на поверхности тонии вечномерзных грунтов температура равна нуме.

Допустимая относительная длительность испытания должна удовнетворять уравнению

$$X_{gas} = \frac{10}{\varphi_i} \sum_{j=1}^{p} \phi'(\tau) \Delta \tau_j \tag{4}$$

- где $\phi(r)$ условная скорость изменения несущей сполосности основания в связи с годовым ходом температур в топще вечномераных грунтов;
 - Φ_{j} несущая способность j -ой сваи или штампа к моменту начала испытания;
 - q коничество участков мощностью AT_{i} , на которно де-
- 2.6. При проведении испытаний в летне-осенний период в уравнении (4) принимается $\phi_i = \phi$, что соответствует условию $\phi(i) = 0$, где устанавливается согласно требованиям главы СППП И-Б. 6-66 и СИ 450 72. Допустивая относительная длительность испытания определяется по формуле

гда сс- оезразмерный коэффиционт, принимаемый по табл.7

п. 5.8 главы СПиП 11-Б. 6-66, и для засолениях и сильнольдистых вечномералых грунтов - по СП 450-72;

 $\sqrt[3]{}$ – параметр, ранный для грунтов в твордомераюм состоиних $\sqrt{}$, а в пластично-мералом – 0.5.

Назначения допустимой относительной длительности менычаний может ссуществинться по таби.2. Табийя 2

Допустиная относчтвавиям двительность попитания Едоп

gradulina deletation of the the the factors were including a		DEN GRADINGEN, PRE-MANY	en reinisteriores est productivos est est est est est est est est est es	Printer Service of the Artifaction Services	THE STATE OF THE PERSON OF THE	Description of the State of the
Состоняяе чоролого гручая		Значение допустичей относительной длитель- пости испытания при се или се, разном				
and the second s	0,1 1	0,2	1 0,3	! 0,4	0,5	
1. тверломерапос	0,06	0,11	0,13	0,17	0,23	0,32
г. пластично- мерэлос	0,03	0,07	0,08	0,12	0,13	0,19

П р и и е ч а и и е. Асэффициент об принимется для итампов, коэффициент об - для свай.

2.7. Пормативное сопротивление мерзимх грунтов и подземного пьда R, кг/ск2 устанавливается по рормуле

$$R = \frac{\delta_z - \delta_t}{\sigma_t \delta_z - \sigma_z \delta_t},\tag{6}$$

гдз $\sigma_{i}u\delta_{i}$ — вспомогательные коэффициенты, карактеризующие зависимость между величиной $\dot{\mathcal{L}}$ -ых пробных нагрузок и расчетным временем до стабилизации осадок $\dot{\mathcal{L}}_{i}$;

 $\mathcal{O}_2 u \delta_2$ — то же, для времени до разрушения (срнва сваи или штам-па) \mathcal{L}_L^* .

Нормативные сопротивления определяются для расчетов, свя - занных с использованием ерзлых грунтов и подремного льда в ка - чостве:

- а) основавий-для сдвига грунта по грунту и но прослойкам подземного пъда (CR 450-72) и сопротивлений $p^{\prime\prime}$ и R_{egc} для расчета фундаментов (CR R_{egc} R_{egc}
- б) материала и среды, в которой возводятся сооружения, для сдвига, растяжения и сматия.

При частичном наборе параметров, устанавливаемих в испатаниз-

$$R = \frac{1}{\alpha_1 + \mathcal{B}_1 \ln \alpha_2 5 \mathcal{E}_2}, \tag{7}$$

гля пов, что и в формуне (6);

13 - срок служби сооружения, принимаемый согласие требова - нини глави СНий И-А. 3-62 "Илассификация знаный и сооружаний. Основные положения проектирования"

При испытанни в лотне-осенний период в формулах (6 и 7) нермативное сопретивлено R заменяется на Φ_{on} несущум способ ность основания, устанавливаемую по n.5.JI СПиП H-B. 6-66.

2.8. Расчетное время по стабилизации осадок устананамваятся по формуля

$$\dot{t}_{i} = \frac{\alpha_{3} \, \delta_{3} \, e_{\kappa}^{2} \, \tau_{\kappa}}{\alpha_{3} \, e_{\kappa} + \delta_{3} \, e_{\kappa} \, \tau_{\kappa} - \tau_{\kappa}}, \tag{8}$$

гда q_1, δ_2 — вспомогительные коэффициенты, характериаую же накоплание осадок во времени:

- \mathcal{L}_{κ} осадка $\dot{\iota}$ -ой сваи или дтампа в конца испытания, отна сенная к пориметру сваи или днаметру штампа;
- · т. ыремя до условной стаоилизации осадок.
- 2.9 Бепомогательные коэффициенты в формулах (6, 7 и в) усчинывливаются по формулам (31-32) п. 5.7 настоящих Рекомендаций при:
- а) $X = \mathcal{L}_{n}(\xi_{+1})$ $Y = \mathcal{L}_{i}$ (где $\dot{\epsilon}_{i}$ расчетное время до стясчимнации осадон при $\dot{\epsilon}_{i} < R$, $\dot{\epsilon}_{i}$ величина $\dot{\epsilon}$ —ой пробной нагрузки, отнесенняя к боковой поверхности сван или площади штампа) для a_{i} в $\dot{\epsilon}_{i}$;
- б) $X = \mathcal{C}_0(\mathcal{E}_L^* + 1)$, $Y = \mathcal{C}_C$ (где \mathcal{C}_L^* время до разрушения, срива сваи или штамна, при \mathcal{C}_C > \mathcal{R} бC величина C ой пробной нагрузки, отнесенная к боковой поверхности сваи или площади штамна) для \mathcal{Q}_2 и \mathcal{E}_2 ;
- в) X = T $Y = \sqrt{2}$ (где T время испытания, ℓ —огенка, отнесенная к перимотру сван или диамстру штампа) для G_0 и G_2 .

Для определения \hat{Q}_{on} вспомогательные коэффициенты коходятся при:

 $y = 1/N_c$ для подпунктов "а" и "б" настоямего пункта; y = 1/S для подпункта "в", где S — осадка сраи и и м амада.

- 3. OHPEGEJEHUE XAPAKTEPUCTUK ZEGOPMATUBHUX CHONCTB CUCTEMU UCBAH - OCHOBAHUEN HJM UNTAMU-OCHORAHUEN
- 3.1. Характеристики деформативных свойств системи "свая-основание" или "штами-основание" определяются черэз параметри поизучести мерзых грунтов и подземного пьда и необходими или расчета оснований и фундаментов по деформациям.
- 3.2. Параметры ползучести мерезих грунтов и подвемного выда уточняются для местных мерезистно-грунтовых условий и для прина-той технологии работ по возведению фундаментов.
- 3.5. Для определения параметров ползучести проводится испитание не менее трух свай или штаниов с соблюдением спедующих трежбований:
- а) начало испытания предусматривается в любой период времени года с соблюдением условия

$$t_{i}^{*} < t_{i+i} < \cdots \leq \kappa_{gar} \tau, \ i = 1, 2, 3 \ldots,$$
 (9)

где 🥳 -время до разрушения(стыва сваи или штампа) i -ой ован или штанна, определяеное по п.5.6 настоящих Рекомендаций

Допустимая относительная длительность испитания Ком назначается согласно пп. 2.4 - 2.5.

- б) испитивается не монее грех свай или втаннов: два испытания проводятся при одинаковой среднеинтегральной температура ч одио - при тампаратура, отимчанцейся от тампаратуры групта в первих двух испитаниях не менее, чем на 30-40 проц., что достигостви первходом на другую длину свай (при парадленьном их испытанов) или попытацием свай и штамнов в разное вречя года;
- в) величина пробной нагрузки поинимается равной несущей оновобности основания ф. определявной согласно требованиям гиа им Сими и-в. 6-66 и Си 450-72 с коэффиционтами в 4-5 раз вына. чам в мопытаниях по п.2.2 настоящих Реконендаций.
- 3.4. Полини набор параметров ползучости нерэзых грунтов и подзецного льда необходки для расчетов, связанных с учетом перенапинк нагрузок и температур, и включает:
 - а) безравиерный параметр ядра ползучести / ;
 - б) коаффициент упрочнения т ;
 - в) безразиврима нараметры ндра ползучестя [6] и к :
 - r) napametr (), nr/cu2.
- 3.5. Безразмориме параметри , и т определяются по резульчатим нопитаний свай или стимнов при одинакових температурах по формунам

нопитанных при одинановой тенпературе;

мини - пробиме нагрузки і-ых орай и мувинов;

 δ_{t-t} и враметр, определяемый по формуле (10) при q=1; δ_{t-t} вспомогательные коэффициенты, устанавливаемые по п.3.7 настоящих Рекомендаций.

3.6. Параметр ползучести $|\theta|$ принимается равным средненнтегральной температуре в толще мерэлых грунтов без учета знака "ми-иус" и устанавливается по п.2.2 настоящих Рекомендаций.

Параметры / и из определяются по формулан

$$K = \left[\ln \frac{N_{1}}{N_{1+1}} - m(Q_{1} - Q_{1}) \right] / \ln \frac{1 + |\theta_{1}|}{1 + |\theta_{1}|}$$

$$\omega = \frac{1}{N_{1}} \int_{0}^{\infty} N_{1} \left[\ln \exp K \ln (1 + |\theta_{1}|) \exp Q_{1} \right]$$
(12)

rде $q_1 q_{2-1}$ — вспомоготельные коэффициенть для 1 —ых свай или штампов при общем их количестве n, устанавливаемые по n.3.7 настоящих p_2 комендаций.

Применительно г штампам производение 2// в формуле (13) заменяется на илощадь подоявы штампа.

- 3.7. Всисмогательные коэффициенты C_i и C_i и определяются соответственно как C_i C_i по формулам (3I, 32) ирк C_i C_i
- 3.8. При проектировании оснований и фундаментов по деформациям допускается принимать $\frac{1}{m} = \ell$, $\frac{\ell}{m} = 2$ и переходить к нараментру K_A , CM/Kr^2 4aC.

$$K_{A} = (\omega' t_{0})^{-2} (1 + |\theta|)^{1-2K}$$
 (14)

Расчеты выполняю ся в соответствии с "Пособием" к п. 5.7 гиавы Снип II-Б. 5-66.

4. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ УСЛОВИИ РАБОТЫ

4.1. Коэффиционты усновий работы мерэлых грунтов и подземного льда устанавливаются согласно требованиям главы Сний I-A. 10-72 "Строительные конструкции и основания. Основные положения проситирования" и предназначены для учета действительных условий работы оснований и фундаментов.

4.2. Велична коэффиниснта условий работы определяется з завысымости от принятого принципа использования вечномерэлых грунтов основания, технологии и темпов ведения строительных работ и назначения сооружений.

Коэффиционты условий работы устанавливаются на момент времени, отдаленный от начала экспл атации сооружения и равный сроку эго службы.

- 4.3. Принцип использования вечномерэлых грунтов основания учитывается нормирование коэффиционтов условый работы для изменений во времени:
 - мерадотной обстановки застраиваемой территории;
 - температурного дажима грунтов:
 - границ зоны оттамвания основан.я.
- 4.4. Тэхнология ведения строительных расст при навначения коэффициентов условий рассты учитывается в зависимости от условий раннего из тружения фундаментов, допустимого темпа монтажа кон струкций и директивных ороков ввода сооружения в эксплуатацию.
- 4.5. Тазначение сооружения при нерипровании коэффициентов условий работы должно учитываться в влансимости от удельного веса длительно действующих нагрузок, степени ответственности сооружения, конфигурацал карактерных циклов изменения нагрузок и режимов их припомения, а в необходимых случеях с учетом изменения во времени расчетных схен сооружений, роста нагрузок при ремонструкции гредприятий и модеричающии технологического оборужения.
- 4.6. При назначения корфиционтов условий работы переменные факторы, указаници в пп. 4.3 -4.5 учитываются в наиболее невиговной конбинеции.
- 4.7. Коэффиционти условий расоти определяются по изтериалам испытаний свай и штомпов пробимым нагрузками, по результатам прогновных тепнотехнических расчетов, данных инженерно-гослогических изражаний и опыта эксплуатации сооружений.
- 4.8. Коэффициенты условий работы определяются на основе ки-

Классификацию кинетических уравнений см. в приложениях 1,2 настоящих Рекомендаций.

4.9. Выбор типа уравнений производится в зависимости от укрупненных констант Ст и С2.

Испатания по определению укрупнениих констант С₁ и С₂. обязательны при проектировании сооружений со эмечительными динамическими нагрузками: анкерных опор ЛЭП, искусственных сооружений на автомобильных и железных дорогах 1 и П категории, фундаментов под мотор∞гонераторы и компроссоры, фундаментов зданий электро станций, промишленных сооружений с мостовыми кранами и другими средствами технологического трайспортя тяжелого и весьма тяжелого режимов работы.

- 4.10. Испытания довжны проводиться по программам, обеспече навидии:
- а) определение параметров, продусмотренных пп. 2.1 2.5, 5.3 и 3.4 настоящих Ромсмендаций, или только параметров полоучаети мералых грунтов и подземного льда;
- б) оценку теплообразования внутри деформируемой зоны вечновералого грунта при длительных динамических нагрузках;
- в) учет реложенции и воссталовнения неприженного состояния в мерэлых грунтах при последовательных чередованиях периодов выстружения и потдыха;
- г) испытания свай или штамифв (не могос двух) ири перемецком во времени поле темпоратур.
- 4.II. Приненимость уравнения первого или второго типа устанавливается по наимоньшему из услогий

For
$$\leq p_{gon}$$
, (15)

гда ρ_{on} - показатель точности, характоризующий разорос укрупнецных констант ($_{\rm I}$ и $_{\rm C_2}$ относительно своих среднях значелый; ρ_{gon} - го ме, допустивый показатель точности, принижаемый для ответотвенных сооружений $_{\rm IO-2O}$, а для сооружений массавого отроительства - 25 прец.

Поназатель точности определяется по формула

$$\rho_{on} = \sqrt{\frac{\sum_{i=1}^{n} \left(\overline{C} - C_{i}\right)^{2}}{\left(\sum_{i=1}^{n} C_{i}\right)^{2}}},$$
(16)

PAC

n — число определений укрупненных констант c_1 или c_2 по материалам испытаний;

с - срединя величина константы;

 C_i — значение константи C_1 или C_2 в i —ом испытации. 4.12. Укрупненная константа C_1 , кг \overline{m} /см \overline{m} • град, опреде —

листен по формуно

$$C_r = \sum_{j=1}^{p} \left(\frac{N_i}{U h_j}\right)^{\frac{2}{p}} \widetilde{B}(\theta, \Delta \ell_j) \Delta \ell_j^{\frac{2}{p}} , \qquad (17)$$

7, 114

д — число ј-нх участков длительностью Аф, в преденах которих прооная нагрузка А, среднечитегральная по времени и темпоратура (В, 1,) и высота внороженной части сван А, прин знаются постоянными;

В(ВАС) — функции среднечитегральной по времени температуры

B(0, st,) = (10to) = (10fo) = (10f) = (10f) = (10)

Сумна всих виделениих участков 46, поихна составлять полнос время до разрушения (срива свеи или штаниа). Остальное обосначения в формунах (I? и 13) соответствуют зависимостим (IO-I4).

4.13. Экрупионная константа C_2 , ки/ом 2 град., опреденяется по ферму не

 $C_{\rm B} = \frac{1}{\theta_0 t^{\rm H}} \int_{a_1}^{b_1} \frac{A_{i,i} A_{0,i} d_{a_1,i} \Delta t_i}{A_{s,i} \left(t + \int_{a_1}^{b_2} d_{i,j} \right)} , \qquad (1)$

1,110

26 - постоянная, равная единице, град;

у - чисно ј -ых участков длительностью л с , в предонах которых пробные нагрузня, окорость осадок и средномитегрельную температуру групта можно считать конотокно менавшимися или постояными;

Апја (,) — вопомогательные коэффициенты, характоризующие измонение нагрузок на ј -ои участке испитании;

Ald'' to be nemenenne nestou!

Д. ј. ј. - то ка, изменени средненитегральных по времени гомператур грунга.

при рассетья по формуле (19) вопомогательные носффициенты,

вводится с противоноложным знаком.

- 4.14. Вспомогательные конффициенты в формуле (19) устанавливаются при A=a и $\alpha=b$ по формулам (31-32) настоящих Реконендации для $X = \ell n (\Delta t_j + t)$, где Δt_j — длитеньность f — го участка испытания, при:
- а) $y = C_1 G_1$; (где G_2 пробная нагрузка, отнесенная и бо-ковой поверхности сваи ини ятампа на f -ом участке испытания) Ann Arij uding
- о) $y = ln e_{ij}$ (где $e_{i,j}$ осадка, относенная к нериметру свои или диаметру штампа) для $A_{2,j}$ и $d_{2,j}$; в) $y = ln |e_{ij}|$ (где e_{ij} параметр, равний средненитегральной температуре без знака минус) для $A_{3,j}$ и $d_{3,j}$; 4.15. Для расчетов, связанных с использованием мерзим груп—
- гов и подзенного явда в качестве натериала в среди, в которой возводится сооружения, укрупненные константы Ст и С, устанавливамичен по результатам испываний на сдвиг, растяжение и сжатие.
- 4.16. Коэффициенти условий работи КУР определяются по фор-'ay nam

$$Kyp = \begin{cases} \frac{1}{R} \exp o, 5m \left[e_n c_i - c_n \sum_{i=1}^{r} J_i \right], \\ \frac{2c_2}{R \sum_{j=1}^{r} J_j} \frac{1}{\sum_{j=1}^{r} J_j}, \end{cases}$$
 (21)

где $J_{ij}J_{ij}$ — читегральные функции, учитывающие дакторы, указан-BOTO H BRODOFO THIS.

При расчетах по формулам (20-21) мормативное сопротивымым Medanuk Povntob horst samenntech necymen chocochocted ochotauna. опродоляемой в соответствии с главой СНий И-В. 6-66 и страитель имы порнамя CH 450-72 или несущей спосооностью Фол.

Правила конструирования интегральных функций приводятся в приновании 3.

При мопользовании нерв. их грунтов и подземного явда в килиотъе материана и среди, в которой возводится сооружения, коэфішними ў сповий работы устанавиньаются но результатым молытаный на одвиг, растивение и скатие.

4.17. При переменном во времени коэффициенте упрочнения m=m(t) валичина КУР определяется но среднеинтегральному его значению, равному

$$m = \frac{1}{t} \int_{i=t}^{q} m_i \, \Delta t_i \quad , \tag{22}$$

гда g — число участков мощностью $\Lambda \mathcal{L}_{\iota}$, на которые делится графи неская зависимость коэффициентя упрочнения во времени при

 $\mathcal{L}=\sum_{i=1}^{p}\Delta\mathcal{L}_{i}$. 4.18. При проектирования зданий и сооружений с нагрузками пагного и ородного ромимо корффицианты условий работы принимаютея по табл. 3

Таблица 3

Назначение помещений	Значения КУР при коэффициенте упрочиския 🚜 равном					
в эданиях	0,2	! 0,3	! 0,4	0,5	1 0,6	
I. Тупьтурно-бытовых с удет ным весом временных нагрузс 0.2 - 0.3		1,2	I . 4	1.5	1.6	
2. Проинвисных-типо этояно транепорта, гаражей, складо	K	7 f c	444	4,00	2,00	
жранепорток и удельным ве 3. Промишленимх с цеховым	1,3	I,4	1,7	3,7	2,0	
оси временних, нагрузок 0,2- 0,3 4. То ко, с удельным весом	Ĺ*,ŧ	1,8	2,0	3,0	4,0	
времении нагрузов 0,6-0,8	1,0	I,I	1,2	1,3	1,4	

Примочен о тение. Коэффиционты относится и температуро грунка, определяемой по формулам (10 мII) СНиП II-Б. 6-66. При уч. то колебаний гемператур грунти в годовом цикле значения неэффицентов могут быть повышени при глубине запожения фундаментов

до 3 и на 20, до 5 и - на 10, а для свай - на 30 проц.

4.19. При разработке проектов организации работ рекомендуется действительние условия работи фундаментов, насыпей и других эментов земляних и педогруптових сооружений в строительний период оценивать через показатель допустимого тепла нагрухания π и относительную демпературу $\mathcal{I}_3/\mathcal{E}_2$, при которой осеспечивается устойчивость основания или элементов зешляного сооружения.

4.20. Показатель допустимого темпа нагружения определяются по формуле

 $\bar{n} = 0.5 \lambda \left[(\mathcal{L}_{\beta})^{\frac{5}{11}} \gamma \delta - i \right] , \qquad (23)$

где 4 ду, 5 - вспомогательные коэффициенты, характеризующие изиемениз нагрузоп, расчетной схеми основания или элементов земянного сооружении и температуры грунта, равные

$$\begin{aligned}
& d = P_0 / P_0; \quad \beta = \overline{E} / \overline{f_0}; \quad \mathcal{Y} = \overline{B} \left(\theta \sqrt{B} \left(\theta_0 \right) \right) \\
& \overline{B} = \left[\frac{E}{E} \right]^{1/m} - 1 \right]^{-1}
\end{aligned} \tag{24}$$

где P_c , P_g — удельные нагрузки, кг/см2, к моменту окончания стромтеньства \mathcal{L}_c и при эксплуатации сооружения \mathcal{L}_g ;

7, 7, 02, 3- интенсивность касательных напряжений от эдиничных сия и параметры, развив средненитеграцьной по времени температурэ, соответственно во времи строименьства и эксплуатации сооружения.

В расчитах по формулам (23-24) допускается температуру во время висилуатации сооружения θ_{g} определнив по пп. 5.7-5.8 гла ви СНий П-6. 6-66.

Относительная температура, при которой обеспечивается устойчилость споружения зо время строительства, устанавижается не

 $\frac{\theta_{s}}{\theta_{c}} = exp\left(\frac{1}{\beta+m} \ln \frac{t_{c}}{t_{s}}\right) exp\left(\frac{m}{x+m} \ln \frac{1+2\bar{n}}{1}\right), \quad (25)$

ило Ак, м - парамет зи ползучести;

л - поназатель допустимого темпа нагружения.

Продуснотранный в проскто организации работ рост нагрузок поизан проворяться расчетом, если поизатель допустимого темпа

нагружения больше единицы.

4.21. Несущая способность фундамента $\phi(t)$ в момент времени t, сточитываемый от начала нагружения, оценивается по формуле

$$\phi(t) = P_c u h_c \exp\left(\bar{n} \ln \frac{t}{t_c}\right) \tag{26}$$

гда Uuhe - периметр и длина вмороженной части сваи во время строительства.

5. ТРЕБОВАНИЯ К ИЗМЕРЕНИЯМ ПЕРВИЧНАЯ ОБРАБОТКА ИЗМЕРЕНИЙ

- 5.1. Нормативные сопротивления фундаментов, деформативные спойства системы "свея-основание", "штами-основание" и коэффици-сити условий работи устанавливаются на основе измерение нагрузск, ссарок и температури грунта.
 - 5.2. Измерения производится о помощью:
- динамометров, контрольных грузов и манометров, оосспечиваюжих определение нагрузок с точностью 50 кг и менее;
- из дикаторов, доформометров или прогибомеров, обеспечиваь-
- термометров или терморезисторов, позволяющих определить температури грунта с точностью $0.1^{\circ}C$;
- часов общего назначения или отметчиков времени, обеспечивающих фиксирование времени испытании с точностью но более 0.5 мин.

Периодичность сиятия отсчетов зависит от вида нагрузои и оговаривается программой испытания.

- 5.6. Осадки изверяются на маждой стинени нагрузок, отсчеты онимаются последовательно через 5, 10, 20, 50, 60 мин. и далее на противении 6-70 часов через каждые 2 час. При переходе осадов с охадым прогрессирующего течения отсчеты берутоя через 60,30,20 мин.
- 5.4. Температура измеряются в поверхностиом слое сезонного фттампания и промерзания и в толще мерэлых грунтов в точнах, расположенных не менее, чем через 0.5-I.О и и с учетом требований

п. 2.2 настояних Рекомендаций.

- 5.5. При испитании свай или штампов переменными нагрузками необходимо контролировать заданный закон изиснения нагрузок и по результатам изморений строить синхронню по времени зависим др. вин нагрузок, осалок и топператур групе,
 - 5.6. Первичная обработка измерений состоил в отределения
 - а) среднеинтегральной по время и нагрузка

$$N_{i} = \frac{1}{\tau_{i}} \sum_{j=1}^{q} N_{i,j} \Delta \tau_{j}$$
 (21)

PAG

£ - продолжительность испочания;

у число / -ых интерытной време: од три TREES.

 $M_{i,j}$ — динтенненность j —го ин лервало; $M_{i,j}$ — воличина нагрузки на i—он интервалу о) средненитеграньной по толяе чет их

remue-

разуры з заданиче моменти премени

тие h + h - двина виороженной части свых учетым требсиласт. 2.2 и 5.4;

> 8 - Touneparypa 4 - Po Chon by Thomopanoid Physic and fourth Ah; , на которые разонвается гдубини heh';

> ф - ноличество участков, внутри которыт намерлаты: чипеparypa;

з) средиемитегральной по времени температуры грунта

$$(\theta, \Delta \dot{\zeta}) = \frac{1}{\tau_i} \int_{z_i}^{\varrho} g_i \Delta \dot{\zeta} , \qquad (29)$$

PAO

Т - продолантельность испытания;

🤹 - чисно интерванов времени, на которых изменчивостью ганпаратур можно премебречь;

Д - ореднек этограньмая по толще мерзыми грунтов температура в 🌶 -ий интервал времени испытания;

At; - данто пеность / -со интервала мопытация;

г) времени до разрушения

$$z_{i}^{*} = exp - \frac{a_{i} - a_{i}^{\prime}}{b_{i}^{\prime} - b_{i}^{\prime}} - \gamma \tag{30}$$

 q_i, δ_i - вспомогатольные коэффициенты, характеризующие наноп PRO дение деформании на стадии затухающей ползучести; по же, на стадии пр грессирующего течения. 5.7. Вононог аменье кожофициечны опременяются не формулац

$$C = \frac{1}{n} \left(\sum_{i=1}^{n} -\beta \sum_{j=1}^{n} \lambda_{i} \right) , \qquad (31)$$

$$G = \frac{1}{n} \left(\sum_{j=1}^{n} -\beta_{j} \sum_{j=1}^{n} \lambda_{j} \right), \qquad (31)$$

$$G = \frac{n}{n} \sum_{j=1}^{n} \chi_{j} - \left(\sum_{j=1}^{n} \lambda_{j} \right) \left(\sum_{j=1}^{n} \chi_{j} \right)}{n \sum_{j=1}^{n} \chi_{j}^{2} - \left(\sum_{j=1}^{n} \lambda_{j} \right)^{2}}, \qquad (32)$$

$$D = \text{uncho outhur fouch;}$$

PAO

G - respondent parent opposer, not X = 0;

8- тангано угла наклова спримленной кривой;

Хим - коорринаты спримления, щ анимаемые по пп.2.9, 5.7, 4.14 настониих Рекочендаций.

- 5.3. По результатам контроин просных нагрузок и измерсиия томпорат ры грунта устанавливаются фантыческие отклоновия от заданного режима нагружения. Нагрузки и температури относятся к постоянным, если в начале, конце и середине испытания на заданвой ступони нагрузон результаты измерений отличаются не более, че "a 5-10 проц.
- 5.9. Требования Рекомендаций распространяются на испытание образцов грунта и горанх пород в условиях ползучести.

I винежонис I

КИНЕТИЧЕСКИЕ УРАВНЕНИЯ И ИХ КЛАССИФИКАЦИЯ

- Общая форма кинетических уравнений определяется условиями длительной прочности мерэлых грунтов и строится методажи термодинамики необратимых процессов.
- 2. При построении кинетических уравнений решаются дво самостоятельные задачи:
- а) выбор параметров, характеризующих состояние мералого груята;
- б) вывод кинетического уравнения для обобщениих характеристик чеформативных свойств.
- 5. Кинстическое уравнение вкиючает физический закон наконления деформаций. В качестве физического закона рекомендуются
 использовать теорию течения. Восстанавливающие деформации могут
 специально не выделяться. Релаксационные явления (снижение напрежений при постоянной упругопиастической деформации и восстановление напряженного состояния после разгрузки и фиксирования ос таточных деформации) учитываются неявно.
 - н. Геория течения должна прининаться в формо

$$\mathcal{D}_{i} = \frac{1}{2} - f(\tau, \theta, \tau) \mathcal{D}_{\sigma} , \qquad (1)$$

еле \mathcal{D}_{i} и \mathcal{D}_{i} — девизторы скоростей деформаций и напряжений; $f(\tau,\theta,\tau)$ — рункция интенсивности касетельных напряжений (Т), температуры (А) и времени (С)

$$f(\tau, \theta, \tau) = \psi(\tau) \delta(\theta) \psi'(\tau), \qquad (2)$$

отражарщой переменную вязность грунга.

В формуле (2)

$$\Psi(\tau)$$
 - тупкция напряженного состояния $\Psi(\tau) = \tau^{\frac{1}{m}-1}$, (3)

8(6) - Зункция температуры, учитывающая влияние температуры грунта на спорость накопрения деформаций;

$$\mathcal{B}(\theta) = \omega^{\frac{1}{m}} (1 + |\theta|)^{\frac{1}{m}} , \qquad (4)$$

$$p'(\tau)$$
 — ядро полаучести $p'(\tau) = \frac{1}{m} \tau^{-\frac{1}{m}}$. (5)

 $p'(\tau)$ — ядро полаучести $p'(\tau) = \frac{1}{m} \tau^{m}$. (5) (3десь и в дальнейшем m — коэффициент упрочнения, $\omega_{r} x_{r}/|s|_{u} \lambda$ — параметры полаучести, которые являются карактористыками деформативных свойств).

5. При // = I и m = 1 функция f(т. в. г) физического закона (1) описывает течение дъда с постоянной скоростью и может быть выраменформулов

 $f(\tau, \theta, \tau) = \frac{K_{\Lambda} \tau^{\Lambda-1}}{77/61}$, K_{Λ} — параметр ползучести льда. (6)

rne

Параметры поизучести льда и мерзлых грунтов свячены завивиностьр

Kn=w-1(1+/8/) - . (7)

- 6. Номенилатурные признаки мералых пород оказывают влияние на параметру ползучести. Поэтому все функции физического закона -аквипления доформация должив опредоляться по материанам региональних обобщений ини из испутаний на конкретных площадках. Параметры ползучести должин учитывать внажность-пьдистость, плотность и засоленность груптов, их происхождение, а для свай - дополнительно технопогию погружения и условия их вморакивания.
- ?. Физическому закому (I) соответствует кинетическое урав-

Berne

$$\int_{0}^{t^{*}} \left[P(\mathbf{c}) \tilde{\tau}(\mathbf{c}) \right] \tilde{s}(\eta, \mathbf{c}) \, d\mathbf{c} = e^{i \vec{k}} \tilde{s}(\theta) \, Y(\theta), \qquad (8)$$

PAG

/ - премя до разрушения, каракторизующее наступление стадии прогроссирующего течения;

Р/с/ - закои изменения нагрузоп;

T(r) - закон измонения интенсивности касатольных напряжений от одиничных син;

E(V,t) - финика перепонной по времени температури

$$\bar{\mathbf{g}}(\boldsymbol{\theta},\boldsymbol{c}) = \bar{\boldsymbol{\omega}}^{h} [1 + |\boldsymbol{\theta}(\boldsymbol{c})|]^{\frac{1}{12}} [\boldsymbol{\theta}(\boldsymbol{c})]^{\frac{1}{2}}, \tag{9}$$

— нормативное сопротивление грунта данному виду нагру зок;

$$B(\theta)$$
 — функция температуры
$$B(\theta) = \omega^{\frac{1}{m}} (1+|\theta|)^{\frac{1}{m}} \theta^{-1}; \qquad (10)$$

 $y_{i,j}$ — интеграл ядра ползучести для срока служби сооружения. 8. Применительно к расчету и испытанию сваи функции температуры $B(\theta)$ и $\overline{B}(g_{\tau})$ должны рассматриваться как средненитегральные по длино внороженной части сван, а энюра ингенсивности напательчых напряжений момет приниматься по решению задачи о напряженном состоянии или по эксперимечтальным данным, получаемым с немощью течаеметрия.

9. При расшифровие чатериалов испитаний свай на вертимальным чагрузки допускается сопротивление гручта под нажним торцом сваи специально не выделять. Это допущение приводит к уравнению сле -

Ty ю шего вида:
$$\int_{\delta}^{2/m} \left[\frac{N(t)}{Uh} \right]^{2/m} \bar{B}(\theta, \tau) \, \mathcal{S}(\tau) \, d\tau = \left(\frac{\Phi}{Uh} \right)^{2/m} \bar{B}(\theta) \, \mathcal{S}(t) \,, \qquad (II)$$

UMO

Mar) - закон изменения пробной нагрузки;

√и л - периметр и длина вмороженной частч сваи;

ф - несущая способность основания при постояний war - рузке и температурэ.

Сстальные обозначения в формуле (II) соответствуют экву-

10. Праван часть уравнения (II) представляет собой укрупненную константу, инвариантную различным режимам нагружения. Повтому вместо (II) можно записать

$$\int_{0}^{t^{*}} \frac{N(\tau)}{Uh} e^{\frac{2}{N}} \bar{B}(\theta, \tau) f(\tau) d\tau = C, \qquad (12)$$

гло функция температуры зависит от среднежитегральной по толжи мералых грунтов температуры.

II. Более простая форма зависимости (II) имеет вид

$$\int_{0}^{\frac{L^{2}}{N(c)}S(c)} \frac{N(c)S(c)}{U^{2}hS(c)} dc = C_{2}, \qquad (13)$$

где $\dot{S}(x)$ - скорость осадки сваи;

 Ф(т) - функция времени для среднеинтегральной по длине сваи температуры;

С2 - новая укрупнонная константа.

12. Укрупненные константы \mathbf{C}_1 и \mathbf{C}_2 производны от деформативных свойств и могут рассматриваться как обобщению характеристики длительной прочности мерэлых грунтов в кинетических уравнениях первого и второго типа.

Приложение 2

частные случаи кинетических уравнений

Для постоянных нагрузок и температур решение уравнения
 может быть записано следующим образом

(12) может быть записано следующим образом
$$\left(\frac{\kappa}{U_D}\right)^{2/m} \bar{\mathcal{B}}(\dot{\theta}) t^{\frac{4}{m}} = C_r$$
. (14)

Отсюда для свай одного типоразмора, испытанных различными нагрузками, мум, спедует

$$N_{1}^{2} \dot{t}_{1}^{*} = N_{2}^{2} \dot{t}_{2}^{*} , \qquad (15)$$

где $\mathcal{L}''_1, \mathcal{L}''_2$ - вроил до разрушения, определяюмое по материалам испытаний.

2. Если в процессо испытании производится последователькая отнопка свам или постепенное формирование чаши протаивания,
т.е. повержность смерзания меняется во времени, решая уравнение
(12), ораходим и другой формуле для уравнения первого типа

$$\sum_{i=1}^{2} \left(\frac{N_i}{Uh_i} \right)^{2/m} \bar{\theta}_i(\theta) \Delta t_i^{1/m} = C, \qquad (16)$$

PAG

ф - количество ј -х интервалов длительностью ст., сумча которих составляет полное время до разрушения; на пробивя нагрузка на ј -ом интервало иопытания; поверхность смерзания в ј -ый период испытания; в ј - функция тачпаратуји на ј -ом интервале испытания.

$$\sum_{j=1}^{p} \frac{N_{j}}{U^{2}h_{j}} \frac{\partial}{\partial z} \int_{z} \dot{S}(\mathbf{r}) d\mathbf{r} = C_{2}, \qquad (17)$$

s(c) - функция времени для скорости осадки свей на j-ой 1'/10 ступени нагрузок.

При пожение 3

КОНСТРУИРОВАНАЕ ИНТЕГРАЛЬНЫХ ФУНКЦИИ

-]. Антегральные рункции J_j, \bar{J}_j и \bar{J}_j уч тывают изменение во времени нагрузок $\rho(\tau)$, интенсивности касатеньных напряжений $r(\tau)$ течлературы, высоты вмогоженной части сваи и конструируются, исколя из общей формы кинетических ур внений первого и второго типк.
- 2. Интегральная функция 💪 относитон к иннетическим уравнениям 1 типа и для штампов составляется по формуле

$$J_{j} = \int_{t_{j-1}}^{t_{j}} \left[p(\mathbf{r}) \, \bar{f}(\mathbf{r}) \right] \bar{g}(\theta, \mathbf{r}) \, \mathcal{Y}'(\mathbf{r}) \, d\mathbf{r}, \tag{18}$$

 t_{j-1}, t_j — верхний и нижний пределы интегрирования, примимае-

$$\begin{aligned}
t_{j-1} - t_j &= \Delta t_j, \\
f_j \Delta t_j &= t^* = t_0 + t_0, \\
0 &= i - \text{NX VVBCTROR ...}
\end{aligned} (19)$$

PAG

f $\Delta f = t^* = t_c + t_s$, (I f — число f — ых участков динтельностью Δf ; t_c — длительность строительного периода; \dot{L}_s - срок службы сооружения.

В зависимости от понкратных услови расчета фундаментов формула (18) может иметь лять модификаций, какдая из которых определяется сочетанием функций времени для нагрузов, интенсивносты касательных напряжений и температуры грунта.

3. Литоградьная функция \mathcal{J}_i для расчета свай принамаются

In the supply of
$$W_j$$
 to $J_j = \iint_{T_j} \left[\rho(x) \bar{\tau}(\tau) \right]^{\frac{1}{m}} \bar{E} \left(\theta, \bar{x}, x\right) f'(\tau) dt dx$, (20)

г, с — Шай, - паслаетр и высога пиороженной чести свял; Пуда, В (О.Е.т) - нателенность касагальных наприжаний и функции ти стегочуры грукта, учитывающая номенськи их во времены и по глубине к б

4. Нагрузку $\rho(\tau)$ в формулах (19 и 20) можно представить как удельное сопротивление по нижнему торцу сваи и по ее боковой поверхности

$$P(\tau) = P_o^{\tau}(\tau) + P_{\sigma}(\tau) \equiv \frac{N_c}{U h_c} , \quad (fI)$$

гле вир - удельное сопротивление мерзлых грунтов по нижнему торцу сваи площадью № и по боковой поверхности смерзания площадью И/у: ;

м; - расчетная нагрузка.

Вносп Р и Р в (19 и 20), получим

$$J_{i} = J_{j,\delta} + J_{j,\delta}, \qquad (22)$$

гда $J_{i,\sigma}:J_{i,\sigma}$ - определяются по формулам (19 и 20) с заменой P(z) соответственно на $N_i(z)$ и $P_{ij}(z)$.

Формула (22) повволяет расчеты свайных фундаментов проведать с учетом изменения во времени соотношения между насрузнами, отнессивными к нижнему торцу и к боковой поверхности свам. Деполнательное условие, учитывающее перераспределение нагрузов, свед, ет из (22)

$$\frac{dP_0(t)}{d\tau} + \frac{dP_0(t)}{d\tau} Uh_j = 0$$
 (23)

и характаризует овязь можду скоростями перераспределения нагру зои и размерами сваи.

5. Интегральные функции \mathcal{J}_{i} и \mathcal{J}_{i} относятся и уравнениям аторого тина и для штампов диаметром \mathcal{D}_{i} составляются по форму изм

$$\vec{J} = \frac{1}{2} \int_{\xi_{-1}}^{\xi_{-1}} \frac{\rho(\tau) \vec{J}_{j}(\tau)}{\Theta(\tau)} d\tau \qquad (24)$$

$$\vec{J} = \frac{1}{2} \int_{\xi_{-1}}^{\xi_{-1}} \vec{J}(\tau) d\tau , \qquad (25)$$

 $J = \int_{T}^{T} J(\tau) \propto \tau$, (25)

гда $J(\tau)$ и $J(\tau)$ — скорость осадок на $J(\tau)$ и участка экспираца ции сооружения и при нормативных сопротивлениях еснования.

Вархиле и нивиле пределы интетрирования в формулах (, 4 v 25) принамаются по условия (19).

Формуля (25) может иметь дво дополнятельные моды нации

в зависимости от сочетания функции времени для нагрузом и температуры групта.

6. Для расчетов ованных фундаментов интегральная функция вычисияется по формул

$$\vec{J} = \frac{1}{U} \int_{0}^{h_{1}} \frac{P(\tau, z)}{b(\tau, z)} d\tau dz, \qquad (26)$$

где 4 и ф; периметр и высота вмороженной части сваи ка ј -ои участке эксплуатации соорумения;

 $\rho(c,z)$, $\theta(c,z)$ - нагрузка и температура с учетом изменения их во времени и по глубине $\mathbb{Z} \leq h_{\mathbb{Z}}$ Для функции $\overline{\mathcal{I}}$ в (26) принимается $P(\mathbf{r},\mathbf{z}) = P(\mathbf{z}) \cup P(\mathbf{r},\mathbf{z}) = P(\mathbf{z})$.

У ист нерераспределения нагрузок между нижним торцом и боконой поверхностью сваи производится по формулам (21 - 23).

7. Интенсивность касательных напряжений $T_{\ell}(z)$, ско — ресть освдок $S_{\ell}(z)$ и S(z) должны удовлетворять в статических жедачах условию равновесия, а в динамических - условию движения с чотеми "штамп-основание" или "свая-осчование".

Расчеты рекомендуется выполнить с помощью ЭВИ.

Содержание

		crp
	Вводение	3
1.	Общие положения	4
2.	Определение нормативных сопротивлений мерзлых грунтов и подземного льда	4
3.	Определение характористик деформативных свойств системы "свая-основание" или "штамп-основание"	9
4.	Определение коэффициентов условий работы	II
5.	Требования к измерениям. Первичная обработка смерений	81
	припожения	
Ι.	Кинетические уравнения и их классификация	SI
2.	Частиме случам кичетических уравноний	24
3.	Конструирование интогральных функций	25

Рекомендации по испытанию фундаментов на вечномераных грунтах пробными нагрузнами

Отв. за випуск Л.И.Бубенцова Корректор Т.И.Иолова Подписано к нечати I февраля 1974 г.

Объем I,36 уч.-изл.л., I,75 неч.л. Тира. 500 экз. AЛ 06090 ... Цена I4 коп. Заказ №224

Печатно-графический цех института "Красноярский прометройниипроект" Красноярск, пр. Свободный, 75